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Abstract
We consider a system of differential equations proposed by Busse et al
(1992 Physica D 61 94–105) to describe the development of spatio-temporal
structures in Rayleigh–Bénard convection, near the skewed varicose instability.
Numerical computations make it clear that the global bifurcations are organized
by a codimension two bifurcation with heteroclinic cycles and a double principal
stable eigenvalue at the origin. We carry out the bifurcation study and prove in
particular the occurrence in the unfolding of robustly transitive strange attractors
akin to Lorenz attractors. In contrast to the actual Lorenz attractors, these
attractors contain two equilibria.

Mathematics Subject Classification: 34C37, 37G35, 76F20

1. Introduction

Rayleigh–Bénard convection has received much attention in the past few decades as it is one
of the most suitable systems for the study of the evolution of turbulence (see, e.g., [3,5,10] for
background information). In this paper we consider a model consisting of a four-dimensional
system of ordinary differential equations, introduced by Busse et al [4, 20, 21], to study the
loss of stability of convection rolls through the skewed varicose instability. We consider
the differential equations with small Prandtl numbers, for which the stability balloon of the
convective roll patterns is small.

A codimension two global bifurcation, involving heteroclinic cycles containing three
equilibria among which the origin, and with a double principal stable eigenvalue at the origin, is
found to organize the bifurcation diagram in the range of Rayleigh and Prandtl numbers that we
consider. This paper contains a bifurcation study of the codimension two global bifurcation and
relates this to the occurrence of chaotic dynamics. The properties of the dynamics are governed
by a Z2 × Z2 symmetry of the differential equations. A related bifurcation, involving double
principal stable eigenvalues, but in the context of homoclinic bifurcations with Z2 symmetry,
was considered in [14]. These authors obtain bifurcation scenarios from a study of model
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interval maps. Their choice of eigenvalue conditions results in dynamical properties different
from the ones found in this paper. In particular, the bifurcation scenarios described in [14]
involve period doubling cascades, which are not found in the bifurcation study in this paper.

The most interesting feature that we find is the robust occurrence of singular hyperbolic
attractors, that is, attracting invariant sets containing an equilibrium admitting a continuous
invariant splitting of the tangent bundle in uniformly contracting and volume expanding
directions [15]. The most famous example is the Lorenz attractor from the Lorenz equations
[13, 19]. The Lorenz attractor has one equilibrium, the origin, as part of the attractor. The
singular hyperbolic attractors occurring in the system considered here contain two hyperbolic
equilibria. Like the Lorenz attractor, they are robust, strange nonhyperbolic attractors. Figure 4
provides a numerically computed image. We prove the existence of such attractors.

For completeness, we include a brief description of the background of the equations
in the next section. We perform numerical computations pointing at the existence of an
organizing codimension two heteroclinic bifurcation. The remainder of the paper is devoted
to the bifurcation analysis of the organizing bifurcation, see theorem 3.1. The bifurcation
analysis is consistent with the numerical computations and explains in particular the creation
and structure of singular hyperbolic strange attractors.

2. Derivation of the differential equations

The object of our study in this paper is the system of ordinary differential equations given
by (10). Two parameters are varied, the Rayleigh number Ra and the Prandtl number Pr. We
abbreviate (10) as ẋ = Xγ (x) with x = (C1, C2, C3, G) and γ = (Ra, Pr).

We start with a brief description of the derivation of the model, following [4]. The model is
reminiscent of the three-dimensional Lorenz model [13]. It also involves a Galerkin projection
to a finite set of modes, but considers the three-dimensional flow instead of a two-dimensional
flow. The resulting system is four dimensional and possesses a Z2 × Z2 symmetry.

Rayleigh–Bénard convection occurs in a horizontal fluid layer of thickness d heated from
below. The temperatures at the upper and lower boundaries are T1 and T2 (with T2 > T1),
respectively. The dimensionless Rayleigh number Ra and Prandtl number Pr have their usual
definitions:

Ra = αg(T2 − T1)d
3

νκ
, Pr = ν

κ
.

Here α is the thermal expansivity, ν is the kinematic viscosity, g is the acceleration due to
gravity and κ is the thermal diffusivity. Using d as the length scale, d2/ν as the time scale
and ((T2 − T1)/Ra)Pr as the temperature scale, we can write the equations of motion for
the velocity vector v and the heat equations for the deviation θ of the temperature from its
distribution in the static case in dimensionless form as

∂v

∂t
+ (v · ∇)v = −∇p + λθ + ∇2v, (1)

∇ · v = 0, (2)

Pr

(
∂θ

∂t
+ (v · ∇)θ

)
= Ra λ · v + ∇2θ, (3)

where p is the pressure and λ is the vertical unit vector. We consider stress free boundary
conditions.

By (2) the velocity field can be decomposed into poloidal and toroidal components

v = ∇ × (∇ × λϕ) + ∇ × λψ ≡ δϕ + εψ.
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Equations (1), (2) and (3) yield the following three equations for ϕ, ψ and θ :(
∇2 − ∂

∂t

)
∇2�2ϕ − �2θ = δ · [(δϕ + εψ) · ∇(δϕ + εψ)], (4)

(
∇2 − ∂

∂t

)
�2ψ = ε · [(δϕ + εψ) · ∇(δϕ + εψ)], (5)

(
∇2 − Pr

∂

∂t

)
θ − Ra�2ϕ = Pr(δϕ + εψ) · ∇θ, (6)

where �2 denotes the horizontal Laplacian, �2 = ∇2 − (λ · ∇)2.
Take coordinates (x, y, z) for the fluid layer, with r = (x, y) as the horizontal direction

and z as the vertical direction. Near the critical value of the Rayleigh number, where convection
rolls are formed, solutions of the system will be approximated by the following expansions

ϕ = cos πz

N∑
n=−N

Cn(t) exp(ikn · r) − sin 2πz

N∑
n,m=−N

Cn(t)Cm(t)Anm exp[i(kn + km) · r],

(7)

ψ =
N∑

n,m=−N

Gnm(t) exp[i(kn + km) · r], (8)

θ = cos πz

N∑
n=−N

Cn(t)(π
2 + |kn|2)2 exp(ikn · r)

− sin 2πz

N∑
n,m=−N

Cn(t)Cm(t)Bnm exp[i(kn + km) · r]. (9)

The complex coefficients Cn, Gnm satisfy the ordinary differential equations given in [4]. The
formulae for the coefficients Anm and Bnm can also be found in [4]. A finite set of equations is
obtained by assuming an interval of periodicity, thus choosing kn from a grid, and retaining only
finitely many of the coefficients. We consider kn = (nπ/4, π/2), and k−n = −kn, n = 1, 2, 3.
Observe that C−n is the complex conjugate of Cn and G−n−m is the complex conjugate of Gnm.
This results in equations for four variables C1, C2, C3 and the combination G = G1,−2 +G2,−3;
following [4] the effect of the other coefficients Gnm with larger values of ‖kn +km‖ is ignored.
These coefficients are complex numbers. Although a proof is missing, numerical observations
using different initial conditions indicate that the arguments of the complex coefficients tend
to be constants. This was also observed in [4, 21]. Hence a system of differential equations
for real coefficients is obtained. This finally results in four equations for variables C1, C2, C3

and G of the form

M1Ċ1 = (Ra − Ra1)C1 − C1

3∑
i=1

α1iC
2
i − α14C

2
2C3 − q1C2G,

M2Ċ2 = (Ra − Ra2)C2 − C2

3∑
i=1

α2iC
2
i − α24C1C2C3 − q2C1G − q3C3G,

M3Ċ3 = (Ra − Ra3)C3 − C3

3∑
i=1

α3iC
2
i − α34C1C

2
2 − q4C2G,

Ġ = −π2

16
G + q5C1C2 + q6C2C3.

(10)
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Here qi , αij depend on Ra, Pr (see [4] for formulae) and

Ran = (π2 + |kn|2)3

|kn|2 ,

Mn = (1 + Pr)(π2 + |kn|2)2

|kn|2 .

