
Appendix A: Measure Theory

Complete treatments of the results stated in this appendix may be found in
any measure theory book; see for example Parthasarathy [280], Royden [320]
or Kingman and Taylor [195]. A similar summary of measure theory without
proofs may be found in Walters [373, Chap. 0]. Some of this appendix will
use terminology from Appendix B.

A.1 Measure Spaces

Let X be a set, which will usually be infinite, and denote by P(X) the col-
lection of all subsets of X .

Definition A.1. A set S ⊆ P(X) is called a semi-algebra if

(1) ∅ ∈ S ,
(2) A, B ∈ S implies that A ∩ B ∈ S , and
(3) if A ∈ S then the complement XrA is a finite union of pairwise disjoint

elements in S ;

if in addition

(4) A ∈ S implies that XrA ∈ S ,

then it is called an algebra. If S satisfies the additional property

(5) A1, A2, · · · ∈ S implies that
⋃

∞

n=1 An ∈ S ,

then S is called a σ-algebra. For any collection of sets A , write σ(A ) for
the smallest σ-algebra containing A (this is possible since the intersection
of σ-algebras is a σ-algebra).

Example A.2. The collection of intervals in [0, 1] forms a semi-algebra.
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404 Appendix A: Measure Theory

Definition A.3. A collection M ⊆ P(X) is called a monotone class if

A1 ⊆ A2 ⊆ · · · and An ∈ M for all n > 1 =⇒
∞
⋃

n=1

An ∈ M

and

B1 ⊇ B2 ⊇ · · · and Bn ∈ M for all n > 1 =⇒

∞
⋂

n=1

Bn ∈ M .

The intersection of two monotone classes is a monotone class, so there is a
well-defined smallest monotone class M (A ) containing any given collection of
sets A . This gives an alternative characterization of the σ-algebra generated
by an algebra.

Theorem A.4. Let A be an algebra. Then the smallest monotone class con-
taining A is σ(A ).

A function µ : S → R>0 ∪ {∞} is finitely additive if µ(∅) = 0 and∗

µ(A ∪ B) = µ(A) + µ(B) (A.1)

for any disjoint elements A and B of S with A ⊔ B ∈ S , and is countably
additive if

µ

(

∞
⋃

n=1

An

)

=

∞
∑

n=1

µ(An)

if {An} is a collection of disjoint elements of S with
⊔

∞

n=1 An ∈ S .
The main structure of interest in ergodic theory is that of a probability

space or finite measure space.

Definition A.5. A triple (X, B, µ) is called a finite measure space if B is a σ-
algebra and µ is a countably additive measure defined on B with µ(X) < ∞.
A triple (X, B, µ) is called a σ-finite measure space if X is a countable union
of elements of B of finite measure. If µ(X) = 1 then a finite measure space
is called a probability space.

A probability measure µ is said to be concentrated on a measurable set A
if µ(A) = 1.

Theorem A.6. If µ : S → R>0 is a countably additive measure defined
on a semi-algebra, then there is a unique countably additive measure defined
on σ(S ) which extends µ.

∗ The conventions concerning the symbol ∞ in this setting are that ∞ + c = ∞ for any c

in R>0 ∪ {∞}, c · ∞ = ∞ for any c > 0, and 0 · ∞ = 0.
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Theorem A.7. Let A ⊆ B be an algebra in a probability space (X, B, µ).
Then the collection of sets B with the property that for any ε > 0 there is
an A ∈ A with µ(A△B) < ε is a σ-algebra.

As discussed in Section 2.1, the basic objects of ergodic theory are measure-
preserving maps (see Definition 2.1). The next result gives a convenient way
to check whether a transformation is measure-preserving.

Theorem A.8. Let (X, BX , µ) and (Y, BY , ν) be probability spaces, and
let S be a semi-algebra which generates BY . A measurable map φ : X → Y
is measure-preserving if and only if

µ(φ−1B) = ν(B)

for all B ∈ S .

Proof. Let

S
′ = {B ∈ BY | φ−1(B) ∈ BX , µ(φ−1B) = ν(B)}.

