Chapter 1

The Hartman-Grobman theorem and Anosov diffeomorphisms

Let A be a nonsingular $n \times n$ matrix. Suppose that $\mathbb{R}^{n}=E^{s} \oplus E^{u}$ is an invariant splitting for A. For any $x \in \mathbb{R}^{n}$, we let $x=x_{s}+x_{u}$ with $x_{s} \in E^{s}$ and $x_{u} \in E^{u}$. On \mathbb{R}^{n} we can take a product norm $|x|=\max \left\{\left|x_{s}\right|,\left|x_{u}\right|\right\}$, for given norms on E^{s}, E^{u}. We suppose that the eigenvalues of $A_{s}=\left.A\right|_{E^{s}}$ have moduli less than one and that the eigenvalues of $A_{u}=\left.A\right|_{E^{u}}$ have moduli greater than one. By a linear coordinate change we may assume that

$$
\left|A_{s}\right|,\left|A_{u}^{-1}\right|<1 .
$$

Let \mathfrak{C}^{j} be the space of maps from \mathbb{R}^{n} to \mathbb{R}^{n} whose derivatives up to order j are bounded and uniformly continuous. The norm $|\cdot|_{j}$ on \mathfrak{C}^{j} is the sup norm of all derivatives up through order j;

$$
|f|_{j}=\sup \left\{|f(x)|,|D f(x)|, \ldots,\left|D^{j} f(x)\right| ; ; x \in \mathbb{R}^{n}\right\} .
$$

Theorem 0.1. There is $\mu_{0}>0$ such that, for any $f \in \mathfrak{C}_{\mu_{0}}^{1}=\left\{f \in \mathfrak{C}^{1} ;|f|_{1}<\mu_{0}\right\}$, there is a unique homeomorphism h with $f \mapsto h-i d \in \mathfrak{C}^{0}$ depending continuously on $f, h(0)=i d$, and $h \circ(A+f)=A \circ h$.

Proof. Let $a=\max \left(\left|A_{s}\right|,\left|A_{u}^{-1}\right|\right)<1$ and choose $\mu_{0}>0$ so that $a-\mu_{0}>0$, and for any $f \in \mathfrak{C}_{\mu_{0}}^{1}$, $(A+f)^{-1}$ exists and belongs to \mathfrak{C}^{1}. If $f \in \mathfrak{C}_{\mu_{0}}^{1}$, the equation $h \circ(A+f)=A \circ h$ is equivalent to either of the equations

$$
\begin{aligned}
& h=A \circ h \circ(A+f)^{-1}, \\
& h=A^{-1} \circ h \circ(A+f) .
\end{aligned}
$$

We will use the first equation to define h_{s} and the second to define h_{u} (where $h=h_{s}+h_{u}$). For any continuous $h, f \in \mathfrak{C}_{\mu_{0}}^{1}$, define $T(h, f)=T(h, f)_{s}+T(h, f)_{u}$ by the relations

$$
\begin{aligned}
& T(h, f)_{s}=h_{s}-A_{s} \circ h_{s} \circ(A+f)^{-1}, \\
& T(h, f)_{u}=h_{u}-A_{u}^{-1} \circ h_{u} \circ(A+f) .
\end{aligned}
$$

2 CHAPTER 1. THE HARTMAN-GROBMAN THEOREM AND ANOSOV DIFFEOMORPHISMS

Denote $\mathfrak{D}^{0}=\left\{h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} ; h-i d \in \mathfrak{C}^{0}\right\}$. It is easy to verify that $T: \mathfrak{D}^{0} \times \mathfrak{C}_{\mu_{0}}^{1} \rightarrow \mathfrak{C}^{0}$ is continuous in h, f, and $T(i d, 0)=0$. Furthermore, $D_{h} T(h, f)$ exists and is continuous in h, f with

$$
\begin{aligned}
& \left(D_{h} T(h, 0) g\right)_{s}=g_{s}-A_{s} \circ g_{s} \circ A^{-1}, \\
& \left(D_{h} T(h, 0) g\right)_{u}=g_{u}-A_{u}^{-1} \circ g_{u} \circ A .
\end{aligned}
$$

For any $w \in \mathfrak{C}^{0}$, the equation $D_{h} T(h, 0) g=w$ has a unique solution bounded above by $(1-a)^{-1}|w|$ (note that $D_{h} T(h, 0)$ is of the form $I+L$ with $|L|<a$, so that $D_{h} T(h, 0)=(I-L)^{-1}$ exists and equals $\left.I+L+L^{2}+L^{3}+\ldots\right)$. Thus, $D_{h} T(h, 0)$ is an isomorphism. The implicit function theorem implies there is a unique function $h=h(f)$, continuous in f in $\mathfrak{C}_{\mu_{0}}^{1}$ (we may have to take μ_{0} smaller to get this), $h(0)=i d$, and $T(h(f), f)=0$.

