
PROJECTS CDS

Project 1, Equidistributions: Look at the first digits of 2n, n ∈ N:

1,2,4,8,16,32,64,128,256,512,1024, . . .

What is the distribution of these first digits? It turns out that the fraction
of the first digit k in 1, . . . , 2N goes to log10(

k+1
k ) as N → ∞. Another

question: given a polynomial p(x) = akx
k+ . . .+a0, what is the distribution

of the numbers p(n), n ∈ N? Such questions can be answered by the study
of dynamical systems, using the notion of equidistribution. Some knowledge
of measure theory is required.

Literature:
M. Einsiedler, T. Ward, Ergodic theory with a view towards number theory,
Springer Verlag, 2011. From this book: Example 1.3, Theorem 1.4, Sections
4.3, 4.4.

Assignment:
Prove the formula for the distribution of the first digits of 2k. Consider
also other powers ak. Prove Weyl’s result on the distribution of polynomial
values over natural numbers.

Project 2, Julia sets: A project in complex dynamics focussing on Julia sets, the
sets with nontrivial dynamics.

Literature:
R.L. Devaney, An introduction to chaotic dynamical systems, Westview Press,
2003. Sections 3.1-3.5.

Assignment:
Prove equivalence of two definitions of Julia set in Devaney’s book. What
can you say about Julia sets of the logistic map fµ(z) = µz(1− z)?

Project 3, Fractal geometry: Fractals are sets with a fine structure, with detail
on arbitrarily small scales, and an exact or approximate self-similarity. They
can be assigned a fractal dimension that is often larger then its topological
dimension. Cantor sets are examples of fractals.

Literature:
K. Falconer, Fractal geometry. Mathematical foundations and applications,
Wiley, 1990. Section 13.2 on the logistic map, and earlier material for the
definitions and results on dimensions.

Assignment:
Prove the dimension estimate for the invariant Cantor set of the logistic map
fµ(x) = µx(1− x), µ > 2 +

√
5 given in Section 13.2 of Falconer’s book.

Project 4, Circle dynamics: Diffeomorphism on the circle have a rotation num-
ber: the average rotation per iterate over large number of iterates. In this
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Project 2: a Julia set.

project you will investigate the definition, the properties, and will discover
a peculiar difference between C1 diffeomorphisms and C2 diffeomorphisms
(or rather between C1 diffeomorphisms whose derivatives do or do not have
bounded variation).

Literature:
R.L. Devaney, An introduction to chaotic dynamical systems, Westview Press,
2003. Section 1.14.
M. Brin, Stuck, Introduction to dynamical Systems, Cambridge University
Press, 2002. Section 7.2

Assignment:
Prove Denjoy’s theorem: A C2 orientation preserving circle diffeomorphism
with irrational rotation umber does not have wandering intervals, and there
exists a C1 orientation preserving circle diffeomorphism with irrational rota-
tion number and with wandering intervals. In particular exercise 5 in section
1.14 of Devaney.

Project 5, Strange attractors: The notion of strange attractor was introduced
by Floris Takens and David Ruelle in a paper “On the nature of turbulence”.
It turned out that attractors don’t have to be fixed points, or periodic or-
bits, or manifolds, but can have a fractal appearance. This project studies a
construction of strange attractors for diffeomorphsims on the torus (Derived
from Anosov systems) and the sphere (Plykin attractor) and their relation.

Literature:
Y. Coudène, Ergodic Theory and Dynamical Systems, Springer Verlag, 2013.
Chapter 9.
J. Palis, W. de Melo, Geometric theory of dynamical systems, Springer Ver-
lag, 1982. Chapter4, section 4, examples 5,6 (pages 165–170).
Y. Coudène, Pictures of hyperbolic dynamical systems, Notices Amer. Math.
Soc. 53, 2006, http://www.ams.org/notices/200601/fea-coudene.pdf
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Assignment:
Prove the existence of strange attractors for diffeomorphisms on the torus
and on the sphere. Plykin’s example is on a disk with three holes. What
about more holes?

Project 5: A strange attractor.

Project 6, Sard’s theorem: Sard’s theorem gives information on the set of criti-
cal values of a map. It is a very useful result that is used a lot in differential
topology and in dynamical systems.

Literature:
J. Milnor, Topology from the differentiable viewpoint, Princeton University
Press, 1997.
S.N. Chow, J. Hale, Methods of bifurcation theory, Springer Verlag, 1982.
R. Devaney, An introduction to chaotic dynamical systems, Westview Press,
2003.

Assignment:
Prove Sard’s theorem and apply to prove the Brouwer fixpoint theorem.
Give a proof of Proposition 15.7 in Devaney by applying Sard’s theorem.

Project 7, Time series analysis: A project with a practical component.

Literature:
H. Kantz, T. Schreiber, Nonlinear time series analysis, Cambridge Univer-
sity Press, 2000. Chapter 2.

Assignment:
Create two artificial time series. The first, {ηn, n = 1, . . . , 4096} contains
uniformly distributed random numbers (use your favorite random number
generator) in the interval [0, 1]. The second series, {sn, n = 1, . . . , 4096}, is
based on the deterministic evolution of xn which follows the rules x0 = 0.1
and xn+1 = 1 − 2x2n. The values xn are not measured directly but through
the nonlinear observation function sn = arccos(−xn)/π. Compare the mean,
variance and the power spectra of the two time series. Explain.

Project 8, Bifurcation theory: This project focusses on the Hopf bifurcation in
families of differential equations. In this bifurcation small amplitude oscil-
lations are born from a steady state.

Literature:
Yu. A. Kuznetsov, Elements of applied bifurcation theory, Springer-Verlag,
2004.
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A. de Roos, Modeling population dynamics, reader, 2014,
https://staff.fnwi.uva.nl/a.m.deroos/downloads/pdf_readers/syllabus.pdf.
Section 6.1.2, 7.4.

Assignment:
Study the proof of the Hopf bifurcation theorem for two dimensional vector
fields. Analyse the Hopf bifurcation in the Rosenzweig-MacArthur predator
prey model (see the reader by de Roos), in particular determine super- or
subcriticality.

Project 9, Homoclinic tangles: Horseshoes, i.e. dynamics on invariant sets that
is topologically conjugate to the standard Smale horseshoe model, are abun-
dant. They exists whenever a hyperbolic fixed point has transversally inter-
secting stable and unstable manifolds.

Literature:
M. Brin, Stuck, Introduction to dynamical Systems, Cambridge University
Press, 2002. Section 5.8.

Assignment:
Prove the statement on horseshoes due to “transverse homoclinic orbits”.
Prove the existence of horseshoes in the Hénon map Ha,b(x, y) = (a − by −
x2, x) for some suitable values of a, b.

Project 9: A horseshoe in the Hénon map.


