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Abstract. We discuss iterates of random circle diffeomorphisms with identi-
cally distributed noise, where the noise is bounded and absolutely continuous.
Using arguments of B. Deroin, V.A. Kleptsyn and A. Navas, we provide precise
conditions under which random attracting fixed points or random attracting
periodic orbits exist. Bifurcations leading to an explosion of the support of
a stationary measure from a union of intervals to the circle are treated. We
show that this typically involves a transition from a unique random attracting
periodic orbit to a unique random attracting fixed point.

1. Introduction. We study bifurcations of randomly perturbed diffeomorphisms
on the circle. The randomness of the diffeomorphisms x 7→ fω(x) is expressed
through the dependence on a parameter ω chosen independently from an absolutely
continuous distribution ν on a compact interval Ω. Bifurcations are studied in the
context of families fa;ω of random diffeomorphisms parameterized by a deterministic
parameter a.

Iterates of a random diffeomorphism fω can be studied with time either in N or
Z. With one sided time in N it is natural to consider the discrete Markov process
defined by the random diffeomorphisms. In this context it makes sense to study
bifurcations of stationary measures [28]. A particularly interesting bifurcation from
this perspective is the explosion of the support of a stationary measure. In families
fa;ω of random circle diffeomorphisms the following scenario occurs:

• for a smaller than a bifurcation value a0, fa;ω admits a stationary measure
supported on q disjoint intervals that are mapped cyclically under iteration
of fa;ω,

• for a > a0, fa;ω admits a single stationary measure supported on all of S
1.

A description with two sided time in Z is better suited for a study of dynamical
properties like the occurrence of random attracting periodic orbits. The explosion
of stationary measures typically manifests itself in the following scenario:

• for a < a0 there is a single random attracting periodic orbit of period q,
• for a > a0 there is a single random attracting fixed point.
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It is the purpose of this paper to make precise and prove this scenario.
Let us present the set-up. We consider random diffeomorphisms fω : S1 → S1,

depending on a random parameter ω from an interval Ω (without loss of generality,
we may take Ω = [−1, 1]) drawn from a measure ν with density function g. We
assume sufficient regularity:

(x, ω) 7→ fω(x) ∈ C∞(Ω × S
1, S1) (1)

and

g ∈ C∞(Ω) (2)

(differentiability on Ω is always understood in the sense of differentiability on an
open neighborhood of Ω). Note that uniform bounded noise gives g = 1

2 in C∞(Ω).
At various places in the manuscript we can do with less regularity, and it is often
straightforward to adapt results correspondingly. For instance arguments as in § 4
on random fixed points work for random homeomorphisms. It is however interesting
to observe the consequences of regularity assumptions of the noise distribution on
the dynamics. Finally, we assume that

ω 7→ fω(x) is an injective map for each x. (3)

This condition occurs naturally in the context of representations of Markov pro-
cesses, see [28].

Write R∞(S1) for the space of random diffeomorphisms x 7→ fω(x) on S1, de-
pending on a random parameter ω ∈ Ω drawn from the fixed distribution ν, with
fω(x) smooth jointly in (x, ω). Iterates of fω are written as

fk
ω1,...,ωk

(x) = fωk
(fk−1

ω1,...,ωk−1
(x)),

for k > 0. More generally, write ΩZ for all infinite sequences ω = {ωi}i∈Z with each
ωi ∈ Ω. Denote fk

ω
(x) = fk

ω1,...,ωk
(x). Let ϑ : ΩZ → ΩZ be the left shift operator;

ϑ{ωi}i∈Z = {ωi+1}i∈Z and define the skew product system S : ΩZ × S1 → ΩZ × S1

by

S(ω, x) = (ϑω, fω0
(x)). (4)

On ΩZ one considers a measure ν∞ which is the product of the measure ν over each
Ω. Restricting time to N yields the left shift operator ϑ+ : ΩN → ΩN and the skew
product system S+ : ΩN × S1 → ΩN × S1. Write ν∞

+ for the measure on ΩN induced
by ν.

A stationary measure m for the smooth random diffeomorphism f is a probability
measure on S1 for which µ+ = ν∞

+ × m is an S+-invariant measure. Equivalently,
see [18, 2],

m(A) =

∫

Ω

(fω)
∗
m(A)dν(ω)

for Borel sets A ⊂ S1. A random circle diffeomorphism in R∞(S1) admits finitely
many stationary measures [8]. In § 3 we collect some facts on stationary measures
and invariant measures for the skew product systems with one and two sided time.

