Chapter 1

The Hartman-Grobman theorem

and Anosov diffeomorphisms

Let A be a nonsingular n X n matrix. Suppose that R™ = F* & E* is an invariant splitting for A. For

any ¢ € R”, we let x = x4 + x, with z;, € E° and z, € E*. On R™ we can take a product norm

|z| = max{|xs|, |zy|}, for given norms on E®, E*. We suppose that the eigenvalues of Ay = A|g- have

moduli less than one and that the eigenvalues of A, = A|gw have moduli greater than one. By a linear

coordinate change we may assume that
Al AT < L.
Let ¢7 be the space of maps from R” to R™ whose derivatives up to order j are bounded and uniformly

continuous. The norm | - |; on €7 is the sup norm of all derivatives up through order j;

[l = sup {|f(@)|,|Df(2)],...,|D? f()]; ;2 € R"}.
Theorem 0.1. There is po > 0 such that, for any f € Qillm ={f e |fli <po}, there is a unique
homeomorphism h with f — h—id € €° depending continuously on f, h(0) = id, and ho (A+ f) = Aoh.

Proof. Let a = max(|A|,|A;") < 1 and choose g > 0 so that a — po > 0, and for any f € €], ,

(A + f)~! exists and belongs to €!. If f € Q}LO, the equation ho (A + f) = Ao h is equivalent to either

of the equations

h=Aoho(A+ ),
h=A"1oho(A+f).
We will use the first equation to define hs and the second to define h, (where h = hs + hy). For any
continuous h, f € €, , define T'(h, f) = T(h, f)s + T(h, f)u by the relations
T(h7f)8 = h, _Asohso(A+f)_17
T(haf)u :hu _A7:1 Ohuo(A+f)'
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Denote D% = {h : R* = R™ ; h —id € €°}. It is easy to verify that T': ©° x ¢, — € is continuous in
h, f, and T'(id,0) = 0. Furthermore, D, T'(h, f) exists and is continuous in h, f with

(DhT(hvo)g)S =9gs — As ©gs o Aila
(DhT(ha O)Q)u = Gu — Agl O gy © A.

For any w € €°, the equation D;T(h,0)g = w has a unique solution bounded above by (1 — a)~!|w|
(note that DT (h,0) is of the form I + L with |L| < a, so that D, T'(h,0) = (I — L)~! exists and equals
I+L+L*+L3+...). Thus, DyT(h,0) is an isomorphism. The implicit function theorem implies there
is a unique function h = h(f), continuous in f in Qf}m (we may have to take po smaller to get this),
h(0) = id, and T'(h(f), f) = 0.

It remains to show that h is a homeomorphism. Consider the equation (A+ f)og = go A for g € €°,
f € €. We can repeat the same type of argument as above to obtain a unique function g = g(f) € €°,
fe Qfllm, g(f) —id € €° continuous in f, g(0) = id and (A + f)og = go A. The same type of argument
also gives unique solutions to equations of the form (A+ f1)og = go (A+ f2) for differentiable and small
f1, fo. The combination of solutions g and h of (A+ f)og=go A and Aoh =ho (A+ f) provides a
solution hog of hogo A = Ahog and a solution goh of goho (A+ f) = (A+ f) o goh. These solutions
are unique. Since the identity map also solves these equations, we have h o g = id and g o h = id. Hence

h is a homeomorphism. O

Consider a matrix A € GL(2,7Z), i.e. a 2 x 2 matrix with integer coefficients, whose inverse also

a b

has integer coefficients. Note that det A = +1. A matrix A = < J > € GL(2,Z) induces an

c
automorphism on the torus T? = R?/Z2. The induced map on T?, also denoted by A, is given by

A(z,y) = (ax + by, cx + dy) mod 1.

Suppose that R? = E* @ E" is an invariant splitting for A. For any = € R?, we let = x, + x,, with
zs € E° and x,, € E*. We suppose that the eigenvalue of A, = A
that the eigenvalue of A, = A

Es has modulus less than one and

pv has modulus greater than one. Hence
|Aql,|AY < 1.

The induced map on T? is called hyperbolic. Periodic points of A lie dense in T2, in fact, every point in

T? with rational coordinates is periodic. An example is

(1)

with eigenvalues (3 + v/5) and its reciprocal.
Let ¢7(T?) be the space of maps from T? to T? whose derivatives up to order j are bounded and

uniformly continuous. The norm |- |; on €7(T?) is the sup norm of all derivatives up through order j;

|f1; = sup{|f(@)|,IDf(@)],...,|D? f(z); ;2 € R"}.