It remains to show that h is a homeomorphism. Consider the equation $(A+f) \circ g=g \circ A$ for $g \in \mathfrak{C}^{0}$, $f \in \mathfrak{C}^{1}$. We can repeat the same type of argument as above to obtain a unique function $g=g(f) \in \mathfrak{C}^{0}$, $f \in \mathfrak{C}_{\mu_{0}}^{1}, g(f)-i d \in \mathfrak{C}^{0}$ continuous in $f, g(0)=i d$ and $(A+f) \circ g=g \circ A$. The same type of argument also gives unique solutions to equations of the form $\left(A+f_{1}\right) \circ g=g \circ\left(A+f_{2}\right)$ for differentiable and small f_{1}, f_{2}. The combination of solutions g and h of $(A+f) \circ g=g \circ A$ and $A \circ h=h \circ(A+f)$ provides a solution $h \circ g$ of $h \circ g \circ A=A h \circ g$ and a solution $g \circ h$ of $g \circ h \circ(A+f)=(A+f) \circ g \circ h$. These solutions are unique. Since the identity map also solves these equations, we have $h \circ g=i d$ and $g \circ h=i d$. Hence h is a homeomorphism.

Consider a matrix $A \in G L(2, \mathbb{Z})$, i.e. a 2×2 matrix with integer coefficients, whose inverse also has integer coefficients. Note that det $A= \pm 1$. A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L(2, \mathbb{Z})$ induces an automorphism on the torus $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. The induced map on \mathbb{T}^{2}, also denoted by A, is given by

$$
A(x, y)=(a x+b y, c x+d y) \quad \bmod 1
$$

Suppose that $\mathbb{R}^{2}=E^{s} \oplus E^{u}$ is an invariant splitting for A. For any $x \in \mathbb{R}^{2}$, we let $x=x_{s}+x_{u}$ with $x_{s} \in E^{s}$ and $x_{u} \in E^{u}$. We suppose that the eigenvalue of $A_{s}=\left.A\right|_{E^{s}}$ has modulus less than one and that the eigenvalue of $A_{u}=\left.A\right|_{E^{u}}$ has modulus greater than one. Hence

$$
\left|A_{s}\right|,\left|A_{u}^{-1}\right|<1
$$

The induced map on \mathbb{T}^{2} is called hyperbolic. Periodic points of A lie dense in \mathbb{T}^{2}, in fact, every point in \mathbb{T}^{2} with rational coordinates is periodic. An example is

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

with eigenvalues $\frac{1}{2}(3+\sqrt{5})$ and its reciprocal.
Let $\mathfrak{C}^{j}\left(\mathbb{T}^{2}\right)$ be the space of maps from \mathbb{T}^{2} to \mathbb{T}^{2} whose derivatives up to order j are bounded and uniformly continuous. The norm $|\cdot|_{j}$ on $\mathfrak{C}^{j}\left(\mathbb{T}^{2}\right)$ is the sup norm of all derivatives up through order j;

$$
|f|_{j}=\sup \left\{|f(x)|,|D f(x)|, \ldots,\left|D^{j} f(x)\right| ; ; x \in \mathbb{R}^{n}\right\}
$$

Theorem 0.2. There is $\mu_{0}>0$ such that, for any $f \in \mathfrak{C}_{\mu_{0}}^{1}\left(\mathbb{T}^{2}\right)=\left\{f \in \mathfrak{C}^{1}\left(\mathbb{T}^{2}\right) ;|f|_{1}<\mu_{0}\right\}$, there is a unique homeomorphism h in \mathfrak{C}^{0}, depending continuously on $f, h(0)=i d$, such that $h \circ(A+f)=A \circ h$.

Proof. The proof follows the argument in Section 1 to prove the Hartman-Grobman theorem. We lift functions on \mathbb{T}^{2} to functions on its universal cover \mathbb{R}^{2}.

Following the proof of Theorem 0.1, define $T: \mathfrak{C}^{0} \times \mathfrak{C}_{\mu_{0}}^{1}$ as $T(h, f)=T(h, f)_{s}+T(h, f)_{u}$ by the relations

$$
\begin{aligned}
& T(h, f)_{s}=h_{s}-A_{s} \circ h_{s} \circ(A+f)^{-1} \\
& T(h, f)_{u}=h_{u}-A_{u}^{-1} \circ h_{u} \circ(A+f)
\end{aligned}
$$

Write

$$
\begin{aligned}
D^{j} & =\left\{f \in \mathfrak{C}^{j} ; f(x, y)+(k, l)=f(x, y) \text { for all }(k, l) \in \mathbb{Z}^{2}\right\}, \\
E^{j} & =\left\{f \in \mathfrak{C}^{j} ; f-i d \in D^{j}\right\} .
\end{aligned}
$$

One checks that $T: E^{0} \times D_{\mu_{0}}^{1} \rightarrow E^{0}$ is well defined. To see this, note that because $A^{-1}((x, y)+(k, l))=$ $A^{-1}((x, y))+A^{-1}((k, l)), f$ is small in the C^{1} topology, and $(A+f)^{-1}$ is \mathbb{Z}^{2}-periodic, we have

$$
(A+f)^{-1}((x, y)+(k, l))=(A+f)^{-1}((x, y))+A^{-1}((k, l))
$$

Likewise, for $h-i d \in D^{j}$,

$$
h_{s}\left((A+f)^{-1}((x, y))+A^{-1}((k, l))\right)=h_{s}\left((A+f)^{-1}((x, y))\right) .
$$

So

$$
\begin{aligned}
A_{s} \circ h_{s} \circ(A+f)^{-1}((x, y)+(k, l)) & =A_{s} \circ h_{s}\left((A+f)^{-1}((x, y))+A^{-1}((k, l))\right) \\
& =A_{s} \circ h_{s} \circ(A+f)^{-1}((x, y))
\end{aligned}
$$

and, likewise,

$$
A_{u}^{-1} \circ h_{u} \circ(A+f)\left((x, y)+\mathbb{Z}^{2}\right)=A_{u}^{-1} \circ h_{u} \circ(A+f)((x, y)) .
$$

The remainder of the proof follows the arguments for Theorem 0.1.