A random fixed point is a measurable map X : ΩZ → S1 providing an invariant
graph

S(ω, X(ω)) = (ϑω, X(ϑ(ω)))

for ν∞-almost all ω ∈ ΩZ. A random periodic orbit of period q is likewise an
invariant set with cardinality q in fibers {ω}×S1 for ν∞ almost every ω, see [21] for
this notion and more restrictive variants. A random fixed point X(ω) is attracting
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if for a set of initial conditions (ω, x0) ∈ ΩZ × S1 with positive ν∞ × λ-measure
(here λ is Lebesgue measure),

lim
n→∞

d (fn
ω
(x0), f

n
ω
(X(ω))) = 0 (5)

(d being the distance on the circle). Similarly for random periodic orbits ∪k
i=1X

i(ω),

lim
n→∞

d
(

fn
ω
(x0), f

n
ω
(∪k

i=1X
i(ω))

)

= 0. (6)

In the cases we consider, there is a single random attracting and a single random
repelling fixed or periodic orbit, while every point away from the random repelling
orbit converges to the the random attracting orbit.

Results by Y. Le Jan [22] imply the existence of a random attracting periodic
orbit of unspecified period for a class of randomly perturbed circle diffeomorphisms
acting transitively on the circle (with an exceptional case in which an absolutely
continuous measure is invariant under each diffeomorphism fω, ω ∈ Ω). The exis-
tence of a random attracting fixed point for a class of transitively acting iterated
function systems on the circle was obtained earlier by V.A. Antonov [1]. In § 4
a precise result is presented (see Theorems 4.2 and 4.5) determining in particular
the period of the random attracting periodic orbit. Main parts of this result, in
slightly different contexts, are contained in the just mentioned reference [1] and
[17, 19, 7]. We follow arguments from [7] where random fixed points for certain
iterated function systems on the circle are treated. In § 5 we extend the results
to families of random diffeomorphisms, depending on a deterministic parameter,
discussing the bifurcation from a random period q orbit to a random fixed point.
This is the typical bifurcation that appears in an explosion of the support of the
stationary measure from q intervals to the circle.

2. Random standard circle maps. To illustrate the issues considered in this
paper, we present some numerical computations involving the standard circle map
with additive noise. The standard circle map acting on x ∈ S1 = R/Z and depending
on parameters a, ε is given by

sa(x) = x + a +
ε

2π
sin(2πx) mod 1.

Consider sa for a fixed value of ε ∈ (0, 1) for which sa is a diffeomorphism. With
uniform noise added, we get

sa;ω(x) = x +
ε

2π
sin(2πx) + a + σω mod 1 (7)

for x ∈ S1 and a random parameter ω chosen from a uniform distribution on Ω =
[−1, 1]. The value of σ determines the amplitude of the noise; we take it fixed.

It is well known that random circle diffeomorphism have finitely many stationary
measures with mutually disjoint support on intervals or the circle. Considering
the action of the transfer operator on the space of smooth densities, one checks
smoothness of densities of stationary measures [28].

Proposition 2.1. A random circle diffeomorphism fω has finitely many stationary
measures. The support E of a stationary measure m consists either of q mutually
disjoint intervals, or the circle S1. The density function φ of m is in C∞(S1).

The randomly perturbed standard circle diffeomorphism has a unique stationary
measure [28]. For families of random circle diffeomorphisms with unique stationary
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Figure 1. Numerically computed stationary densities of the ran-
dom standard circle map (drawn are positive values of the density
functions S

1 → [0,∞)). On the left for |a| + σ < ε/2π, supported
on an interval. On the right for |a| + σ > ε/2π, with the circle as
support.

measures, such as the random standard circle diffeomorphism, the stationary den-
sities are smooth functions that depend smoothly on the parameter as well. This is
shown by an application of the implicit function theorem [28].

Proposition 2.2. Let fa;ω be a family of random circle diffeomorphisms with a
unique stationary measure ma for each value of a. The support of ma consists
either of q mutually disjoint intervals, or the circle S

1. The density function φa of
ma is in C∞(S1) and depends C∞ on a.

Observe that the deterministic standard circle diffeomorphism sa has a hyperbolic
fixed point for a ∈ (− ε

2π
, ε

2π
). Hence, sa;ω has a stationary measure supported on

a single interval precisely if both a − σ > − ε
2π

and a + σ < ε
2π

. This occurs for a
nonempty interval of values for a if σ < ε

2π
.

