
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

J. Differential Equations 246 (2009) 2681–2705

Contents lists available at ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Resonance bifurcation from homoclinic cycles

Ramon Driesse, Ale Jan Homburg ∗

KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 February 2008
Revised 22 January 2009
Available online 13 February 2009

MSC:
34C37
37G40

Keywords:
Homoclinic cycle
Resonant bifurcation

Differential equations that are equivariant under the action of
a finite group can possess robust homoclinic cycles that can
moreover be asymptotically stable. For differential equations in R

4

there exists a classification of different robust homoclinic cycles
for which moreover eigenvalue conditions for asymptotic stability
are known. We study resonance bifurcations that destroy the
asymptotic stability of robust ‘simple homoclinic cycles’ in four-
dimensional differential equations. We establish that typically
a periodic trajectory near the cycle is created, asymptotically stable
in the supercritical case.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Consider differential equations that possess a symmetry, or more precisely that are equivariant
under the action of a finite group. It is well known that such equivariant differential equations may
admit homoclinic networks that are possibly asymptotically stable. We study a class of bifurcations
by which asymptotically stable homoclinic networks loose their stability, through bifurcations that
involve the spectra about the equilibria in the homoclinic network. We treat homoclinic networks in
four-dimensional differential equations, for which a classification of the different homoclinic networks
exists. Periodic attractors close to the homoclinic network appear in an unfolding (in a supercritical
bifurcation scenario, in a subcritical bifurcation scenario periodic repellers are obtained). For each of
the possible homoclinic networks, we describe number and type of periodic trajectories that bifur-
cate.
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Let G be a finite group with a linear action (representation) x �→ gx on R
4. By choosing an appro-

priate inner product on R
4, the group G may be assumed to be a subgroup of O (4). A differential

equation

ẋ = f (x) (1)

is G-equivariant when x(t) is a solution to (1) if and only if gx(t) is a solution to (1), for all g ∈ G .
Equivalently, if

g f (x) = f (gx), ∀g ∈ G.

For a subgroup H ⊂ G , we write Fix(H) = {x ∈ R
n | gx = x, g ∈ H} for the fixed point space of H .

Further, we write Gx = {g ∈ G | gx = x} for the isotropy group of x ∈ R
n .

Recall that a heteroclinic trajectory γ for (1) connecting equilibria p to q is a trajectory γ (t), t ∈ R,
with limt→−∞ γ (t) = p and limt→∞ γ (t) = q. A heteroclinic cycle Γ consists of a collection of disjoint
equilibria p1, . . . , pm and heteroclinic trajectories hi connecting pi to pi+1, indices taken modulo m.
A connected invariant set that is a finite union of heteroclinic cycles is called a polycycle.

Definition 1. A homoclinic cycle Γ is a polycycle that is equal to a group orbit 〈h〉γ , for a heteroclinic
trajectory γ connecting equilibria p to hp for some h ∈ G . The element h ∈ G is called the twist for
the homoclinic cycle. A homoclinic network is a connected component of the group orbit GΓ of a
homoclinic cycle Γ .

In this context we note that the group orbit GΓ of a homoclinic cycle Γ is connected if and only
if

G = 〈h, G p〉,

see Homburg et al. [9]. Throughout the paper we will tacitly assume that G satisfies this identity and
thus that GΓ is connected.

Note that the twist is well defined modulo the isotropy group G p of p. Given a homoclinic cycle Γ

with twist h and a group element g ∈ G , gΓ defines a homoclinic cycle with conjugate twist ghg−1.

Definition 2. A simple homoclinic cycle is a homoclinic cycle 〈h〉γ with γ connecting p to hp, for
some h ∈ G , so that

1. the unstable manifold W u(p) is one-dimensional,
2. there is a two-dimensional fixed point subspace P of an isotropy subgroup of G , such that γ ⊂ P

and hp is a sink in P .

A simple homoclinic network is the group orbit of a simple homoclinic cycle.

As a consequence of the continuous dependence of stable and unstable manifolds W s(p), W u(p)

on the vector field f and invariance of P , a simple homoclinic cycle persists under small G-equivariant
perturbations of f . For more on robust homoclinic networks we refer to Field [7,8], Krupa [11], Chossat
and Lauterbach [3]. Following Chossat et al. [2], simple homoclinic cycles (and networks) in R

4 are
distinguished in three types:

1. Type A: h−1 P + P is not a fixed point space.
2. Type B: h−1 P + P is a (three-dimensional) fixed point space containing the homoclinic cycle.
3. Type C: h−1 P + P is a (three-dimensional) fixed point space not containing the homoclinic cycle.
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One can also consider homoclinic networks with heteroclinic trajectories lying in three-dimensional
fixed point spaces (and not in two-dimensional fixed point spaces). Although we will concentrate on
simple homoclinic networks, such homoclinic networks will be included in this paper as a variant of
type B homoclinic networks, see Remark 1 below.

Sottocornola classified type A simple homoclinic cycles in R
4 up to isomorphisms of groups, see

Sottocornola [18,19]. A description of possible simple homoclinic cycles of type B and C in R
4 is

contained in Krupa and Melbourne [13]. The following theorem lists the different simple homoclinic
networks GΓ . It gives generators for the action of the group G (a minimal admissible group, up to
isomorphisms of groups, for which the homoclinic network occurs, see Sottocornola [18,19]) and the
number of connecting trajectories in the homoclinic cycles contained in GΓ . The generators for the
action of G will be linear maps with matrices from the following list. Define, for α = ±1,

Aα
t,s =

⎛
⎜⎜⎜⎝

0 0 cos(s) − sin(s)

α sin(t) cos(t) 0 0

−α cos(t) sin(t) 0 0

0 0 sin(s) cos(s)

⎞
⎟⎟⎟⎠

(note that det Aα
t,s = α) and the reflections

S =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ , R =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ .

Theorem 1. (See Krupa and Melbourne [13], Sottocornola [17–19].) The classification of simple homoclinic
cycles in R

4 is in Table 1, listing the homoclinic network (with indices indicating its type—added for type A is
a sign indicating whether or not G ⊂ SO(4)—and the number of equilibria it contains), generators of G, and
for possible twists h the length (i.e. number of heteroclinic trajectories) of the corresponding homoclinic cycle
Γ = 〈h〉γ . Here γ is a heteroclinic trajectory in P = Fix(S), the coordinate plane of the first two coordinates
in R

4 , connecting equilibria in h−1 P ∩ P to P ∩ hP .

For Γ a homoclinic cycle as in the above theorem with twist h, write ρ(Γ ) for the homoclinic
cycle with twist Sh.

Remark 1. One can distinguish two different homoclinic networks with heteroclinic trajectories lying
in three-dimensional, but not in two-dimensional, fixed point spaces. These are direct analogues of
type B homoclinic networks, with groups G generated by A1

π,0, S R or by A1
π/2,0, S R .

The geometry given by the subspaces P in the definition of simple homoclinic cycle allows us to
divide the spectrum of D f (p) into four classes:

1. Radial eigenvalue λr : the negative eigenvalue restricted to V (r) = h−1 P ∩ P .
2. Contracting eigenvalue λc : the negative eigenvalue restricted to V (c) = h−1 P � V (r).
3. Expanding eigenvalue λe: the positive eigenvalue restricted to V (e) = P � V (r).
4. Transverse eigenvalue λt : the negative eigenvalue restricted to V (t) = (h−1 P + P )⊥ .

Spectral conditions ensuring asymptotic stability of simple homoclinic networks are given in the
following result by Krupa and Melbourne.