4 CHAPTER 1. THE HARTMAN-GROBMAN THEOREM AND ANOSOV DIFFEOMORPHISMS

Chapter 2

From stable manifolds to structural stability

Let $f: M \rightarrow M$ be a diffeomorphism on a compact manifold M. Define the stable set $W^{s}(p)$ and the unstable set $W^{u}(p)$ by

$$
\begin{aligned}
W^{s}(p) & =\left\{x \in M ; f^{n}(x) \rightarrow p \text { as } n \rightarrow \infty\right\} \\
W^{u}(p) & =\left\{x \in M ; f^{n}(x) \rightarrow p \text { as } n \rightarrow-\infty\right\}
\end{aligned}
$$

We state the fundamental stable manifold theorem, originating with work of Jacques Hadamard and Oskar Perron.

Theorem 0.3. Supppose p is a hyperbolic fixed point of a diffeomorphism f. Then $W^{s}(p)$ is a manifold, injectively immersed in M, with $T_{p} W^{s}(p)=E^{s}(p)$. We call $W^{s}(p)$ the stable manifold. Likewise, $W^{u}(p)$ is a manifold, injectively immersed in M, with $T_{p} W^{u}(p)=E^{u}(p)$. We call $W^{u}(p)$ the unstable manifold.

Proof. We present a variant of Perron's proof. We will construct a local stable manifold $W_{l o c}^{s}(p)$ near p for f. Then $W^{s}(p)=\cup_{n \in \mathbb{Z}} f^{n}\left(W_{l o c}^{s}\right)$ is the orbit of the local stable manifold.

Let us make this precise. Working in a chart near p, we may assume that p is the origin in \mathbb{R}^{n}. For given small $\delta>0$, let

$$
W_{l o c}^{s}=\left\{u \in \mathbb{R}^{n} ;\left\|f^{n}(x)\right\|<\delta \text { for all } n \in \mathbb{N}\right\}
$$

Take coordinates $u=(x, y) \in E^{s}(0) \times E^{u}(0)$. Write further π_{s} and π_{u} for the coordinate projections $\pi_{s}(x, y)=x$ and $\pi_{u}(x, y)=y$. Let e^{μ} be a bound for the eigenvalues of $\left.D f(0)\right|_{E^{s}(0)} ;\left.\operatorname{spec} D f(0)\right|_{E^{s}(0)}<$ $e^{\mu}<1$, Likewise, let $1<e^{\lambda}<\operatorname{spec} D f(0)_{E^{u}(0)}$. Replacing f by an iterate of f, if necessary, we may assume $\left\|D f(0) v_{s}\right\|<e^{\mu}\left\|v_{s}\right\|$ for all $v_{s} \in E^{s}(0)$ and $\left\|D f(0) v_{u}\right\|>e^{\lambda}\left\|v_{u}\right\|$ for all $v_{u} \in E^{u}(0)$.

Let $\mathfrak{B}\left(\mathbb{N}, \mathbb{R}^{n}\right)$ be the space of bounded sequences $\mathbb{N} \rightarrow \mathbb{R}^{n}$, endowed with the supnorm

$$
\|\gamma\|_{0}=\sup _{n \in \mathbb{N}}\left\|\gamma_{n}\right\|,
$$

where $\|(x, y)\|=\max \{\|x\|,\|y\|\}$ is a box norm on $\mathbb{R}^{n}=E^{s}(0) \times E^{u}(0)$, for given norms on $E^{s}(0)$ and $E^{u}(0)$. Define the map $\Gamma: E^{s}(0) \times \mathfrak{B}\left(\mathbb{N}, \mathbb{R}^{n}\right) \rightarrow \mathfrak{B}\left(\mathbb{N}, \mathbb{R}^{n}\right)$ by

$$
\Gamma\left(x_{0}, \gamma\right)(n)= \begin{cases}\left(x_{0}, \pi_{u} f^{-1}(\gamma(1))\right), & \text { if } n=0 \\ \left(\pi_{s} f(\gamma(n-1)), \pi_{u} f^{-1}(\gamma(n+1))\right), & \text { if } n>0\end{cases}
$$

Write $D_{\delta}^{s}=\left\{x_{0} \in E^{s} ;\left\|x_{0}\right\| \leq \delta\right\}$ and $\mathfrak{B}_{\delta}=\left\{\gamma \in \mathfrak{B}\left(\mathbb{N}, \mathbb{R}^{n}\right) ;\|\gamma\|_{0} \leq \delta\right\}$ We claim that for δ small enough,
(i) $\Gamma\left(D_{\delta}^{s} \times \mathfrak{B}_{\delta}\right) \subset D_{\delta}^{s} \times \mathfrak{B}_{\delta}$,
(ii) Γ is a contraction on $\left\{x_{0} \in E^{s} ;\left\|x_{0}\right\| \leq \delta\right\} \times \mathfrak{B}_{\delta}$.