Figure 2. The function a 7→ ρa. On the left the devil’s staircase;
the rotation number of the deterministic standard family. On the
right the rotation number of the random standard family.

Central in the study of deterministic circle diffeomorphisms is the notion of ro-
tation number, see e.g. [6]. Given fa;ω ∈ R∞(S1), write Fa;ω : R → R for its lift.
We define the rotation number of fa;ω, when it exists, by

ρa;ω(x) = lim
k→∞

F k
a;ω(x) − x

k
(8)
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(see [25]). The rotation number measures the average rotation per iterate of the
circle diffeomorphisms. Note that ρa;ω is a random variable, depending also on the
starting point x. By Birkhoff’s ergodic theorem and Proposition 2.2, we get that
the rotation number is a smooth function of the parameter.

Proposition 2.3. For fixed a, the rotation number ρa;ω exists for ν∞

+ almost all
ω and is a constant ρa independent of x and ω. For a family of random circle
diffeomorphisms fa;ω with a unique stationary measure ma for each value of a,
a 7→ ρa is C∞.

The rotation number is constant in a when the support of the stationary measure
is not the circle but a union of intervals; in Figure 2 this is visible for the standard
circle diffeomorphisms. The rotation number is a flat function of a at values ρa = 0
and ρa = 1/2. Bifurcations of the stationary measure (discontinuous changes of the
support) occur at the end values of these intervals.

3. Invariant and stationary measures. A stationary measure gives rise to an
invariant measure for the skew product system S. The following results discuss this
relation and properties of the invariant measure.

Proposition 3.1. Let m be a stationary measure for the random diffeomorphism
fω. Then there exists a measurable map L : ΩZ → M(S1) (the space of probability
measures on S1), such that

(

fn
ω−n,...,ω−1

)

∗

m → L(ω)

in the weak-∗ topology as n → ∞, ν+-almost surely. The measure µ on ΩZ × S1

with marginal ν∞ and disintegration µω = L(ω) is an S-invariant measure.

Proof. See [10, Theorem 7.5], [22, Lemme 1] or [3, Theorem 1.7.2].

Recall that µ is mixing if

lim
n→∞

µ(S−n(V ) ∩ W ) = µ(V )µ(W )

(similarly for µ+ = ν∞

+ ×m and S+), see e.g. [27]. A stationary measure m for the
discrete Markov process is called mixing if the averaged correlations decay to zero:

lim
n→∞

∫

Ωn

m(
(

fn
ω1,...,ωn

)−1
(A) ∩ B)dν(ω1) · · · dν(ωn) = m(A)m(B). (9)

Proposition 3.2. Suppose m is a unique stationary measure. The measures µ+,
µ are ergodic. If the support of the stationary measure m is connected, then the
stationary measure m is mixing and the invariant measures µ+, µ are mixing.

Proof. We will establish equivalence between the different mixing properties of the
stationary measure m for the Markov process and the measures µ+, µ for the skew
product systems with one or two sided time. That is, the following statements are
equivalent.

(a) limn→∞

∫

Ωn m(
(

fn
ω1,...,ωn

)−1
(A)∩B)dν(ω1) · · · dν(ωn) = m(A)m(B) for Borel

sets A, B ⊂ S1.
(b) limn→∞ µ(S−n

+ (V ) ∩ W ) = µ+(V )µ+(W ) for Borel sets V, W ⊂ ΩN × S1.

(c) limn→∞ µ(S−n(V ) ∩ W ) = µ(V )µ(W ) for Borel sets V, W ⊂ ΩZ × S1.
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The proposition follows since, in our context with a unique stationary measure, the
stationary measure is ergodic and mixing in case its support is connected [8, 28].

To prove that (a) implies (b), it suffices to consider product sets V = A1 × B1,
W = A2 × B2 (compare [27, Theorem 1.17]). We have

µ+(S−n(V )) = µ+





⋃

ω1,...,ωn∈Ω

{(ω1, . . . , ωn)} × A1 ×
(

fn
ω1,...,ωn

)−1
(B1)



 .