Then S ⊆ S ′, and (since each member of the algebra generated by S is a
finite disjoint union of elements of S ) the algebra generated by S lies in S ′.
It is clear that S ′ is a monotone class, so Theorem A.4 shows that S ′ = BY

as required. �

The next result is an important lemma from probability; what it means is
that if the sum of the probabilities of a sequence of events is finite, then the
probability that infinitely many of them occur is zero.

Theorem A.9 (Borel–Cantelli(102)). Let (X, B, µ) be a probability space,
and let (An)n>1 be a sequence of measurable sets with

∑

∞

n=1 µ(An) < ∞.
Then

µ

(

lim sup
n→∞

An

)

= µ

(

∞
⋂

n=1

(

∞
⋃

m=n

Am

))

= 0.

If the sequence of sets are pairwise independent, that is if

µ(Ai ∩ Aj) = µ(Ai)µ(Aj)

for all i 6= j, then
∑

∞

n=1 µ(An) = ∞ implies that

µ

(

lim sup
n→∞

An

)

= µ

(

∞
⋂

n=1

(

∞
⋃

m=n

Am

))

= 1.

The elements of a σ-algebra are typically very complex, and it is often
enough to approximate sets by a convenient smaller collection of sets.

Theorem A.10. If (X, B, µ) is a probability space and A is an algebra which
generates B (that is, with σ(A ) = B), then for any B ∈ B and ε > 0 there
is an A ∈ A with µ(A△B) < ε.
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A measure space is called complete if any subset of a null set is measurable.
If X is a topological space, then there is a distinguished collection of sets

to start with, namely the open sets. The σ-algebra generated by the open
sets is called the Borel σ-algebra. If the space is second countable, then the
support of a measure is the largest closed set with the property that every
open neighborhood of every point in the set has positive measure; equivalently
the support of a measure is the complement of the largest open set of zero
measure.

If X is a metric space, then any Borel probability measure µ on X (that
is, any probability measure defined on the Borel σ-algebra B of X) is reg-
ular (103): for any Borel set B ⊆ X and ε > 0 there is an open set O and a
closed set C with C ⊆ B ⊆ O and µ(OrC) < ε.

A.2 Product Spaces

Let I ⊆ Z and assume that for each i ∈ I a probability space Xi = (Xi, Bi, µi)
is given. Then the product space X =

∏

i∈I Xi may be given the structure
of a probability space (X, B, µ) as follows. Any set of the form

∏

i∈I,i<min(F )

Xi ×
∏

i∈F

Ai ×
∏

i∈I,i>max(F )

Xi,

or equivalently of the form

{x = (xi)i∈I ∈ X | xi ∈ Ai for i ∈ F},

for some finite set F ⊆ I, is called a measurable rectangle. The collection of
all measurable rectangles forms a semi-algebra S , and the product σ-algebra
is B = σ(S ). The product measure µ is obtained by defining the measure of
the measurable rectangle above to be

∏

i∈F µi(Ai) and then extending to B.
The main extension result in this setting is the Kolmogorov consistency

theorem, which allows measures on infinite product spaces to be built up
from measures on finite product spaces.

Theorem A.11. Let X =
∏

i∈I Xi with I ⊆ Z and each Xi a probability
space. Suppose that for every finite subset F ⊆ I there is a probability mea-
sure µF defined on XF =

∏

i∈F Xi, and that these measures are consistent
in the sense that if E ⊆ F then the projection map

(

∏

i∈F

Xi, µF

)

−→

(

∏

i∈E

Xi, µE

)

is measure-preserving. Then there is a unique probability measure µ on the
probability space

∏

i∈I Xi with the property that for any F ⊆ I the projection



A.3 Measurable Functions 407

map
(

∏

i∈I

Xi, µ

)

−→

(

∏

i∈F

Xi, µF

)

is measure-preserving.

In the construction of an infinite product
∏

i∈I µi of probability measures
above, the finite products µF =

∏

i∈F µi satisfy the compatibility conditions
needed in Theorem A.11.

In many situations each Xi = (Xi, di) is a fixed compact metric space
with 0 < diam(Xi) < ∞. In this case the product space X =

∏

n∈Z
Xn is

also a compact metric space with respect to the metric

d(x, y) =
∑

n∈Z

dn(xn, yn)

2n diam(Xn)
,

and the Borel σ-algebra of X coincides with the product σ-algebra defined
above.