The system is symmetric with respect to the following two linear involutions,

R1(C1, C2, C3, G) = (−C1, −C2, −C3, G), (11)

R2(C1, C2, C3, G) = (C1, −C2, C3, −G). (12)

3. Resonant heteroclinic cycles

The origin is an equilibrium for (10), where the linearization has eigenvalues

λ1 = 80(Ra − (9261/1280)π4)

441(1 + Pr)π2
, λ2 = 2(Ra − (27/4)π4)

9(1 + Pr)π2
,

λ3 = 208(Ra − (24 389/3328)π4)

841(1 + Pr)π2
, λ4 = −π2

16
.

(13)

The initial instability, corresponding to the formation of convection rolls, occurs at Ra =
27
4 π4 ∼ 657.511 36 where λ2 vanishes. The loss of stability of roll patterns is through the

skewed varicose instability, for which the symmetry translation along rolls as well as periodicity
and reflection transverse to rolls, are broken. This instability is represented by the pitchfork
bifurcation visible in the numerically computed bifurcation diagram in figure 1. Periodic
dynamics is introduced through a Hopf bifurcation of the equilibria created in the pitchfork
bifurcation. Numerical continuation using the software package AUTO [9] reveals a curve
Het0 of heteroclinic cycles, involving the origin and two equilibria Q1 and Q2 on the C2 axis
(figure 2). Figure 3 contains a schematic picture of the heteroclinic cycles. We refer to these
heteroclinic cycles as the primary heteroclinic cycles. Observe that the symmetry forces the
existence of four coexisting heteroclinic cycles.

There exists a line in the parameter plane along which the linearization at the origin has
double principal stable eigenvalues λ1 = λ4. That is, along this line λ3 < λ1 = λ4 < 0 < λ2.
At γ0 ∼ (664.71, 0.19), where Het0 intersects the line on which λ1 = λ4, Xγ possesses
a heteroclinic cycle with a double principal weak stable eigenvalue. The symmetry forces the
linearization at the origin at γ = γ0 to be real diagonalizable. In particular, the eigenvalues
do not become complex conjugate numbers for γ near γ0. At γ = γ0, Xγ has heteroclinic
connections , R2 ◦ R1() from Q2 to the origin and R1(), R2() from Q1 to the origin.
Together with the connections from the origin to Q1 and Q2, in the C2 axis, the connections
form four heteroclinic cycles related by symmetry, see figure 3.

For γ near γ0, DXγ (0) has real simple eigenvalues λss(γ ) = λ3, λs̄(γ ) = λ1, λs(γ ) = λ4,
λu(γ ) = λ2 given by (13), satisfying

λss(γ ) < λs̄(γ ), λs(γ ) < 0 < λu(γ ).

At γ = γ0,

λs̄(γ0) = λs(γ0). (14)

Further, DXγ (Q1), DXγ (Q2) have real simple eigenvalues νs(γ ), νu(γ ) and two complex
conjugate eigenvalues νss(γ ), νss(γ ) with

Re(νss(γ )) < νs(γ ) < 0 < νu(γ ).
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Figure 1. Numerically computed bifurcation diagram of (10) using the software package AUTO [9].
The parameter plane consists of Rayleigh numbers Ra and Prandtl numbers Pr. For Ra > Rac,
DXγ (0) has one unstable eigenvalue. Pitchfork bifurcations of two equilibria on the C2-axis
occur along the curve PF, Hopf bifurcations of four nonsymmetric equilibria take place on the
curve labelled Hopf. The line along which DXγ (0) has two identical principal stable eigenvalues
λ1 = λ4 is also indicated. Primary heteroclinic cycles exist for parameters on the curve Het0,
heteroclinic orbits connecting Q1 and Q2 exist along HetI. Depicted on the right, from top to
bottom, are the periodic attractors observed in regions (1), (2) and (3), respectively.

We state the main bifurcation theorem. A number of open conditions, expressed
by (22)–(25), are assumed to hold. Numerical evidence shows that these conditions hold
for Xγ0 . It is further assumed that the dependence of Xγ on γ is generic. In other words, the
functions µ and ε, which are given in section 4 and which define the bifurcation, are assumed
to depend regularly on γ . The numerical results are consistent with this assumption.

Theorem 3.1. Let {Xγ } be a two parameter family of vector fields as above. After
a reparametrization of the parameters the bifurcation diagram in the new parameters (µ, ε)

is as depicted, and contains the following bifurcation curves, branching at the codimension
two point, from the curve of primary heteroclinic cycles.
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Figure 2. Heteroclinic connections and homoclinic loops occurring in the bifurcation diagram in
figure 1. From left to right and top to bottom: the principal heteroclinic cycles along Het0, the
heteroclinic cycles along HetI, the homoclinic loops to Q1, Q2 along HomVII and the heteroclinic
cycles along Het2.

Figure 3. Sketch of the primary heteroclinic cycles.
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−0.0043
0.73 C2 0.755

Figure 4. Numerically computed singular hyperbolic attractor for (10) with Ra = 660, Pr =
0.090 15, containing the equilibria Q1 and Q2. Shown are the C1, C2, G coordinates. Depicted
on the right is the attractor near an equilibrium, projected onto the (C2, G)-plane.

(This figure is in colour only in the electronic version)

O The curve of primary heteroclinic cycles at {µ = 0}.
I A curve of heteroclinic connections between Q1 and Q2.

II A curve of heteroclinic connections from Q1 and Q2 to R1-symmetric periodic orbits close
to  ∪ R1() and R2() ∪ R2 ◦ R1().

III A curve of saddle node bifurcations of R1-symmetric periodic orbits close to  ∪ R1()

and R2() ∪ R2 ◦ R1().
IV A curve of heteroclinic connections from Q1 and Q2 to R2-symmetric periodic orbits close

to  ∪ R2() and R1() ∪ R2 ◦ R1().
V A curve of symmetry breaking bifurcations of two R2-symmetric periodic orbits close to

 ∪ R2() and R1() ∪ R2 ◦ R1().
VI A curve of heteroclinic connections from Q1 and Q2 to nonsymmetric periodic orbits close

to  ∪ R2() and R1() ∪ R2 ◦ R1().
VII A curve of homoclinic connections to Q1 and Q2.