Hence

ν∞

+ × m(S−n(V ) ∩ W )

= ν∞

+ (ϑ−n(A1) ∩ A2)

∫

Ωn

m
(

(

fn
ω1,...,ωn

)−1
(B1) ∩ B2

)

dν(ω1) · · · dν(ωn)

→ ν∞

+ (A1)ν
∞

+ (A2)m(B1)m(B2)

= ν∞

+ × m(V )ν∞

+ × m(W ),

as n → ∞. That (b) implies (a) follows from the above computation with the fact
that ν∞

+ is mixing and µ+ is mixing.
For the equivalence of (b) and (c) we note that the skew product S with the

invariant measure µ is the natural extension of S+ with the invariant measure
µ+ = ν∞

+ × m [3, Appendix A]. A natural extension inherits ergodicity and mixing
properties. Clearly (c) implies (b) as the system with time N is a factor of the
system with time Z. To see that (b) implies (c), we need to show

lim
n→∞

µ(S−n(V ) ∩ W ) = µ(V )µ(W ), (10)

for Borel sets V, W in ΩZ × S1. Write O1, O2 for the coordinate projections of V, W
onto ΩZ. For ε > 0, take two sets V ′, W ′ with µ(V △ V ′) < ε and µ(W △W ′) < ε,
such that the coordinate projections O′

1, O
′

2 ⊂ ΩZ are cylinder sets. Then for some
n > 0, ϑ−n(O′

1) defines a cylinder set in ΩN. By the mixing property of µ+, (10)
holds for V ′, W ′. By approximation it is true for all Borel sets.

The disintegrations µω are called fiber mixing if

lim
n→∞

µω(
(

fn
ω1,...,ωn

)−1
(A) ∩ B) = µϑnω(A)µω(B), (11)

see [4]. Even when µ is mixing, the µω’s need not be fiber mixing. This follows
from Theorem 4.2; random circle diffeomorphisms that are equivariant under the
action of a cyclic group can be expected to have multiple random attracting fixed
points in each fiber.

4. Random periodic and fixed points. In this section we consider dynamics of
skew product systems S : ΩZ × S1 defined by random circle diffeomorphisms fω.
Initially we work under the assumption of a stationary measure m whose support
equals S1, so that m is equivalent to Lebesgue measure λ. Note that this occurs
if one of the diffeomorphisms fω, ω ∈ Ω, has irrational rotation number. Recall
that Proposition 3.1 constructs the invariant measure µ, with disintegrations µω,
for the skew product system S on ΩZ × S1. Theorem 4.2 below gives a precise
characterization of µω. Theorem 4.5 similarly treats random circle diffeomorphisms
fω for which the stationary measure is supported on a union of intervals.

Although we state the results in the context of random diffeomorphisms, dif-
ferentiability of fω is not used in the proof; one only needs to assume that fω are
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homeomorphisms depending continuously on ω and the existence of stationary mea-
sures equivalent to Lebesgue for the semigroups generated by the maps fω and the
maps f−1

ω . The proof owes much to arguments in [7, Proposition 5.7], where ran-
dom fixed points for a class of iterated function systems of circle homeomorphisms
are considered. References [1, 22, 17, 19, 20] contain earlier results with a similar
flavor. It is interesting to compare the result with characterizations for groups of
homeomorphisms, as in [11, 23, 14].

Skew products with different dynamics in the base have also been frequently
studied. See [12], compare also [13], for skew products over horseshoes, generalizing
iterated function systems. For a result on random fixed points in skew products over
a hyperbolic torus automorphism, see [24]. In the context of circle diffeomorphisms
or homeomorphisms with quasiperiodic forcing (giving rise to skew product systems
with a minimal system in the base), invariant measures and invariant graphs have
been studied by many authors starting from [9], see e.g. [5, 26, 15, 16].

Definition 4.1. Consider one of the following properties, where the second property
is the opposite of the first and the third property is a special stronger case of the
second property.

1. The random diffeomorphisms are equicontinuous: for each ε > 0, there exists
δ > 0 so that for all ω ∈ ΩN and each interval I ⊂ S1 with λ(I) < δ, we have
(fn

ω
)
∗
λ(I) < ε for all n ∈ N.

2. The random diffeomorphisms are contractive: there exists ε0 > 0 so that for
all δ > 0, there is ω ∈ ΩN and an interval I ⊂ S1 with λ(I) < δ so that
(fn

ω
)∗λ(I) > ε0 for some n ≥ 0.

3. The random diffeomorphisms are strongly contractive: for all ε > 0, δ > 0,
there is ω ∈ ΩN and an interval I ⊂ S1 with λ(I) < δ so that (fn

ω
)∗λ(I) > 1−ε

for some n ≥ 0.

