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Abstract

In these notes we discuss obstructions to the existence of local invariant
manifolds in some smoothness class, near hyperbolic fixed points of diffeo-
morphisms. We present an elementary construction for continuously differ-
entiable invariant manifolds, that are not necessarily normally hyperbolic,
near attracting fixed points. The analogous theory for invariant manifolds
near hyperbolic equilbria of differential equations is included. For differential
equations we include a construction of one dimensional invariant manifolds in
a higher smoothness classes.

1 Introduction

We will consider various invariant manifolds near hyperbolic fixed points of dynam-
ical systems obtained by iterating diffeomorphisms. As this is a local study, we may
restrict to diffeomorphims on R

n with a fixed point at the origin 0. That is, we
assume the following context: f is a smooth diffeomorphism on Rn with a hyper-
bolic fixed point at the origin 0. Recall that hyperbolic means that the eigenvalues
of Df(0) are away from the unit circle in the complex plane. By smooth is un-
derstood C∞ or Ck for some (sufficiently) high value of k. Center manifolds near
nonhyperbolic fixed points are not considered, we refer to [16] for this topic.

It is well known that if the origin is a hyperbolic fixed point, then near the origin
there are local stable and unstable manifolds W s, W u characterized by

W s = {x; lim
i→∞

f i(x) = 0},

W u = {x; lim
i→−∞

f i(x) = 0}.

The tangent space T0W
s of W s at the origin is the sum of the generalized eigenspaces

of eigenvalues with absolute value smaller than 1. For two real numbers l < r, let
E1 be the sum of generalized eigenspaces of all eigenvalues with absolute value in
the interval (l, r). Standard invariant manifold theory gives the existence of an
invariant manifold W1 with tangent space E1 at the origin [12]. For (l, r) = (0, r)
with r < 0 and not containing all eigenvalues with absolute value smaller than 1, W1

is a strong stable manifold. For (l, r) = (l, 0) not containing all eigenvalues inside
the unit circle, W1 is a weak stable manifold. In these cases, we refer to E1 as a
strong stable subspace or a weak stable subspace, respectively.

Similarly one can consider a union of intervals J = (l1, r1) ∪ · · · ∪ (ln, rn) and
associated, a sum of generalized eigenspaces E1 of all eigenvalues with absolute value
in J . In general there need no longer exist a continuously differentiable manifold,
invariant for X, with tangent space E1 at the origin. We give counterexamples in
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Section 3. In Section 4 we shall see that for J ⊂ (0, 1) (or J ⊂ (1,∞)) there does
exist a continuously differentiable invariant manifold W1 with T0W1 = E1. Note
that such a manifold is a submanifold of the stable (or unstable) manifold.

The general setup for this paper is summarized in the following set of definitions
and notation.

Definition 1.1. Let Σ1 be a subset of the spectrum Σ of Df(0). Write E1 for the
sum of the generalized eigenspaces corresponding to the eigenvalues in Σ1. Write E2

for the sum of the generalized eigenspaces corresponding to the eigenvalues in Σ\Σ1.
Write

di = dim(Ei),

for i = 1, 2. The eigenvalues of Df(0)| E1
are denoted by λ1, . . . , λd1 and the eigen-

values of Df(0)| E2
by ν1, . . . , νd2.

Observe that E1 ⊕ E2 is a Df(0)-invariant splitting of Rn.
As mentioned above, we construct a continuously differentiable invariant man-

ifold W1 for X with tangent space E1 at the origin, in case the eigenvalues of
Df(0)| E1

are smaller than (or larger than) 1 in absolute value and have different
absolute values than the eigenvalues of Df(0)| E2

. Although this follows from lin-
earization results by Belitskii [1], there is a straightforward construction which we
present in Section 4. This construction involves weak stable manifolds, strong stable
manifolds and strong stable foliations, whose constructions are standard. It is not
true that such a manifold W1 always exist of higher smoothness class. Resonance
conditions among the eigenvalues of Df(0) obstruct the existence of smooth man-
ifolds W1. This will be explained in Section 2. The notion of resonance among a
collection of numbers is defined as follows. A collection of numbers {αi} is said to
possess a resonance of order r, r ∈ N, if