By continuity of derivatives of $D f$ and $D f^{-1}$ one has the following. For $\varepsilon>0$ there exists $\delta>0$ so that

$$
\begin{aligned}
\left\|\pi_{s} f(x, y)-\pi_{s} f(\bar{x}, \bar{y})\right\| & <\left(e^{\mu}+\varepsilon\right)\|(x, y)-(\bar{x}, \bar{y})\|, \\
\left\|\pi_{u} f^{-1}(x, y)-\pi_{u} f^{-1}(\bar{y}, \bar{y})\right\| & <\left(e^{-\lambda}+\varepsilon\right)\|(x, y)-(\bar{x}, \bar{y})\|
\end{aligned}
$$

for all $(x, y),(\bar{x}, \bar{y})$ with $\|(x, y)\|,\|(\bar{x}, \bar{y})\|<\delta$. Pick ε so that both $e^{\mu}+\varepsilon<1$ and $e^{-\lambda}+\varepsilon<1$. To prove that Γ is a contraction in the second coordinate, compute

$$
\begin{aligned}
& \left\|\Gamma\left(x_{0}, \gamma_{1}\right)-\Gamma\left(x_{0}, \gamma_{2}\right)\right\|_{0} \\
& =\sup _{n \in \mathbb{N}}\left\|\Gamma\left(x_{0}, \gamma_{1}\right)(n)-\Gamma\left(x_{0}, \gamma_{2}\right)(n)\right\| \\
& \leq \sup _{n \in \mathbb{N}} \max \left\{\left\|\pi_{s} f\left(\gamma_{1}(n-1)\right)-\pi_{s} f\left(\gamma_{2}(n-1)\right)\right\|,\left\|\pi_{u} f^{-1}\left(\gamma_{1}(n+1)\right)-\pi_{u} f^{-1}\left(\gamma_{2}(n+1)\right)\right\|\right\} \\
& \leq \sup _{n \in \mathbb{N}} \max \left\{e^{\mu}+\varepsilon, e^{-\lambda}+\varepsilon\right\}\left\|\gamma_{1}-\gamma_{2}\right\|_{0} \\
& \leq \kappa\left\|\gamma_{1}-\gamma_{2}\right\|_{0}
\end{aligned}
$$

for $\kappa=\max \left\{e^{\mu}+\varepsilon, e^{-\lambda}+\varepsilon\right\}<1$. A similar estimate establishes the first item.
By Theorem 0.7, Γ is differentiable, so that by the uniform contraction theorem, the fixed point of Γ depends differentiable on x_{0}. The correspondence $x_{0} \mapsto \eta_{x_{0}}(0)$ defines a smooth manifold.

Let $\eta_{x_{0}}$ be the fixed point of $\Gamma\left(x_{0}, \cdot\right),\left\|x_{0}\right\|<\delta$. We claim that $\eta_{x_{0}}$ is a positive orbit of f, for ε small enough (we can take ε smaller if needed). Write $\eta_{x_{0}}(n)=\left(x_{n}, y_{n}\right)$. Given $n \in \mathbb{N}$, we have

$$
\pi_{s} f\left(x_{n}, y_{n}\right)=x_{n+1}, \pi_{u} f^{-1}\left(x_{n+1}, y_{n+1}\right)=y_{n}
$$

This defines $\left(x_{n+1}, y_{n+1}\right)$ as function of x_{n}, y_{n} : with

$$
F\left(x_{n}, y_{n}, x_{n+1}, y_{n+1}\right)=\left(\pi_{s} f\left(x_{n}, y_{n}\right)-x_{n+1}, \pi_{u} f^{-1}\left(x_{n+1}, y_{n+1}\right)-y_{n}\right)
$$

we have

$$
F(0,0,0,0)=(0,0)
$$

and

$$
D_{x_{n+1}, y_{n+1}} F(0,0,0,0)
$$

has bounded inverse. Hence, applying the implicit function theorem, for $\left(x_{n}, y_{n}\right)$ near $(0,0)$, one finds $\left(x_{n+1}, y_{n+1}\right)$ as a smooth function of $\left(x_{n}, y_{n}\right)$, equal to $(0,0)$ if $\left(x_{n}, y_{n}\right)=(0,0)$. Now let $\left(\bar{x}_{n+1}, \bar{y}_{n+1}\right)=$ $f\left(x_{n}, y_{n}\right)$. We must show that $\left(x_{n+1}, y_{n+1}\right)=\left(\bar{x}_{n+1}, \bar{y}_{n+1}\right)$. Observe that $\left(\bar{x}_{n+1}, \bar{y}_{n+1}\right)=f\left(x_{n}, y_{n}\right)$ implies that $f^{-1}\left(\bar{x}_{n+1}, \bar{y}_{n+1}\right)=\left(x_{n}, y_{n}\right)$ and thus

$$
\pi_{s} f\left(x_{n}, y_{n}\right)=\bar{x}_{n+1}, \pi_{u} f^{-1}\left(\bar{x}_{n+1}, \bar{y}_{n+1}\right)=y_{n} .
$$