The next result gives precise conditions for the existence of random attracting
fixed points, and shows in particular that unique random attracting fixed points are
a common feature in random circle diffeomorphisms.

Theorem 4.2. Consider random circle diffeomorphisms for which supp(m) = S1.
Exactly one of the following possibilities occurs:

1. The random diffeomorphisms are equicontinuous. The stationary measure m
is invariant under each fω.

2. The random diffeomorphisms are contractive but not strongly contractive. Then
there exists a smooth nontrivial periodic diffeomorphism θ, θk = id, on S

1

that commutes with every fω. Moreover, for almost all ω, µω is a union
1
k

∑k

i=1 δXi(ω) of k delta-measures of mass 1/k.
3. The random diffeomorphisms are strongly contractive and µω is a delta-measure

δX(ω) for almost all ω.

A contractive random diffeomorphism has a unique random attracting set and a
unique random repelling set both consisting of k points (k = 1 for a strongly con-
tractive random diffeomorphism).

Proof. We begin the proof with a separate lemma.

Lemma 4.3. Assume the random diffeomorphisms are contractive. Then there
exists 0 < ε0 < 1, so that for all ε > 0 the following holds: for almost all ω ∈ ΩZ,

there is an interval I with |I| < ε so that
(

f j
ω−j,...,ω−1

)

∗

m(I) > ε0 for some j.
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Proof. Take ε > 0. We provide δ > 0, l ∈ N, 0 < ε0 < 1, so that the follow-
ing holds. For each ω−n, . . . , ω−1 ∈ Ωn we construct an interval I with length

|I| < ε and a subset Σ ⊂ Ωl′ for some l′ ≤ l with νl′(Σ) > δ, so that for each
(ω−n−l′ , . . . , ω−n−1) ∈ Σ,

(

fn+l′

ω
−n−l′ ,...,ω−1

)

∗

m(I) > ε0.

The lemma will be shown to follow from this.
Take q > 1/ε and an orbit piece ai = f i

η
(a0), 0 ≤ i < q, consisting of q different

points. Take an open interval U containing a0 so that Ui = f i
η
(U), 0 ≤ i < q, are

mutually disjoint. By Definition 4.1(2) and supp(m) = S1, there exists an interval
V with m(V ) > ε0 for some positive ε0 and (β1, . . . , βj) ∈ Ωj , so that

f j
β1,...,βj

(V ) ⊂ U. (12)

There is further 0 ≤ i∗ < q with
∣

∣

∣fn
ω−n,...,ω−1

(Ui∗)
∣

∣

∣ < ε. (13)

This is clear as the q disjoint intervals fn
ω−n,...,ω−1

(Ui), 0 ≤ i < q, can not all have

length ≥ ε by q > 1/ε.
Write

I = fn
ω−n,...,ω−1

(Ui∗).

Define (ω−n−l′ , . . . , ω−n−1) as the sequence consisting of β1, . . . , βj followed by
η1, . . . , ηi∗ . Then

(

fn+l′

ω
−n−l′ ,...,ω−1

)

∗

m(I) =
(

fn
ω−n,...,ω−1

◦ f i∗+j
ω

−n−l′ ,...,ω−n−1

)

∗

m(I)

= m

(

(

f j
β1,...,βj

)−1

(U)

)

≥ m(V ) > ε0. (14)

Note that i∗ depends on ω−n, . . . , ω−1. By the continuous dependence of fω on
ω, there is for each i∗ an open set of sequences ω−n−l′ , . . . , ω−n−1 in Ωi∗+j for which
(14) holds. Let δ be the minimum of the measures of the sets of sequences in Ωi∗+j

thus constructed. Define

∆N = {ω ∈ ΩZ | for each interval I with |I| < ε and each i ≤ N,
(

f i
ω−i,...,ω−1

)

∗

m(I) ≤ ε0}.

It follows from the above that ν∞(∆tl) ≤ (1 − δ)t. Thus ν∞(∆) = 0, where

∆ = {ω ∈ ΩZ | for each interval I with |I| < ε and each i,
(

f i
ω−i,...,ω−1

)

∗

m(I) ≤ ε0}.

This proves the lemma.