αj =
∏

i

αmi

i ,

for some j and for
∑

i mi = r, where mi are nonnegative integers.
Following the material on invariant manifolds near fixed points, we consider the

largely analogous theory for differential equations in Section 5. We do not construct
invariant manifolds of higher smoothness in these notes, with the exception of in-
variant curves for differential equations as this is less involved. Section 6 constructs
Cm invariant curves near hyperbolic equilibria of differential equations under the
absence of resonance conditions among real parts of the eigenvalues.

The existence of smooth linearizing coordinates is similarly obstructed by res-
onance conditions among eigenvalues. Several papers have been written on the
existence of Cm linearizing coordinates, see e.g. [14, 9, 2, 11]. The existence of such
coordinates of course implies the existence of Cm invariant manifolds.

2 Obstructions to Cm invariant manifolds

The following result gives necessary conditions for the existence of an invariant
manifold for f with tangent space E1 at the origin and in a prescribed smoothness
class, for generic diffeomorphisms f . The proof is an arithmetic argument similar
to the ones in [13, 8].
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Theorem 2.1. Suppose that for some natural numbers j, hi with 1 ≤ j ≤ d2, hi ≥ 0
and

∑d1

i=1 hi = m,

νj =
d1
∏

i=1

λhi

i . (1)

Let X be the set of diffeomorphisms that have a hyperbolic attracting fixed point
at the origin as above and satisfy (1). Endow X with the Cm topology. There is
an open dense subset U ⊂ X so that any f ∈ U does not possess a Cm invariant
manifold W1 with T0W1 = E1.

Proof. In coordinates x = (x1, x2) on R
n with x1 ∈ E1, x2 ∈ E2, we can write

f(x1, x2) = (F (x1, x2), G(x1, x2)).

Consider a smooth coordinate transformation h(x1, x2) = (x1, x2 + H(x1)). If a
Cm invariant manifold W1 with T0W1 = E1 exists, the coordinate change h with
graph(−H) = W1, will be such that

h ◦ f = (F (x1, x2), S(x1, x2)x2) ◦ h, (2)

for some map S(x1, x2) : Rn → L(E2, E2) with S(0, 0) = D2G(0) (where DG(0) =
( D1G(0) D2G(0) )). We will show that such a coordinate change may not exist if
(1) holds. Because h ◦ f = (F, G + H ◦ F ), (2) is equivalent to

G(x1, x2) + H(F (x1, x2)) = S(x1, x2 + H(x1))(x2 + H(x1)). (3)

Expand

H(x1) = H2x
2
1 + · · ·+ Hmxm

1 + o(|xm
1 |),

F (x1, x2) = D1F (0)x1 + F2(x2)x
2
1 + · · · + Fm(x2)x

m
1 + o(|xm

1 |),

G(x1, x2) = G(0, x2) + D1G(0)x1 + G2(x2)x
2
1 + · · ·+ Gm(x2)x

m
1 + o(|xm

1 |),

with Hi ∈ Li
sym(E1, E2), Fi(x2) ∈ Li

sym(E1, E1), Gi(x2) ∈ Li
sym(E1, E2). Then (3)

reads

G(x1, x2) + H2[F (x1, x2)]
2 + · · · + Hm[F (x1, x2)]

m =

S(x1, x2 + H(x1))[x2 + H2x
2
1 + · · ·+ Hmxm

1 ] + o(|(x1, x2)|
m). (4)

Suppose we can inductively determine H1, . . . , Hk−1 with k < m. Comparing the
coefficients of xk

