
Chapter 1

The Hartman-Grobman theorem

and Anosov diffeomorphisms

Let A be a nonsingular n × n matrix. Suppose that Rn = Es ⊕ Eu is an invariant splitting for A. For

any x ∈ Rn, we let x = xs + xu with xs ∈ Es and xu ∈ Eu. On Rn we can take a product norm

|x| = max{|xs|, |xu|}, for given norms on Es, Eu. We suppose that the eigenvalues of As = A|Es have

moduli less than one and that the eigenvalues of Au = A|Eu have moduli greater than one. By a linear

coordinate change we may assume that

|As|, |A−1
u | < 1.

Let Cj be the space of maps from Rn to Rn whose derivatives up to order j are bounded and uniformly

continuous. The norm | · |j on Cj is the sup norm of all derivatives up through order j;

|f |j = sup {|f(x)|, |Df(x)|, . . . , |Djf(x)|; ;x ∈ Rn}.

Theorem 0.1. There is µ0 > 0 such that, for any f ∈ C1
µ0

= {f ∈ C1 ; |f |1 < µ0}, there is a unique

homeomorphism h with f 7→ h− id ∈ C0 depending continuously on f , h(0) = id, and h◦ (A+f) = A◦h.

Proof. Let a = max(|As|, |A−1
u |) < 1 and choose µ0 > 0 so that a − µ0 > 0, and for any f ∈ C1

µ0
,

(A+ f)−1 exists and belongs to C1. If f ∈ C1
µ0

, the equation h ◦ (A+ f) = A ◦ h is equivalent to either

of the equations

h = A ◦ h ◦ (A+ f)−1,

h = A−1 ◦ h ◦ (A+ f).

We will use the first equation to define hs and the second to define hu (where h = hs + hu). For any

continuous h, f ∈ C1
µ0

, define T (h, f) = T (h, f)s + T (h, f)u by the relations

T (h, f)s = hs −As ◦ hs ◦ (A+ f)−1,

T (h, f)u = hu −A−1
u ◦ hu ◦ (A+ f).
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Denote D0 = {h : Rn → Rn ; h− id ∈ C0}. It is easy to verify that T : D0 × C1
µ0
→ C0 is continuous in

h, f , and T (id, 0) = 0. Furthermore, DhT (h, f) exists and is continuous in h, f with

(DhT (h, 0)g)s = gs −As ◦ gs ◦A−1,

(DhT (h, 0)g)u = gu −A−1
u ◦ gu ◦A.

For any w ∈ C0, the equation DhT (h, 0)g = w has a unique solution bounded above by (1 − a)−1|w|
(note that DhT (h, 0) is of the form I +L with |L| < a, so that DhT (h, 0) = (I −L)−1 exists and equals

I +L+L2 +L3 + . . .). Thus, DhT (h, 0) is an isomorphism. The implicit function theorem implies there

is a unique function h = h(f), continuous in f in C1
µ0

(we may have to take µ0 smaller to get this),

h(0) = id, and T (h(f), f) = 0.

It remains to show that h is a homeomorphism. Consider the equation (A+ f) ◦ g = g ◦A for g ∈ C0,

f ∈ C1. We can repeat the same type of argument as above to obtain a unique function g = g(f) ∈ C0,

f ∈ C1
µ0

, g(f)− id ∈ C0 continuous in f , g(0) = id and (A+ f) ◦ g = g ◦A. The same type of argument

also gives unique solutions to equations of the form (A+f1)◦g = g ◦ (A+f2) for differentiable and small

f1, f2. The combination of solutions g and h of (A + f) ◦ g = g ◦ A and A ◦ h = h ◦ (A + f) provides a

solution h ◦ g of h ◦ g ◦A = Ah ◦ g and a solution g ◦h of g ◦h ◦ (A+ f) = (A+ f) ◦ g ◦h. These solutions

are unique. Since the identity map also solves these equations, we have h ◦ g = id and g ◦ h = id. Hence

h is a homeomorphism.

Consider a matrix A ∈ GL(2,Z), i.e. a 2 × 2 matrix with integer coefficients, whose inverse also

has integer coefficients. Note that detA = ±1. A matrix A =

(
a b

c d

)
∈ GL(2,Z) induces an

automorphism on the torus T2 = R2/Z2. The induced map on T2, also denoted by A, is given by

A(x, y) = (ax+ by, cx+ dy) mod 1.