Theorem 0.2. There is pg > 0 such that, for any f € €}, (T?) = {f € € (T?) ; |fl» < po}, there is a
unique homeomorphism h in €°, depending continuously on f, h(0) = id, such that ho (A+ f) = Aoh.

Proof. The proof follows the argument in Section 1 to prove the Hartman-Grobman theorem. We lift
functions on T? to functions on its universal cover R2.
Following the proof of Theorem 0.1, define T : €9 x Q}LO as T'(h,f) = T(h, f)s + T(h, f). by the

relations

T(h,f)s = hs — Agohgo (A+ f)71,
T(hy f)u =hy — A; o hyo (A+ f).

Write

Dl ={fed; f(x,y)+ (k1) = f(z,y) for all (k1) € Z*},
FEl={fed; f—ide D’}.

One checks that T': E® x D), — E° is well defined. To see this, note that because A~ ((z,y) + (k1)) =
A~ Y((x,y)) + A7Y((k, 1)), f is small in the C* topology, and (A + f)~! is Z2-periodic, we have

(A+ N7 (@,y) + (kD) = (A+ £)"H((z,9) + A7 (K, ).
Likewise, for h —id € D7,

hs((A+ )7 (@, y) + A7 (K, 1) = hs (A + £)7H (2, 1)))-
So

Agohso (A4 )M (a,y) + (k1) = As o hs(A+ f) M ((2,9) + A ((k,1)))
=Asohso(A+ f)_l((x7y))

and, likewise,
ATt ohy o (A+ )((z,y) + Z%) = Ay o hy o (A+ f)((2,y))-

The remainder of the proof follows the arguments for Theorem 0.1. O
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Chapter 2

From stable manifolds to structural
stability

Let f: M — M be a diffeomorphism on a compact manifold M. Define the stable set W?*(p) and the
unstable set W"(p) by

Wep)={zxe M; f"(z) > pasn— oo},
We(p)={z e M; f"(z) > pasn— —o0}.

We state the fundamental stable manifold theorem, originating with work of Jacques Hadamard and

Oskar Perron.

Theorem 0.3. Supppose p is a hyperbolic fixed point of a diffeomorphism f. Then W*(p) is a manifold,
injectively immersed in M, with T,W*(p) = E*(p). We call W*(p) the stable manifold. Likewise, W*"(p)
is a manifold, injectively immersed in M, with T,W"(p) = E“(p). We call W*(p) the unstable manifold.

Proof. We present a variant of Perron’s proof. We will construct a local stable manifold W .(p) near p
for f. Then W*(p) = Upezf™(W},) is the orbit of the local stable manifold.
Let us make this precise. Working in a chart near p, we may assume that p is the origin in R". For
given small § > 0, let
Wi.={ueR"; || f*"(z)]] < for all n € N}.

Take coordinates u = (z,y) € E*(0) x E*(0). Write further w5 and m, for the coordinate projections
£+(0); spec D f(0)| g+ (o) <
et < 1, Likewise, let 1 < e* < spec Df(0)gu(o). Replacing f by an iterate of f, if necessary, we may
assume ||[Df(0)vs|| < e#||vs| for all v, € E5(0) and || Df(0)v,|| > e*||v,]|| for all v, € E*(0).

Let B(N,R™) be the space of bounded sequences N — R™, endowed with the supnorm

7s(x,y) = v and 7, (z,y) = y. Let e be a bound for the eigenvalues of D f(0)

[7llo = sup (|7,
neN

5
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where ||(z,y)|| = max {||z]],||y||} is @ box norm on R™ = E*(0) x E*(0), for given norms on E*(0) and
E*(0). Define the map I' : E5(0) x B(N,R") — B(N,R") by

(x07wuf71(7(1)))7 ifTLZO,
(msf(y(n — 1)), mu f L (y(n + 1)), ifn > 0.

Write D = {zg € E° ; |jzg]] < 6} and Bs = {y € B(N,R") ; [|7]lo < 6} We claim that for § small

enough,

F(.’ﬂo’ 7)(77’) = {

(1) F(Dg X Bs) C Dj§ x ‘B,
(ii) T is a contraction on {zg € E*® ; ||ao|| < 6} x Bs.