So $\left(x_{n+1}, y_{n+1}\right)$ and ($\left.\bar{x}_{n+1}, \bar{y}_{n+1}\right)$ satisfy the same equation. By uniqueness of solutions, it follows that $\left(x_{n+1}, y_{n+1}\right)=\left(\bar{x}_{n+1}, \bar{y}_{n+1}\right)$.

We conclude that $\eta_{x_{0}}$ is a positive orbit of f that stays in a δ-neighborhood of 0 . We must show that $\eta_{x_{0}}(n)$ converges to 0 as $n \rightarrow \infty$. For this we note invariance of the cone $\|y\| \leq\|x\|$: for $\delta>0$ small enough and $\|(x, y)\| \leq \delta,\|y\| \leq\|x\|$, we have $\left\|\pi_{u} f((x, y))\right\| \leq\left\|\pi_{s} f((x, y))\right\|$. This follows since $\left\|\pi_{u} D f(0)(x, y)\right\| \leq\left\|\pi_{s} D f(0)(x, y)\right\|$ and f is C^{1}. Now $x_{0} \mapsto \eta_{x_{0}}(0)$ is a smooth manifold that is tangent to $E^{s}(0)$ at the origin. So $\eta_{x_{0}}$ is contained in the cone $\|y\| \leq\|x\|$ for x_{0} small. From $x_{n+1}=\pi_{s} f\left(x_{n}, y_{n}\right)$ and $\left\|y_{n}\right\| \leq\left\|x_{n}\right\|$ we get $\left\|x_{n+1}\right\| \leq\left(e^{\mu}+\delta\right)\left\|\left(x_{n}, y_{n}\right)\right\| \leq\left(e^{\mu}+\delta\right)\left\|x_{n}\right\|$ so that $\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}\right)=0$.

The next result yields structural stability of diffeomorphisms restricted to maximal invariant hyperbolic sets, and generalizes Theorem 0.2 for hyperbolic torus automorphisms.

Consider a diffeomorphism $f: M \rightarrow M$ on a compact manifold M. Recall that a compact invariant set Λ is called (uniformly) hyperbolic if there is a splitting $T_{x} M=E^{s}(x) \oplus E^{u}(x)$, depending continuously on x, and constants $C \geq 1,0<\lambda<1, \mu>1$, that

$$
\begin{aligned}
& \left\|D f^{n}(x) v\right\| \leq C \lambda^{n}\|v\|, v \in E^{s}(x) \\
& \left\|D f^{n}(x) v\right\| \geq \frac{1}{C} \mu^{n}\|v\|, v \in E^{u}(x)
\end{aligned}
$$

The hyperbolic set Λ is called maximal invariant if $\Lambda=\cap_{n \in \mathbb{Z}} f^{n}(U)$ for some open neighborhood U of Λ.
Theorem 0.4. Let $f: M \rightarrow M$ be a diffeomorphism with a maximal invariant hyperbolic set Λ : there is an open neighborhood U of Λ so that

$$
\Lambda=\cap_{n \in \mathbb{Z}} f^{n}(U)
$$

Then there is a neighborhood V of f in the C^{1} topology, so that for any $g \in V$,

$$
\Lambda(g)=\cap_{n \in \mathbb{Z}} g^{n}(U)
$$

is a hyperbolic set of g.
Proof. The theorem follows by finding a robust way of constructing the stable an unstable subspaces $E^{s}(x), E^{u}(x)$. This is done using invariant (stable and unstable) cone fields. For simplicity we assume $C=1$ in the definition of hyperbolicity. For $x \in \Lambda$, write $v \in T_{x} M$ as $v=v_{s}+v_{u}$ with $v_{s} \in E^{s}(x), v_{u} \in$ $E^{u}(x)$. For $\alpha>0$ and $x \in \Lambda$ define cones

$$
\begin{aligned}
& K_{\alpha}^{s}(x)=\left\{v \in T_{x} M ;\left|v_{u}\right| \leq \alpha\left|v_{s}\right|\right\}, \\
& K_{\alpha}^{u}(x)=\left\{v \in T_{x} M ;\left|v_{s}\right| \leq \alpha\left|v_{u}\right|\right\} .
\end{aligned}
$$

We may extend these cones to cone fields in $T_{U} M$, possible taking a smaller neighborhood U of Λ. Note that there exists $\nu>1$ so that for α small enough, $x \in \Lambda$,

$$
\begin{align*}
D f(x) K_{\alpha}^{u}(x) & \subset K_{\alpha / \nu}^{u}(f(x)) \tag{0.1}\\
|D f(x) v| & \geq \nu|v| \text { for } v \in K_{\alpha}^{u} \tag{0.2}
\end{align*}
$$

Similarly for K_{α}^{s}. It follows that $E^{u}(x)$ is obtained as

$$
E^{u}(x)=\cap_{n \geq 0} D f^{n}\left(f^{-n}(x)\right) K_{\alpha}^{u}\left(f^{-n}(x)\right)
$$

and $E^{s}(x)$ is obtained as

$$
E^{s}(x)=\cap_{n \geq 0} D f^{-n}\left(f^{n}(x)\right) K_{\alpha}^{u}\left(f^{n}(x)\right)
$$

for some small $\alpha>0$. Estimates (0.1) and (0.2) apply for any g sufficiently close to f in the C^{1} topology, with $x \in \Lambda(g)$. This proves the theorem.