A.3 Measurable Functions

Let (X, B, µ) be a probability space. Natural classes of measurable functions
on X are built up from simpler functions, just as the σ-algebra B may be
built up from simpler collections of sets.

A function f : X → R is called simple if

f(x) =

m
∑

j=1

cjχAj
(x)

for constants cj ∈ R and disjoint sets Aj ∈ B. The integral of f is then
defined to be

∫

f dµ =

m
∑

j=1

cjµ(Aj).

A function g : X → R is called measurable if g−1(A) ∈ B for any (Borel)
measurable set A ⊆ R. The basic approximation result states that for any
measurable function g : X → R>0 there is a pointwise increasing sequence of
simple functions (fn)n>1 with fn(x) ր g(x) for each x ∈ X . This allows us
to define

∫

g dµ = lim
n→∞

∫

fn dµ,

which is guaranteed to exist since

fn(x) 6 fn+1(x)
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for all n > 1 and x ∈ X (in contrast to the usual terminology from calculus,
we include the possibility that the integral and the limit are infinite). It may
be shown that this is well-defined (independent of the choice of the sequence
of simple functions).

A measurable function g : X → R>0 is integrable if
∫

g dµ < ∞. In general,
a measurable function g : X → R has a unique decomposition into g =
g+ − g− with g+(x) = max{g(x), 0}; both g+ and g− are measurable. The
function g is said to be integrable if both g+ and g− are integrable, and the
integral is defined by

∫

g dµ =
∫

g+ dµ −
∫

g− dµ. If f is integrable and g is
measurable with |g| 6 f , then g is integrable. The integral of an integrable
function f over a measurable set A is defined by

∫

A

f dµ =

∫

fχA dµ.

For 1 6 p < ∞, the space L p
µ (or L p(X), L p(X, µ) and so on) comprises

the measurable functions f : X → R with
∫

|f |p dµ < ∞. Define an equiva-
lence relation on L p

µ by f ∼ g if
∫

|f − g|p dµ = 0 and write Lp
µ = L p

µ /∼ for
the space of equivalence classes. Elements of Lp

µ will be described as functions
rather than equivalence classes, but it is important to remember that this is
an abuse of notation (for example, in the construction of conditional mea-
sures on page 138). In particular the value of an element of Lp

µ at a specific
point does not make sense, unless that point itself has positive µ-measure.
The function ‖ · ‖p defined by

‖f‖p =
(

∫

|f |p dµ
)1/p

is a norm (see Appendix B), and under this norm Lp is a Banach space.
The case p = ∞ is distinguished: the essential supremum is the general-

ization to measurable functions of the supremum of a continuous function,
and is defined by

‖f‖∞ = inf
{

α | µ ({x ∈ X | f(x) > α}) = 0
}

.

The space L ∞

µ is then defined to be the space of measurable functions f
with ‖f‖∞ < ∞, and once again L∞

µ is defined to be L ∞

µ /∼. The norm ‖·‖∞
makes L∞

µ into a Banach space. For 1 6 p < q 6 ∞ we have Lp ⊇ Lq for any
finite measure space, with strict inclusion except in some degenerate cases.

In practice we will more often use L ∞, which denotes the bounded func-
tions.

An important consequences of the Borel–Cantelli lemma is that norm con-
vergence in Lp forces pointwise convergence along a subsequence.

Corollary A.12. If (fn) is a sequence convergent in Lp
µ (1 6 p 6 ∞) to f ,

then there is a subsequence (fnk
) converging pointwise almost everywhere

to f .
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Proof. Choose the sequence (nk) so that

‖fnk
− f‖p

p <
1

k2+p

for all k > 1. Then

µ

({

x ∈ X |fnk
(x) − f(x)| >

1

k

})

<
1

k2
.

It follows by Theorem A.9 that for almost every x, |fnk
(x) − f(x)| > 1

k for
only finitely many k, so fnk

(x) → f(x) for almost every x. �

Finally we turn to integration of functions of several variables; a measure
space (X, B, µ) is called σ-finite if there is a sequence A1, A2, . . . of measur-
able sets with µ(An) < ∞ for all n > 1 and with X =

⋃

n>1 An.