Theorem 2. (See Krupa and Melbourne [12,13].) Let ẋ = f (x) be a G-equivariant ODE on R
n, for a finite

group G acting linearly. Suppose it admits a simple homoclinic network GΓ . Assume there are C1 linearizing
coordinates near the equilibria in GΓ .
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Table 1
Classification of simple homoclinic cycles in R

4.

type homoclinic network generators twist length cycle

A, G ⊂ SO(4) HA,+
2 A1

π,0, S A1
π,0 2

S A1
π,0 4

HA,+
6 A1

π
2 ,0, S A1

π
2 ,0 3

S A1
π
2 ,0 6

HA,+
8 A1

π
2 , π

2
, S A1

π
2 , π

2
, S A1

π
2 , π

2
8

HA,+
48 A1

π
4 , π

4
, S A1

π
4 , π

4
12

S A1
π
4 , π

4
24

A, G �⊂ SO(4) HA,−
6 A−1

π
2 ,0, S A−1

π
2 ,0 6

S A−1
π
2 ,0 3

HA,−
2k2 , k � 1 A−1

π
k , π

k
, S A−1

π
k , π

k
4

S A−1
π
k , π

k
2k

B HB
2 A1

π,0, S, R A1
π,0, R A1

π,0 2

S A1
π,0, S R A1

π,0 4

HB
6 A1

π
2 ,0, S, R A1

π
2 ,0, R A1

π
2 ,0 3

S A1
π
2 ,0, S R A1

π
2 ,0 6

C HC
8 A1

π
2 , π

2
, S, R A1

π
2 , π

2
, S A1

π
2 , π

2
8

R A1
π
2 , π

2
, S R A1

π
2 , π

2
4

Then GΓ is asymptotically stable precisely if −λc > λe in case GΓ is of type A or B and −λc − λt > 1 in
case GΓ is of type C.

For asymptotically stable simple homoclinic networks in R
4 two types of bifurcations through

which the homoclinic network can loose its asymptotic stability, are distinguished. The transverse bi-
furcation occurs when the transverse eigenvalue moves through zero, see Chossat et al. [2], Driesse
and Homburg [6]. In this article we consider the resonance bifurcation, which occurs when the eigen-
value condition for asymptotic stability becomes violated, see Postlethwaite and Dawes [15], Chossat
and Lauterbach [3], Scheel and Chossat [16]. The symmetry, giving the existence of invariant fixed
point spaces, can force heteroclinic trajectories to approach an equilibrium from directions that are
not the leading directions (which would typically hold true for generic, nonsymmetric, differential
equations). Compared to corresponding global bifurcation theory in generic, nonsymmetric, differen-
tial equations, this makes the bifurcation analysis more delicate. Earlier work treating the resonance
bifurcation of homoclinic cycles, Chossat and Lauterbach [3], Scheel and Chossat [16], restricts to spe-
cial cases where such degeneracies do not occur and the bifurcation is in its analysis similar to the
resonant homoclinic bifurcation, see Chow et al. [4]. Using recent classification results for homoclinic
cycles and an adapted normal form theory, we derive reduced bifurcation equations and study those
in order to describe the bifurcations.

We now formulate the bifurcation theorem. A coefficient Φ appearing in the formulation will be
made precise in later sections. Let

ẋ = f (x,μ) (2)

be a one parameter family of smooth differential equations in R
4, each vector field being G-

equivariant, and possessing a simple homoclinic cycle Γ for μ = 0. Define
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Table 2
Periodic trajectories branching from type A homoclinic cycles.

GΓ |Γ | 	 periodic trajectories |ρ(Γ )| 	 periodic trajectories

HA,±
2 2 4 4, 2

HA,±
6 3 8 6, 4

HA,+
8 8 4 8, 4

HA,+
48 12 16 24, 8

HA,−
2k2 4 2k2 2k, 4k

Table 3
Periodic trajectories branching from type B, C homoclinic cycles.

GΓ |Γ | 	 periodic trajectories

HB
2 2 4

HB
6 3 8

HC
8 4 16

η(μ) =
{−λc/λe, in case Γ is of type A or B,

(−λc − λt)/λe, in case Γ is of type C.
(3)

With this definition, the condition for asymptotic stability from Theorem 2 reads η < 1. We consider
generically unfolding resonance bifurcations where η(0) = 1 and η′(0) �= 0. By reparameterizing if
necessary we may assume that

η(0) = 1, η′(0) < 0. (4)

For a homoclinic cycle or network Γ , write |Γ | for the number of connecting trajectories in Γ . Note
that |GΓ | is two times the number of equilibria in GΓ , as each equilibrium counts two outgoing
connecting trajectories (from the two unstable separatrices).

Theorem 3. Let ẋ = f (x,μ) be a one parameter family of G-equivariant smooth differential equations in R
4 ,

possessing for μ = 0 a simple homoclinic cycle Γ . Suppose that GΓ is asymptotically stable for μ < 0 and
undergoes a generically unfolding resonance bifurcation for μ = 0; (4) holds.

There is a number Φ �= 0 depending only on the differential equation for μ = 0, so that the following holds.

1. If GΓ is of type A and |Φ| �= 1, then either a periodic trajectory close to Γ bifurcates (if Φ > 0) or a
periodic trajectory close to ρ(Γ ) bifurcates (if Φ < 0). Table 2 lists the number of heteroclinic trajectories
in the homoclinic cycles Γ and ρ(Γ ) (assuming without loss of generality |Γ | � |ρ(Γ )|), and the number
of branching periodic trajectories near GΓ .

2. If GΓ is of type B or C, Γ is such that |Γ | is minimal (as in Table 3), and |Φ| �= 1, then a periodic trajectory
close to Γ bifurcates.

For all cases, the following holds on stability of the bifurcating periodic trajectory: If |Φ| < 1, the bifurcation is
supercritical and the periodic trajectory exists for μ > 0 and is asymptotically stable. If |Φ| > 1, the bifurcation
is subcritical and the periodic trajectory exists for μ < 0 and is unstable.

Remark 2. The theorem treats bifurcating periodic trajectories that make one round near a homoclinic
cycle, and does not provide statements on possible other recurrent dynamics. The total number of
these periodic trajectories created near a homoclinic network follows from the following observations:
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Fig. 1. The homoclinic cycle near P .

1. If GΓ is of type A or B: for each heteroclinic trajectory γ that generates Γ , there are 2 periodic
trajectories, ζ, Sζ that pass close to it.

2. If GΓ is of type C: for each heteroclinic trajectory γ that generates Γ , there are 4 periodic
trajectories, ζ, Sζ, Rζ, S Rζ , that pass close to it.

3. The total number of heteroclinic trajectories in GΓ is twice the number of equilibria in GΓ .

Remark 3. The results for homoclinic networks of type B also apply to homoclinic networks with
three-dimensional instead of two-dimensional fixed point spaces (compare Remark 1).

For homoclinic networks of type B or C, three-dimensional fixed point spaces divide state space
in invariant domains and obstructs trajectories to leave these domains. This explains the difference
between homoclinic networks of type A and of type B or C.

In the following sections we will treat homoclinic cycles of type A, B and C separately. The orga-
nization of the proof is the same in all three cases: normal forms, asymptotic expansions, bifurcation
analysis. In short, one takes a cross section Σ in transverse to a heteroclinic trajectory γ in a ho-
moclinic cycle Γ = 〈h〉γ . By identifying Σ in with hΣ in, the flow from Σ in to hΣ in defines a return
map

Π : Σ in → Σ in.

To derive asymptotic expressions for Π , Π is as usual computed as a composition of a local transition
map through a neighborhood of an equilibrium and a global transition map. The global transition map
is a diffeomorphism by the flow box theorem, the symmetry induces various terms in an expansion
to vanish. For the local transition map, workable asymptotic expansions can be obtained when the
vector field is written in a local normal form. We work in local coordinates

x = (u, v, w, z) (5)

around p so that the u, v , w and z axes are the eigenspaces of respectively the radial, contracting,
expanding and transverse eigenvalue, see Fig. 1. The fixed point space P is spanned by the u and w
coordinates. The action of the twist defines local coordinates near the other equilibria in a homoclinic
cycle.

