MASTERMATH

Homework Dynamical Systems December 2014

All exercises count equally

- 1. Brin & Stuck 4.5.6
- 2. For a continuous map $T: X \to X$ of a compact metric space (X, d), define the invertible extension $\tilde{T}: \tilde{X} \to \tilde{X}$ as follows. Let
 - $\tilde{X} = \{x \in X^{\mathbb{Z}} \mid x(k+1) = T(x(k)) \text{ for all } k \in \mathbb{Z}\};$
 - $\tilde{T}(x)(k) = x(k+1)$ for all $k \in \mathbb{Z}$ and $x \in \tilde{X}$;

with metric $d(x,y) = \sum_{k \in \mathbb{Z}} 2^{-|k|} d(x(k), y(k))$. Write $\pi : \tilde{X} \to X$ for the map sending x to x(0). Prove the following.

- (a) \tilde{T} is a homeomorphism of a compact metric space, and $\pi : \tilde{X} \to X$ is a topological factor map.
- (b) If (Y, S) is any homeomorphism of a compact metric space with the property that there is a topological factor map $(Y, S) \to (X, T)$, then (\tilde{X}, \tilde{T}) is a topological factor of (Y, S).
- (c) $\pi_* \mathcal{M}_{\tilde{T}}(\tilde{X}) = \mathcal{M}_T(X).$

(d)
$$\pi_* \mathcal{M}^e_{\tilde{T}}(\tilde{X}) = \mathcal{M}^e_T(X).$$

3. Let (X, \mathcal{B}, μ, T) be a measure-preserving system. We say that T is totally ergodic if T^n is ergodic for all $n \ge 1$. Given $K \ge 1$ define a space $X^{(K)} = X \times \{1, \ldots, K\}$ with measure $\mu^{(K)} = \mu \times \nu$ defined on the product σ -algebra $\mathcal{B}^{(K)}$, where $\nu(A) = \frac{1}{K}|A|$ is the normalized counting measure defined on any subset $A \subset \{1, \ldots, K\}$, and a $\mu^{(K)}$ -preserving transformation $T^{(K)}$ by

$$T^{(K)}(x,i) = \begin{cases} (x,i+1) & \text{if } 1 \le i < K, \\ (Tx,1) & \text{if } i = K \end{cases}$$

for all $x \in X$. Show that $T^{(K)}$ is ergodic with respect to $\mu^{(K)}$ if and only if T is ergodic with respect to μ , and that $T^{(K)}$ is not totally ergodic if K > 1.

4. Show that a weak*-limit of ergodic measures need not be an ergodic measure by the following steps. Start with a point x in the full 2-shift $\sigma : X \to X$ with the property that any finite block of symbols of length l appears in x with asymptotic frequency $\frac{1}{2l}$ (such points certainly exist; indeed the ergodic theorem says that almost every point with respect to the (1/2, 1/2) Bernoulli measure will do). Write $(x_1 \dots x_n 0 \dots 0)^{\infty}$ for the point $y \in \{0, 1\}^{\mathbb{Z}}$ determined by the two conditions

$$y|_{[0,2n-1]} = x_1 \dots x_n 0 \dots 0$$

and $\sigma^{2n}(y) = y$. Now for each *n* construct an ergodic σ -invariant measure μ_n supported on the orbit of *y*. Show that μ_n converges to some limit ν that is not ergodic.

- 5. Brin & Stuck 5.2.3
- 6. Brin & Stuck 5.4.1
- 7. Brin & Stuck 5.4.4