1 in (4), gives

Gk(x2)x
k
1 + Hk[D1F (0)x1]

k = D2G(0)Hkx
k
1 + l.o.t., (5)

where the lower order terms contain Hi with i < k. It is clear that (5) can be solved
for Hk, for all possible maps Gk, precisely if the linear map L : Lk

sym(E1, E2) →
Lk

sym(E1, E2),

L(Hk)x1 = Hk [D1F (0)x1]
k − D2G(0)Hkx

k
1 (6)

is invertible. We claim that the eigenvalues of L equal

νj −

d1
∏

i=1

λhi

i ,
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where 1 ≤ j ≤ d2, hi ≥ 0 and
∑d1

i=1 hi = k. The theorem follows from the claim. In
establishing the claim, we may assume that Df(0) is linearizable over C, because
eigenvalues depend continuously on the matrix. So, writing x1 = (x1,1, . . . , x1,d1),
x2 = (x2,1, . . . , x2,d2), we may assume

D1F (0)x1 = (λ1x1,1, . . . , λd1x1,d1),

D2G(0)x2 = (ν1x2,1, . . . , νd2x2,d2).

Writing

(Hkx
k
1)i =

∑

Hi,m1,...,md1
xm1

1,1 · · ·x
md1
1,d1

for the ith coordinate of Hkx
k
1, where

∑d1

i=1 mi = k, (5) yields

νiHi,m1,...,md1
= λm1

1 · · ·λ
md1
d1

Hi,m1,...,md1
.

From this the claim follows.

Note that Theorem 2.1 involves resonance conditions among the eigenvalues, and
not their absolute values. It follows from the above computations that the following
system x(k + 1) = f(x(k)) with Df(0) possessing real eigenvalues does not allow
a Cm invariant manifold tangent to {(x2,1, . . . , x2,d2) = 0} if νj = λm1

1 · · ·λ
md1
d1

and
c 6= 0:






x1,i(k + 1) = λix1,i(k), 1 ≤ i ≤ d1,
x2,h(k + 1) = νjx2,h(k), 1 ≤ h ≤ d2, h 6= j,
x2,j(k + 1) = νjx2,j(k) + c (x1,1(k))m1 · · · (x1,d1(k))md1 ,

In particular,
{

x1(k + 1) = λ1x1(k),

x2(k + 1) = ν1x2(k) + c (x1(k))2 ,

with ν1 < λ1 < 1 and ν1 = λ2
1 does not possess a C2 weak stable manifold tangent

to the x1-axis at the origin.

3 Obstructions to C1 invariant manifolds

In this section we give a specific example of a diffeomorphism without a continuously
differentiable invariant manifold near an invariant subspace for the linearization.
Consider the system of difference equations







x1,1(k + 1) = λ1x1,1(k),
x1,2(k + 1) = λ2x1,2(k),
x2(k + 1) = ν1x2 + cx1,1(k)x1,2(k),

(7)

with 0 < λ1 < ν1 < 1 < λ2 and ν1 = λ1λ2. This system possesses a two dimensional
stable manifold, containing a one dimensional strong stable manifold, as well as
a one dimensional unstable manifold. The results in Section 2 show that, as a
consequence of the resonance of second order, there is no C2 invariant manifold
with E1 as tangent space at the origin. Note that such a manifold would contain
the unstable manifold and the strong stable manifold. The following result shows
that there is even no C1 invariant manifold with E1 as tangent space at the origin.
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Theorem 3.1. The system of difference equations (7) has no continuously differ-
entiable invariant manifold W1 with T0W1 = E1.

Proof. The proof is inspired by [6, Exercise 5.50], treating C1 linearizability of dif-
feomorphisms. As ν1 = λ1λ2, (7) is solved by

x1,1(k) = λk
1x1,1(0),

x1,2(k) = λk
2x1,2(0),

x2(k) = νk
1x2(0) + ckνk−1

1 x1,1(0)x1,2(0).

We will show that there is no Lipschitz continuous map G : E1 → E2 so that
graph(G) is an invariant manifold. Suppose that graph(G) is a Lipschitz continuous
invariant manifold. The unstable manifold, i.e. the x1,2 axis, lies on graph(G). This
means that G(0, x1,2) = 0.