Theorem A.13 (Fubini–Tonelli(104)). Let f be a non-negative integrable
function on the product of two σ-finite measure spaces (X, B, µ) and (Y, C , ν).
Then, for almost every x ∈ X and y ∈ Y , the functions

h(x) =

∫

Y

f(x, y) dν, g(y) =

∫

X

f(x, y) dµ

are integrable, and

∫

X×Y

f d(µ × ν) =

∫

X

h dµ =

∫

Y

g dν. (A.2)

This may also be written in a more familiar form as

∫

X×Y

f(x, y) d(µ × ν)(x, y) =

∫

X

(
∫

Y

f(x, y) dν(y)

)

dµ(x)

=

∫

Y

(
∫

X

f(x, y) dµ(x)

)

dν(y).

We note that integration makes sense for functions taking values in some
other spaces as well, and this will be discussed further in Section B.7.

A.4 Radon–Nikodym Derivatives

One of the fundamental ideas in measure theory concerns the properties of
a probability measure viewed from the perspective of a given measure. Fix
a σ-finite measure space (X, B, µ) and some measure ν defined on B.

• The measure ν is absolutely continuous with respect to µ, written ν ≪ µ,
if µ(A) = 0 =⇒ ν(A) = 0 for any A ∈ B.
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• If ν ≪ µ and µ ≪ ν then µ and ν are said to be equivalent.
• The measures µ and ν are mutually singular, written µ ⊥ ν, if there exist

disjoint sets A and B in B with A ∪ B = X and with µ(A) = ν(B) = 0.

These notions are related by two important theorems.

Theorem A.14 (Lebesgue decomposition). Given σ-finite measures µ
and ν on (X, B), there are measures ν0 and ν1 with the properties that

(1) ν = ν0 + ν1;
(2) ν0 ≪ µ; and
(3) ν1 ⊥ µ.

The measures ν0 and ν1 are uniquely determined by these properties.

Theorem A.15 (Radon–Nikodym derivative(105)). If ν ≪ µ then there
is a measurable function f > 0 on X with the property that

ν(A) =

∫

A

f dµ

for any set A ∈ B.

By analogy with the fundamental theorem of calculus (Theorem A.25),
the function f is written dν

dµ and is called the Radon–Nikodym derivative of ν
with respect to µ. Notice that for any two measures µ1, µ2 we can form a
new measure µ1 + µ2 simply by defining (µ1 + µ2)(A) = µ1(A) + µ2(A) for
any measurable set A. Then µi ≪ µ1 + µ2, so there is a Radon–Nikodym
derivative of µi with respect to µ1 + µ2 for i = 1, 2.

A.5 Convergence Theorems

The most important distinction between integration on Lp spaces as defined
above and Riemann integration on bounded Riemann-integrable functions is
that the Lp functions are closed under several natural limiting operations,
allowing for the following important convergence theorems.

Theorem A.16 (Monotone Convergence Theorem). If f1 6 f2 6 · · ·
is a pointwise increasing sequence of integrable functions on the probability
space (X, B, µ), then f = limn→∞ fn satisfies

∫

f dµ = lim
n→∞

∫

fn dµ.

In particular, if limn→∞

∫

fn dµ < ∞, then f is finite almost everywhere.
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Theorem A.17 (Fatou’s Lemma). Let (fn)n>1 be a sequence of measur-
able real-valued functions on a probability space, all bounded below by some
integrable function. If lim infn→∞

∫

fn dµ < ∞ then lim infn→∞ fn is inte-
grable, and

∫

lim inf
n→∞

fn dµ 6 lim inf
n→∞

∫

fn dµ.

Theorem A.18 (Dominated Convergence Theorem). If h : X → R

is an integrable function and (fn)n>1 is a sequence of measurable real-valued
functions which are dominated by h in the sense that |fn| 6 h for all n > 1,
and limn→∞ fn = f exists almost everywhere, then f is integrable and

∫

f dµ = lim
n→∞

∫

fn dµ.

A.6 Well-behaved Measure Spaces

It is convenient to slightly extend the notion of a Borel probability space as
follows (cf. Definition 5.13).

Definition A.19. Let X be a dense Borel subset of a compact metric
space X, with a probability measure µ defined on the restriction of the
Borel σ-algebra B to X . The resulting probability space (X, B, µ) is a Borel
probability space∗.