Suppose that R2 = Es ⊕Eu is an invariant splitting for A. For any x ∈ R2, we let x = xs + xu with

xs ∈ Es and xu ∈ Eu. We suppose that the eigenvalue of As = A|Es has modulus less than one and

that the eigenvalue of Au = A|Eu has modulus greater than one. Hence

|As|, |A−1
u | < 1.

The induced map on T2 is called hyperbolic. Periodic points of A lie dense in T2, in fact, every point in

T2 with rational coordinates is periodic. An example is

A =

(
2 1

1 1

)

with eigenvalues 1
2 (3 +

√
5) and its reciprocal.

Let Cj(T2) be the space of maps from T2 to T2 whose derivatives up to order j are bounded and

uniformly continuous. The norm | · |j on Cj(T2) is the sup norm of all derivatives up through order j;

|f |j = sup {|f(x)|, |Df(x)|, . . . , |Djf(x)|; ;x ∈ Rn}.
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Theorem 0.2. There is µ0 > 0 such that, for any f ∈ C1
µ0

(T2) = {f ∈ C1(T2) ; |f |1 < µ0}, there is a

unique homeomorphism h in C0, depending continuously on f , h(0) = id, such that h ◦ (A+ f) = A ◦ h.

Proof. The proof follows the argument in Section 1 to prove the Hartman-Grobman theorem. We lift

functions on T2 to functions on its universal cover R2.

Following the proof of Theorem 0.1, define T : C0 × C1
µ0

as T (h, f) = T (h, f)s + T (h, f)u by the

relations

T (h, f)s = hs −As ◦ hs ◦ (A+ f)−1,

T (h, f)u = hu −A−1
u ◦ hu ◦ (A+ f).

Write

Dj = {f ∈ Cj ; f(x, y) + (k, l) = f(x, y) for all (k, l) ∈ Z2},

Ej = {f ∈ Cj ; f − id ∈ Dj}.

One checks that T : E0×D1
µ0
→ E0 is well defined. To see this, note that because A−1((x, y) + (k, l)) =

A−1((x, y)) +A−1((k, l)), f is small in the C1 topology, and (A+ f)−1 is Z2-periodic, we have

(A+ f)−1((x, y) + (k, l)) = (A+ f)−1((x, y)) +A−1((k, l)).

Likewise, for h− id ∈ Dj ,

hs((A+ f)−1((x, y)) +A−1((k, l))) = hs((A+ f)−1((x, y))).

So

As ◦ hs ◦ (A+ f)−1((x, y) + (k, l)) = As ◦ hs((A+ f)−1((x, y)) +A−1((k, l)))

= As ◦ hs ◦ (A+ f)−1((x, y))

and, likewise,

A−1
u ◦ hu ◦ (A+ f)((x, y) + Z2) = A−1

u ◦ hu ◦ (A+ f)((x, y)).

The remainder of the proof follows the arguments for Theorem 0.1.
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Chapter 2

From stable manifolds to structural

stability

Let f : M → M be a diffeomorphism on a compact manifold M . Define the stable set W s(p) and the

unstable set Wu(p) by

W s(p) = {x ∈M ; fn(x)→ p as n→∞},

Wu(p) = {x ∈M ; fn(x)→ p as n→ −∞}.

We state the fundamental stable manifold theorem, originating with work of Jacques Hadamard and

Oskar Perron.

Theorem 0.3. Supppose p is a hyperbolic fixed point of a diffeomorphism f . Then W s(p) is a manifold,

injectively immersed in M , with TpW
s(p) = Es(p). We call W s(p) the stable manifold. Likewise, Wu(p)

is a manifold, injectively immersed in M , with TpW
u(p) = Eu(p). We call Wu(p) the unstable manifold.

Proof. We present a variant of Perron’s proof. We will construct a local stable manifold W s
loc(p) near p

for f . Then W s(p) = ∪n∈Zfn(W s
loc) is the orbit of the local stable manifold.

Let us make this precise. Working in a chart near p, we may assume that p is the origin in Rn. For

given small δ > 0, let

W s
loc = {u ∈ Rn ; ‖fn(x)‖ < δ for all n ∈ N}.