Theorem 0.5. Let $f: M \rightarrow M$ be a diffeomorphism with a maximal invariant set

$$
\Lambda=\cap_{n \in \mathbb{Z}} f^{n}(U)
$$

which is hyperbolic. There exists $\varepsilon>0$ so that any g which is ε close to f in the C^{1} topology, possesses a maximal invariant hyperbolic set $\Lambda(g)$ in U. Moreover, $\left.f\right|_{\Lambda}$ and $\left.g\right|_{\Lambda(g)}$ are topologically conjugate: there exists a homeomorphism $h=h(g): \Lambda \rightarrow \Lambda(g)$ with

$$
g \circ h=h \circ f
$$

The dependence $g \mapsto h(g)$ is continuous in the C^{0} topology and $h(f)=i d$.
Proof. We follow ideas that are contained in the proof of Theorem 0.3. Along Λ, there is a continuous splitting $T_{\Lambda} M=E^{s} \oplus E^{u}$ in stable and unstable subspaces. For simplicity assume $C=1$ in the definition of hyperbolicity. For $x \in M$ and $\delta>0$ small, the ball $B_{\delta}(x)$ of radius δ about x is well defined. Cover Λ with finitely many balls $U_{j}=B_{\delta}\left(y_{j}\right)$ of small radius $\delta>0$ with the property that for any $x \in \Lambda$, the ball $B_{\delta / 2}(x)$ is contained in one of U_{j} 's. Working in a chart, we may assume $U_{j} \subset \mathbb{R}^{m}$. Then we have coordinate projections π_{s} to $E^{s}\left(y_{j}\right)$ with kernel $E^{u}\left(y_{j}\right)$ and π_{u} to $E^{u}\left(y_{j}\right)$ with kernel $E^{s}\left(y_{j}\right)$.

Fix an orbit $x(i+1)=f(x(i)), i \in \mathbb{Z}$, of f in Λ. Suppose $x(i) \in U_{j(i)}$ and $B_{\delta / 2}(x(i)) \subset U_{j(i)}$. Write $\mathfrak{B}(\mathbb{Z}, M)$ for the space of sequences $\mathbb{Z} \mapsto M$ endowed with the C^{0} topology and let $\mathfrak{B}=\{\gamma \in$ $\left.\mathfrak{B}(\mathbb{Z}, M) ; \gamma(i) \in B_{\delta / 2}(x(i))\right\}$. Define $\Gamma: \mathfrak{B} \rightarrow \mathfrak{B}(\mathbb{Z}, M)$ by

$$
\Gamma(\gamma)(n)=\left(\pi_{s} f(\gamma(n-1)), \pi_{u} f^{-1}(\gamma(n+1))\right)
$$

Likewise, for a diffeomorphism $g: M \rightarrow M$ close to f in the C^{1} topology, define $\Gamma_{g}: \mathfrak{B} \rightarrow \mathfrak{B}(\mathbb{Z}, M)$ by

$$
\Gamma_{g}(\gamma)(n)=\left(\pi_{s} g(\gamma(n-1)), \pi_{u} g^{-1}(\gamma(n+1))\right)
$$

We make the following claims. For sufficiently small $\varepsilon>0$, there exists $\delta>0$ so that for any diffeomorphism $g: M \rightarrow M$ that is ε close to f in the C^{1} topology,
(i) $\Gamma_{g}(\mathfrak{B}) \subset \mathfrak{B}$,
(ii) Γ_{g} is a contraction on \mathfrak{B},
(iii) the fixed point of Γ_{g} is the orbit $z(i+1)=g(z(i))$ of g with $z(i) \in B_{\delta / 2}(x(i))$.

The claims rely on closeness of f to $D f(x(i))$, closeness of $E^{s}(x(i))$ and $E^{u}(x(i))$ to $E^{s}\left(y_{j(i)}\right)$ and $E^{u}\left(y_{j(i)}\right)$, and closeness of g to f in the C^{1} topology. Consider first projections $\hat{\pi}_{s}: \mathbb{R}^{m} \rightarrow E^{s}(x(i))$ and $\hat{\pi}_{u}: \mathbb{R}^{m} \rightarrow E^{u}(x(i))$ with $\hat{\pi}_{s}+\hat{\pi}_{u}=i d$. For $\varepsilon>0$ there is $\delta>0$ so that for $x_{1}, x_{2} \in B_{\delta / 2}(x(i-1))$,