By continuity of derivatives of Df and Df~! one has the following. For & > 0 there exists § > 0 so that

Imsf(2,y) = ms (2, 9)]| < (" + )| (z,9) — (7,9,
lmaf (2, y) = muf 1G9 < (e + o)z y) — (2,7)]]

for all (z,y), (z,y) with ||(z, )], ||(Z,7)|| < . Pick € so that both e# + & < 1 and e~ + & < 1. To prove

that T" is a contraction in the second coordinate, compute

IT(z0,v1) — T'(2o,72)lo
= sup I0(z0,71)(n) — T'(z0,72)(n)|l
< sup max{[|ms f(11(n = 1)) = s f(y2(n = D), |7 f " (ni(n+ 1)) = f ™ (2(n + 1)1}

< sup max{e” + ¢, e N+ v — 12llo
neN

< &l —72llo

for k = max{e” +,e”* + e} < 1. A similar estimate establishes the first item.

By Theorem 0.7, T is differentiable, so that by the uniform contraction theorem, the fixed point of '
depends differentiable on xg. The correspondence x — 7);,(0) defines a smooth manifold.

Let 7, be the fixed point of I'(xo, -), ||zo]| < 6. We claim that 7, is a positive orbit of f, for & small

enough (we can take € smaller if needed). Write 7y, (n) = (zn, yn). Given n € N, we have

st(wnvyn) = Tn41, Wufil(xn—&-la yn+1) = Yn-

This defines (zy,+1,Yn+1) as function of x,,y,: with

F(:L'n, Yny Tn41, yn+1) = (st(l’n, yn) — Tn+1, ﬂ'ufil(xn—&-la yn+1) - yn)

we have

F(0,0,0,0) = (0,0)

and
Dmﬂr+1vyn+1F(0’ O, 0’ O)



has bounded inverse. Hence, applying the implicit function theorem, for (z,,y,) near (0,0), one finds
(Zn+1,Yn+1) as a smooth function of (., yn), equal to (0,0) if (zn,yn) = (0,0). Now let (Tpt1, Tnt1) =

f(@n,yn). We must show that (x,41,Yn+1) = (Tnt1,Ynr1). Observe that (Zpi1,Tnt1) = f(@n,Yn)
implies that f = (Zp41,Un+1) = (Tn, yn) and thus

st(xnvyn) = fn+177Tufil(f‘_cn-i-lvyn-‘rl) = Yn-

So (41, Yn+1) and (Tpy1, Unt1) satisfy the same equation. By uniqueness of solutions, it follows that

(Tnt15Ynt1) = (@nt1, Ynt1)-

We conclude that 7., is a positive orbit of f that stays in a d-neighborhood of 0. We must show
that 7y,(n) converges to 0 as n — oo. For this we note invariance of the cone |y| < ||z||: for § > 0
small enough and ||(z,y)|| < 6, |ly]| < ||z]|, we have ||m,f((z,v))|| < ||7sf((x,y))||. This follows since
7D f(0)(z,y)|| < ||msDf(0)(x,y)|| and f is Ct. Now zg + 14, (0) is a smooth manifold that is tangent
to E%(0) at the origin. So 7, is contained in the cone ||y|| < ||z|| for z¢ small. From 2,411 = 75 f(2n, yn)
and [y | < [l2]] we get zns | < (¢ + 8) | (2, gl < (¢ + ) [l] 50 that lim (@, pn) = 0. O

The next result yields structural stability of diffeomorphisms restricted to maximal invariant hyper-
bolic sets, and generalizes Theorem 0.2 for hyperbolic torus automorphisms.

Consider a diffeomorphism f : M — M on a compact manifold M. Recall that a compact invariant
set A is called (uniformly) hyperbolic if there is a splitting T, M = E*(z)® E"(x), depending continuously
on z, and constants C > 1, 0 < A < 1, u > 1, that

IDf"(@)vll < CA"|lvll, v e E*(x),
n 1 n U
IDf"(@)oll = Zu"llvll, v € B*(x).
The hyperbolic set A is called maximal invariant if A = N,,ezf™(U) for some open neighborhood U of A.

Theorem 0.4. Let f: M — M be a diffeomorphism with a mazximal invariant hyperbolic set A: there
is an open neighborhood U of A so that

A =Npezf"(U).
Then there is a neighborhood V of f in the C* topology, so that for any g € V,
Ag) = Nnezg"(U)
is a hyperbolic set of g.