For our purposes, this is the most convenient notion of a measure space
that is on the one hand sufficiently general for the applications needed, while
on the other has enough structure to permit explicit and convenient proofs.

A circle of results called Lusin’s theorem [237] (or Luzin’s theorem) show
that measurable functions are continuous off a small set. These results are
true in almost any context where continuity makes sense, but we state a form
of the result here in the setting needed.

Theorem A.20 (Lusin). Let (X, B, µ) be a Borel probability space and
let f : X → R be a measurable function. Then, for any ε > 0, there is a
continuous function g : X → R with the property that

µ ({x ∈ X | f(x) 6= g(x)}) < ε.

As mentioned in the endnote to Definition 5.13, there is a slightly different
formulation of the standard setting for ergodic theory, in terms of Lebesgue
spaces.

∗ Commonly the σ-algebra B is enlarged to its completion Bµ, which is the smallest σ-
algebra containing both B and all subsets of null sets with respect to µ. It is also standard
to allow any probability space that is isomorphic to (X, Bµ, µ) in Definition A.19 as a
measure space to be called a Lebesgue space.
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Definition A.21. A probability space is a Lebesgue space if it is isomorphic
as a measure space to

(

[0, s] ⊔ A, B, m[0,s] +
∑

a∈A

paδa

)

for some countable set A of atoms and numbers s, pa > 0 with

s +
∑

a∈A

pa = 1,

where B comprises unions of Lebesgue measurable sets in [0, s] and arbitrary
subsets of A, m[0,s] is the Lebesgue measure on [0, s], and δa is the Dirac
measure defined by δa(B) = χB(a).

The next result shows, inter alia, that this notion agrees with that
used in Definition A.19 (a proof of this may be found in the book of
Parthasarathy [280, Chap. V]) up to completion of the measure space (a
measure space is complete if all subsets of a null set are measurable and
null). We will not use this result here.

Theorem A.22. A probability space is a Lebesgue space in the sense of Def-
inition A.21 if and only if it is isomorphic to (X, Bµ, µ) for some probability
measure µ on the completion Bµ of the Borel σ-algebra B of a complete
separable metric space X.

The function spaces from Section A.3 are particularly well-behaved for
Lebesgue spaces.

Theorem A.23 (Riesz–Fischer(106)). Let (X, B, µ) be a Lebesgue space.
For any p, 1 6 p < ∞, the space Lp

µ is a separable Banach space with respect
to the ‖ · ‖p-norm. In particular, L2

µ is a separable Hilbert space.

A.7 Lebesgue Density Theorem

The space R together with the usual metric and Lebesgue measure mR is a
particularly important and well-behaved special case, and here it is possible
to say that a set of positive measure is thick in a precise sense.

Theorem A.24 (Lebesgue(107)). If A ⊆ R is a measurable set, then

lim
ε→0

1

2ε
mR (A ∩ (a − ε, a + ε)) = 1

for mR-almost every a ∈ A.
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A point a with this property is said to be a Lebesgue density point or a
point with Lebesgue density 1. An equivalent and more familiar formulation
of the result is a form of the fundamental theorem of calculus.

Theorem A.25. If f : R → R is an integrable function then

lim
ε→0

1

ε

∫ s+ε

s

f(t) dt = f(s)

for mR-almost every s ∈ [0,∞).

The equivalence of Theorem A.24 and A.25 may be seen by approximating
an integrable function with simple functions.

A.8 Substitution Rule

Let O ⊆ R
n be an open set, and let φ : O → R

n be a C1-map with Jaco-
bian Jφ = | detDφ|. Then for any measurable function f > 0 (or for any
integrable function f) defined on φ(O) ⊆ R

n we have(108).

∫

O

f(φ(x))Jφ(x) dmRn(x) =

∫

φ(O)

f(y) dmRn(y). (A.3)

We recall the definition of the push-forward of a measure. Let (X, BX)
and (Y, BY ) be two spaces equipped with σ-algebras. Let µ be a measure
on X defined on BX , and let φ : X → Y be measurable. Then the push-
forward φ∗µ is the measure on (Y, BY ) defined by (φ∗µ)(B) = µ(φ−1(B)) for
all B ∈ BY .