$$
\begin{aligned}
& \left|\hat{\pi}_{s} f\left(x_{1}\right)-\hat{\pi}_{s} f\left(x_{2}\right)\right| \leq \\
& \quad\left|\hat{\pi}_{s}\left(f\left(x_{1}\right)-x(i)-D f(x(i-1))\left(x(i-1)-x_{1}\right)\right)\right|+\left|\hat{\pi}_{s}\left(f\left(x_{2}\right)-x(i)-D f(x(i-1))\left(x(i-1)-x_{2}\right)\right)\right| \\
& \quad+\left|\hat{\pi}_{s} D f(x(i-1))\left(x_{1}-x_{2}\right)\right| \leq \\
& \quad 2 \varepsilon\left|x_{1}-x_{2}\right|+\lambda\left|x_{1}-x_{2}\right| .
\end{aligned}
$$

A similar estimate applies to $\hat{\pi}_{u} f^{-1}$. We conclude that for $\varepsilon>0$ there is $\delta>0$ so that for $x_{1}, x_{2} \in$ $B_{\delta / 2}(x(i-1)), y_{1}, y_{2} \in B_{\delta / 2}(x(i+1))$,

$$
\begin{aligned}
\left|\hat{\pi}_{s} f\left(x_{1}\right)-\hat{\pi}_{s} f\left(x_{2}\right)\right| & \leq(\lambda+2 \varepsilon)\left|x_{1}-x_{2}\right|, \\
\left|\hat{\pi}_{u} f^{-1}\left(y_{1}\right)-\hat{\pi}_{u} f^{-1}\left(y_{2}\right)\right| & \leq(1 / \mu+2 \varepsilon)\left|y_{1}-y_{2}\right| .
\end{aligned}
$$

We replace the projections $\hat{\pi}_{s}, \hat{\pi}_{u}$ by π_{s}, π_{u}. From the continuous dependence of the splitting E^{s}, E^{u} along Λ, we get the following. For $\varepsilon>0$ there exists $\delta>0$ so that for $x_{1}, x_{2} \in B_{\delta / 2}(x(i-1))$,

$$
\begin{aligned}
& \left|\pi_{s} f\left(x_{1}\right)-\pi_{s} f\left(x_{2}\right)\right| \leq \\
& \quad\left|\pi_{s} f\left(x_{1}\right)-\hat{\pi}_{s} f\left(x_{1}\right)\right|+\left|\pi_{s} f\left(x_{2}\right)-\hat{\pi}_{s} f\left(x_{2}\right)\right|+\left|\hat{\pi}_{s} f\left(x_{1}\right)-\hat{\pi}_{s} f\left(x_{2}\right)\right| \leq \\
& \quad 2 \varepsilon\left|x_{1}-x_{2}\right|+(\lambda+2 \varepsilon)\left|x_{1}-x_{2}\right| .
\end{aligned}
$$

With a similar estimate for the unstable coordinate, we get that for $\varepsilon>0$ there is $\delta>0$ so that for $x_{1}, x_{2} \in B_{\delta / 2}(x(i-1)), y_{1}, y_{2} \in B_{\delta / 2}(x(i+1))$,

$$
\begin{aligned}
\left|\pi_{s} f\left(x_{1}\right)-\pi_{s} f\left(x_{2}\right)\right| & \leq(\lambda+4 \varepsilon)\left|x_{1}-x_{2}\right|, \\
\left|\pi_{u} f^{-1}\left(y_{1}\right)-\pi_{u} f^{-1}\left(y_{2}\right)\right| & \leq(1 / \mu+4 \varepsilon)\left|y_{1}-y_{2}\right| .
\end{aligned}
$$

Finally and in the same manner, for g within ε of f in the C^{1} topology, again with $x_{1}, x_{2} \in B_{\delta / 2}(x(i-1))$, $y_{1}, y_{2} \in B_{\delta / 2}(x(i+1))$,

$$
\begin{aligned}
\left|\pi_{s} g\left(x_{1}\right)-\pi_{s} g\left(x_{2}\right)\right| & \leq(\lambda+6 \varepsilon)\left|x_{1}-x_{2}\right| \\
\left|\pi_{u} g^{-1}\left(y_{1}\right)-\pi_{s} g^{-1}\left(y_{2}\right)\right| & \leq(1 / \mu+6 \varepsilon)\left|y_{1}-y_{2}\right|
\end{aligned}
$$

For ε small, both $\lambda+6 \varepsilon<1$ and $1 / \mu+6 \varepsilon<1$. The first two claims follow. The observation that the fixed point is an orbit, follows as in the proof of Theorem 0.3.

Define a map $h: \Lambda \rightarrow U$ that maps $x(k) \in \Lambda$ to the fixed point of $\Gamma_{g}(\{x(i)\})(k)$. The construction shows that $h \circ f=g \circ h$. We leave it to the reader to show that h is continuous. Vice versa, recall that
the maximal invariant set of g in U is hyperbolic by Theorem 0.4 . Given an orbit $\{y(i)\}$ of g in $h(\Lambda)$ for g sufficiently close to $f, \Gamma_{f}(\{y(i)\})$ provides a nearby orbit of f in Λ. So the map $j: g(\Lambda) \rightarrow M$ that maps $y(k) \in g(\Lambda)$ to the fixed point of $\Gamma_{f}(\{y(i)\})(k)$ is the inverse of h and is continuous. It follows that h is a homeomorphism.