Proof. The theorem follows by finding a robust way of constructing the stable an unstable subspaces
E*(x), E*(x). This is done using invariant (stable and unstable) cone fields. For simplicity we assume
C =1 in the definition of hyperbolicity. For z € A, write v € T, M as v = vs + v, with vs; € E*(z),v, €
E¥(x). For a > 0 and x € A define cones

Ki(z)={veT,M; |v,| < a|vs|},
Ki(x)={veT,M; |vs| < alu|}.
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We may extend these cones to cone fields in Ty M, possible taking a smaller neighborhood U of A. Note

that there exists v > 1 so that for a small enough, x € A,

Df(x)Kq(x) € Kq), (f(2)), (0.1)
|Df(z)v| > vv| for v € K{. (0.2)

Similarly for K¢. It follows that E*(x) is obtained as

E*(2) = Onzo D" (f " (@) K5 (f " (x))
and E*(x) is obtained as

E*(z) = Nnzo D" (f" () Ko (f" (2)),

for some small o > 0. Estimates (0.1) and (0.2) apply for any g sufficiently close to f in the C'* topology,
with # € A(g). This proves the theorem. O

Theorem 0.5. Let f: M — M be a diffeomorphism with a maximal invariant set
A= mnGan(U)

which is hyperbolic. There exists € > 0 so that any g which is € close to f in the C topology, possesses a
mazximal invariant hyperbolic set A(g) in U. Moreover, f|n and g, 4 are topologically conjugate: there

exists a homeomorphism h = h(g) : A — A(g) with
goh=hof.
The dependence g +— h(g) is continuous in the C° topology and h(f) = id.

Proof. We follow ideas that are contained in the proof of Theorem 0.3. Along A, there is a continuous
splitting TA M = E®@® E" in stable and unstable subspaces. For simplicity assume C' = 1 in the definition
of hyperbolicity. For z € M and ¢ > 0 small, the ball Bs(z) of radius § about z is well defined. Cover
A with finitely many balls U; = B;(y;) of small radius ¢ > 0 with the property that for any = € A, the
ball Bs/p(x) is contained in one of U;’s. Working in a chart, we may assume U; C R™. Then we have
coordinate projections g to E*(y;) with kernel E*(y;) and 7, to E*(y;) with kernel E*(y;).

Fix an orbit x(i +1) = f(x(i)), i € Z, of f in A. Suppose x(i) € Uj;q;) and Bs/o(2(i)) C Uje-
Write B(Z, M) for the space of sequences Z — M endowed with the C° topology and let B = {y €
B(Z,M) ; v(i) € Bsj2(x(i))}. Define I' : B — B(Z, M) by

L(y)(n) = (mf(v(n = 1)), m f 7 (v(n +1))).
Likewise, for a diffeomorphism ¢ : M — M close to f in the C' topology, define I'y : B — B(Z, M) by
Ly(7)(n) = (msg(y(n — 1)), mug ™ (v(n + 1))

We make the following claims. For sufficiently small € > 0, there exists d > 0 so that for any diffeomor-

phism ¢ : M — M that is € close to f in the C'! topology,



(i) Ty(B) < B,
(ii) I'y is a contraction on B,
(iii) the fixed point of 'y is the orbit z(i + 1) = g(2(7)) of g with 2(i) € Bs/2(x(7)).

The claims rely on closeness of f to Df(x(i)), closeness of E*(x(i)) and E*(x(i)) to E*(y;«) and

(i)
E"(y;(:)), and closeness of g to f in the C'! topology. Consider first projections 7y : R™ — E*(x(i))
7ty : R™ — E%(x(i)) with 7, + 7, = id. For € > 0 there is > 0 so that for x1, 22 € Bs/o(2(i — 1)),

and

7 f(21) — 7s flz2)] <
75 (f(21) — (i) = Df (i = D)) (2@ = 1) = 21))| + |7 (f(w2) — 2(i) = Df(x(i — 1)(x(i = 1) — 22))]
T Df (i = 1)) (21 — 22)| <

2e|zy — ma| + A|z1 — z2].