Now let ε in the statement of the lemma go to 0. Then j in the lemma goes to
∞ and by Proposition 3.1, µω contains a union of delta measures. As the set of
points with positive measure (or with measure lying in some interval) in the fiber
is invariant under S, by ergodicity (recall Proposition 3.2) we can write

µω =
1

k

k
∑

i=1

δxi(ω)

as a sum of delta measures at points xi(ω) with mass 1/k each (for some k ≤ 1).
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We continue by showing that k > 1 occurs only if there is a nontrivial periodic
diffeomorphism that commutes with each fω. If J is a small interval around xi(ω),
disjoint from xj(ω) for j 6= i, then from Proposition 3.1 one deduces that m(f−n

ω
(J))

converges to 1/k as n → ∞. Consider the skew product system S−(ω, x) =
(ϑ−1

ω, (fω)−1(x)) on Ω−N ×S1. Write ν∞

−
for the product measure on Ω−N. There

is an invariant measure ν∞

−
×m− for S−. As this invariant measure for S− is mixing

and m− is equivalent to Lebesgue measure, S−(ω, x) has a dense forward orbit for
ν∞

−
× λ almost every point (ω, x). Then also for almost all fibers {ω} × S1, the

forward orbit of all points from these fibers under S− is dense. We may therefore
assume that this holds for the boundary points of f−n

ω
(J). Define θ : S1 → S1 by

θ(x) = y with m(x, y) = 1/k. Smoothness of the density function of m implies that
θ is a diffeomorphism. We claim that θ commutes with each fω. Writing J = (q, p)
and (q−n, p−n) = f−n

ω
(J), if q−n converges to x then p−n converges to θ(x). If θ

does not commute with some fω, then by continuity θfω(x) 6= fωθ(x) for (ω, x)
from some open set U in ΩZ × S

1. There are arbitrary large values of n for which
(f−n

ω
(x), ϑ−n

ω) lies in U . Proposition 3.1 however implies that fω−n
◦ θ(q−n) is

close to θ ◦ fω−n
(q−n) for n large, leading to a contradiction. Note that by divid-

ing out the action of θ, one obtains a random diffeomorphism that acts strongly
contractive.

Next we show, following [19], that ∪k
i=1X

i(ω) yields an attractor in the sense (6).
Suppose for simplicity that the random diffeomorphism acts strongly contractive.
By the same construction a random point measure at Y 1(ω) for the inverse maps
is obtained. Thus for almost all ω one has for y, z 6= Y 1(ω),

|f i
ω
(y) − f i

ω
(z)| → 0

as i → ∞. The distribution of the points Y 1(ω) is absolutely continuous. Also
X i(ω) and Y i(ω) are independent; X i(ω) depends only on the past of ω while
Y i(ω) depends only on the future of ω. Therefore Y 1(ω) 6= X1(ω) for almost all
ω. It follows that for almost all points x0, fn

ω
(x0) converges to one of the points

X i(ϑn
ω).

Finally, statement (i) is proved in [7, Lemme 5.4]. Here the existence of a measure
invariant under each fω is proved. This measure equals the stationary measure.

The random attracting fixed points form a dense subset of ΩZ × S1.

Lemma 4.4. Suppose supp(m) = S1. For almost all ω ∈ ΩZ, the orbit of (ω, X i(ω))
under S lies dense in ΩZ × S1.

Proof. The statement is a consequence of the following observation: the set of points
(ω, x) ∈ ΩZ × S1 with dense orbits under the action of the skew product S, has full
ν∞ × λ-measure.

For this, recall first that with one sided time, S+ has a mixing invariant measure
ν∞

+ ×m. Hence, ν∞

+ ×m almost every point has a dense forward orbit. Note that m
is equivalent to Lebesgue measure, so that ν∞

+ × λ almost every point has a dense
forward orbit under S+.

One can likewise consider the one sided time skew product defined by iterating
the inverse diffeomorphisms f−1

ω , for which the same statement holds.
Together this implies the observation and thus the lemma.

If the support of the stationary measure is not the entire circle, it consists of a
finite union of intervals E.
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Theorem 4.5. Consider a random diffeomorphism fω in Rk(S1), with a stationary
measure m supported on a union E of q closed intervals. For almost all ω, µω is a
union 1

q

∑q

i=1 δXi(ω) of q delta measures of mass 1/q, with one point in each interval

in E. The orbit of the points X i(ω) give a random attracting periodic orbit.