The substitution rule allows us to calculate the push-forward of the
Lebesgue measure under smooth maps as follows.

Lemma A.26. Let O ⊆ R
n be open, let φ : O → R

n be a smooth in-
jective map with non-vanishing Jacobian Jφ = | detDφ|. Then the push-
forward φ∗mO of the Lebesgue measure mO = mRn |O restricted to O is ab-
solutely continuous with respect to mRn and is given by

dφ∗mO = J−1
φ ◦ φ−1 dmφ(O).

Moreover, if we consider a measure dµ = F dmO absolutely continuous with
respect to mO, then similarly

dφ∗µ = F ◦ φ−1J−1
φ ◦ φ−1 dmφ(O).

Proof. Recall that under the assumptions of the lemma, φ−1 is smooth
and Jφ−1 = J−1

φ ◦φ−1. Therefore, by equation (A.3) and the definition of the
push-forward,
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∫

φ(O)

f(x)J−1
φ

(

φ−1(x)
)

dmRn(x) =

∫

φ(O)

f
(

φ(φ−1(x))
)

Jφ−1(x) dmRn(x)

=

∫

O

f(φ(y)) dmRn(y)

=

∫

φ(O)

f(x) dφ∗mO(x)

for any characteristic function f = χB of a measurable set B ⊆ φ(O). This
implies the first claim. Moreover, for any measurable functions f > 0, F > 0
defined on φ(O), O respectively,

∫

φ(O)

f(x)F (φ−1(x))J−1
φ (φ−1(x)) dmRn(x) =

∫

O

f(φ(y))F (y) dmRn ,

which implies the second claim. �

Notes to Appendix A

(102)(Page 405) This result was stated by Borel [40, p. 252] for independent events as part
of his study of normal numbers, but as pointed out by Barone and Novikoff [18] there
are some problems with the proofs. Cantelli [46] noticed that half of the theorem holds
without independence; this had also been noted by Hausdorff [142] in a special case. Erdős
and Rényi [84] showed that the result holds under the much weaker assumption of pairwise
independence.
(103)(Page 406) This is shown, for example, in Parthasarathy [280, Th. 1.2]: defining a
Borel set A to be regular if, for any ε > 0, there is an open set Oε and a closed set Cε

with Cε ⊆ A ⊆ Oε and µ(Oε
rCε) < ε, it may be shown that the collection of all regular

sets forms a σ-algebra and contains the closed sets.
(104)(Page 409) A form of this theorem goes back to Cauchy for continuous functions on
the reals, and this was extended by Lebesgue [220] to bounded measurable functions.
Fubini [97] extended this to integrable functions, showing that if f : [a, b] × [c, d] → R is
integrable then y 7→ f(x, y) is integrable for almost every x, and proving equation (A.2).
Tonelli [362] gave the formulation here, for non-negative functions on products of σ-finite
spaces. Complete proofs may be found in Royden [320] or Lieb and Loss [229, Th. 1.12].
While the result is robust and of central importance, some hypotheses are needed: if the
function is not integrable or the spaces are not σ-finite, the integrals may have different
values. A detailed treatment of the minimal hypotheses needed for a theorem of Fubini
type, along with counterexamples and applications, is given by Fremlin [96, Sect. 252].
(105)(Page 410) This result is due to Radon [297] when µ is Lebesgue measure on Rn, and
to Nikodym [272] in the general case.
(106)(Page 412) This result emerged in several notes of Riesz and two notes of Fis-
cher [91], [92], with a full treatment of the result that L2(R) is complete appearing in
a paper of Riesz [311].
(107)(Page 412) This is due to Lebesgue [220], and a convenient source for the proof is
the monograph of Oxtoby [276]. Notice that Theorem A.24 expresses how constrained
measurable sets are: it is impossible, for example, to find a measurable subset A of [0, 1]
with the property that mR(A ∩ [a, b]) = 1

2
(b − a) for all b > a. While a measurable subset
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of measure 1
2

may have an intricate structure, it cannot occupy only half of the space on
all possible scales.
(108)(Page 413) The usual hypotheses are that the map φ is injective and the Jacobian
non-vanishing; these may be relaxed considerably, and the theorem holds in very general
settings both measurable (see Hewitt and Stromberg [152]) and smooth (see Spivak [349]).


