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The map T∗ is continuous and affine, so the set M T (X) of T -invariant
measures is a closed convex subset of M (X); in the next section(48) we will
see that it is always non-empty.

4.1 Existence of Invariant Measures

The connection between ergodic theory and the dynamics of continuous maps
on compact metric spaces begins with the next result, which shows that
invariant measures can always be found.

Theorem 4.1. Let T : X → X be a continuous map of a compact metric
space, and let (νn) be any sequence in M (X). Then any weak*-limit point of

the sequence (µn) defined by µn = 1
n

∑n−1
j=0 T j

∗νn is a member of M T (X).

An immediate consequence is the following important general statement,
which shows that measure-preserving transformations are ubiquitous. It is
known as the Kryloff–Bogoliouboff Theorem [214].

Corollary 4.2 (Kryloff–Bogoliouboff). Under the hypotheses of Theo-
rem 4.1, M T (X) is non-empty.

Proof. Since M (X) is weak*-compact, the sequence (µn) must have a limit
point. �

Write ‖f‖∞ = sup{|f(x)| | x ∈ X} as usual.

Proof of Theorem 4.1. Let µn(j) → µ be a convergent subsequence of (µn)
and let f ∈ C(X). Then, by applying the definition of T∗µn, we get
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as j → ∞, for all f ∈ C(X). It follows that
∫

f ◦ T dµ =
∫

f dµ, so µ is a
member of M T (X) by Lemma B.12. �

Thus M T (X) is a non-empty compact convex set, since convex combina-
tions of elements of M T (X) belong to M T (X). It follows that M T (X) is an
infinite set unless it comprises a single element. For many maps it is difficult
to describe the space of invariant measures. The next example has very few
ergodic invariant measures, and we shall see later many maps that have only
one invariant measure.
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Example 4.3 (North–South map). Define the stereographic projection π from
the circle X = {z ∈ C | |z − i| = 1} to the real axis by continuing the line
from 2i through a unique point on Xr{2i} until it meets the line ℑ(z) = 0
(see Figure 4.1).

z

π(z)π(z)/2

T (z)

2i

i

Fig. 4.1: The North-South map on the circle; for z 6= 2i, T nz → 0 as n → ∞.

The “North–South” map T : X → X is defined by

T (z) =

{

2i if z = 2i;

π−1(π(z)/2) if z 6= 2i

as shown in Figure 4.1. Using Poincaré recurrence (Theorem 2.11) it is easy
to show that M T (X) comprises the measures pδ2i + (1− p)δ0, p ∈ [0, 1] that
are supported on the two points 2i and 0. Only the measures corresponding
to p = 0 and p = 1 are ergodic.

It is in general difficult to identify measures with specific properties, but
the ergodic measures are readily characterized in terms of the geometry of
the space of invariant measures.

Theorem 4.4. Let X be a compact metric space and let T : X → X be a
measurable map. The ergodic elements of M T (X) are exactly the extreme
points of M T (X).

That is, T is ergodic with respect to an invariant probability measure if
and only if that measure cannot be expressed as a strict convex combination
of two different T -invariant probability measures. For any measurable set A,
define µ

∣
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A
(C) = µ(A∩C). If T is not assumed to be continuous, then

we do not know that M T (X) 6= ∅, so without the assumption of continuity
Theorem 4.4 may be true but vacuous (see Exercise 4.1.1).

Proof of Theorem 4.4. Let µ ∈ M T (X) be a non-ergodic measure. Then
there is a measurable set B with µ(B) ∈ (0, 1) and with T−1B = B. It follows
that
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expresses µ as a strict convex combination of the invariant probability mea-
sures

1

µ(B)
µ
∣

∣

B

and
1

µ(XrB)
µ
∣

∣

XrB
,

which are different since they give different measures to the set B.
Conversely, let µ be an ergodic measure and assume that

µ = sν1 + (1 − s)ν2

expresses µ as a strict convex combination of the invariant measures ν1 and ν2.
Since s > 0, ν1 ≪ µ, so there is a positive function f ∈ L1

µ (f is the Radon–

Nikodym derivative dν1

dµ
; see Theorem A.15) with the property that

ν1(A) =

∫

A

f dµ (4.1)

for any measurable set A. The set B = {x ∈ X | f(x) < 1} is measurable
since f is measurable, and

∫

B∩T−1B

f dµ +
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f dµ = ν1(B)

= ν1(T
−1B)

=

∫
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f dµ +
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f dµ,

so
∫

BrT−1B

f dµ =

∫

(T−1B)rB

f dµ. (4.2)

By definition, f(x) < 1 for x ∈ Br(T−1B) while f(x) > 1 for x ∈ T−1BrB.
On the other hand,

µ((T−1B)rB) = µ(T−1B) − µ((T−1B) ∩ B)

= µ(B) − µ((T−1B) ∩ B)

= µ(BrT−1B)
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so equation (4.2) implies that µ(BrT−1B) = 0 and µ((T−1B)rB) = 0.
Therefore µ((T−1B)△B) = 0, so by ergodicity of µ we must have µ(B) = 0
or 1. If µ(B) = 1 then

ν1(X) =

∫

X

f dµ < µ(B) = 1,

which is impossible. So µ(B) = 0.
A similar argument shows that µ({x ∈ X | f(x) > 1}) = 0, so f(x) = 1

almost everywhere with respect to µ. By equation (4.1), this shows that

ν1 = µ,

so µ is an extreme point in M T (X). �

Write E T (X) for the set of extreme points in M T (X) – by Theorem 4.4,
this is the set of ergodic measures for T .

Example 4.5. Let X = {1, . . . , r}Z and let T : X → X be the left shift
map. In Example 2.9 we defined for any probability vector p = (p1, . . . , pr)
a T -invariant probability measure µ = µp on X , and by Proposition 2.15
all these measures are ergodic. Thus for this example the space E T (X) of
ergodic invariant measures is uncountable. This collection of measures is an
inconceivably tiny subset of the set of all ergodic measures – there is no hope
of describing all of them.

Measures µ1 and µ2 are called mutually singular if there exist disjoint
measurable sets A and B with A∪B = X for which µ1(B) = µ2(A) = 0 (see
Section A.4).

Lemma 4.6. If µ1, µ2 ∈ E T (X) and µ1 6= µ2 then µ1 and µ2 are mutually
singular.

Proof. Let f ∈ C(X) be chosen with
∫

f dµ1 6=
∫

f dµ2 (such a function
exists by Theorem B.11). Then by the ergodic theorem (Theorem 2.30)

A
f
n(x) →

∫

f dµ1 (4.3)

for µ1-almost every x ∈ X , and

A
f
n(x) →

∫

f dµ2

for µ2-almost every x ∈ X . It follows that the set A = {x ∈ X | (4.3) holds}
is measurable and has µ1(A) = 1 but µ2(A) = 0. �

Some of the problems for this section make use of the topological analog
of Definition 2.7, which will be used later.


