1.[25%]

A map $f: J \to J$ is expansive if there exists $\nu > 0$ such that, for any $x, y \in J$, $x \neq y$, there exists n > 0 so that $|f^n(x) - f^n(y)| > \nu$.

- (a) Show that the circle doubling map $f(x) = 2x \mod 1$ on \mathbb{R}/\mathbb{Z} is expansive.
- (b) Is the logistic map f(x) = 4x(1-x) expansive?

2.[25%]

Let σ be the shift map on the space $\Sigma_N = \{1, \ldots, N\}^{\mathbb{N}}$, endowed with the product topology.

- (a) How many periodic points of some period k does σ have in Σ_N ?
- (b) Show that there exists a dense orbit for σ .

3.[25%]

Let T_2 be the tent map on [0, 1],

$$T_2(x) = \begin{cases} 2x, & 0 \le x \le 1/2, \\ 2 - 2x, & 1/2 \le x \le 1 \end{cases}$$

Prove that T_2 is chaotic on [0, 1].

4.[25%]

Discuss the phase portrait and the bifurcation diagram for $S_a(x) = (1+a^2)x - x^3$, a near 0.