The bifurcation curves are smooth curves, exponentially close to the curve {µ = 0} of primary
heteroclinic cycles.

The vector fields Xγ possess hyperbolic basic sets between the bifurcation curves I and II
as well as between curves VI and VII. There exists a singular hyperbolic attractor, containing
the equilibria Q1 and Q2, for parameters between the bifurcation curves II and VI.

The contents of the following sections give the proof of the above bifurcation theorem.
A few simple estimates (in sections 6.4 and 6.5 leading to the bounds in (23)) were carried out
with a computer.

The bifurcation curves I and VII in theorem 3.1 are continued numerically in figure 1.
Observe that the curve of homoclinic loops continues to a second codimension two bifurcation
of resonant heteroclinic cycles, involving the heteroclinic connections Het2 shown in figure 2.
In [12] we explored bifurcations of (10) in a larger region of the parameter space. There exist
other bifurcation curves that branch from codimension two points outside the region depicted
in figure 1 and enter this region. This is not further considered here. Note that the model can
be considered more accurate closer to the initial instability of the formation of convection rolls.

https://www.researchgate.net/publication/238575519_Global_bifurcations_to_strange_attractors_in_a_model_for_skew_varicose_instability_in_thermal_convection?el=1_x_8&enrichId=rgreq-15172c758025868543cab18724a086cd-XXX&enrichSource=Y292ZXJQYWdlOzIzMTA3MzUyNTtBUzozMzU1NzY4MjI3NjM1MjVAMTQ1NzAxOTE1Nzc5Mg==


162 N H Khanh and A J Homburg

4. Return maps

Let � be a small cross section close to the origin, transverse to . Take � to be R1-symmetric:
R1(�) = �. The image R2(�) is a second cross section close to the origin and transverse to
R2(). Consider the first return map � on � ∪ R2(�). Take smooth, parameter dependent
coordinates x = (xss, xs̄ , xs, xu) ∈ R

4 on a small neighbourhood of the singularity O so that

DXγ (O) = λssxss

∂

∂xss

+ λs̄xs̄

∂

∂xs̄

+ λsxs

∂

∂xs

+ λuxu

∂

∂xu

. (15)

We may assume that the symmetries R1 and R2, expressed in this coordinate system, are
given by

R1(xss, xs̄ , xs, xu) = (−xss, −xs̄, xs, −xu), (16)

R2(xss, xs̄ , xs, xu) = (xss, xs̄ , −xs, −xu). (17)

It is convenient to define the following ratios of eigenvalues,

δ = −νs

νu

, (18)

κ = λsνs

λuνu

, (19)

ε = λs − λs̄

λu

. (20)

By dividing out the symmetry

� 	 x ∼ R2(x) ∈ R2(�)

an induced map on � is obtained, which we denote by �. The following proposition describes
asymptotic expansions for �, in normal form coordinates. The proof is postponed to the
appendix. To discuss smoothness properties, we introduce the following notation. Write
Ck;α(Rn−2 × R, R) for the functions (x, y) 
→ f (x, y) that are Ck in (x, y) for y �= 0 and
for which |Di

x(∂
j /∂yj )f (x, y)| � C|i|+j |y|α−j for some positive constants C|i|+j , |i| + j � k

(here Di
x stands for an |i|th order derivative in x, using multi-index notation).

Proposition 4.1. There are smooth coordinates x = (xss, xs̄ , xu) on �, such that � is given by

�(xss, xs̄ , xu) =




pss + css |xu|κ |1 + a sign(xu)|xu|ε + O(|xu|ω)|δ + O(|xu|κ+ω)

ps̄ + cs̄ |xu|κ |1 + a sign(xu)|xu|ε + O(|xu|ω)|δ + O(|xu|κ+ω)

µ + c|xu|κ |1 + a sign(xu)|xu|ε + O(|xu|ω)|δ + O(|xu|κ+ω)


 , (21)

for some ω > 0. Here µ and ε depend smoothly on γ and vanish for γ = γ0. The functions
pss and ps̄ depend smoothly on γ and ps̄ does not vanish. The functions css , cs̄ , c and a depend
smoothly on xss , xs̄ and γ . The higher order terms are functions in C∞;κ+ω.

The coordinates can be chosen so that the action of the symmetries remains given by (16)
and (17). The eigenvalues at the equilibria are such that

κ(γ0) > 1, (22)

δ∗ < δ(γ0) < δ∗, (23)

where δ∗ ∼ 0.896 60 solves

2 −
(

1 − δ

δ

)δ 1

1 − δ
=

(
1 − δ

δ

)δ 1

1 − δ

[(
1 − δ

δ

)δ 1

1 − δ
− 1

]δ
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and δ∗ ∼ 0.610 97 solves(
2

1 + δ

)2 (
1 − δ

1 + δ

)δ−1

= 1

δ2
.

Indeed, κ(γ0) ∼ 3.11 and δ(γ0) ∼ 0.69. Comparing the outcome of a bifurcation analysis
with the numerical results leads to the conclusion that

a(pss, ps̄) > 1, (24)

c(pss, ps̄) > 0. (25)

We will skip this part of the reasoning and hereafter analyse the bifurcations only under these
assumptions.

4.1. Singular rescalings

The stable manifold of Q2 intersects � along a curve given by 1 + axε
u + O(xω

u ) = 0,
see (21). Dynamics involving orbits near this intersection are most easily understood by
a renormalization, that is, by blowing up a small neighbourhood in � near the unstable manifold
of Q1, and considering the return map on this neighbourhood in the rescaled coordinates.

Take ε > 0. With coordinates x = (xss, xs̄ , xu) given in proposition 4.1, consider the
rescaled coordinates x̄ = (x̄ss , x̄s̄ , x̄u) given by

xss = εx̄ss + pss,

xs̄ = εx̄s̄ + ps̄,

xu =
(

1

a

)1/ε
(

εδ/(1−δ)

(
1

a

)(κ−1)/(ε(1−δ))

x̄u + 1

)

with a computed at (pss, ps̄). Let x̄s̄ = xs̄ and x̄ss = xss . These equations define a coordinate
change on � that becomes singular for ε = 0. Define a rescaled parameter µ̄ by

µ =
(

1

a

)1/ε
(

εδ/(1−δ)

(
1

a

)(κ−1)/(ε(1−δ))

µ̄ + 1

)

with a again computed at (pss, ps̄). Let �̄ ⊂ � be a region, depending on µ and ε, on which
x̄ = (x̄ss , x̄s̄ , x̄u) and µ̄ are bounded. Denote by �̄ : �̄ → �̄ the return map resulting from
the identification x ∼ R2(x). A direct computation establishes the convergence of �̄ to a
one-dimensional map when ε → 0, as formulated by the following proposition.

