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ABSTRACT. In a series of important papers [GS1, GS2] Gavrilov and Shilnikov established a
topological conjugacy between a surface diffeomorphism having a dissipative hyperbolic periodic
point with certain types of quadratic homoclinic tangencies and the full shift on two symbols, thus
exhibiting horseshoes near a tangential homoclinic point. In this note, which should be viewed
of as an addendum to [BW], we extend this result by showing that such a diffeomorphism with
a homoclinic tangency having any order contact, possible with infinite order contact, possesses
a horseshoe near the homoclinic point.

I: Introduction

Homoclinic tangencies and their bifurcations play a fundamental role in Dynamical Systems
[PT]. For instance, Palis has conjectured [P] that the set of (non-uniformly) hyperbolic sur-
face diffeomorphisms together with the diffeomorphisms exhibiting homoclinic tangencies are
dense in the space of all surface diffeomorphisms. Systems exhibiting homoclinic tangencies
can exhibit more complicated and more subtle quasi-local behavior than systems possessing
transverse homoclinic points or homoclinic points with topological crossings. For instance,
Gavrilov and Shilnikov [GS1, GS2] showed that horseshoes (locally maximal hyperbolic sets)
may exist near the homoclinic tangency. Newhouse [N1, N2] (see also [GST]) showed that
these homoclinic tangencies typically generate secondary tangencies which persist under small
perturbations, and that the Gavrilov and Shilnikov horseshoes may co-exist with infinitely
many sinks in a neighborhood of the homoclinic orbit.

In a series of important papers [GS1, GS2] Gavrilov and Shilnikov established a topological
conjugacy (on a closed invariant set) between a surface diffeomorphism having a dissipative
hyperbolic periodic point with certain types of quadratic homoclinic tangencies (see Figures
2c¢ and 2d) and the full shift on two symbols, thus exhibiting horseshoes near a tangential
homoclinic point. In this note, which should be viewed of as an addendum to [BW], we extend
this important result by showing that such a diffeomorphism with a homoclinic tangency
having any order contact (possible with infinite order contact), possesses a horseshoe near
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the homoclinic point. Such a map has positive topological entropy and possesses infinitely
many hyperbolic periodic points near the homoclinic tangency.

In [BW] the authors consider a surface diffeomorphism with a hyperbolic periodic point
such that components of the stable and unstable manifolds have a topological crossing, possible
with infinite order contact. They prove that some power of the diffeomorphism has the full
shift on two symbols as a topological factor. It follows from a remarkable theorem of Katok
[K1, K2] that the map possesses a horseshoe. This result extends the well known theorem of
Smale [S], where one assumes that the intersection is transversal and one obtains a topological
conjugacy on a closed invariant set between some power of the map and the full shift on two
symbols. The conjugacy immediately implies that the map possesses a horseshoe. The idea
of the construction in [BW] is to find a horseshoe-like picture in the dynamics and to code the
dynamics as if coding on a horseshoe. One then proves that this coding map is a factor map
and thus the diffeomorphism has the full shift on two symbols as a topological factor. Then
Katok’s theorem implies the existence of horseshoes arbitrarily close to a homoclinic tangency.
Using this technique, we avoid having to verify difficult uniform contracting/expanding cone
estimates to directly prove the existence of a hyperbolic set.

II: Homoclinic Tangencies

Let M denote a smooth (C?) surface and f: M — M a smooth (C?) surface diffeomor-
phism. Let p be a hyperbolic periodic point (which by considering some iterate of the map
we will assume is a fixed point) and assume that |A p| < 1, where |A| > 1 and |p| < 1 are the
two eigenvalues of the differential D f,,. We will call such a periodic point dissipative.! Also
suppose that the map f possesses a tangential homoclinic point ¢ (with order of tangency
2 < 21 < o0). Let U be a small neighborhood of the orbit of ¢ consisting of finitely many balls
(including one ball containing p). In this context small means that the sum of the diameters
of the balls is sufficiently small. An important problem is to describe the set of points Uy
whose orbits are entirely contained in U.

Figure 1 illustrates four different types of homoclinic tangencies. It is not difficult to show
that for cases (i) and (ii), the set Uy contains only the orbit of ¢ and the fixed point p [AH,
GS1, GS2]. However, for cases (iii) and (iv), the dynamics in U is much more complicated and
we will show that in these cases, Uy contains horseshoes. We note that a precise description of
Uy is quite difficult to provide since Uy may also contain non-hyperbolic orbits and infinitely
many sinks.