Periodic trajectories are found by solving bifurcation equations for fixed points of Π , their stability
is analyzed from computing the linearization of Π about a fixed point. Bifurcation equations for pe-
riodic trajectories are substantially easier to derive if one assumes the vector field near the equilibria
to be smoothly equivalent to linear vector fields. By the resonance conditions among the eigenvalues,
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this will typically not be possible. See also Chow et al. [4]. Much effort therefore goes into the deriva-
tion of local normal forms that are as close as possible to a linear vector field, and the computation of
transition maps that have similar asymptotic expansions as one would obtain from local linear vector
fields.

The simplest case, homoclinic cycles of type B, are considered first in Section 2. Then in Section 3
we consider homoclinic cycles of type C and in Section 4 the more involved case of homoclinic cycles
of type A.

2. Simple homoclinic cycles of type B

We assume in this section the conditions of Theorem 3 for a simple homoclinic network of
type B. That is, given a G-equivariant differential equation ẋ = f (x,μ), depending on a parameter
μ, with for μ = 0 a simple homoclinic cycle Γ = 〈h〉γ of type B. There is in particular an invari-
ant three-dimensional subspace Q , that contains the homoclinic network GΓ and is attracting near
GΓ . Consequently, a bifurcating periodic trajectory lies inside Q and we may restrict the differential
equations to Q .

As outlined at the end of the previous section, the main bifurcation result, Theorem 3, for simple
homoclinic cycles of type B is proved in two steps: first we discuss asymptotic expansions for a first
return map Π and then we use these to solve for the existence of a periodic trajectory. The asymptotic
expansions apply in a suitable local normal form near the equilibria. We will start deriving this normal
form. The analysis is fairly straightforward for simple homoclinic cycles in case B, and serves as an
introduction to the more involved reasoning needed for type A and C simple homoclinic cycles.

We mention that the analysis in this section generalizes to homoclinic networks with three in-
stead of two-dimensional fixed point spaces (compare Remarks 1 and 3). For this, in the coordinates
(u, v, w) below one interprets u as a two-dimensional coordinate. Details are left to the reader.

2.1. Normal forms

Recall from the introduction that we express the differential equations ẋ = f (x,μ) restricted to Q ,
locally around p, as

u̇ = λru + F u(u, v, w),

v̇ = λc v + F v(u, v, w),

ẇ = λe w + F w(u, v, w), (6)

for functions F u, F v , F w that vanish together with derivatives at the origin. The coordinates u, v, w
give respectively the radial, contracting and expanding directions. We do not incorporate the depen-
dence on the parameter μ in the notation. The local differential equations will be transformed into
normal form by a smooth (C∞) coordinate transformation and a smooth time reparametrization (i.e.
multiplication by a smooth positive function). Recall that such transformations define a smooth equiv-
alence.

Proposition 4. The differential equations (6) are locally smoothly equivalent to differential equations of the
form

u̇ = λru + P (u, v, w),

v̇ = λc v + v w Q (u, v, w),

ẇ = λe w, (7)

where P (u, v, w) = O(|(u, v)||(u, v, w)|), Q (u, v, w) = O(|(u, v)|). These equations are G-equivariant
and smoothly dependent on the parameter μ.
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Proof. We first remark that G-equivariance will follow from the constructions, as the coordinate
changes can be made to be G-equivariant. Invariance of h−1 P = {w = 0} and P = {v = 0} implies that
F w(u, v,0) = 0 and F v (u,0, w) = 0. We write F u(u, v, w) = P̃ (u, v, w), F v (u, v, w) = v Q̃ (u, v, w)

and F w(u, v, w) = w R̃(u, v, w). It follows that the differential equations can be written as

u̇ = λru + P̃ (u, v, w),

v̇ = λc v + v Q̃ (u, v, w),

ẇ = λe w + w R̃(u, v, w), (8)

where P̃ (u, v, w) =O(|(u, v, w)|2), Q̃ (u, v, w) =O(|(u, v, w)|) and R̃(u, v, w) =O(|(u, v, w)|).
Note that G p is generated by a reflection. The unstable manifold W u(p) is G p -symmetric. It is

easily seen that it can be straightened by a smooth G p-equivariant coordinate change. In the new
coordinates, P̃ (0,0, w) = 0, implying P̃ (u, v, w) =O(|(u, v)||(u, v, w)|). Multiplying the vector field
with the G-symmetric function (1+ R̃/λe)

−1, we obtain ẇ = λe w . To get the desired form we remove
the terms v Q̃ (0,0, w), v Q̃ (u, v,0) from the equation for v̇ .

Consider first the term v Q̃ (0,0, w). By symmetry, Q̃ (0,0, w) =O(w2) (in equations without sym-
metry, a term v w from the equation for v̇ can be removed by a polynomial coordinate change
v̄ = v + av w for suitable a). To remove the term v Q̃ (0,0, w) from the equation for v̇ , we apply
an argument in Ovsyannikov and Shil’nikov [14]. Consider a change of coordinates

v̄ = v + r(w)v.

Compute the differential equation for ˙̄v ,

˙̄v = v̇ + ṙ(w)v + r(w)v̇

= λc v + v Q̃ (u, v, w) + r(w)λc v + r(w)v Q̃ (u, v, w) + ṙ(w)v

= λc v̄ + v̄
[

Q̃
(
u, v̄/

(
1 + r(w)

)
, w

) + ṙ(w)/
(
1 + r(w)

)]
,

and solve Q̃ (0,0, w)+ ṙ(w)/(1 + r(w)) = 0 along the unstable manifold {u = v = 0}. Considering r as
a variable, the unstable manifold of the system

ṙ =O(
w2),

ẇ = λe w (9)

solves r as a C∞-function of w .
Similarly, to remove the term v Q̃ (u, v,0), first remove the terms vu from the equation for v̇

by a coordinate change of the form v̄ = v + avu. As there are no terms v2 in the equation for v̇
(by symmetry), this makes Q (u, v,0) of quadratic order. Another application of the argument of
Ovsyannikov and Shil’nikov removes the term v Q̃ (u, v,0) from the differential equation for v̇ . Apply
for this a coordinate change

v̄ = v + vr(u, v) = v
(
1 + r(u, v)

)
.

Compute the differential equation for ˙̄v ,

˙̄v = λc v̄ + v̄
[

Q̃
(
u, v̄/

(
1 + r(u, v)

)
,0

) + ṙ(u, v)/
(
1 + r(u, v)

)]
.

Now, considering r as a variable, r is obtained from the local stable manifold of the system
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ṙ = −Q̃
(
u, v̄/(1 + r), w

)
(1 + r) = h.o.t.,

u̇ = λru + h.o.t.,

v̇ = λc v + h.o.t. �
2.2. Asymptotic expansions

In this section we obtain asymptotic expressions for a first return map on a cross section. We refer
to e.g. Homburg et al. [10] for similar computations. Define cross-sections in a neighborhood of p by

Σ in = {∣∣(u, v)
∣∣ = δ, |w| < δ

}
, Σout = {|w| = δ,

∣∣(u, v)
∣∣ < δ

}
,

for δ > 0 small. We scale u, v and w so that

Σ in = {∣∣(u, v)
∣∣ = 1, |w| < 1

}
, Σout = {|w| = 1,

∣∣(u, v)
∣∣ < 1

}
.

Identifying Σ in with hΣ in through the twist map h, the transition map from Σ in to hΣ in, yields
a “first return map” Π : Σ in �→ Σ in.

Proposition 5. Assume normal form coordinates near p given by Proposition 4. Then Π : Σ in �→ Σ in has
asymptotic expansions

⎛
⎝

u

v

w

⎞
⎠ Π�−→

⎛
⎝

u∗ +O(wΘ)

v∗ +O(wΘ)

γ v wC +O(wC+Θ)

⎞
⎠ ,

for C = −λc/λe and some Θ > 0.
The expansions apply to derivatives as well: taking derivatives of the higher order terms on the right-hand

side with respect to u, v and μ does not alter the order, while derivatives with respect to w can be taken in the
arguments of the order symbol.