Proposition 4.2. As ε ↓ 0, �̄ converges to the map

x̄ 
→

 0

0
µ̄ + c |x̄u|δ


 ,

where c = c(pss, ps̄). An additional rescaling brings the constant c to 1.

A reduction to an interval map is possible by constructing invariant stable foliations.
Continuous stable foliations for return maps in the study of geometric Lorenz attractors are
constructed in [1]. Continuously differentiable foliations facilitate a much more direct analysis.
References [11, 17, 18] establish results on the existence of C1 stable foliations. In fact, the
eigenvalue conditions at Q1, Q2 are such that the vector field possesses a C1 strong stable
foliation. A stable foliation for the return map is obtained by a projection along flow lines.
This projection can increase the smoothness of the foliation [11], but in any case yields a C1

stable foliation for the return map. We will follow [18] to prove the existence of a C1 stable
foliation and simultaneously to keep track of the dependence of the stable foliation on ε.

https://www.researchgate.net/publication/266430580_The_existence_of_a_smooth_invariant_foliation_for_Lorentz-type_maps?el=1_x_8&enrichId=rgreq-15172c758025868543cab18724a086cd-XXX&enrichSource=Y292ZXJQYWdlOzIzMTA3MzUyNTtBUzozMzU1NzY4MjI3NjM1MjVAMTQ1NzAxOTE1Nzc5Mg==
https://www.researchgate.net/publication/266430580_The_existence_of_a_smooth_invariant_foliation_for_Lorentz-type_maps?el=1_x_8&enrichId=rgreq-15172c758025868543cab18724a086cd-XXX&enrichSource=Y292ZXJQYWdlOzIzMTA3MzUyNTtBUzozMzU1NzY4MjI3NjM1MjVAMTQ1NzAxOTE1Nzc5Mg==
https://www.researchgate.net/publication/266250136_On_attracting_structurally_unstable_limit_sets_of_Lorenz_attractor_type?el=1_x_8&enrichId=rgreq-15172c758025868543cab18724a086cd-XXX&enrichSource=Y292ZXJQYWdlOzIzMTA3MzUyNTtBUzozMzU1NzY4MjI3NjM1MjVAMTQ1NzAxOTE1Nzc5Mg==
https://www.researchgate.net/publication/240021376_Global_aspects_of_homoclinic_bifurcations_of_vector_fields?el=1_x_8&enrichId=rgreq-15172c758025868543cab18724a086cd-XXX&enrichSource=Y292ZXJQYWdlOzIzMTA3MzUyNTtBUzozMzU1NzY4MjI3NjM1MjVAMTQ1NzAxOTE1Nzc5Mg==
https://www.researchgate.net/publication/240021376_Global_aspects_of_homoclinic_bifurcations_of_vector_fields?el=1_x_8&enrichId=rgreq-15172c758025868543cab18724a086cd-XXX&enrichSource=Y292ZXJQYWdlOzIzMTA3MzUyNTtBUzozMzU1NzY4MjI3NjM1MjVAMTQ1NzAxOTE1Nzc5Mg==
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Proposition 4.3. The map �̄ admits a C1 stable foliation F s . As ε ↓ 0, F s converges in C1

to the affine foliation {x̄u = constant}.

Proof. The rescaled return map �̄ is of the form

�̄(x̄ss, x̄s , x̄u) =

 c̄ss |x̄u|δ + O(|x̄u|δ+ω)

c̄s̄ |x̄u|δ + O(|x̄u|δ+ω)

µ̄ + c|x̄u|δ + O(|x̄u|δ+ω)


 (26)

with coefficients c̄ss , c̄s and c depending on x̄ss and x̄s . Note that all terms in the first two lines
and the higher order term in the last line converge to zero as ε → 0. We wish to apply [18]
where differentiable foliations for return maps of Lorenz like systems are studied, but [18]
considers maps with constant coefficients in front of the lowest order terms |x̄u|δ . We will first
show that this property can be achieved by a smooth coordinate change, close to the identity
for small ε.

Let T in be a cross section near Q1 as in proposition A.2. Write F for the transition map
� → T in. By proposition A.4, letting β = −λs/λu, F is of the form

F(xss, xs̄ , xu) =




dss |xu|β |1 + asssign(xu)|xu|ε + O(|xu|ω)| + O(|xu|β+ω)

ds̄ |xu|β |1 + as̄sign(xu)|xu|ε + O(|xu|ω)| + O(|xu|β+ω)

d|xu|β |1 + a sign(xu)|xu|ε + O(|xu|ω)| + O(|xu|β+ω)


 (27)

for some ω > 0. The coefficients are smooth functions of xss , xs̄ and the parameters; compare
proposition 4.1. Restrict F to �̄ and use the rescaled coordinates (x̄ss , x̄s̄ , x̄u) on �̄. Linearly
rescale F(�̄) ⊂ T in to a set T̄ in of unit size in coordinates (ȳ in

ss , ȳ
in
u ). Write F̄ : �̄ → T̄ in

for the resulting rescaled transition map. Inspection of the formulae shows that F̄ is close to a
linear map, converging as ε → 0 to a linear map with a block diagonal structure corresponding
to the splitting (x̄ss,s̄ , x̄u). Consider the foliations H̄ss and H̄u of T̄ in consisting of coordinate
surfaces of constant ȳ in

ss and ȳ in
u , respectively. These foliations are pulled back to �̄ by F̄ to

yield foliations Ḡss,s̄ and Ḡu on �̄. By the proximity of F̄ to a linear map with block diagonal
structure, Ḡss,s̄ and Ḡu are close for small ε to the affine foliations formed by the coordinate
surfaces of x̄ss,s̄ and x̄u. We may therefore take smooth coordinates on �̄, converging to the
identity as ε → 0, in which Ḡss,s̄ and Ḡu are equal to coordinate surfaces.

We continue to write (x̄ss , x̄s̄ , x̄u) for the coordinates on �̄. In the new coordinates, �̄

has asymptotics given by (26), for coefficients c̄ss , c̄s̄ , c depending only on parameters. This
follows from the observation that in proposition A.4, the coefficient of the lowest order term
|y in

u |β is constant.
The existence of a C1 stable foliation, for fixed small ε, now follows from [18]. The

convergence, as ε ↓ 0, of the foliation to the affine foliation with leaves of constant x̄u

coordinate remains to be established. For this, we first note that in lemma 5 in [18], an
equivalent norm on a space of linear mappings is defined. This norm depends on ε but does
not converge for ε → 0. However, direct inspection shows that in the original norm the map
P µ̄ defined in [18] is a contraction for ε small. Noting this and following the estimates in [18],
proves the convergence of F s to the affine foliation {x̄u = constant} as ε → 0. �

By identifying points on leaves of F s , an interval map π̄ is obtained. This interval map
governs the dynamics. Since the stable foliation is close to an affine foliation for ε small, π̄ is
close to µ̄ + |x̄u|δ for ε small.