Proof. The type of argument used to prove Theorem 4.2 can be applied to show
the existence of a random point measure 1

q

∑q

i=1 δ(X i(ω)), with one point in each

connected component of E. The existence of a random point measure follows alter-
natively by reasoning as in [3, Theorem 1.8.4 (iv)].

To show that ∪q
i=1X

i(ω) is a random attractor in the sense of (6), we consider
the reasoning used for Theorem 4.2. Assume for simplicity that m is a unique
stationary measure and that the inverse diffeomorphisms have a unique stationary
measure supported on q intervals F . The inverse circle diffeomorphisms give rise
to a random point measure 1

q

∑q

i=1 δ(Y i(ω)), with one point in each connected

component of F .
Suppose for the sake of argument that q = 1. The reasoning in the proof of

Theorem 4.2 shows that
(

fn
ϑ−nω

)

∗
m has a subsequence converging to δX(ω). As

Proposition 3.1 gives convergence,
(

fn
ϑ−nω

)

∗
m converges to δX(ω). In fact, the

reasoning shows that fn
ϑ−nω

maps E into a small interval. Convergence therefore
holds with m replaced by any measure supported on E. Each point outside of F
eventually falls into E under iterates of the random diffeomorphism. Note that there
is a composition f r

ν1,...,νr
whose iterates map almost all points from F outside of F

and into E. This implies, again following the argument in the proof of Theorem 4.2,
that for any ε > 0 there is an interval V of size at least 1 − ε and an iterate fn

ϑ−nω

mapping V into an interval of size at most ε. From the invariance of E, this in
turn implies that

(

fn
ϑ−nω

)

∗
λ converges to δX(ω) as n → ∞. The argument is now

finished as for Theorem 4.2; q > 1 is treated with obvious modifications.

We remark that in case the diffeomorphisms fk
ω1,...,ωk

act by a contraction on E,
the random periodic points form a continuous graph as a graph transform technique
proves. Note further that V. Araújo [2] proves in a more general framework that
random repelling sets have zero ν∞

+ × λ measure.
The typical situation for random circle diffeomorphisms with a stationary mea-

sure equivalent to Lebesgue measure is to possess a unique random attracting and
a unique random repelling fixed point. The next lemma emphasizes this property.
It illustrates how Hypothesis 4.1(iii) is satisfied.

Lemma 4.6. For a generic random diffeomorphism f such that the rotation num-
bers ρ(f−1) and ρ(f1) are different, there exists a map fn

ω1,...,ωn
with precisely one

hyperbolic attracting and one hyperbolic repelling fixed point.

Proof. We can take ν1, ν2 ∈ Ω such that fν1
has rational rotation number, say

p/q, and fν2
has irrational rotation number. By the genericity assumption, we may

assume that f q
ν1

has a finite number of fixed points, all hyperbolic. In the coordinate
in [0, 1) on the circle, write a1, . . . , am for the attracting fixed points, in order of
increasing angle on the circle. We take indices mod m, so that am+1 = a1. Write
r1, . . . , rm for the repelling fixed points with ri ∈ [ai, ai+1]. Generically the distances
between neighboring attracting fixed points ai, ai+1 are different for different i. We
assume this to be the case. Similarly we assume that the distances between repelling
fixed points are all different. By relabeling the fixed points we may assume that the
minimal distance between ai and ri is assumed for i = 1. Finally, by [6, Theorem
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6.1] we may assume that fν2
is a rotation x 7→ x + θ (note that this assumes a

diophantine condition on the rotation number of fν2
, which is no restriction in our

context).
We will construct a map f qp1

ν1
◦ fp2

ν2
◦ f qp3

ν1
that has m − 1 attracting fixed points

and m − 1 repelling fixed points, close to attracting and repelling fixed points of
f q

ν1
. The proposition then follows by induction.
Write Bi = (ri−1, ri) for the basin of attraction of ai. Take compact intervals

Ii ⊂ Bi with small symmetric difference Ii △Bi. For p1 large, f qp1

ν1
is a contraction

on all intervals Ii and maps Ii into a small neighborhood of the point ai. As fν2
is

an irrational rotation, we can take p2 ∈ N such that fp2

ν2
(a1) ⊂ B2 and fp2

ν2
(ai) ⊂ Bi

for all other i. By taking p1 large enough, the same holds with ai replaced by
f qp1

ν1
(Ii). Write I1,2 for the convex hull of I1 and I2 inside the interior of B1 ∪ B2.