Remark 4. The group G is either Z2 � Z
2
2 or Z3 � Z

3
2. With twist h = A1

π,0 (with length 2 for the

homoclinic cycle) for Γ = Z2 � Z
2
2, and twist h = A1

π/2,0 (with length 3 for the homoclinic cycle) for

Γ = Z3 � Z
3
2, the coefficient γ in Proposition 5 is necessarily positive. This is due to the existence of

fixed point spaces of codimension one, so that along trajectories the perpendicular one-dimensional
coordinate cannot change sign.

Define x∗ = (u∗, v∗,0) = Γ ∩ Σ in. For initial points x0 = (u0, v0, w0) in Σ in close to x∗ the tra-
jectory will intersect Σout after time τ = − log w0/λe . Using the variation of constants formula, we
compute exponential expansions for the coordinates u and v in trajectories. The solutions for u and v
depend on τ , u0, v0 and so we write u = u(t, τ , u0, v0) and v = v(t, τ , u0, v0). Before computing
exponential expansions, we derive initial bounds for u and v .

Lemma 6. For δ small enough and k � 0 there are constants Ck > 0 such that, for 0 � t � τ ,

∣∣∣∣ dk

d(t, u0, v0)k
u(t, τ , u0, v0)

∣∣∣∣ � Cke−ωt,

∣∣∣∣ dk

d(t, u0, v0)k
v(t, τ , u0, v0)

∣∣∣∣ � Ckeλct , (10)

where (u0, v0, w0) ∈ Σ in , ω = min{−λc,−λr} and t ∈ [0, τ ].
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Proof. To simplify notation we omit writing dependency of u and v on the variables (τ , u0, v0). The
rescaling of (u, v, w) by a factor 1/δ implies that

∣∣P (u, v, w)
∣∣ � Cδ

(|u| + |v|)(|u| + |v| + |w|),∣∣v w Q (u, v, w)
∣∣ � Cδ|v||w|(|u| + |v|), (11)

for some C > 0. Expressions for (u(t), v(t)), 0 � t � τ , are obtained from the variation of constants
formula:

u(t) = u0eλrt +
t∫

0

eλr(t−s) P
(
u(s), v(s), w(s)

)
ds,

v(t) = v0eλct +
t∫

0

eλc(t−s)v(s)w(s)Q
(
u(s), v(s), w(s)

)
ds. (12)

Here, w(s) = eλe(s−τ ) . The right-hand side of (12) defines a map S = (S1,S2) on a space of contin-
uous functions (u, v) defined for 0 � t � τ . Let

Bω,λc
C = {

(u, v) : [0, τ ] → R
2
∣∣ ∣∣u(t)

∣∣ < Ce−ωt,
∣∣v(t)

∣∣ < Ceλct},
endowed with the supnorm

∥∥(u, v)
∥∥ = ‖u‖ + ‖v‖ = sup

t∈[0,τ ]
∣∣u(t)

∣∣ + sup
t∈[0,τ ]

∣∣v(t)
∣∣.

We claim that there exists C > 0 such that S maps Bω,λc
C into itself and S is a contraction on Bω,λc

C .
Using the estimates on P and v w Q we get

S1(u, v)(t) � (u0 + CC̃δ)e−ωt < Ce−ωt ,

S2(u, v)(t) � (v0 + CC̃δ)eλct < Ce−λct ,

for C large enough and δ small enough. This proves the first part of the claim. To prove that S is a
contraction we show that

∥∥S (u1, v1) − S (u2, v2)
∥∥ <

∥∥(u1, v1) − (u2, v2)
∥∥.

We first estimate

∥∥S (u1, v1) − S (u2, v2)
∥∥ <

∥∥S (u1, v1) − S (u2, v1)
∥∥ + ∥∥S (u2, v1) − S (u2, v2)

∥∥.

Compute

∥∥S1(u1, v1) − S1(u2, v1)
∥∥ = sup

t∈[0,τ ]

t∫
0

e−λr(s−t)
∣∣P

(
u1(s), v1(s), w(s)

) − P
(
u2(s), v1(s), w(s)

)∣∣ds

= sup
t∈[0,τ ]

t∫
0

e−λr(s−t)

∣∣∣∣ d

du
P
(

p(s), v1(s), w(s)
)∣∣∣∣

∣∣u1(s) − u2(s)
∣∣ds
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� sup
t∈[0,τ ]

τ∫
0

e−λr(s−t)

∣∣∣∣ d

du
P
(

p(s), v1(s), w(s)
)∣∣∣∣

∣∣u1(s) − u2(s)
∣∣ds

� ‖u1 − u2‖
∥∥∥∥ d

du
P (p, v1, w)

∥∥∥∥
τ∫

0

e−λr(s−τ ) ds,

where p(s) is a bounded function obtained by applying the mean value theorem. By (11),
‖ d

du P (p, v1, w)‖ < Cδ for some C > 0. We get

∥∥S1(u1, v1) − S1(u2, v1)
∥∥ < 1/8‖u1 − u2‖,

for δ small enough. In the same way we can estimate

∥∥S1(u2, v1) − S1(u2, v2)
∥∥ < 1/8‖v1 − v2‖,∥∥S2(u1, v1) − S2(u2, v1)
∥∥ < 1/8‖u1 − u2‖,∥∥S2(u2, v1) − S2(u2, v2)
∥∥ < 1/8‖v1 − v2‖,

for δ small enough. Combining these estimates establishes

∥∥S (u1, v1) − S (u2, v2)
∥∥ < 1/2

∥∥(u1, v1) − (u2, v2)
∥∥

and so S is a contraction on Bω,λc
C . This now implies that there is a fixed point of S in the space

of continuous functions (u, v) defined on [0, τ ] satisfying the estimates. Estimates on the derivatives
of |u(t, τ , u0, v0)|, |v(t, τ , u0, v0)| with respect to u0, v0, t are obtained by similar reasoning as above,
by differentiating the integral formulas accordingly. �

The estimates on u and v yield the following asymptotic expression for v(τ ).

Lemma 7. For θ = min{−λr,−λc, λe} the asymptotic expression

v(τ ) = v0eλcτ +O(
e(λc−θ)τ

)
(13)

holds.

Proof. Using the estimates of Proposition 6 and also Q (u(s), v(s), w(s)) =O(|(u, v)|), we compute

∣∣∣∣∣
τ∫

0

e−λc s v(s)w(s)Q
(
u(s), v(s), w(s)

)
ds

∣∣∣∣∣ � C

τ∫
0

eλe(s−τ )−ωs ds

=O(
eλeτ

) +O(
e−ωτ

)
=O(

e−θτ
)
.

By the variation of constants formula for v(t) given in (12) we then have

v(τ ) = v0eλcτ +O(
e(λc−θ)τ

)
. �
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Lemmas 6 and 7 give that the transition map Π loc : Σ in �→ Σout has an expansion

⎛
⎝

u

v

w

⎞
⎠ �→

⎛
⎝

O(wΩ)

v wC +O(w(C+Θ))

1

⎞
⎠ , (14)

where C = −λc/λe , Ω = −ω/λe and Θ = −θ/λe .
Write Π far : Σout → Σ in for the transition map from Σout to hΣ in with an identification of Σ in

and hΣ in through the twist h. By invariance of P and W u(p) ∩ hΣ in = (u∗, v∗,0), Π far at lowest
order equals

⎛
⎝

u

v

w

⎞
⎠ �→

⎛
⎝

u∗ + α̃u + αv

v∗ + β̃u + βv

γ v

⎞
⎠ . (15)

We obtain Π = Π far ◦ Π loc, proving Proposition 5.