https://www.researchgate.net/publication/266430580_The_existence_of_a_smooth_invariant_foliation_for_Lorentz-type_maps?el=1_x_8&enrichId=rgreq-15172c758025868543cab18724a086cd-XXX&enrichSource=Y292ZXJQYWdlOzIzMTA3MzUyNTtBUzozMzU1NzY4MjI3NjM1MjVAMTQ1NzAxOTE1Nzc5Mg==
https://www.researchgate.net/publication/266430580_The_existence_of_a_smooth_invariant_foliation_for_Lorentz-type_maps?el=1_x_8&enrichId=rgreq-15172c758025868543cab18724a086cd-XXX&enrichSource=Y292ZXJQYWdlOzIzMTA3MzUyNTtBUzozMzU1NzY4MjI3NjM1MjVAMTQ1NzAxOTE1Nzc5Mg==
https://www.researchgate.net/publication/266430580_The_existence_of_a_smooth_invariant_foliation_for_Lorentz-type_maps?el=1_x_8&enrichId=rgreq-15172c758025868543cab18724a086cd-XXX&enrichSource=Y292ZXJQYWdlOzIzMTA3MzUyNTtBUzozMzU1NzY4MjI3NjM1MjVAMTQ1NzAxOTE1Nzc5Mg==
https://www.researchgate.net/publication/266430580_The_existence_of_a_smooth_invariant_foliation_for_Lorentz-type_maps?el=1_x_8&enrichId=rgreq-15172c758025868543cab18724a086cd-XXX&enrichSource=Y292ZXJQYWdlOzIzMTA3MzUyNTtBUzozMzU1NzY4MjI3NjM1MjVAMTQ1NzAxOTE1Nzc5Mg==
https://www.researchgate.net/publication/266430580_The_existence_of_a_smooth_invariant_foliation_for_Lorentz-type_maps?el=1_x_8&enrichId=rgreq-15172c758025868543cab18724a086cd-XXX&enrichSource=Y292ZXJQYWdlOzIzMTA3MzUyNTtBUzozMzU1NzY4MjI3NjM1MjVAMTQ1NzAxOTE1Nzc5Mg==
https://www.researchgate.net/publication/266430580_The_existence_of_a_smooth_invariant_foliation_for_Lorentz-type_maps?el=1_x_8&enrichId=rgreq-15172c758025868543cab18724a086cd-XXX&enrichSource=Y292ZXJQYWdlOzIzMTA3MzUyNTtBUzozMzU1NzY4MjI3NjM1MjVAMTQ1NzAxOTE1Nzc5Mg==
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5. Bifurcation equations

Recall that we identify x ∈ � with R2(x) ∈ R2(�). Denote by � the return map on �.
Consider the equations for an orbit x = {x(j)}, j ∈ Z:

x(j + 1) − �(x(j)) = 0.

Write C(Z, �) for the set of sequences Z → �, equipped with the supnorm. Abbreviate the
bifurcation equations as Φ(x) = 0, with Φ : C(Z, �) → C(Z, �). Note that for a periodic
orbit, one obtains a finite set of equations:

x(1) − �(x(0)) = 0,

x(2) − �(x(1)) = 0,

...

x(0) − �(x(N − 1)) = 0.

Let P be the orthogonal projection onto the image Im Dxss ,xs̄
Φ|xu=0. Observing that

D(xss (j+1),xs̄ (j+1)) (x(j + 1) − �(x(j))) |xu(j+1)=0 =

1 0

0 1
0 0


 ,

the following proposition follows from an application of the implicit mapping theorem (as �

depends only continuously on xu, the variant in [2] of the usual formulation is needed; compare
with [8]).

Proposition 5.1. The equation (I − P)Φ = 0 can be solved for xss , xs̄ as functions of xu and
the parameter γ . Putting this into PΦ = 0 we get the reduced bifurcation equation

xu(j + 1) = µ + c|xu(j)|κ |1 + sign(xu(j))a|xu(j)|ε + O(|xu|ω)|δ + O(|xu|κ+ω) (28)

for some ω > 0, with a and c smooth functions of γ .

Ignoring the higher order terms in the reduced bifurcation equation yields an interval map

φ(x) = µ + c|x|κ |1 + sign(x)a|x|ε|δ. (29)

This interval map appears also in [20]. Note that for ε > 0 the rescaling xu =
(1/a)1/ε(εδ/(1−δ)(1/a)(κ−1)/(ε(1−δ))x̄u + 1) gives coordinates near −(1/a)1/ε and, in the limit
ε ↓ 0, conjugates φ to (figure 5)

f (x̄u) = µ̄ + c|x̄u|δ (30)

with µ = (1/a)1/ε(εδ/(1−δ)(1/a)(κ−1)/(ε(1−δ))µ̄ + 1).

6. Bifurcation curves

We proceed with the bifurcation analysis, treating the different bifurcations in separate sections.
Bifurcations from nonhyperbolic periodic orbits are treated using the reduced bifurcation
equations from proposition 5.1. Global bifurcations involving homoclinic and heteroclinic
connections, whose analysis does not require higher order derivatives, are treated using the
rescalings and stable foliations from propositions 4.2 and 4.3.

It is easily seen that for ε < 0, proposition 5.1 yields no bifurcation curves in addition
to µ = 0. The bifurcation curves I–VII in theorem 3.1 will be given as graphs of functions
µI–µVII of ε, ε > 0. We denote a curve µ(ε) = s(ε)1/ε with limε→0 s(ε) = s0 as

µ ∼ s
1/ε

0 .

The rescaling indicates that the bifurcation curves branching from the codimension two point,
have the asymptotics µ ∼ −(1/a)1/ε. In rescaled parameters we will write µ̄I–µ̄VII (figure 6).
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Figure 5. The interval map φ for ε < 0 on the left and for ε > 0 on the right.

(This figure is in colour only in the electronic version)

6.1. Saddle node bifurcation

The reduced bifurcation equation for a fixed point of � is of the form x = φ(x), with

φ(x) = µ + c|x|κ |1 + a sign(x)|x|ε + O(|x|ω)|δ + O(|x|κ+ω). (31)

A saddle node bifurcation of a fixed point occurs if φ(x) = x and φ′(x) = 1. For the rescaled
map f (x̄u) = µ̄ + |x̄u|δ , it is clear that (∂/∂µ̄)f �= 0 and (∂2/∂x̄2)f < 0 at the saddle node
point. This implies that the saddle node bifurcation is generically unfolding and occurs along
a smooth curve in the parameter plane.

6.2. Symmetry breaking bifurcation

A symmetry breaking for a periodic orbit of the vector field Xγ occurs if φ(x) = x and
φ′(x) = −1, with φ as in (31), that is, if φ has a period doubling bifurcation. As for the
saddle node, one shows that the period doubling occurs along a smooth curve. The period
doubling bifurcation is subcritical: a saddle period two orbit exists for values of µ smaller than
the bifurcation value. This follows easily from the rescaled bifurcation equation f , as for the
saddle node bifurcation. It is also clear from the rescaled equation that the curve of symmetry
breaking bifurcations is located at smaller µ values than the curve of saddle node bifurcations.