Take coordinates u = (x, y) ∈ Es(0) × Eu(0). Write further πs and πu for the coordinate projections

πs(x, y) = x and πu(x, y) = y. Let eµ be a bound for the eigenvalues of Df(0)|Es(0); specDf(0)|Es(0) <

eµ < 1, Likewise, let 1 < eλ < specDf(0)Eu(0). Replacing f by an iterate of f , if necessary, we may

assume ‖Df(0)vs‖ < eµ‖vs‖ for all vs ∈ Es(0) and ‖Df(0)vu‖ > eλ‖vu‖ for all vu ∈ Eu(0).

Let B(N,Rn) be the space of bounded sequences N→ Rn, endowed with the supnorm

‖γ‖0 = sup
n∈N
‖γn‖,
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where ‖(x, y)‖ = max {‖x‖, ‖y‖} is a box norm on Rn = Es(0) × Eu(0), for given norms on Es(0) and

Eu(0). Define the map Γ : Es(0)×B(N,Rn)→ B(N,Rn) by

Γ(x0, γ)(n) =

{
(x0, πuf

−1(γ(1))), if n = 0,

(πsf(γ(n− 1)), πuf
−1(γ(n+ 1))), if n > 0.

Write Ds
δ = {x0 ∈ Es ; ‖x0‖ ≤ δ} and Bδ = {γ ∈ B(N,Rn) ; ‖γ‖0 ≤ δ} We claim that for δ small

enough,

(i) Γ(Ds
δ ×Bδ) ⊂ Ds

δ ×Bδ,

(ii) Γ is a contraction on {x0 ∈ Es ; ‖x0‖ ≤ δ} ×Bδ.

By continuity of derivatives of Df and Df−1 one has the following. For ε > 0 there exists δ > 0 so that

‖πsf(x, y)− πsf(x̄, ȳ)‖ < (eµ + ε)‖(x, y)− (x̄, ȳ)‖,

‖πuf−1(x, y)− πuf−1(ȳ, ȳ)‖ < (e−λ + ε)‖(x, y)− (x̄, ȳ)‖

for all (x, y), (x̄, ȳ) with ‖(x, y)‖, ‖(x̄, ȳ)‖ < δ. Pick ε so that both eµ + ε < 1 and e−λ + ε < 1. To prove

that Γ is a contraction in the second coordinate, compute

‖Γ(x0, γ1)− Γ(x0, γ2)‖0
= sup
n∈N
‖Γ(x0, γ1)(n)− Γ(x0, γ2)(n)‖

≤ sup
n∈N

max{‖πsf(γ1(n− 1))− πsf(γ2(n− 1))‖, ‖πuf−1(γ1(n+ 1))− πuf−1(γ2(n+ 1))‖}

≤ sup
n∈N

max{eµ + ε, e−λ + ε}‖γ1 − γ2‖0

≤ κ‖γ1 − γ2‖0

for κ = max{eµ + ε, e−λ + ε} < 1. A similar estimate establishes the first item.

By Theorem 0.7, Γ is differentiable, so that by the uniform contraction theorem, the fixed point of Γ

depends differentiable on x0. The correspondence x0 7→ ηx0
(0) defines a smooth manifold.

Let ηx0
be the fixed point of Γ(x0, ·), ‖x0‖ < δ. We claim that ηx0

is a positive orbit of f , for ε small

enough (we can take ε smaller if needed). Write ηx0
(n) = (xn, yn). Given n ∈ N, we have

πsf(xn, yn) = xn+1, πuf
−1(xn+1, yn+1) = yn.

This defines (xn+1, yn+1) as function of xn, yn: with

F (xn, yn, xn+1, yn+1) = (πsf(xn, yn)− xn+1, πuf
−1(xn+1, yn+1)− yn)

we have

F (0, 0, 0, 0) = (0, 0)

and

Dxn+1,yn+1
F (0, 0, 0, 0)
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has bounded inverse. Hence, applying the implicit function theorem, for (xn, yn) near (0, 0), one finds

(xn+1, yn+1) as a smooth function of (xn, yn), equal to (0, 0) if (xn, yn) = (0, 0). Now let (x̄n+1, ȳn+1) =

f(xn, yn). We must show that (xn+1, yn+1) = (x̄n+1, ȳn+1). Observe that (x̄n+1, ȳn+1) = f(xn, yn)

implies that f−1(x̄n+1, ȳn+1) = (xn, yn) and thus

πsf(xn, yn) = x̄n+1, πuf
−1(x̄n+1, ȳn+1) = yn.