2.3. Bifurcation analysis

The differential equations depend smoothly on a parameter μ so that the homoclinic network GΓ

(recall that we suppress dependence on μ from the notation) is asymptotically stable if μ < 0 and
unstable if μ > 0. The unfolding condition (4), ∂

∂μη(μ)|μ=0 < 0, enables a reparametrization η = 1−μ

for μ close to zero. The first return map, see Proposition 5, can now be rewritten as

⎛
⎝

u

v

w

⎞
⎠ Πμ�−→

⎛
⎝

u∗(μ) +O(wσ(μ))

v∗(μ) +O(wσ(μ))

Ψ (v,μ)w1−μ +O(w1−μ+σ(μ))

⎞
⎠ . (16)

Write

Πμ(u, v, w) = Π(u, v, w,μ) = (
Πu(u, v, w,μ),Π v (u, v, w,μ),Π w(u, v, w,μ)

)
.

Proposition 8. Assume we have a family of differential equations in R
3 depending on μ with robust homo-

clinic cycles Γ which are stable for μ < 0 and unstable for μ > 0. Define

Ψ ∗(μ) = Ψ
(

v∗(μ),μ
)
.

If Ψ ∗(0) < 1 then there is an asymptotically stable periodic trajectory close to the homoclinic cycle for μ > 0.
If Ψ ∗(0) > 1 then there is an unstable periodic trajectory for μ < 0.

Proof. We find a fixed point of (16) which corresponds to finding a solution of

u − Πu(u, v, w,μ) = 0, v − Π v(u, v, w,μ) = 0, w − Π w(u, v, w,μ) = 0. (17)

Note that

J =
∣∣∣∣
(

1 − Πu
u −Πu

v

−Π v
u 1 − Π v

v

)∣∣∣∣
(u∗,v∗,0,0)

= 1.

By the implicit function theorem, see e.g. Berger [1], we can find expressions for u and v in terms
of w and μ that satisfy u(w,μ) = u∗(μ)+O(wσ (μ)) and v(w,μ) = v∗(μ)+O(wσ (μ)). Substitution
in (17) yields
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w = Π w(
u(w,μ), v(w,μ), w,μ

) = Ψ ∗(μ)w1−μ + h.o.t. (18)

The assumption Ψ (0) < 1 implies that Ψ (μ) < 1 for μ small and so there is a fixed point

w̄(μ) ≈ (
Ψ ∗(μ)

)1/μ
.

This proves that there is a flat branch of periodic trajectories. We claim that this branch is asymptoti-
cally stable. We will show that the magnitude of the real parts of the eigenvalues of the linearization
of Πμ about the fixed point are smaller than one. Compute

(
dΠ

d(u, v, w)

)∣∣∣∣
(ū,v̄,w̄)

=

⎛
⎜⎜⎝
O(Ψ ∗(μ)

σ(μ)
μ ) O(Ψ ∗(μ)

σ(μ)
μ ) O(Ψ ∗(μ)

σ(μ)−1
μ )

O(Ψ ∗(μ)
σ(μ)

μ ) O(Ψ ∗(μ)
σ(μ)

μ ) O(Ψ ∗(μ)
σ(μ)−1

μ )

O(Ψ ∗(μ)
1
μ −1

) O(Ψ ∗(μ)
1
μ −1

) 1 − μ

⎞
⎟⎟⎠ . (19)

Write (Dij) for the right-hand side and compute the characteristic polynomial k(λ,μ)

k(λ,μ) = D13

∣∣∣∣
(

D21 D22 − λ

D31 D32

)∣∣∣∣ − D23

∣∣∣∣
(

D11 − λ D12

D31 D32

)∣∣∣∣ + D33

∣∣∣∣
(

D11 − λ D12

D21 D22 − λ

)∣∣∣∣
=O(

Ψ ∗(μ)
σ−μ

μ
) + (1 − μ − λ)

(
λ2 +O(

Ψ ∗(μ)
σ
μ
))

= (1 − μ − λ)λ2 + h.o.t.

Note that the higher order terms are flat terms. Two eigenvalues will be close to zero for μ small by
continuity of solutions. Compute

d

dλ
k(λ,μ)|λ=1,μ=0 = −1.

By the implicit function theorem there is a smooth solution λ = λ(μ) with λ(0) = 1 that exists for μ
small. The derivative of k(λ(μ),μ) with respect to μ equals zero, i.e.

2λλ′(1 − μ − λ) + λ2(−1 − λ′) + h.o.t. = 0.

For μ = 0 this reduces to −1 − λ′(0) = 0 and thus λ′(0) = −1 from which it follows that the third
eigenvalue is smaller than 1 for μ > 0 small enough. This proves the claim that the trajectory is
asymptotically stable. In the case that Ψ (0) > 1 there is a fixed point for μ < 0. This point is repelling,
because for small enough initial values the w-coordinate of the first return map blows up. �
3. Simple homoclinic cycles of type C

We follow the setup of the previous section treating homoclinic cycles of type B. The vector field
can now not be reduced to a three-dimensional one. Consider the homoclinic cycle Γ of type C,
generated by a heteroclinic trajectory γ and a twist

h = A1
π/2,π/2 R (20)

as in Theorem 1. Note that h /∈ SO(4) and |Γ | = 4.
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3.1. Normal forms

Write the differential equation ẋ = f (x,μ) around p in local coordinates, cf. (5),

u̇ = λru + F u(u, v, w, z),

v̇ = λc v + F v(u, v, w, z),

ẇ = λe w + F w(u, v, w, z),

ż = λt z + F z(u, v, w, z). (21)

Proposition 9. The differential equations (21) are locally smoothly equivalent to differential equations of the
form

u̇ = λr(μ)u + P (u, v, w, z,μ),

v̇ = λc(μ)v + v w Q (u, v, w, z,μ) + zR(u, v, w, z,μ),

ẇ = λe(μ)w,

ż = λt(μ)z + zw S(u, v, w, z,μ), (22)

for smooth functions P , Q , R and S satisfying

P (x), Q (x), S(x) =O(∣∣(u, v, z)
∣∣).

In case λc � λt < 0, R(x) = O(|(u, v, z)|). In case λt < λc < 0, R(x) = O(|w|). The equations are G-
equivariant and smoothly dependent on the parameters.

Proof. As in the proof of Proposition 4, G-equivariance will follow since the coordinate changes can
be made to be G-equivariant. Recall that in the case of a robust homoclinic type C cycle there are
invariant subspaces Q = h−1 P + P = {z = 0} and the cycle does not entirely lie inside Q . After a
coordinate transformation which straightens the local stable and unstable manifolds we have the
invariant spaces {u = v = z = 0} and {w = 0} in addition to {w = z = 0}, {v = z = 0} and {z = 0}. By a
reparametrization of time we may assume that ẇ = ew . We can write the differential equations (21)
locally around p as

u̇ = λru + P̃ (u, v, w, z),

v̇ = λc v + v Q̃ (u, v, w, z) + zR̃(u, v, w, z),

ẇ = λe w,

ż = λt z + zS̃(u, v, w, z), (23)

where P̃ = O(|(u, v, z)|), Q̃ = O(|(u, v, w, z)|), R̃ = O(|(u, w, z)|) and S̃ = O(|(u, v, w, z)|). These
equations are smoothly dependent on the parameters.

As in the proof of Proposition 4 we apply the argument from Ovsyannikov and Shil’nikov [14]. We
start with coordinate changes that can be applied independent of the relative size of λt , λc . Consider
a change of coordinates

v̄ = v + p(w)v.
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We demonstrate that a smooth function p(w) can be found that removes terms v Q (0,0, w,0) from
the equation for v̇ . The differential equation for ˙̄v takes the form

˙̄v = v̇(1 + p) + v ṗ

= (
λc v + v Q̃ (u, v, w, z) + zR̃(u, v, w, z)

)
(1 + p) + v ṗ

= λc v̄ + v̄
(

Q̃
(
u, v̄/(1 + p), w, z

) + ṗ/(1 + p)
) + zR̃

(
u, v̄/(1 + p), w, z

)
.