We quickly recall the main technical result in [BW, Theorem 2.4] and the related defini-
tions. Let N C M be homeomorphic to [—1,1] x [=1,1]. In the following we shall identify
N with [—1,1] x [—1, 1] and suppress the homeomorphism. Let R = [—1,1] X [—p, p|, where
p € (0,1).

A set S C R will be called a horizontal strip if

(1) S is closed and path connected,

(2) S contains a curve joining the left edge {—1} x [—p, p] and the right edge {1} x [—p, p]
of R,

(3) 0Sis a Jordan curve which is the union of a finite number of arcs all of whose endpoints
lie on the left edge or the right edge of R.

I1The case where A | > 1 can be reduced to the dissipative case by considering the inverse fL



—_——=

i) c<0,d<0 w i) c>0,d<0 v

—_——=

iii) c<0,d>0 iv) ¢>0,d>0

FIGURE 1: FOUR TYPES OF HOMOCLINIC TANGENCIES

It is easily seen that 0S contains exactly two curves joining the left edge {—1} x [—p, p]
and the right edge {1} x [—p, p] of R, and S lies in the region of R bounded by these curves
(see pictures in [BW]). We shall call the curve on which the second coordinate is larger c,pper
and the other curve c¢jpyer.

Definition. Let n be a positive integer and S a horizontal strip. We shall say that f"
stretches S across R if f*S C Int N, f"(0SNIntR) C N\ R, and f™ maps cypper and
Clower 1NtO opposite components of N\ R.

Theorem BW 2.4. Suppose N contains two disjoint closed horizontal strips Sy and S1 that
are stretched across R by f™ for someng > 1. Then f™ has the full two shift as a topological
factor.

It is convenient to work in C'*% linearizing coordinates. Let f: M — M be a surface
diffeomorphism with a hyperbolic fixed point p and homoclinic tangency ¢ having 2[-order
contact. This means that components of the stable and unstable manifolds of p, W#(p) and
W*(p), are tangent at ¢ and the tangency has order 2/. By choosing a suitable basis for the
tangent space T,M at p, we may think of df (p) as a linear map L: R? — R? which preserves
the splitting R?> = R @ R, contracts the first R by a factor of g and expands the second R
by a factor of A. By the Hartman-Grobman theorem, there is a neighborhood N of p and
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a homeomorphism h of N into R? with h(p) = (0,0) such that if z € N and f(z) € N,
then h(f(x)) = L(h(z)). One can choose h arbitrarily close to the identity by chosing the
neighborhood N sufficiently small. Thus the type of homoclinic tangency, i.e., case (i), (ii),
(iii) or (iv), is unchanged under these orientation preserving homeomorphims.

It also follows from a theorem of Belitski [B] that the homomorphism A may be chosen to
be a C'*< diffeomorphism for some 0 < o < 1, and we will use this C'T linearization in our
proof. It was previously shown by Hartman [H] that the homomorphism h may be chosen to
be a C! diffeomorphism.

We may assume that N and h have been chosen so that h is C'** and h(N) = D(1) x D(1),
where D(r) is the closed disc of radius r about the origin in R. We may also assume that
D(1) x {0} and {0} x D(1) lie in W*(p) N N and W"(p) N N respectively. We also assume
that the point of homoclinic tangency ¢ lies in N. In order to simplify our notation, we shall
henceforth identify N with D(1) x D(1) and suppress the homeomorphism h. Distances in
N will be measured with respect to the product of the Euclidean metric on D(1).

We may assume that a point of homoclinic tangency has coordinates (¢,0) and lies on
W#(p) N N, and that some preimage has coordinates (0,r), where r = f~"°(q,0) lies on
W¥(p) N N. We choose small neighborhoods V' C N of (r,0) and W C N of (¢,0) and
we wish to study iterates f™*™ of the map f restricted to W by decomposing the map
frtmo: W — N into the linear action of f™ < L™: W — V defined by L"(x,y) = (u"z, \"y)
and a global mapping G:V — W defined by

Gla,y) = (a-+ aw +bly — ) + 0@ **) + O(ly — 1['*2),ca + gy — ) + O(&*)),

where a,b,c € R. If the homoclinic tangency has order of contact 2 < 2] < oo the function
gly—r) =d(y—r)? +O(x?+2)) 1 O(|y — r|*(+2)) d > 0, and if the tangency has infinite
order contact the function g(y — r) is infinitely flat at y = r (derivatives of all orders vanish)
and has constant sign on V.N W"(p) except at y = r. Clearly G(0,7) = (¢,0). We note that
case (iil) corresponds to ¢ < 0 and case (iv) corresponds to ¢ > 0.