Chapter 3

An auxiliary differentiability result

Theorem 0.6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be C^{1}. Define

$$
N: \mathfrak{C}^{0}\left([0,1], \mathbb{R}^{n}\right) \rightarrow \mathfrak{C}^{0}\left([0,1], \mathbb{R}^{m}\right)
$$

by $N(\phi)(t)=f(\phi(t))$. Then N is C^{1}.
Proof. For $\phi \in \mathfrak{C}^{0}\left([0,1], \mathbb{R}^{n}\right), \psi \in \mathfrak{C}^{0}\left([0,1], \mathbb{R}^{n}\right)$, define $B(\phi) \psi$ in $\mathfrak{C}^{0}\left([0,1], \mathbb{R}^{m}\right)$ by

$$
B(\phi) \psi(t)=D f(\phi(t)) \psi(t)
$$

One checks that B is a bounded linear map. We claim that $D N(\phi)=B(\phi)$. Namely, compute for $t \in[0,1]$,

$$
\begin{aligned}
(N(\phi+\psi)-N(\phi)-B(\phi) \psi)(t) & =f(\phi(t)+\psi(t))-f(\phi(t))-D f(\phi(t)) \psi(t) \\
& =\int_{0}^{1}(D f(\phi(t)+s \psi(t))-D f(\phi(t))) \psi(t) d s
\end{aligned}
$$

Since $\phi([0,1])$ is compact, $D f$ is uniformly continuous on $\phi[0,1]$. For $\varepsilon>0$, there exists $\delta>0$ such that if $x_{1} \in \phi([0,1])$ and $\left|x_{2}-x_{1}\right|<\delta$, then $\left\|D f\left(x_{2}\right)-D f\left(x_{1}\right)\right\|<\varepsilon$. Therefore,

$$
\begin{aligned}
|(N(\phi+\psi)-N(\phi)-B(\phi) \psi)(t)| & =\left|\int_{0}^{1}(D f(\phi(t)+s \psi(t))-D f(\phi(t))) \psi(t) d s\right| \\
& \leq \varepsilon|\psi(t)| \\
& \leq \varepsilon|\psi|
\end{aligned}
$$

Taking the supremum over $t \in[0,1]$ we get $|N(\phi+\psi)-N(\phi)-B(\phi) \psi| \leq \varepsilon|\psi|$. Since ε is arbitrary, this proves that $D N(\phi)=B(\phi)$.

Finally we establish that $B: \mathfrak{C}^{0}\left([0,1], \mathbb{R}^{n}\right) \rightarrow L\left(\mathfrak{C}^{0}\left([0,1], \mathbb{R}^{n}\right), \mathfrak{C}^{0}\left([0,1], \mathbb{R}^{m}\right)\right)$ is continuous. Let $\phi_{1} \in \mathfrak{C}^{0}\left([0,1], \mathbb{R}^{n}\right)$. We will show that B is continuous at ϕ_{1}. Note that

$$
\left(B\left(\phi_{2}\right)-B\left(\phi_{1}\right)\right) \psi(t)=\left(D f\left(\phi_{2}(t)\right)-D f\left(\phi_{1}(t)\right)\right) \psi(t) .
$$

Let E be a compact neighborhood of $\phi_{1}([0,1])$. Let $\varepsilon>0$. As above, there is $\delta>0$ such that if $x_{2}, x_{1} \in E,\left|x_{2}-x_{1}\right|<\delta$, then $\left\|D f\left(x_{2}\right)-D f\left(x_{1}\right)\right\|<\varepsilon$. Then, if $\left|\phi_{2}-\phi_{1}\right|<\delta$,

$$
\left|\left(B\left(\phi_{2}\right)-B\left(\phi_{1}\right)\right) \psi(t)\right| \leq\left\|D f\left(\phi_{2}(t)\right)-D f\left(\phi_{1}(t)\right)\right\||\psi(t)| \leq \varepsilon|\psi| .
$$

Taking the supremum over $t \in[0,1]$ we get $\left|\left(B\left(\phi_{2}\right)-B\left(\phi_{1}\right)\right) \psi\right| \leq \varepsilon|\psi|$. Therefore $\left\|B\left(\phi_{1}\right)-B\left(\phi_{2}\right)\right\| \leq \varepsilon$ when $\phi_{2}-\phi_{1} \mid<\delta$. Since ε is arbitrary, this shows that B is continuous at ϕ_{1}.

The same argument works for the Nemytskii operator on the space $\mathfrak{B}\left(\mathbb{N}, \mathbb{R}^{n}\right)$ of bounded sequences in \mathbb{R}^{n}.

Theorem 0.7. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be C^{1}. Define

$$
N: \mathfrak{B}\left(\mathbb{N}, \mathbb{R}^{n}\right) \rightarrow \mathfrak{B}\left(\mathbb{N}, \mathbb{R}^{m}\right)
$$

by $N(\phi)(t)=f(\phi(t))$. Then N is C^{1}.