Consider an orbit piece x(k) with k ∈ [0, τ ] and x1,2(τ) = 1, x1,1(0) = ε. Note
that x1,2(0) = λ−τ

2 and x1,1(τ) = λτ
1ε. Take the orbit piece on graph(G), so that

x2(k) is determined given xk(t). For τ large and ε small, x(0) lies close to the
origin. By Lipschitz continuity of G and G(0, 1) = 0, there is K (depending on ε, τ
but with uniformly bounded absolute value) such that x2(τ) = Kx1,1(τ). A direct
computation shows that x2(0) = ε

(

λ−τ
2 K − cτλ−τ

2 /ν1

)

. Writing δ = λ−τ
2 , this gives

G(ε, δ) = x2(0) = ε (δK + cδ ln(δ)/(ν1λ2)) .

By letting τ → ∞ or equivalently δ → 0, it follows that G cannot be Lipschitz
continuous at (ε, 0).

4 Existence of C1 invariant manifolds

The following theorem on invariant submanifolds of the stable manifold also follows
as a corollary of a result by Belitskii [1] on the existence of C1 linearizing coordinates.

Theorem 4.1. Let X be a smooth diffeomorphism on Rn with a hyperbolic fixed
point at 0. Suppose

|λi| < 1, (8)

|νj | 6= |λi|, (9)

for all natural numbers 1 ≤ j ≤ d2, 1 ≤ i ≤ d1. Then X has a C1 invariant manifold
W1 with T0W1 = E1.

Proof. Write

E1 =
r

⋂

i=1

F i ⊕ Gi,

where F i is a strong stable subspace of Df(0) and Gi is a weak stable subspace
of Df(0), so that F 1 ⊃ F 2 ⊃ · · · ⊃ F r and G1 ⊂ G2 ⊂ · · · ⊂ Gr. Let Gi be a
weak stable manifold of X with T0G

i = Gi. Let F i be a strong stable foliation of
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the stable manifold of X with T0F
i
0 = F i. See [12] and the remarks below for the

construction of local weak stable manifolds and strong stable foliations. Then

W1 =
r

⋂

i=1

⋃

x∈Gi

F i
x (10)

is a C1 invariant manifold of X with T0W1 = E1, because the r manifolds which are
intersected in (10) are mutually transverse.

We briefly recall the construction of local weak stable manifolds and strong
stable foliations, see [5], [12] for more details. By restriction of f to the local stable
manifold, we may assume that the spectrum of Df(0) lies inside the unit circle.
Suppose E1 is a weak stable manifold of Df(0). Using a test function, we may
assume that f is globally close to Df(0). Then

Gi = lim
i→∞

f i(E1) (11)

defines a weak stable manifold. A weak stable manifold is not unique but depends
on the choice of test function in the construction.

Now suppose E1 is a strong stable subspace of Df(0). A strong stable foliation
F of the stable manifold of f with T0F0 = E1 is obtained as

F = lim
i→∞

f−i(F0), (12)

where F0 is some smooth trial foliation of the stable manifold close to the affine
foliation with leaves parallel to E1. The limit foliation is uniquely determined. The
strong stable manifold W1 with T0W1 = E1 equals the leaf F0.

5 Invariant manifolds for differential equations

For systems of differential equations one can likewise consider invariant manifolds
other then normally hyperbolic ones. There are direct analogs to the above derived
results for diffeomorphisms. We collect the statements in this section.

The following context is assumed: X is a smooth vector field on Rn with a
hyperbolic equilibrium at the origin 0. Hyperbolicity means that the eigenvalues of
DX(0) are away from the imaginary axis. The time t flow of X will be denoted by
ϕt. The setup and notation introduced in Definition 1.1 will be assumed.