6.3. Homoclinic and heteroclinic connections

Apart from the primary branch of heteroclinic connections along µ = 0, we distinguish two
curves of global connections between equilibria branching from the codimension two point.

A heteroclinic connection from Q1 to Q2 occurs if �(pss, ps̄, µ) = (pss, ps̄, µ) (or
if µ is a fixed point in the reduced bifurcation equation (28)). The resulting equation
1 − a|µ|ε + O(µω) = 0 can be solved for µ as a function of ε by µ ∼ −(1/a)1/ε. This
gives the bifurcation curve labelled I.

Dividing out the symmetry x ∼ R1(x) identifies the equilibria Q1 and Q2. The
heteroclinic connection from Q1 to Q2 with its symmetric image under R2 provide a double
homoclinic loop to Q1. It is known that horseshoes occur in an unfolding; a horseshoe is
created for smaller values of µ (compare also the considerations for the interval map f in
section 6.5).
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Figure 6. Numerically computed bifurcation diagram showing attractors for interval maps φ (given
by (29) with δ = 0.69) with fixed ε and varying µ. The pictures below show φ at the bifurcation
values µ̄VII, . . . , µ̄II.

Homoclinic connections to Q1 and Q2 occur if (pss, ps̄, µ) is a periodic point of period two
for �. It is convenient to consider the rescaled map �̄ from proposition 4.2. In the limit ε = 0,
0 needs to be a period two point for f (x̄) = µ̄ + |x̄|δ . Since f ′(x) is monotonically decreasing
for x < 0, f ′(µ̄) > −1 for this values of µ̄. Compute (d/dµ̄)f (µ̄) = 1 + f ′(µ̄) > 0. For ε

small, the rescaled return map �̄ is close to (x̄ss , x̄s̄ , x̄u) 
→ (0, 0, f (x̄u)) (with derivatives as
long as x̄u stays away from 0). Hence, for ε small enough, Wu(Q1) moves through Ws(Q2),
both intersected with �̄, with positive speed in µ̄. By this transversality, there is a smooth
curve that gives µ̄ as a function of ε for which (0, 0, µ̄) is a period two point for �̄. This defines
the curve labelled VII in theorem 3.1, on which the homoclinic connections exist. Horseshoes
exist for larger values of µ.

6.4. Heteroclinic connections to periodic orbits

Heteroclinic connections from Q1 and Q2 to periodic orbits occur at several parameter values.
We consider three such curves, which are of importance to the dynamics.
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We first consider the curve indicated by the symbol IV in theorem 3.1, for which the
unstable manifold of Q1 connects to a R2-symmetric periodic orbit close to  ∪ R2().
This bifurcation is best treated by making use of proposition 4.2, providing a reduction to a
perturbation from the interval map f (x̄u) = µ̄ + |x̄u|δ . For this interval map, the bifurcation
occurs if f 2(µ̄) hits the orientation reversing fixed point x = x(µ̄) of f .

We start by checking that f ′(x) < −1 at this bifurcation. At µ̄ = µ̄IV one has
f (µ̄) = µ̄IV + |µ̄IV|δ = −x. At µ̄ = µ̄V, the bifurcation value for which f ′(x) = −1,
x = µ̄V + |x|δ and δ|x|δ−1 = 1, so that µ̄V = x(1 + 1/δ). Hence at µ̄ = µ̄V, f (µ̄V) < −x.
Therefore, µ̄V < µ̄IV and f ′(x) < −1 at µ̄ = µ̄IV.

Recall that at µ̄ = µ̄IV, f (µ̄IV) + x = 0. We wish to show that

d

dµ̄
(f (µ̄) + x) > 0 (32)

at µ̄ = µ̄IV. Note that at µ̄ = µ̄IV, f 2(µ̄IV) + f (µ̄IV) = 0. Define k by f ′(µ̄) = −k =
−δ|µ̄|δ−1. Then

f 2(µ̄) + f (µ̄) = 2δ − k − k

(
k − δ

δ

)δ

. (33)

Observe that δ < k at µ̄ = µ̄IV, sincef (µ̄IV) > 0. The right hand side of (33) vanishes for some
δ < k < 2δ. Compute, using (d/dµ̄)f (µ̄) = 1 + f ′(µ̄) and (d/dµ̄)x = 1 + f ′(x)(d/dµ̄)x,

d

dµ̄
(f (µ̄) + x)|µ̄=µ̄IV = 1 + f ′(µ̄IV) +

1

1 − f ′(x)

= 1 + f ′(µ̄IV) +
1

1 + f ′(f (µ̄IV))

= 1 − k +
1

1 + k((k − δ)/δ)δ

= k2 − 2k(1 + δ) + 2δ

(δ(2δ − 1))/(δ − 1) − k
(34)

using (33) with k = −f ′(µ̄IV) at µ̄ = µ̄IV. Observe that k > δ at µ̄ = µ̄IV, by f (µ̄IV) > 0.
From (34), (d/dµ̄)(f (µ̄)+x)(µ̄IV) changes sign at k = δ+1+

√
δ2 + 1 > 2δ. One now checks

that (d/dµ̄)(f (µ̄) + x)(µ̄IV) > 0.
Recall that for ε small, the rescaled return map is close to (x̄ss , x̄s̄ , x̄u) 
→ (0, 0, f (x̄u))

(with derivatives as long as x̄u stays away from 0). This and (32) imply that for ε small enough,
Wu(Q1) traverses the stable manifold of the periodic orbit corresponding to the fixed point
with positive speed in µ̄. By this transversality, curve IV is smooth.

We will show that the saddle node bifurcation µIII occurs for larger parameter values than
µIV. It suffices to show that µ̄III > µ̄IV on the interval map f (x̄u) = µ̄ + |x̄u|δ . The saddle
node bifurcation µ̄III occurs for µ̄ such that |µ̄| = (1 − δ)(δ/(1 − δ))δ|µ̄|δ . The equation that
µ̄IV satisfies is given above. A direct computation shows that µ̄III > µ̄IV if δ is smaller than
the solution of

2 −
∣∣∣∣1 − δ

δ

∣∣∣∣
δ 1

1 − δ
=

∣∣∣∣1 − δ

δ

∣∣∣∣
δ 1

1 − δ

[(
1 − δ

δ

)δ 1

1 − δ
− 1

]δ

.