Along the local stable manifold {u, v, z = 0} we demand the identity ṗ + (1 + p)Q̃ (0,0, w,0) = 0.
With an initial (polynomial) coordinate change that removes terms v w from the equation for v̇ ,
Q̃ (0,0, w,0) is a quadratic function. Thus p as a function of w is found as the local unstable manifold
of the system

ẇ = λe w,

ṗ = −(1 + p)Q̃ (0,0, w,0) = h.o.t.

Similar arguments remove terms v Q̃ (u, v,0, z) from the equation for v̇ , here one considers a coordi-
nate change of the form v̄ = v + p(u, v, z)v and obtains p from the local stable manifold of a system
of differential equations for u, v, z (along {w = 0}) and p. Likewise one removes terms zS̃(0,0, w,0)

and zS̃(u, v,0, z) from the equation for z. The identity P (0,0, w,0) = 0 is a consequence of the fact
that the local unstable manifold has been straightened.

We continue with an additional smooth coordinate change valid for λc � λt < 0, removing
zR̃(0,0, w,0) from the differential equation for v̇ . Consider for this the change of coordinates

v̄ = v + p(w)z.

Compute the differential equation for v̄:

˙̄v = v̇ + zṗ + żp

= λc v + v w Q (u, v, w, z) + zR̃(u, v, w, z) + zṗ + λt zp + zwpS(u, v, w, z)

= λc v̄ + v̄ w Q (u, v̄ − pz, w, z)

+ z
(
(λt − λc)p + R̃(u, v̄ − pz, w, z) + ṗ + wpS(u, v̄ − pz, w, z) − wp Q (u, v̄ − pz, w, z)

)
.

Along the local unstable manifold {u, v, z = 0} we require ṗ + (λt − λc)p + w Q (0,0,0, w) + pR̃(0,0,

0, w) − pw Q (0,0,0, w) = 0.
Note that terms zw from the equation for v̇ can be removed by a polynomial coordinate change

whenever λt + λe �= λc (which is guaranteed by λc � λt ). With an initial coordinate change that re-
moves terms zw from the equation for v̇ , we get ṗ = (λc − λt)p +O(|x|2). Since λc − λt � 0, p as a
smooth function of w is found as the local unstable manifold of the system of differential equations
for w and p,

ẇ = λe w,

ṗ = (λc − λt)p +O(|x|2).
The removal of the term zR̃(u, v,0, z) in case λt < λc proceeds similarly. �
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3.2. Asymptotic expansions

In this section we obtain asymptotic expressions for a first return map on a cross-section. Take a
cross-section, which by using rescaled coordinates we may assume to be near p,

Σ in = {∣∣(u, v)
∣∣ = 1; |w|, |z| � 1

}
.

Identifying Σ in with hΣ in through the twist map h, a “first return map” Π : Σ in �→ Σ in is obtained.
Recall the notation T = −λt/λe , C = −λc/λe .

Proposition 10. Assume normal form coordinates near p given by Proposition 9. Then Π : Σ in �→ Σ in has
asymptotic expansions

⎛
⎜⎜⎜⎝

u

v

w

z

⎞
⎟⎟⎟⎠

P�−→

⎛
⎜⎜⎜⎝

u∗ +O(wΩ)

v∗ +O(wΩ)

γ1zw−T +O(zw−T +Ω)

γ2 v wC +O(wC+Ω) +O(zw−T +Ω)

⎞
⎟⎟⎟⎠ ,

for some Ω > 0.

Remark 5. As in Remark 4 the existence of codimension one fixed point spaces implies, for a twist h
as in (20), that γ1 > 0 and γ2 > 0.

Consider trajectories from Σ in to Σout = {w = 1}, starting at a point x0 = (u0, v0, w0, z0). Write
τ = − 1

λe
ln w0 for the transition time. The solution for w is given by

w(t) = e−λe(τ−t). (24)

Lemma 11. There exists ω > 0 so that

u(τ ) =O(
e−ωτ

)
,

v(τ ) = v0eλct +O(
e(λc−ω)τ

) + z0O
(
e(λt−ω)τ

)
,

z(τ ) = z0eλtτ + z0O
(
e(λt−ω)τ

)
.

Here u, v, z depend smoothly on u0, v0, z0 and τ ; derivatives of the higher order terms yield terms of the same
order:

Dk
u0,v0,z0

Dl
τ u(τ ) =O(

e−ωτ
)
,

Dk
u0,v0,z0

Dl
τ v(τ ) =O(

eλcτ
) +O(

eλt t),
Dk

u0,v0,z0
Dl

τ z(τ ) =O(
eλtτ

)
.

Remark 6. Filling in τ = − 1
λe

ln w0, the expansions yield

u(τ ) =O(
w−ω/λe

0

)
,

v(τ ) = v0 w−λc/λe
0 +O(

w(−λc+ω)/λe
0

) + z0O
(

w(−λt+ω)/λe
0

)
,

z(τ ) = z0 w−λt/λe
0 + z0O

(
w(−λt+ω)/λe

0

)
.



Author's personal copy

R. Driesse, A.J. Homburg / J. Differential Equations 246 (2009) 2681–2705 2697

Proof. Consider a trajectory x(t) = (u(t), v(t), e−λe(τ−t), z(t)) for 0 � t � τ , with x(0) ∈ Σ in and
x(τ ) ∈ Σout. Note that u, v and z depend on t , τ , u0, v0 and z0. We suppress the dependence on
τ , u0, v0, z0 from the notation and write u(t), v(t), z(t). We write down expressions for u(t), v(t),
z(t), with 0 � t � τ , from the variation of constants formula:

u(t) = eλrt u0 +
t∫

0

eλr(t−s) P
(
x(s)

)
ds,

v(t) = eλct v0 +
t∫

0

eλc(t−s)[v(s)w(s)Q
(
x(s)

) + z(s)R
(
x(s)

)]
ds,

z(t) = eλt t z0 +
t∫

0

eλt (t−s)v(s)w(s)S
(
x(s)

)
ds.

The right-hand side defines a map S on a space of continuous functions (u, v, z) defined for
0 � t � τ . We first obtain exponential bounds for the solutions, before determining more precise
exponential expansions. We claim that for some ω > 0, 0 � t � τ ,

u(t) =O(
e−ωt),

v(t) =O(
eλct) + z0O

(
eλt t),

z(t) = z0O
(
eλt t).

This follows from the observation that S maps a space of functions with the prescribed exponential
bounds into itself. More in detail, write

Bω,λc ,λt
C = {

(u, v, w) : [0, τ ] → R
3
∣∣ ∣∣u(t)

∣∣ < Ce−ωt ,
∣∣v(t)

∣∣ < Ceλct + C z0eλt t,
∣∣z(t)∣∣ < C z0eλt t}.

Then, as direct estimates show, for 0 < ω < min{−λr,−λc,−λt} and large enough C > 0, S maps
Bω,λc ,λt

C into itself.
Further estimates bound the integrals in the variation of constants formulas:

τ∫
0

eλc(τ−s)v(s)w(s)Q
(
x(s)

)
ds =O(

e(λc−ω)τ
)
,

τ∫
0

eλc(τ−s)z(s)R
(
x(s)

)
ds = z0O

(
e(λt−ω)τ

)
,

τ∫
0

eλt (τ−s)v(s)w(s)S
(
x(s)

)
ds = z0O

(
e(λt−ω)τ

)
.

