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(b) Can you prove this starting with the weaker assumption that the upper
density d(A) is positive, and reaching the same conclusion?

Exercise 2.2.3. (a) Let (X, d) be a compact metric space and let T : X → X
be a continuous map. Suppose that µ is a T -invariant probability measure
defined on the Borel subsets of X . Prove that for µ-almost every x ∈ X there
is a sequence nk → ∞ with T nk(x) → x as k → ∞.
(b) Prove that the same conclusion holds under the assumption that X is
a metric space, T : X → X is Borel measurable, and µ is a T -invariant
probability measure.

2.3 Ergodicity

Ergodicity is the natural notion of indecomposability in ergodic theory(15).
The definition of ergodicity for (X, B, µ, T ) means that it is impossible to
split X into two subsets of positive measure each of which is invariant un-
der T .

Definition 2.13. A measure-preserving transformation T : X → X of a
probability space (X, B, µ) is ergodic if for any∗ B ∈ B,

T−1B = B =⇒ µ(B) = 0 or µ(B) = 1. (2.2)

When the emphasis is on the map T : X → X , and we are studying
different T -invariant measures, we will also say that µ is an ergodic measure
for T . It is useful to have several different characterizations of ergodicity, and
these are provided by the following proposition.

Proposition 2.14. The following are equivalent properties for a measure-
preserving transformation T of (X, B, µ).

(1) T is ergodic.
(2) For any B ∈ B, µ(T−1B△B) = 0 implies that µ(B) = 0 or µ(B) = 1.
(3) For A ∈ B, µ(A) > 0 implies that µ (

⋃

∞

n=1 T−nA) = 1.
(4) For A, B ∈ B, µ(A)µ(B) > 0 implies that there exists n > 1 with

µ(T−nA ∩ B) > 0.

(5) For f : X → C measurable, f ◦ T = f almost everywhere implies that f
is equal to a constant almost everywhere.

In particular, for an ergodic transformation and countably many sets of
positive measure, almost every point visits all of the sets infinitely often under
iterations by the ergodic transformation.

∗ A set B ∈ B with T
−1

B = B is called strictly invariant under T .
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Proof of Proposition 2.14. (1) =⇒ (2): Assume that T is ergodic, so
the implication (2.2) holds, and let B be an almost invariant measurable set
– that is, a measurable set B with µ

(

T−1B△B
)

= 0. We wish to construct
an invariant set from B, and this is achieved by means of the following limsup
construction. Let

C =

∞
⋂

N=0

∞
⋃

n=N

T−nB.

For any N > 0,

B△

∞
⋃

n=N

T−nB ⊆

∞
⋃

n=N

B△T−nB

and µ (B△T−nB) = 0 for all n > 1, since B△T−nB is a subset of

n−1
⋃

i=0

T−iB△T−(i+1)B,

which has zero measure. Let CN =
⋃

∞

n=N T−nB; the sets CN are nested,

C0 ⊇ C1 ⊇ · · · ,

and µ(CN△B) = 0 for each N . It follows that µ(C△B) = 0, so

µ(C) = µ(B).

Moreover,

T−1C =

∞
⋂

N=0

∞
⋃

n=N

T−(n+1)B =

∞
⋂

N=0

∞
⋃

n=N+1

T−nB = C.

Thus T−1C = C, so by ergodicity µ(C) = 0 or 1, so µ(B) = 0 or 1.

(2) =⇒ (3): Let A be a set with µ(A) > 0, and let B =
⋃

∞

n=1 T−nA.
Then T−1B ⊆ B; on the other hand µ

(

T−1B
)

= µ (B) so µ(T−1B△B) = 0.
It follows that µ(B) = 0 or 1; since T−1A ⊆ B the former is impossible,
so µ(B) = 1 as required.

(3) =⇒ (4): Let A and B be sets of positive measure. By (3),

µ

(

∞
⋃

n=1

T−nA

)

= 1,

so

0 < µ(B) = µ

(

∞
⋃

n=1

B ∩ T−nA

)

6

∞
∑

n=1

µ
(

B ∩ T−nA
)

.

It follows that there must be some n > 1 with µ(B ∩ T−nA) > 0.
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(4) =⇒ (1): Let A be a set with T−1A = A. Then

0 = µ(A ∩ XrA) = µ(T−nA ∩ XrA)

for all n > 1 so, by (4), either µ(A) = 0 or µ(XrA) = 0.

(2) =⇒ (5): We have seen that if (2) holds, then T is ergodic. Let f be
a measurable complex-valued function on X , invariant under T in the stated
sense. Since the real and the imaginary parts of f must also be invariant and
measurable, we may assume without loss of generality that f is real-valued.
Fix k ∈ Z and n > 1 and write

Ak
n = {x ∈ X | f(x) ∈ [ k

n
, k+1

n
)}.

Then T−1Ak
n△Ak

n ⊆ {x ∈ X | f ◦ T (x) 6= f(x)}, a null set, so by (2)

µ(Ak
n) ∈ {0, 1}.

For each n, X is the disjoint union
⊔

k∈Z
Ak

n. It follows that there must be

exactly one k = k(n) with µ(A
k(n)
n ) = 1. Then f is constant on the set

Y =

∞
⋂

n=1

Ak(n)
n

and µ(Y ) = 1, so f is constant almost everywhere.

(5) =⇒ (2): If µ(T−1B△B) = 0 then f = χB is a T -invariant measurable
function, so by (5) χB is a constant almost everywhere. It follows that µ(B)
is either 0 or 1. �

Proposition 2.15. Bernoulli shifts are ergodic.