Curve VI in theorem 3.1 consists of parameter values for which the unstable manifold of
Q1 connects to a non-symmetric periodic orbit close to  ∪ R2(). Smoothness of this curve
is established similarly, starting with a computation for f . Let x1, x2 be the two points from
the period two orbit for f , with x1 < x < x2 (here x is the orientation reversing fixed point of
f ). For f , the bifurcation occurs if f 2(µ̄) hits x1. Differentiating x1 = f 2(x1) with respect
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to µ̄ yields (d/dµ̄)x1 = 1 + f ′(x2)(1 + f ′(x1)(d/dµ̄)x1). Since f ′(x2) < −1 < f ′(x1) and
f ′(x1)f

′(x2) > 1, one has (d/dµ̄)x1 > 1. The rest follows as above.
The third curve of heteroclinic connections to a periodic orbit that we consider is curve II

in theorem 3.1, consisting of parameter values for which the unstable manifold of Q1 connects
to a non-symmetric periodic orbit close to R1(). For f (x̄u) = µ̄ + |x̄u|δ , µ is mapped to the
fixed point if µ̄+ |µ̄|δ = µ̄+ |µ̄+ |µ̄|δ|δ , that is, if |µ̄|δ−1 = 2. The derivative f ′(µ̄+ |µ̄|δ) at this
fixed point equals 2δ which is larger than 1 by (23). This implies that µIII < µII. As above,
one shows that Wu(Q1) traverses the stable manifold of the periodic orbit corresponding to
the fixed point with positive speed in µ̄. Therefore, the curve II is smooth.

6.5. Singular hyperbolic attractors

Proposition 4.3 reduces the dynamics of �̄ to an interval map π̄ close to f (x̄u) = µ̄ + |x̄u|δ .
Consider f for parameter values between µ̄I and µ̄VII. Let Jl = [µ̄, f 2(µ̄)] and

Jr = [f 3(µ̄), f (µ̄)]. For µ̄VI � µ̄ � µ̄IV, Jl and Jr are mapped onto each other by f

and are invariant for f 2. Write J = Jl ∪ Jr . For µ̄IV � µ̄ � µ̄II, the intervals Jl and Jr

overlap to form a single interval J = [µ̄, µ̄ + |µ̄|δ]. For µ̄VI � µ̄ � µ̄II, f maps J into
itself, so that an attractor inside J exists. We claim that f 2 is an expanding map on J for
µ̄ ∈ [µ̄VII, µ̄I]. We start with the observation that |(f 2)′| takes its minimum over J at the
point x̄u = µ̄. Compute (d/dµ̄)|(f 2)′(µ̄)| = δ2(1− δ)|µ̄|δ−2|µ̄+ |µ̄|δ|δ−2[2|µ̄|− |µ̄|δ(1 + δ)],
which vanishes at |µ̄|δ−1 = 2/(1 + δ). The minimum of |(f 2)′(µ̄)| is therefore assumed for
|µ̄|δ−1 = 2/(1 + δ), and equals δ2(2/(1 + δ))2((1 − δ)/(1 + δ))δ−1. Plotting the graph of this
function, it is seen that values larger than 1 are assumed for δ larger than δ∗ ∼ 0.610 97.

We conclude that for all µ̄ ∈ [µ̄VII, µ̄I], f 2 restricted to J is an expanding map. The same
statement holds for the reduced interval map π̄ , if ε is small enough. For ε small enough and
µ between the bifurcation curves II and VI, the vector field Xγ therefore possesses a singular
hyperbolic attractor. Similarly, for µII < µ < µI as well as for µVII < µ < µVI, Xγ possesses
a hyperbolic basic set.
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Appendix A

In this appendix we prove the normal form result of proposition 4.1 for the first return map �

on the cross section �. We start by choosing local normal forms for the vector field near the
equilibria. The asymptotics given in proposition 4.1 are then proved by integrating the vector
field using these local normal forms. These two steps are carried out in the following two
sections.

Appendix A.1. Local normal forms

The existence of two equal eigenvalues at the origin, for Rayleigh and Prandtl numbers lying on
a line, makes a normal form near the origin more involved than in a generic case. Nevertheless,
there are coordinate changes to a normal form sufficiently near a linear model, so that integration
of the equations yields a local transition map similar to the local transition map for the linear
model.
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Take coordinates x = (xss, xs̄ , xs, xu) near the origin, so that the vector field Xγ is given by

Xγ (x) = (λssxss + Fss(x; γ ))
∂

∂xss

+ (λs̄xs̄ + Fs̄(x; γ ))
∂

∂xs̄

+ (λsxs + Fs(x; γ ))
∂

∂xs

+(λuxu + Fu(x; γ ))
∂

∂xu

.

Initial coordinate changes make the local stable and unstable manifolds linear, so that Fss and
Fs are O(‖(xss, xs̄ , xs)‖) and Fu is O(xu). Multiplying the vector field with a positive function
ensures that Fu vanishes identically. The following result discusses further coordinate changes,
bringing the vector field into a local norm form.

Proposition A.1. There are smooth local coordinates x = (xss, xs̄ , xs, xu) near the origin, in
which

Fss(xss, xs̄ , xs, xu) = O(|xss | + ‖(xs̄, xs)‖2),

Fs̄(xss, xs̄ , xs, xu) = O(|xss | + ‖(xs̄, xs)‖2),

Fs(xss, xs̄ , xs, xu) = O(|xss | + ‖(xs̄, xs)‖2).

Proof. For convenience, write

α = −λss

λu

,

β̄ = −λs̄

λu

,

β = −λs

λu

.

A direct computation shows that a polynomial coordinate change removes the quadratic terms
from the differential equations. We go on to remove terms O(xsxu), O(xs̄xu) from the equations
for (xss, xs, xs̄). Reasoning as in [16], consider a change of coordinates

yss = xss + ps̄(xu)xs̄ + ps(xu)xs,

ys̄ = xs̄ + qs̄(xu)xs̄ + qs(xu)xs,

ys = xs + rs̄(xu)xs̄ + rs(xu)xs,

yu = xu,

for functions ps̄ , ps , qs̄ , qs , rs̄ and rs , which vanish at xu = 0. Write the differential equations
in the new coordinates (yss, ys̄ , ys, yu) as

ẏss = αyss + Pss(yss, ys̄ , ys, yu)yss + Ps̄(yss, ys̄ , ys, yu)ys̄ + Ps(yss, ys̄ , ys, yu)ys,

ẏs̄ = β̄xs̄ + Qss(yss, ys̄ , ys, yu)yss + Qs̄(yss, ys̄ , ys, yu)ys̄ + Qs(yss, ys̄ , ys, yu)ys,

ẏs = βxs + Rss(yss, ys̄ , ys, yu)yss + Rs̄(yss, ys̄ , ys, yu)ys̄ + Rs(yss, ys̄ , ys, yu)ys,

ẏu = xu.