This proves the given expansions. It remains to consider estimates for derivatives of (u, v, w) with
respect to τ and the initial data u0, v0, z0. We claim that for some ω > 0, 0 � t � τ ,
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Dk
u0,v0,z0

u(t) =O(
e−ωt),

Dk
u0,v0,z0

v(t) =O(
eλct) +O(

eλt t),
Dk

u0,v0,z0
z(t) =O(

eλt t).
Derivatives are treated by differentiating the variation of constants formulas. In a similar way one
treats derivatives with respect to τ , providing bounds

Dk
u0,v0,z0

Dl
τ u(t) =O(

e−ωte−λe(τ−t)),
Dk

u0,v0,z0
Dl

τ v(t) =O(
eλcte−λe(τ−t)) +O(

eλt te−λe(τ−t)),
Dk

u0,v0,z0
Dl

τ z(t) =O(
eλt te−λe(τ−t))

and thus proving the statement if we fill in t = τ . �
Proposition 10 follows by composing the local and global transition maps.

3.3. Bifurcation analysis

Proposition 12. Assume we have a family of differential equations in R
4 depending smoothly on μ with ro-

bust homoclinic cycles Γ of type C which are stable for μ > 0 and unstable for μ < 0. Assume the unfolding
condition (4) and the nondegeneracy condition Φ = γ1(0)γ2(0)v∗(0) �= 1. If Φ < 1 then there exists an at-
tracting periodic trajectory close to the homoclinic cycle for μ > 0 small enough. If Φ > 1 then there exists a
repelling periodic trajectory for μ < 0 small enough.

Proof. By the unfolding condition (4), after a reparametrization we may assume C − T = 1 − μ for μ
close to zero. By the implicit function theorem we can find u and v as functions of w and z and then
the fixed point problem reduces to finding a solution of

w = γ1(μ)zw−T +O(
zw−T +Ω

)
,

z = γ2(μ)v∗(μ)wC +O(
wC+Ω

) +O(
zw−T +Ω

)
.

First we solve z in terms of w from the second equation

z = γ2(μ)v∗(μ)wC (
1 +O(

wΩ
))

and then put this into the first equation

w = γ1(μ)γ2(μ)v∗(μ)wC−T + h.o.t.

If γ1(0)γ2(0)v∗(0) < 1, there is a solution for μ > 0 small enough. We prove stability in the same
way as in Proposition 8. The fixed point is given by

(ū, v̄, w̄, z̄) ≈ (
u∗, v∗, B(μ)1/μ,γ2(μ)v∗(μ)B(μ)C/μ

)
,

where B(μ) = γ1(μ)γ2(μ)v∗(μ) < 1. From the linearization of the first return map about the fixed
point, compute that the characteristic polynomial is given by

k(λ,μ) = λ2(λ2 + T λ − C
) + h.o.t.,
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where the higher order terms are flat terms in μ. It follows by continuity of solutions of this equation
that there are two eigenvalues close to zero. The other two eigenvalues are close to the nonzero
solutions of k(λ,0) = 0. We solve

λ±(0) = −T ± √
T 2 + 4C

2
.

While C − T = 1 for μ = 0, λ+(0) = 1 and λ−(0) = −C . We assumed that T �= 0 and thus it follows
that |λ−(μ)| < 1 for μ small. We will now show that |λ+(μ)| < 1 for μ > 0 small enough. Compute

d

dλ
k(λ,μ)|λ=1,μ=0 = 2 + T > 1.

The implicit function theorem implies that we can express λ as a smooth function of μ for μ small
with λ(0) = 1. Derivation of k(λ,μ) = 0 with respect to μ in the point (λ,μ) = (1,0) yields

λ′(0) = C ′(0) − T ′(0)

4 + 3T (0) − 2C(0)
= −1

2 + T (0)
< −1

and thus |λ+(μ)| < 1 for μ small and positive. This concludes the proof that the periodic trajectory
is stable.

If γ1(0)γ2(0)v∗(0) > 1 and μ < 0 small enough there also exists a periodic trajectory. Note that
B(μ)1/μ is flat in μ < 0 for B(μ) > 1. It follows directly from the proof above that this periodic
trajectory is unstable. �
4. Simple homoclinic cycles of type A

Groups that admit homoclinic cycles of type A do not possess three-dimensional fixed point spaces.
As a consequence, an appropriate normal form near equilibria in homoclinic cycles of type A is more
sophisticated then near equilibria in homoclinic cycles of type B or C. The techniques used in the
derivation, and following that in the bifurcation analysis, are not different. We will therefore at some
points be brief and refer to similar computations in the earlier sections.

4.1. Normal forms

Write the differential equation near p, in coordinates (5), as

u̇ = λru + F u(u, v, w, z),

v̇ = λc v + F v(u, v, w, z),

ẇ = λe w + F w(u, v, w, z),

ż = λt z + F z(u, v, w, z). (25)

We consider a homoclinic cycle of type A. We will assume that we are close to the resonance
−λc = λe . In particular this assumption guarantees that

λt − λe < λc . (26)

This estimate will be assumed throughout this section.
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Proposition 13. For homoclinic cycles of type A the differential equations (25) are smoothly equivalent to
differential equations of the form

u̇ = λr(μ)u + P (u, v, w, z,μ),

v̇ = λc(μ)v + v w Q (u, v, w, z,μ) + zR(u, v, w, z,μ),

ẇ = λe(μ)w,

ż = λt(μ)z + zw S(u, v, w, z,μ) + v wT (u, v, w, z,μ),

for smooth functions P , Q , R, S, T satisfying

P (x), Q (x), S(x), T (x) =O(∣∣(u, v, z)
∣∣).

In case λc � λt < 0, R(x) =O(|(u, v, z)|). In case λt < λc < 0, R(x) =O(|w|). The differential equations are
G-equivariant and depend smoothly on μ.

Proof. Take coordinates in which local stable and unstable manifolds are linear. By a reparametriza-
tion of time we may assume that ẇ = λe w . From invariance of {w, z = 0}, {v, z = 0}, it follows that
the differential equations are given by a set of equations

u̇ = λru + P̃ (u, v, w, z),

v̇ = λc v + v Q̃ (u, v, w, z) + zR̃(u, v, w, z),

ẇ = λe w,

ż = λt z + zS̃(u, v, w, z) + v wT̃ (u, v, w, z).

The statements on P̃ , Q̃ , R̃, S̃ are proved as before. For the statement on T̃ consider a coordinate
change of the form z̄ = z + v w H(w). Then

˙̄z = ż + (λc + λe)v w H + v w Ḣ + h.o.t.

= λt z̄ + v w
(
T̃ + (λc + λe − λt)H + Ḣ

) + h.o.t.

Along the unstable manifold {(u, v, z) = 0}, we add to the differential equation ẇ = λe w the differ-
ential equation

Ḣ = (λt − λe − λc)H + T̃ (0,0, w,0).

Under the nonresonance condition λt − λe �= λc (which is met by (26)) terms v w from the equation
for ż can be removed. This guarantees T (0,0, w,0) =O(|w|). Note that λt − λe < λc . We therefore
obtain H as a smooth function of w as the unstable manifold. Finally, G-equivariance follows since
the coordinate changes can be made to be G-equivariant. �
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4.2. Asymptotic expansions

Lemma 14. Suppose λt < λc < 0. There exists ω > 0 and a smooth function φ(x0) so that

u(τ ) =O(
e−ωτ

)
,

v(τ ) = φ(x0)eλcτ +O(
e(λc−ω)τ

)
,

z(τ ) =O(
e(λc−ω)τ

)
.

Remark 7. Filling in τ = − 1
λe

ln w0, the expansions yield

u(τ ) =O(
wω/λe

0

)
,

v(τ ) = φ(x0)w−λc/λe
0 +O(

w(−λc+ω)/λe
0

)
,

z(τ ) =O(
w(−λc+ω)/λe

0

)
. (27)

Proof. The proof mostly follows the reasoning from earlier sections, details are left to the reader. We
consider exponential expansions for v(τ ). Following Deng [5], define

v̄(τ ) = v(τ )e−λcτ .