So (xn+1, yn+1) and (x̄n+1, ȳn+1) satisfy the same equation. By uniqueness of solutions, it follows that

(xn+1, yn+1) = (x̄n+1, ȳn+1).

We conclude that ηx0
is a positive orbit of f that stays in a δ-neighborhood of 0. We must show

that ηx0
(n) converges to 0 as n → ∞. For this we note invariance of the cone ‖y‖ ≤ ‖x‖: for δ > 0

small enough and ‖(x, y)‖ ≤ δ, ‖y‖ ≤ ‖x‖, we have ‖πuf((x, y))‖ ≤ ‖πsf((x, y))‖. This follows since

‖πuDf(0)(x, y)‖ ≤ ‖πsDf(0)(x, y)‖ and f is C1. Now x0 7→ ηx0
(0) is a smooth manifold that is tangent

to Es(0) at the origin. So ηx0
is contained in the cone ‖y‖ ≤ ‖x‖ for x0 small. From xn+1 = πsf(xn, yn)

and ‖yn‖ ≤ ‖xn‖ we get ‖xn+1‖ ≤ (eµ + δ)‖(xn, yn)‖ ≤ (eµ + δ)‖xn‖ so that limn→∞(xn, yn) = 0.

The next result yields structural stability of diffeomorphisms restricted to maximal invariant hyper-

bolic sets, and generalizes Theorem 0.2 for hyperbolic torus automorphisms.

Consider a diffeomorphism f : M → M on a compact manifold M . Recall that a compact invariant

set Λ is called (uniformly) hyperbolic if there is a splitting TxM = Es(x)⊕Eu(x), depending continuously

on x, and constants C ≥ 1, 0 < λ < 1, µ > 1, that

‖Dfn(x)v‖ ≤ Cλn‖v‖, v ∈ Es(x),

‖Dfn(x)v‖ ≥ 1

C
µn‖v‖, v ∈ Eu(x).

The hyperbolic set Λ is called maximal invariant if Λ = ∩n∈Zfn(U) for some open neighborhood U of Λ.

Theorem 0.4. Let f : M → M be a diffeomorphism with a maximal invariant hyperbolic set Λ: there

is an open neighborhood U of Λ so that

Λ = ∩n∈Zfn(U).

Then there is a neighborhood V of f in the C1 topology, so that for any g ∈ V ,

Λ(g) = ∩n∈Zgn(U)

is a hyperbolic set of g.

Proof. The theorem follows by finding a robust way of constructing the stable an unstable subspaces

Es(x), Eu(x). This is done using invariant (stable and unstable) cone fields. For simplicity we assume

C = 1 in the definition of hyperbolicity. For x ∈ Λ, write v ∈ TxM as v = vs + vu with vs ∈ Es(x), vu ∈
Eu(x). For α > 0 and x ∈ Λ define cones

Ks
α(x) = {v ∈ TxM ; |vu| ≤ α|vs|},

Ku
α(x) = {v ∈ TxM ; |vs| ≤ α|vu|}.
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We may extend these cones to cone fields in TUM , possible taking a smaller neighborhood U of Λ. Note

that there exists ν > 1 so that for α small enough, x ∈ Λ,

Df(x)Ku
α(x) ⊂ Ku

α/ν(f(x)), (0.1)

|Df(x)v| ≥ ν|v| for v ∈ Ku
α. (0.2)

Similarly for Ks
α. It follows that Eu(x) is obtained as

Eu(x) = ∩n≥0Df
n(f−n(x))Ku

α(f−n(x))

and Es(x) is obtained as

Es(x) = ∩n≥0Df
−n(fn(x))Ku

α(fn(x)),

for some small α > 0. Estimates (0.1) and (0.2) apply for any g sufficiently close to f in the C1 topology,

with x ∈ Λ(g). This proves the theorem.

Theorem 0.5. Let f : M →M be a diffeomorphism with a maximal invariant set

Λ = ∩n∈Zfn(U)

which is hyperbolic. There exists ε > 0 so that any g which is ε close to f in the C1 topology, possesses a

maximal invariant hyperbolic set Λ(g) in U . Moreover, f |Λ and g|
Λ(g) are topologically conjugate: there

exists a homeomorphism h = h(g) : Λ→ Λ(g) with

g ◦ h = h ◦ f.