In the current context the relevant notion of resonance conditions among eigen-
values is expressed by the following definition. A collection of numbers {αi} is said
to possess a resonance of order r, r ∈ N, if

αj =
∑

miαi,

for some j and for
∑

mi = r, where mi are nonnegative integers.
The role of resonance conditions among eigenvalues is expressed by the follow-

ing result, giving obstructions to the existence of Cm invariant manifolds. We use
notation as provided before in Definition 1.1. The proof of Theorem 2.1 applied to
the time 1 flow ϕ1 yields the following result.
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Theorem 5.1. Suppose that for some natural numbers j, hi with 1 ≤ j ≤ d2, hi ≥ 0
and

∑d1

i=1 hi = m,

νj =

d1
∑

i=1

hiλi. (13)

Let X be the set of vector fields that have a hyperbolic sink in 0 as above and satisfy
(13). Endow X with the Cm topology. There is an open dense subset U ⊂ X so that
any X ∈ U does not possess a Cm invariant manifold W1 with T0W1 = E1.

The following vector field with a linearization involving real eigenvalues does not
possess a Cm invariant manifold tangent to {(x2,1, . . . , x2,d2) = 0} if νj = m1λ1 +
· · · + md1λd1 and c 6= 0:







ẋ1,i = λix1,i, 1 ≤ i ≤ d1,
ẋ2,h = νjx2,h, 1 ≤ h ≤ d2, h 6= j,

ẋ2,j = νjx2,j + cxm1
1,1 · · ·x

md1
1,d1

,

There are more necessary conditions for the existence of invariant manifolds, as
expressed by the following result copying Theorem 3.1. Consider the system of
differential equations







ẋ1,1 = λ1x1,1,
ẋ1,2 = λ2x1,2,
ẋ2 = ν1x2 + cx1,1x1,2,

(14)

with λ1 < ν1 < 0 < λ2 and ν1 = λ1 + λ2.

Theorem 5.2. The system of differential equations given by (14) has no continu-
ously differentiable invariant manifold W1 with T0W1 = E1.

Proof. As ν1 = λ1 + λ2, (7) is solved by

x1,1(t) = eλ1tx1,1(0),

x1,2(t) = eλ2tx1,2(0),

x2(t) = eν1tx2(0) + cteν1tx1,1(0)x1,2(0).

We copy the reasoning of Theorem 7, including it for completeness. We will show
that there is no Lipschitz continuous map f : E1 → E2 so that graph(f) is an
invariant manifold. Suppose that graph(f) is a Lipschitz continuous invariant man-
ifold. The unstable manifold, i.e. the x1,2 axis, lies on graph(f). This means that
f(0, x1,2) = 0.

Consider an orbit piece x(t) with t ∈ [0, τ ] and x1,2(τ) = 1, x1,1(0) = ε. Note that
x1,2(0) = e−λ2τ and x1,1(τ) = eλ1τε. Take the orbit piece on graph(f), so that x2(t)
is defined by x1(t). For τ large and ε small, x(0) lies close to the origin. By Lipschitz
continuity of f and f(0, 1) = 0, there is k (depending on ε, τ but with uniformly
bounded absolute value) such that x2(τ) = kx1,1(τ). A direct computation shows
that x2(0) = ε

(

e−λ2τk − cτe−λ2τ
)

. Writing δ = e−λ2τ , this gives

f(ε, δ) = x2(0) = ε (δk + cδ ln(δ)/λ2) .

By letting τ → ∞ or equivalently δ → 0, it follows that f can not be Lipschitz
continuous at (ε, 0).

Finally, the construction in Section 4 to prove Theorem 4.1 also gives a C1

invariant manifold W1 with T0W1 = E1 under the eigenvalue conditions: Re(λi) < 0
and Re(νj) 6= Re(λi).
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6 Cm invariant curves for differential equations

Invariant manifolds of smoothness class Cm can be reduced to C1 invariant manifolds
for an induced flow on a space of (m− 1)-jets. This is relatively straightforward for
invariant curves of differential equations, and leads to the following existence result.