The lowest order term in the exponential expansion for v (the term φ(x0)e−λcτ in the statement of
the proposition) is obtained as the limit limτ→∞ v̄(τ ). For existence of this limit, consider

∂

∂τ
v̄(τ ) = e−λcτ F v(

x(τ )
) +

τ∫
0

e−λc s ∂

∂τ
F v(

v(s), w(s), e−λe(τ−s), z(s)
)

ds,

and recall that F v(x) = v wO(|(u, v)|) + zO(|(u, v, z)|). Straightforward estimates show that ∂
∂τ v̄(τ )

converges exponentially fast to 0, implying that limτ→∞ v̄(τ ) exists. Similarly one proves that the
limit depends smoothly on the initial conditions. �
Lemma 15. Suppose that λc � λt < 0. There is a smooth nonvanishing function φ(x0) and an ω > 0, so that

u(τ ) =O(
e−ωτ

)
,

v(τ ) = φ(x0)eλcτ + z0O
(
e(λt−ω)τ

) +O(
e(λc−ω)τ

)
,

z(τ ) = z0eλtτ + z0O
(
e(λt−ω)τ

) +O(
e(λc−ω)τ

)
.

Remark 8. Plugging in τ = − 1
λe

ln w0, the expansions read

u(τ ) =O(
wω/λe

0

)
,

v(τ ) = φ(x0)w−λc/λe
0 +O(

w(−λc+ω)/λe
0

) + z0O
(

w−(λt−ω)/λe
0

)
,

z(τ ) = z0 w−λt/λe
0 + z0O

(
w−(λt−ω)/λe

0

) +O(
w(−λc+ω)/λe

0

)
. (28)
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Proof. We write down expressions for a trajectory from the variation of constants formula for 0 �
t � τ and x(t) = (u(t), v(t), e−λe(τ−t), z(t)),

u(t) = eλrt u0 +
t∫

0

eλr(t−s) P
(
x(s)

)
ds,

v(t) = eλct v0 +
t∫

0

eλc(t−s)[v(s)w(s)Q
(
x(s)

) + z(s)R
(
x(s)

)]
ds,

z(t) = eλt t z0 +
t∫

0

eλt (t−s)[z(s)w(s)S
(
x(s)

) + v(s)w(s)T
(
x(s)

)]
ds.

The right-hand side defines a map S on a space of continuous functions (u, v, z) defined for 0 �
t � τ .

We first obtain exponential bounds for the solutions, before determining more precise exponential
expansions. We claim that for some ω > 0, 0 � t � τ ,

u(t) =O(
e−ωt),

v(t) =O(
eλct) + z0O

(
e(λt−ω)t),

z(t) =O(
e(λc−ω)t) + z0O

(
eλt t).

This follows from the observation that S maps a space of functions with the prescribed exponential
bounds into itself. A key estimate here uses

t∫
0

eλt (t−s)v(s)w(s)T
(
x(s)

)
ds =

t∫
0

e(λt−λe)(t−s)e−λe(τ−t)v(s)T
(
x(s)

)
ds

and λt − λe < λc . Similarly one shows for derivatives

Dk
u0,v0,z0

u(t) =O(
e−ωt),

Dk
u0,v0,z0

v(t) =O(
eλct) +O(

e(λt−ω)t),
Dk

u0,v0,z0
z(t) =O(

e(λc−ω)t) +O(
eλt t)

and

Dk
u0,v0,z0

Dl
τ u(t) =O(

e−ωteλe(t−τ )
)
,

Dk
u0,v0,z0

Dl
τ v(t) =O(

eλcteλe(t−τ )
) + z0O

(
eλt teλe(t−τ )

)
,

Dk
u0,v0,z0

Dl
τ z(t) = z0O

(
eλt teλe(t−τ )

)
.

To derive an exponential expansion for v(τ ) (i.e. to compute the function φ(x0)), consider

v̄(τ ) = v(τ )e−λcτ .

Compute
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∂

∂τ
v̄(τ ) = e−λcτ v(τ )w(τ )Q

(
x(τ )

) + e−λcτ z(τ )R
(
x(τ )

)

+
τ∫

0

e−λc s ∂

∂τ

(
v(s)w(s)Q

(
u(s), v(s), e−λe(τ−s), z(s)

))
ds

+
τ∫

0

e−λc s ∂

∂τ

(
z(s)R

(
u(s), v(s), e−λe(τ−s), z(s)

))
ds.

Straightforward estimates show that ∂
∂τ v̄(τ ) converges exponentially fast to 0 as τ → ∞, implying

that limτ→∞ v̄(τ ) exists. Formulas for derivatives are obtained by taking derivatives of the equations
obtained from the variation of constants formula. This shows that limτ→∞ v̄(τ ) is a smooth function
of the initial conditions and the parameters. As φ(x0) is within order δ of 1, it is a nonvanishing
function. A straightforward estimate shows

t∫
0

eλt (t−s)[v(s)w(s)S
(
x(s)

) + v(s)w(s)T
(
x(s)

)]
ds = z0O

(
e(λt−ω)τ

) +O(
e(λc−ω)τ

)
,

providing the expansion for z(τ ). �
4.3. Bifurcation analysis

Write x∗ for the point of intersection of Γ with Σ , at μ = 0.

Proposition 16. Assume we have a family of differential equations in R
4 depending smoothly on μ with

robust homoclinic cycles Γ of type A which are stable for μ > 0 and unstable for μ < 0. Assume the unfolding
condition (4) and the nondegeneracy condition Φ = γ1(0)φ(x∗) �= 1. If Φ < 1, then there exists an attracting
periodic trajectory close to the homoclinic cycle for μ > 0 small enough. If Φ > 1, then there exists a repelling
periodic trajectory for μ < 0 small enough.

Proof. Again we assume that we have a family of differential equations depending on μ for which
there is a homoclinic cycle Γ of type C. We assume that it is stable for μ > 0 and unstable for μ < 0.
After a reparametrization C = 1 − μ for μ close to zero.

We can use the normal form from Proposition 13. Depending on the relative magnitude of λc
and λt we can then write the local transition map as (27) or (28). By the implicit function the-
orem we can write the (u, v) coordinates of the fixed point of the first return map as (u, v) =
(u∗ + O(wΩ), v∗ + O(wΩ)). First we consider the case where λt < λc . Using the expressions for
u and v the fixed point satisfies

w = γ1φ(x)wC + h.o.t.,

z = γ2φ(x)wC + h.o.t. (29)

We solve w̄ and z̄ from these equations, i.e.

w̄ ≈ B(μ)1/μ, (30)

z̄ ≈ γ2φ
(
x∗)B(μ)C /μ, (31)

where B(μ) = γ1φ(x∗,μ). From the linearization of the first return map about the fixed point, com-
pute that the characteristic polynomial is given by
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k(λ,μ) = −λ3(C − λ) + h.o.t.,

where the higher order terms are flat in μ. By continuity it follows that there are three eigenvalues
close to zero for μ small enough. The fourth eigenvalue is approximately 1 and we must show that it
is smaller than 1 for μ > 0. Compute therefore

d

dλ
k(λ,μ)|λ=1,μ=0 = 4 − 3C(0) = 1.

By the implicit function theorem we can express λ as a smooth function of μ with λ(0) = 1 for
μ small. Taking the derivative at both sides of the equation k(λ(μ),μ) = 0 with respect to μ yields:

4λ3λ′ − 3Cλ2λ′ − C ′λ3 = 0.

When μ = 0 we find λ′(0) = −1 and thus for μ small and positive, λ(μ) < 1. So the periodic trajec-
tory is asymptotically stable for μ small enough. For γ1(0)φ(x̄,0) > 1 we can find a fixed point for
μ < 0 which by the reasoning above is repelling.

In the case λt � λc it follows that the fixed point satisfies

w = γ1φ(x)wC + β1zw−T + h.o.t.,

z = γ2φ(x)wC + β2zw−T + h.o.t.

If we solve w̄ and z̄ from these equations it follows that they are also given by expressions of the
form (31). Further analysis shows that also the characteristic equation is of the same form and thus
all results for λt < λc also apply for λt � λc . �
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