The dependence g 7→ h(g) is continuous in the C0 topology and h(f) = id.

Proof. We follow ideas that are contained in the proof of Theorem 0.3. Along Λ, there is a continuous

splitting TΛM = Es⊕Eu in stable and unstable subspaces. For simplicity assume C = 1 in the definition

of hyperbolicity. For x ∈ M and δ > 0 small, the ball Bδ(x) of radius δ about x is well defined. Cover

Λ with finitely many balls Uj = Bδ(yj) of small radius δ > 0 with the property that for any x ∈ Λ, the

ball Bδ/2(x) is contained in one of Uj ’s. Working in a chart, we may assume Uj ⊂ Rm. Then we have

coordinate projections πs to Es(yj) with kernel Eu(yj) and πu to Eu(yj) with kernel Es(yj).

Fix an orbit x(i+ 1) = f(x(i)), i ∈ Z, of f in Λ. Suppose x(i) ∈ Uj(i) and Bδ/2(x(i)) ⊂ Uj(i).

Write B(Z,M) for the space of sequences Z 7→ M endowed with the C0 topology and let B = {γ ∈
B(Z,M) ; γ(i) ∈ Bδ/2(x(i))}. Define Γ : B→ B(Z,M) by

Γ(γ)(n) = (πsf(γ(n− 1)), πuf
−1(γ(n+ 1))).

Likewise, for a diffeomorphism g : M →M close to f in the C1 topology, define Γg : B→ B(Z,M) by

Γg(γ)(n) = (πsg(γ(n− 1)), πug
−1(γ(n+ 1))).

We make the following claims. For sufficiently small ε > 0, there exists δ > 0 so that for any diffeomor-

phism g : M →M that is ε close to f in the C1 topology,
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(i) Γg(B) ⊂ B,

(ii) Γg is a contraction on B,

(iii) the fixed point of Γg is the orbit z(i+ 1) = g(z(i)) of g with z(i) ∈ Bδ/2(x(i)).

The claims rely on closeness of f to Df(x(i)), closeness of Es(x(i)) and Eu(x(i)) to Es(yj(i)) and

Eu(yj(i)), and closeness of g to f in the C1 topology. Consider first projections π̂s : Rm → Es(x(i)) and

π̂u : Rm → Eu(x(i)) with π̂s + π̂u = id. For ε > 0 there is δ > 0 so that for x1, x2 ∈ Bδ/2(x(i− 1)),

|π̂sf(x1)− π̂sf(x2)| ≤

|π̂s(f(x1)− x(i)−Df(x(i− 1))(x(i− 1)− x1))|+ |π̂s(f(x2)− x(i)−Df(x(i− 1))(x(i− 1)− x2))|

+|π̂sDf(x(i− 1))(x1 − x2)| ≤

2ε|x1 − x2|+ λ|x1 − x2|.

A similar estimate applies to π̂uf
−1. We conclude that for ε > 0 there is δ > 0 so that for x1, x2 ∈

Bδ/2(x(i− 1)), y1, y2 ∈ Bδ/2(x(i+ 1)),

|π̂sf(x1)− π̂sf(x2)| ≤ (λ+ 2ε)|x1 − x2|,

|π̂uf−1(y1)− π̂uf−1(y2)| ≤ (1/µ+ 2ε)|y1 − y2|.

We replace the projections π̂s, π̂u by πs, πu. From the continuous dependence of the splitting Es, Eu

along Λ, we get the following. For ε > 0 there exists δ > 0 so that for x1, x2 ∈ Bδ/2(x(i− 1)),

|πsf(x1)− πsf(x2)| ≤

|πsf(x1)− π̂sf(x1)|+ |πsf(x2)− π̂sf(x2)|+ |π̂sf(x1)− π̂sf(x2)| ≤

2ε|x1 − x2|+ (λ+ 2ε)|x1 − x2|.

With a similar estimate for the unstable coordinate, we get that for ε > 0 there is δ > 0 so that for

x1, x2 ∈ Bδ/2(x(i− 1)), y1, y2 ∈ Bδ/2(x(i+ 1)),

|πsf(x1)− πsf(x2)| ≤ (λ+ 4ε)|x1 − x2|,

|πuf−1(y1)− πuf−1(y2)| ≤ (1/µ+ 4ε)|y1 − y2|.