A similar estimate applies to 7%, f~'. We conclude that for £ > 0 there is § > 0 so that for z1, x5 €
Bsja(x(i — 1)), y1,y2 € Bsja(x(i + 1)),

|75 f(x1) — s f(22)

|7Aruf71(y1) - ﬁufil(yZ)

| < (/\ + 26)|$1 — ZE2|,
| < (1/p+28)|yr — vl
We replace the projections 7y, , by ms,m,. From the continuous dependence of the splitting E°, E*

along A, we get the following. For ¢ > 0 there exists § > 0 so that for x1, 22 € Bjo(z(i — 1)),

|7Tsf(x1) - ﬂ-sf(xQ)l S
|ms f(z1) — Fs f(@1)] + [ms f(22) — Ao f22)| + |Fs f21) — Fs f(22)] <
2e|z1 — za| + (A + 2¢)|z1 — 22|

With a similar estimate for the unstable coordinate, we get that for ¢ > 0 there is § > 0 so that for
r1,72 € Bsja(2(i — 1)), y1,y2 € Bsja(2(i + 1)),

Imof(@1) — 7o f(2)
|7ruf71(yl) - '/Tufil(yQ)

(/\ +4€)|$1 — $2|,

| <
| < (1/p+48)|yr — vl

Finally and in the same manner, for g within € of f in the C'* topology, again with 1, 25 € Bs o (x(i—1)),
Y1,Y2 € Bsa(z(i + 1)),

|7ng(x1) _7739(372) ()‘+65)|x1 _1’2|a

| <
Imug™ (1) — msg ™ (y2)| < (1/p+62)|yr — yal.

For € small, both A +6¢ < 1 and 1/p + 6 < 1. The first two claims follow. The observation that the
fixed point is an orbit, follows as in the proof of Theorem 0.3.
Define a map h : A — U that maps z(k) € A to the fixed point of I'j({z(7)})(k). The construction

shows that ho f = go h. We leave it to the reader to show that & is continuous. Vice versa, recall that
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the maximal invariant set of g in U is hyperbolic by Theorem 0.4. Given an orbit {y(i)} of g in h(A) for
g sufficiently close to f, I'y({y(¢)}) provides a nearby orbit of f in A. So the map j : g(A) — M that

maps y(k) € g(A) to the fixed point of I'y({y(4)})(k) is the inverse of h and is continuous. It follows that

h is a homeomorphism. O



Chapter 3

An auxiliary differentiability result

Theorem 0.6. Let f: R™ — R™ be C'. Define
N :&%([0,1],R™) — €°([0, 1], R™)
by N(¢)(t) = f(¢(t)). Then N is C.
Proof. For ¢ € €°(]0,1],R"™), ¥ € €°(]0, 1], R™), define B(¢)y in €¢°([0, 1], R™) by
B(¢)v(t) = Df(¢(t)(t).

One checks that B is a bounded linear map. We claim that DN(¢) = B(¢). Namely, compute for
t €10,1],

(N(6+ 1) — N(@) — B)D)(E) = F(6(t) +(8) — F(6(1)) — DFSE)()
- / (DF(S(t) + s(t)) — DF(G(t))(t) ds.

Since ¢([0,1]) is compact, D f is uniformly continuous on ¢[0, 1]. For € > 0, there exists § > 0 such that
if 1 € ¢(]0,1]) and |z2 — 21| < 4, then ||Df(x2) — Df(z1)| < e. Therefore,

|(N (¢ + %) = N(¢) = B(o)9)(t)| = /O (Df((t) + sp(t)) = Df(6(2)))1(t) ds

< eli(t)]
< el

Taking the supremum over ¢ € [0, 1] we get |[N(¢+¢) — N(¢) — B(¢)y| < e]t)|. Since ¢ is arbitrary, this
proves that DN (¢) = B(9).

Finally we establish that B : €9([0,1],R™) — L(€°(]0,1],R"),€°([0,1],R™)) is continuous. Let
#1 € €9([0,1],R™). We will show that B is continuous at ¢;. Note that

(B(¢2) — B(¢1))1(t) = (Df(¢2(t)) — Df(¢1(2))) ().

11
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Let E be a compact neighborhood of ¢1([0,1]). Let ¢ > 0. As above, there is § > 0 such that if
22,21 € E, |xo — 21| < 6, then ||Df(x2) — Df(z1)|| < e. Then, if |¢2 — ¢1] < 9,

|(B(d2) = B(¢1))¢(t)| < [[Df(¢2(t)) = Df (61(0)|[¥(8)] < eld]-

Taking the supremum over t € [0, 1] we get |(B(¢p2) — B(¢1))¥| < e|yp|. Therefore |B(¢1) — B(g2)|| < e
when ¢y — ¢1| < 0. Since ¢ is arbitrary, this shows that B is continuous at ¢;.

The same argument works for the Nemytskii operator on the space B(N,R") of bounded sequences
in R"”.

Theorem 0.7. Let f: R™ — R™ be C'. Define
N : B(N,R") — B(N,R™)

by N(¢)(t) = f(o(t)). Then N is CL.
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