At yss, ys̄ , ys = 0 we have

Ps̄(0, 0, 0, yu) = ṗs̄ + (α − β̄)ps̄ + h.o.t.,

Ps(0, 0, 0, yu) = ṗs + (α − β)ps + h.o.t.,

Qs̄(0, 0, 0, yu) = q̇s̄ + h.o.t.,

Qs(0, 0, 0, yu) = q̇s + (β̄ − β)qs + h.o.t.,

Rs̄(0, 0, 0, yu) = ṙs̄ + (β − β̄)rs̄ + h.o.t.,

Rs(0, 0, 0, yu) = ṙs + h.o.t.,

https://www.researchgate.net/publication/265671191_On_systems_with_saddle-focus_homoclinic_curve?el=1_x_8&enrichId=rgreq-15172c758025868543cab18724a086cd-XXX&enrichSource=Y292ZXJQYWdlOzIzMTA3MzUyNTtBUzozMzU1NzY4MjI3NjM1MjVAMTQ1NzAxOTE1Nzc5Mg==
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where h.o.t. stands for higher-order terms in (ps̄, . . . , rs, yu). We look for functions
ps̄, . . . , rs of yu = xu such that the above functions Ps̄(0, 0, 0, yu), . . . , Rs(0, 0, 0, yu) vanish.
Considering ps̄, . . . , rs as variables, this yields the following differential equations

ṗs̄ = (β̄ − α)ps̄ + h.o.t.,

ṗs = (β − α)ps + h.o.t.,

q̇s̄ = h.o.t.,

q̇s = (β − β̄)qs + h.o.t.,

ṙs = (β̄ − β)rs + h.o.t.,

ṙs̄ = h.o.t.,

ẏu = yu.

The linearized equations show an eigenvalue 1, and the other eigenvalues are smaller than 1.
Thus, we can obtain the desired functions ps̄, . . . , rs by constructing the one-dimensional
strong unstable manifold for the above system of differential equations. �

We also put the vector field near the equilibria Q1 and Q2 into normal form. This is
standard since there are no resonance conditions involved; arguments like the ones above can
be followed. Take smooth, parameter dependent coordinates y = (yss, ys, yu) ∈ R

2 × R × R

on a neighbourhood of the singularity Q1, so that Q1 is the origin and

DXγ (Q1) = Byss

∂

∂yss

+ νsys

∂

∂ys

+ νuyu

∂

∂yu

, (A.1)

where yss are the two-dimensional strong stable coordinates, ys is the one-dimensional weak
stable coordinate, and yu is the unstable coordinate. Write

Xγ (y) = (Byss + Gss(y))
∂

∂yss

+ (νsys + Gs(y))
∂

∂ys

+ νuyu

∂

∂yu

.

Proposition A.2. There are smooth local coordinates y = (yss, ys, yu) near Q1, in which

Gss = O(‖yss‖ + |ys |2),
Gs = O(|yu|‖yss‖ + |yu||ys |2).

A similar coordinate system near Q2 is given by symmetry.

Proof. Coordinate changes as above, used to obtain proposition A.1, allow one to write

Gss = O(‖yss‖ + |ys |2),
Gs = O(‖yss‖ + |ys |2).

An additional coordinate change maps the strong stable foliation of the stable manifold of Q1

(with leaves of codimension one within the stable manifold) to an affine foliation. This means
that for yu = 0, Gs depends only on ys . Since one-dimensional vector fields near a hyperbolic
equilibrium can be smoothly linearized, there is a smooth coordinate change that removes all
higher order terms Gs for yu = 0. This proves the result. �
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Appendix A.2. Exponential expansion

Recall that � denotes the first return map on �. The local normal forms near the equilibria
enable the derivation of an expansion for the local transition maps, obtained by integrating the
differential equations. By composing transition maps, an expansion for � is obtained.

Consider first the local transition map near the origin. Let �in = � = {xs = δ} and
�out = {xu = δ} be cross sections close to the origin. By a linear rescaling, we may assume
δ = 1. Let x in = (x in

ss , x
in
s̄ , x in

u ) in �in and xout = (xout
ss , xout

s̄ , xout
s ) be related by the local

transition map. The following proposition gives asymptotic relations between xout and x in.

Proposition A.3. With notation as above,

xout
ss = (x in

u )−λ∗
s /λuRss(x in

ss , x
in
s̄ , x in

u ),

xout
s̄ = (x in

u )−λs̄/λu
(
ψs̄(x in

ss , x
in
s̄ ) + Rs̄(x in

ss , x
in
s̄ , x in

u )
)
,

xout
s = (x in

u )−λs/λu
(
ψs(x in

ss , x
in
s̄ ) + Rs(x in

ss , x
in
s̄ , x in

u )
)
.

Here λ∗
s < λs(γ0), ψs̄ and ψs are smooth maps. Moreover, Rss, Rs̄ and Rs are smooth for

x in
u > 0. There exist σ > 0, Ck+l > 0 so that with i = ss, s̄, s∣∣∣∣ ∂k+lRi

∂(x in
u )k∂(x in

ss , x
in
s̄ , γ )l

∣∣∣∣ � Ck+lx
σ−k
u .

Proof. Let τ = (−1/λu) ln |xu| be the transition time for the local transition map. Orbits
satisfy the following integral equations,

xss(t) = eλss t xss(0) +
∫ t

0
eλss (t−u)F ss(x(u)) du,

xs̄(t) = eλs̄ t xs̄(0) +
∫ t

0
eλs̄ (t−u)F s̄(x(u)) du,

xs(t) = eλs t xs(0) +
∫ t

0
eλs(t−u)F s(x(u)) du,

xu(t) = eλu(t−τ).

Plugging in xu(u) = eλu(u−τ), it is fairly straightforward to bound the above integrals, compare,
e.g., [6, 7]. With τ = (−1/λu) ln |xu|, one obtains the following expansions:

xout
ss = (x in

u )−λs/λu+ω(ψss(x in
ss , x

in
s̄ ; γ ) + Qss(x in; γ )), (A.2)

xout
s̄ = (x in

u )−λs̄/λu(ψs̄(x in
ss , x

in
s̄ ; γ ) + Qs̄(x in; γ )), (A.3)

xout
s = (x in

u )−λs/λu(ψs(x in
ss , x

in
s̄ ; γ ) + Qs(x in; γ )), (A.4)

where ψss , ψs̄ and ψs are smooth and Qss , Qs̄ and Qs are smooth for x in
u > 0. There exist

σ > 0, Ck+l > 0 so that with i = ss, s̄, s,∣∣∣∣ ∂k+lQi(x in; γ )

∂(x in
u )k∂(x in

ss , x
in
s̄ , γ )l

∣∣∣∣ � Ck+lx
σ−k
u . (A.5)

�

The local transition maps near Q1 and Q2 are treated similarly. Take local cross sections
T in and T out near Q1. We may assume T in = {ys = 1} and T out = {yu = 1}. Let
y in = (y in

ss , y
in
u ) ∈ T in and yout = (yout

ss , yout
s ) be related by the local transition map. Then, in

coordinates from the normal form in proposition A.2, the following asymptotic formulae hold.
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Proposition A.4. The coordinates (yout
ss , yout

s ) can be written as functions of (y in
ss , y

in
u ) in the

following form:

yout
ss = (y in

u )−νs/νu+ωUss,1(y in
ss , y

in
u ),

yout
s = (y in

u )−νs/νu(1 + Us(y in
ss , y

in
u )),

for some ω > 0. Here ϕ(0, 0) �= 0; Uss and Us are smooth for y in
u > 0. There exist σ > 0,

Ck+l > 0 so that with i = ss; s∣∣∣∣ ∂k+lU i

∂(y in
u )k∂(y in

ss , γ )l

∣∣∣∣ � Ck+lx
σ−k
u .
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