Finally and in the same manner, for g within ε of f in the C1 topology, again with x1, x2 ∈ Bδ/2(x(i−1)),

y1, y2 ∈ Bδ/2(x(i+ 1)),

|πsg(x1)− πsg(x2)| ≤ (λ+ 6ε)|x1 − x2|,

|πug−1(y1)− πsg−1(y2)| ≤ (1/µ+ 6ε)|y1 − y2|.

For ε small, both λ + 6ε < 1 and 1/µ + 6ε < 1. The first two claims follow. The observation that the

fixed point is an orbit, follows as in the proof of Theorem 0.3.

Define a map h : Λ → U that maps x(k) ∈ Λ to the fixed point of Γg({x(i)})(k). The construction

shows that h ◦ f = g ◦ h. We leave it to the reader to show that h is continuous. Vice versa, recall that
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the maximal invariant set of g in U is hyperbolic by Theorem 0.4. Given an orbit {y(i)} of g in h(Λ) for

g sufficiently close to f , Γf ({y(i)}) provides a nearby orbit of f in Λ. So the map j : g(Λ) → M that

maps y(k) ∈ g(Λ) to the fixed point of Γf ({y(i)})(k) is the inverse of h and is continuous. It follows that

h is a homeomorphism.



Chapter 3

An auxiliary differentiability result

Theorem 0.6. Let f : Rn → Rm be C1. Define

N : C0([0, 1],Rn)→ C0([0, 1],Rm)

by N(φ)(t) = f(φ(t)). Then N is C1.

Proof. For φ ∈ C0([0, 1],Rn), ψ ∈ C0([0, 1],Rn), define B(φ)ψ in C0([0, 1],Rm) by

B(φ)ψ(t) = Df(φ(t))ψ(t).

One checks that B is a bounded linear map. We claim that DN(φ) = B(φ). Namely, compute for

t ∈ [0, 1],

(N(φ+ ψ)−N(φ)−B(φ)ψ)(t) = f(φ(t) + ψ(t))− f(φ(t))−Df(φ(t))ψ(t)

=

∫ 1

0

(Df(φ(t) + sψ(t))−Df(φ(t)))ψ(t) ds.

Since φ([0, 1]) is compact, Df is uniformly continuous on φ[0, 1]. For ε > 0, there exists δ > 0 such that

if x1 ∈ φ([0, 1]) and |x2 − x1| < δ, then ‖Df(x2)−Df(x1)‖ < ε. Therefore,

|(N(φ+ ψ)−N(φ)−B(φ)ψ)(t)| =
∣∣∣∣∫ 1

0

(Df(φ(t) + sψ(t))−Df(φ(t)))ψ(t) ds

∣∣∣∣
≤ ε|ψ(t)|

≤ ε|ψ|

Taking the supremum over t ∈ [0, 1] we get |N(φ+ψ)−N(φ)−B(φ)ψ| ≤ ε|ψ|. Since ε is arbitrary, this

proves that DN(φ) = B(φ).

Finally we establish that B : C0([0, 1],Rn) → L(C0([0, 1],Rn),C0([0, 1],Rm)) is continuous. Let

φ1 ∈ C0([0, 1],Rn). We will show that B is continuous at φ1. Note that

(B(φ2)−B(φ1))ψ(t) = (Df(φ2(t))−Df(φ1(t)))ψ(t).

11
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Let E be a compact neighborhood of φ1([0, 1]). Let ε > 0. As above, there is δ > 0 such that if

x2, x1 ∈ E, |x2 − x1| < δ, then ‖Df(x2)−Df(x1)‖ < ε. Then, if |φ2 − φ1| < δ,

|(B(φ2)−B(φ1))ψ(t)| ≤ ‖Df(φ2(t))−Df(φ1(t))‖|ψ(t)| ≤ ε|ψ|.

Taking the supremum over t ∈ [0, 1] we get |(B(φ2)−B(φ1))ψ| ≤ ε|ψ|. Therefore ‖B(φ1)−B(φ2)‖ ≤ ε
when φ2 − φ1| < δ. Since ε is arbitrary, this shows that B is continuous at φ1.

The same argument works for the Nemytskii operator on the space B(N,Rn) of bounded sequences

in Rn.

Theorem 0.7. Let f : Rn → Rm be C1. Define

N : B(N,Rn)→ B(N,Rm)

by N(φ)(t) = f(φ(t)). Then N is C1.
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