Take p3 large enough so that fp3

ν1
is a contraction on I1,2. Then f qp1

ν1
◦ fp2

ν2
◦ f qp3

ν1
has

m − 1 hyperbolic attracting fixed points in I1,2, I3, . . . , Im.
The proof is finished by establishing that the m − 1 intervals in S

1 \ {I1,2 ∪ I3 ∪
· · ·∪Im} each contain only a hyperbolic repelling fixed point, for p1, p3 large enough.
Take compact intervals Ji inside (ai, ai+1) (the basin of attraction of ri for f−q

ω1
) for

i 6= 1, so that Ji △ (ai, ai+1) is small. The intervals I1,2, I3, . . . , Im and J2, . . . , Jm

cover S1. For p3 large enough, f−qp3

ν1
is a contraction on the intervals J2, . . . , Jm

and maps them into small neighborhoods of r2, . . . , rm. By construction, f qp3

ν1
◦f−p2

ν2

maps Ji inside (ai, ai+1), i = 2, . . . , m. For p1 large enough, f qp3

ν1
◦ f−p2

ν2
◦ f−qp1

ν1
is

a contraction on J2, . . . , Jm. This finishes the proof.

5. Random saddle node bifurcations. The material in the previous two sec-
tions shows that generically the following picture holds true. A stationary measure
supported on q intervals implies the existence of a unique random attracting peri-
odic orbit of period q. A stationary measure supported on the circle implies the
existence of a unique random attracting fixed point. We treat here the bifurcation
where the support of the stationary measure explodes from q intervals to the cir-
cle. One can expect that in such a bifurcation a random periodic orbit of period q
bifurcates to a random fixed point. This picture is confirmed in Theorem 5.2 below.

Definition 5.1. The smooth one parameter family of random diffeomorphisms fa

on the circle undergoes a random saddle node bifurcation at a = a0, if there exists
x̄ in the boundary of the support of a stationary measure such that

fk
a0;ω1,...,ωk

(x̄) = x̄,
d

dx
fk

a0;ω1,...,ωk
(x̄) = 1, (15)

for some ω1, . . . , ωk ∈ ∂Ω.

The random saddle node bifurcation is said to unfold generically, if
(

d

dx

)2

fk
a0;ω1,...,ωk

(x̄) 6= 0,
∂

∂a
fk

a;ω1,...,ωk
(x̄) 6= 0 (16)

at a = a0.
It is shown in [28] that, in the context of families of random circle diffeomor-

phisms, a (generically unfolding) random saddle node bifurcation is the only possible
codimension one bifurcation of stationary densities.

Theorem 5.2. Suppose that fa is a generic family of random diffeomorphisms with
a random saddle node bifurcation at a = a0, so that the support Ea of the stationary
measure µa has q connected components for a < a0 and equals the circle for a > a0.
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For each a ≤ a0 and a close to a0, f q
a has one random attracting fixed point in each

connected component of Ea. For a > a0 and a close to a0, fa has one attracting
and one repelling random fixed point.

Proof. For each a > a0 sufficiently close to a0, the random diffeomorphism fa

satisfies Hypothesis 4.1(iii). Apply Theorem 4.2. For a ≤ a0, consider f q
a . Each

interval in Ea is mapped into itself by f q
a . Theorem 4.5 deals with this case.

Under the conditions of the above theorem, the density function of the stationary
measure ma is smooth and depends smoothly on the parameter a even though the
support of ma varies discontinuously in the Hausdorff topology [28]. In a random
saddle-node bifurcation where the support of the stationary measure changes dis-
continuously while remaining to consist of q intervals, one will for generic families
find a single random attracting period q orbit for all parameter values near the
bifurcation value.

Acknowledgements. We are particularly grateful to the referees for their detailed
comments.

REFERENCES

[1] V. A. Antonov. Modeling of processes of cyclic evolution type. synchronization by a random
signal. Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 2:67–76, 1984.
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[4] T. Bogenschütz and Z.S. Kowalski. A condition for mixing of skew products. Aequationes
Math., 59:222–234, 2000.

[5] K.M. Campbell and M.E. Davies. The existence of inertial functions in skew product systems.
Nonlinearity, 9:801–817, 1996.

[6] W. de Melo and S. van Strien. One-dimensional dynamics, volume 25 of Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1993.

[7] B. Deroin, V. Kleptsyn, and A. Navas. Sur la dynamique unidimensionnelle en régularité
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