Consider the family of small rectangles R,, near (g,0) with vertices (¢ £ €,r/A™" £ w"/2),
where € > 0 is sufficiently small, 4 < w < 1/A (to be chosen later), and n sufficiently large to
insure that L(R,) C V. Let us study the image f™*"(R,,) = (G o L")(R,,) (see Figure 2).

We make the following three observations which will imply that for cases (iii) and (iv), for
w sufficiently close to 1/A and n = n(w) sufficiently large, the image f™*"(R,) intersects
R,, in a horseshoe-like picture (see Figure 2). Clearly the two shaded regions in Figure 2 are
blowups of the actual (much small) regions around ¢ and r.

(1) The abscissa of points in f™*"(R,,) is contained in ¢ &+ ap™(q £ €) + b(£N"wW"/2) +
O(|p™, Amw™[1T). Since |Aw]| < 1, it follows that for n sufficiently large the abscissa of points
in f™*"(R,,) is contained in ¢ + e.

(2) The ordinate of points in f*+* (R, N{y = r/A"}) is contained in c(q=¢€)pu™ 4+ O (ut+on),
Our assumptions imply that c(q £ e)p™ + O (pI+on) << r /A" —w™/2 for n sufficiently large.
Using (1) we see that the points in f™ (R, N {y = r/A"}) lie far below R,,.

(3) The ordinate of points in f™*"(R, N{y = r/A™ + w™/2}) is at least c(q + ¢)u™ +
g(EA" W™ /2) + O(u(t+)"). We can choose w sufficiently close to 1/ and n sufficiently large

to Insure that
Q/N" "2 < elg £ "+ g(ENW"/2) + O(uF),
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FIGURE 2: CREATION OF THE HORSESHOE

As illustrated in Figure 2, it is easy to find two disjoint closed horizontal strips Sy = So(n)
and S; = S1(n) contained in R,, with Sy(n) lying in the top half of R,, and S1(n) lying in the
bottom half of R,,, such that the image under fm*" of these two strips are strethed across
R,,. We have thus proven the following proposition.

Proposition 1. Let f: M — M be a surface diffeomorphism, p a hyperbolic periodic point
and q a point of homoclinic tangency of the type illustrated in Figure 1 (iii) or Figure 1 (iv).
For w sufficiently close to 1/ there exists n = n(w) sufficiently large such that R,, contains
two disjoint horizontal strips Sy and Sy that are stretched across R, by frotm,

Applying Theorem BW 2.4, we obtain the following theorem.

Theorem 1. Let f : M — M be a surface diffeomorphism, p a hyperbolic periodic point
and q a point of homoclinic tangency of the type illustrated in Figure 1 (iii) or Figure 1 (iv).
For w sufficiently close to 1/X and n = n(w) sufficiently large, there is a closed invariant set
contained in R, on which f™1" has the full two shift as a topological factor.

Since the topological entropy of a topological factor of a map is no less than the topological
entropy of the map, Theorem 1 immediately implies that the topological entropy of fro+m
restricted to R, is positive (more precisely, at least log 2). Applying Katok’s theorem [K1, K2]
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on the existence of horseshoes which carry most of the entropy for a surface diffeomorphism,
we obtain the existence of horseshoes near the homoclinic tangency.

Corollary 1. Let f: M — M be a surface diffeomorphism, p a hyperbolic periodic point and
q a point of homoclinic tangency of the type illustrated in Figure 1 (iii) or Figure 1 (iv). For
w sufficiently close to 1/\ and n = n(w) sufficiently large, there are horseshoes contained in
R,,. Furthermore, for any § > 0, the map f°1" restricted to R,, possesses a horseshoe which
carries topological entropy at least log2 — 6.
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