Proof. Recall the measure-preserving transformation σ defined in Exam-
ple 2.9 on the measure space X = {0, 1, . . . , n}Z with the product mea-
sure µ. Let B denote a σ-invariant measurable set. Then given any ε ∈ (0, 1)
there is a finite union of cylinder sets A with µ(A△B) < ε, and hence
with |µ(A) − µ(B)| < ε. This means A can be described as

A = {x ∈ X | x|[−N,N ] ∈ F}

for some N and some finite set F ⊆ {0, 1, . . . , n}[−N,N ] (for brevity we
write [a, b] for the interval of integers [a, b] ∩ Z. It follows that for M > 2N ,

σ−M (A) = {x ∈ X | x|[M−N,M+N ] ∈ F},

where we think of x|[M−N,M+N ] as a function on [−N, N ] in the natural way,
is defined by conditions on a set of coordinates disjoint from [−N, N ], so
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µ(σ−MArA) = µ(σ−MA ∩ XrA) = µ(σ−MA)µ(XrA) = µ(A)µ(XrA).
(2.3)

Since B is σ-invariant, µ(B△σ−1B) = 0. Now

µ(σ−MA△B) = µ(σ−MA△σ−MB)

= µ(A△B) < ε,

so µ(σ−MA△A) < 2ε and therefore

µ(σ−MA△A) = µ(Arσ−MA) + µ(σ−MArA) < 2ε. (2.4)

Therefore, by equations (2.3) and (2.4),

µ(B)µ(XrB) < (µ(A) + ε) (µ(XrA) + ε)

= µ(A)µ(XrA) + εµ(A) + εµ(XrA) + ε2

< µ(A)µ(XrA) + 3ε < 5ε.

Since ε was arbitrary, this implies that µ(B)µ(XrB) = 0, so µ(B) = 0 or 1
as required. �

More general versions of this kind of approximation argument appear in
Exercises 2.7.3 and 2.7.4.

Proposition 2.16. The circle rotation Rα : T → T is ergodic with respect to
the Lebesgue measure mT if and only if α is irrational.

Proof. If α ∈ Q, then we may write α = p

q
in lowest terms, so Rq

α = IT is

the identity map. Pick any measurable set A ⊆ T with 0 < mT(A) < 1
q
. Then

B = A ∪ RαA ∪ · · · ∪ Rq−1
α A

is a measurable set invariant under Rα with mT(B) ∈ (0, 1), showing that Rα

is not ergodic.
If α /∈ Q then for any ε > 0 there exist integers m, n, k with m 6= n

and |mα−nα− k| < ε. It follows that β = (m−n)α− k lies within ε of zero
but is not zero, and so the set {0, β, 2β, . . . } considered in T is ε-dense (that
is, every point of T lies within ε of a point in this set). Thus (Zα+ Z)/Z ⊆ T

is dense.
Now suppose that B ⊆ T is invariant under Rα. Then for any ε > 0 choose

a function f ∈ C(T) with ‖f − χB‖1 < ε. By invariance of B we have

‖f ◦ Rn
α − f‖1 < 2ε

for all n. Since f is continuous, it follows that

‖f ◦ Rt − f‖1 6 2ε
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for all t ∈ R. Thus, since mT is rotation-invariant,

∥

∥

∥

∥

f −

∫

f(t) dt

∥

∥

∥

∥

1

=

∫
∣

∣

∣

∣

∫

(f(x) − f(x + t)) dt

∣

∣

∣

∣

dx

6

∫∫

∣

∣

∣
f(x) − f(x + t)

∣

∣

∣
dxdt 6 2ε

by Fubini’s theorem (see Theorem A.13) and the triangle inequality for inte-
grals. Therefore

‖χB − µ(B)‖1 6 ‖χB − f‖1 +

∥

∥

∥

∥

f −

∫

f(t) dt

∥

∥

∥

∥

1

+

∥

∥

∥

∥

∫

f(t) dt − µ(B)

∥

∥

∥

∥

1

< 4ε.

Since this holds for every ε > 0 we deduce that χB is constant and there-
fore µ(B) ∈ {0, 1}. Thus for irrational α the transformation Rα is ergodic
with respect to Lebesgue measure. �

Proposition 2.17. The circle-doubling map T2 : T → T from Example 2.4
is ergodic (with respect to Lebesgue measure).

Proof. By Example 2.8, T2 and the Bernoulli shift σ on X = {0, 1}N to-
gether with the fair coin-toss measure are measurably isomorphic. By Propo-
sition 2.15 the latter is ergodic, and it is clear that measurably isomorphic
systems are either both ergodic or both not ergodic. �

Ergodicity (indecomposability in the sense of measure theory) is a uni-
versal property of measure-preserving transformations in the sense that ev-
ery measure-preserving transformation decomposes into ergodic components.
This will be shown in Sections 4.2 and 6.1. In contrast the natural notion of
indecomposability in topological dynamics – minimality – does not permit
an analogous decomposition (see Exercise 4.2.3).

In Section 2.1 we pointed out that in order to check whether a map is
measure-preserving it is enough to check this property on a family of sets that
generates the σ-algebra. This is not the case when Definition 2.13 is used to
establish ergodicity (see Exercise 2.3.2). Using a different characterization of
ergodicity does allow this, as described in Exercise 2.7.3(3).

Exercises for Section 2.3

Exercise 2.3.1. Show that ergodicity is not preserved under direct products
as follows. Find a pair of ergodic measure-preserving systems (X, BX , µ, T )
and (Y, BY , ν, S) for which T × S is not ergodic with respect to the product
measure µ × ν.