Theorem 6.1. Let X be a smooth vector field on Rn with a hyperbolic sink in 0.
Assume that dim E1 = 1. Suppose

Re(νj) 6= hλ1, (15)

for all natural numbers j, h with 1 ≤ j ≤ d2 and 1 ≤ h < m. Then X has a Cm

invariant manifold W1 with T0W1 = E1.

Proof. The manifold W1 will be the graph of a map from E1 to E2. We will identify
such maps with their graphs. Let Ck(E1, E2) denote the set of Ck maps from E1 to
E2. For W ∈ C1(E1, E2), we define the Nash blow-up BW ∈ C0(E1,L(E1, E2)) [3]
by

BW (x) = DW (x). (16)

If W1 ∈ Cm(E1, E2), then Bm−1W1 ∈ C1(E1,L
m−1(E1, E2)).

Starting at E
(0)
1 = E1, E

(0)
2 = E2 and U (0) = X define inductively vector spaces

E
(i)
1 , E

(i)
2 and a vector field U (i) on E

(i)
1 × E

(i)
2 by

E
(i)
1 = E

(i−1)
1 × E

(i−1)
2 ,

E
(i)
2 = L(E1, E

(i−1)
2 ),

U
(i)
t (x, α) = (U

(i−1)
t (x), β),

graph(β) = DU
(i−1)
t (x)graph(α).

Let

P i(E1, E2) = L(E1, E2) × . . . × Li(E1, E2),

J i(E1, E2) = E1 × E2 × P i(E1, E2).

Since there is a natural embedding J i(E1, E2) →֒ E
(i)
1 × E

(i)
2 , the vector field U (i)

induces a vector field X(i) on J i(E1, E2).
By (15), applying an argument as used in the proof of theorem 2.1, we may take

coordinates on R
n so that the following holds.

• 0 is a singularity of X(m−1),

• E1 ×E2 ×L(E1, E2)× . . .×Lm−1(E1, E2) is a DX(m−1)(0) invariant splitting,

• DX(m−1)(0)
∣

∣

Lp(E1,E2)
has eigenvalues

νj − pλ1,

where 1 ≤ j ≤ d2.
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Define

M (m−1) =
{

(x1, x2, A1, . . . , Am−1) ∈ J m−1(E1, E2),

(ẋ1, ẋ2, Ȧ1, . . . , Ȧm−1) = X(m−1)(x1, x2, A1, . . . , Am−1),

(ẋ2, Ȧ1, . . . , Ȧm−2) = (A1ẋ1, A2ẋ1, . . . , Am−1ẋ1)
}

. (17)

So, if W1 ∈ Cm(E1, E2) is an invariant manifold of X, then

(x1, W1(x1), DW1(x1), . . . , D
m−1W1(x1)) ∈ M (m−1)

for x1 ∈ E1. M (m−1) is thus an invariant manifold of X(m−1). Denote by

Π : J m−1(E1, E2) 7→ E1 × Lm−1(E1, E2)

the coordinate projection

Π(x1, x2, A1, . . . , Am−1) = (x1, Am−1).

From the properties of X(m−1) it is clear that Π : M (m−1) 7→ E1 × Lm−1(E1, E2) is
locally injective. Define

Y (m−1) = Π∗

(

X(m−1)
|M (m−1)

)

. (18)

Then 0 is a hyperbolic singularity of Y (m−1), E1 × Lm−1(E1, E2) is a DY (m−1)(0)
invariant splitting and DY (m−1)(0) has eigenvalues

λ1, νj − (m − 1)λ1,

where 1 ≤ j ≤ d2. A C1 invariant manifold W
(m−1)
1 of Y (m−1) with tangent space

E1 at 0 is obtained as in the previous section, see Theorem 4.1. By construction
this yields a Cm invariant manifold W1 for X.

If νj = (m − 1)λ1 for some 1 ≤ j ≤ d2 is the lowest order resonance among
eigenvalues, then the linearization of the induced vector field Y (m−1) has multiple
eigenvalues, and is typically not linearizable. This provides a geometric explanation
to the nonexistence of a Cm invariant manifold W1 tangent to E1 at the origin.
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