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Abstract. Critical intermittency stands for a type of intermittent dynamics in iterated
function systems, caused by an interplay of a superstable fixed point and a repelling fixed
point. We consider critical intermittency for iterated function systems of interval maps
and demonstrate the existence of a phase transition when varying probabilities, where the
absolutely continuous stationary measure changes between finite and infinite. We discuss
further properties of this stationary measure and show that its density is not in Lq for any
q > 1. This provides a theory of critical intermittency alongside the theory for the well
studied Manneville-Pomeau maps, where the intermittency is caused by a neutral fixed
point.

1. Introduction

Intermittency refers to the behaviour of a dynamical system that alternates between
long periods of exhibiting one out of several types of dynamical characteristics. In their
seminal paper [36] Manneville and Pomeau investigated intermittency in the context of
transitions to turbulence in convective fluids, see also [29, 12], and distinguished several
different types of intermittency. An illustrative example of a one-dimensional map with
intermittent behaviour is the Manneville-Pomeau map

T : [0, 1] → [0, 1], x 7→ x+ x1+α (mod 1)

for some α > 0. The source of intermittency for this map is the presence of a neutral fixed
point at the origin, which causes orbits to spend long periods of time close to zero, while
behaving chaotically once they escape.

The dynamics of the Manneville-Pomeau map and similar maps with a single neutral
fixed point have been extensively studied over the past decades. It is known for example
that such maps admit an absolutely continuous invariant measure (acim) and that their
statistical properties are determined by the characteristics of the fixed point. See [28, 34,
39, 20, 21, 11, 10, 18] for results on Manneville-Pomeau type maps, and [37, 16, 23, 35, 40]
for other related results on one-dimensional systems with neutral fixed points.

Intermittency caused by neutral fixed points was also studied in random dynamical
systems, see e.g. [7, 6, 24, 8, 9, 25]. These results show that a random dynamical system,
built as a mixture of ‘good’ maps with finite acim’s and ‘bad’ maps with slower mixing
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rates or without finite acim’s, inherit ergodic properties typical for the ‘good’ maps: e.g.,
the random systems still admit a unique finite acim. On the other hand, it is clear that in
the random mixture of good and bad maps, the presence of bad maps should be visible in
the properties of the acim. In [25] it was shown that in the random system built using the
‘good’ Gauss and ‘bad’ Rényi continued fractions maps, the density of the acim is provably
less smooth than the invariant density of the Gauss map. This loss of smoothness is an
interesting new phenomenon, which deserves further study.

The topic of the present paper is another type of intermittency observed in random
dynamical systems: the so-called critical intermittency introduced recently in [2, 22]. To
illustrate the concept, consider the Markov process generated by random applications of
one of the two logistic maps T2(x) = 2x(1 − x) and T4(x) = 4x(1 − x): for each n,
independently

xn+1 =

{
T2(xn), with prob. p2,

T4(xn), with prob. p4 = 1− p2.

The dynamics of these two maps individually is quite different: T4 exhibits chaotic be-
haviour and admits an ergodic absolutely continuous invariant probability measure, while
T2 has 1

2
as a superattracting fixed point with (0, 1) as its basin of attraction. Under ran-

dom compositions of T2 and T4 the typical behaviour is the following: orbits are quickly
attracted to 1

2
by applications of T2 and are then repelled first close to 1 and then close to 0

by one application of T4 followed by an application of either T2 or T4. Since 0 is a repelling
fixed point for both maps, orbits then leave a neighbourhood of 0 after a number of time
steps, see Figure 1. This pattern occurs infinitely often in typical random orbits and is
the result of the interplay between the exponential divergence from 0 under T2 and T4 and
the superexponential convergence to 1

2
under T2. Figure 2(c) shows an orbit under random

compositions of T2 and T4 as well as an orbit of a point under a Manneville-Pomeau map
in (a) and a random orbit under compositions of the Gauss and Rényi maps in (b).
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Figure 1. Critical intermittency in the random system of logistic maps T2,
T4. The dashed line indicates part of a random orbit of x
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Figure 2. Intermittent behaviour of orbits of (a) a single Manneville-
Pomeau map with α = 1.5, (b) a random mixture of the Gauss and Rényi
continued fractions maps where the Gauss map is chosen with probability
p = 0.1 and (c) a random mixture of the logistic maps T2 and T4 where the
map T4 is chosen with probability p = 0.6.

The dynamical behaviour of random compositions of the two logistic maps T2 and T4
was studied in [4, 5, 2, 15, 22] among others. In [2, 22] the authors investigated the
existence and finiteness of absolutely continuous invariant measures for this random system
and for iterated function systems consisting of rational maps on the Riemann sphere.
One particular result from [2] states that the random dynamical system generated by
i.i.d. compositions of T2 and T4 chosen with probabilities p2 and p4 = 1 − p2 admits an
absolutely continuous invariant measure that is σ-finite on the interval [0, 1] and that is
infinite in case p2 >

1
2
. An interesting question that was left open in [2] is whether for

p2 ≤ 1
2
this measure is infinite or finite.

In this article we answer this question. We consider a large family of random interval
maps with critical intermittency that includes the random combination of T2 and T4.
The systems we consider consist of i.i.d. compositions of a finite number of maps of two
types: bad maps which share a superattracting fixed point and good maps that map the
superattacting fixed point onto a common repelling fixed point. To be precise, the families
of maps we consider are defined as follows.

Throughout the text we fix a point c ∈ (0, 1) that will represent the single critical point
of our maps, both good and bad.

A map Tg : [0, 1] → [0, 1] is in the class of good maps, denoted by G, if
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(G1) Tg|(0,c) and Tg|(c,1) are C3 diffeomorphisms onto (0, 1) and Tg({0, c, 1}) ⊆ {0, 1};
(G2) Tg has non-positive Schwarzian derivative on [0, c) and (c, 1];
(G3) to Tg we can associate three constants rg ≥ 1, 0 < Kg < 1 and Mg > rg such that

Kg|x− c|rg−1 ≤ |DTg(x)| ≤Mg|x− c|rg−1;(1.1)

(G4) we have |DTg(0)|, |DTg(1)| > 1.

These conditions imply in particular that at least one of the maps Tg|[0,c] or Tg|[c,1] is con-
tinuous, and that both branches of Tg are strictly monotone. Note also that the conditions
Kg < 1 and Mg > rg are superfluous, since we can always choose a smaller constant K
and larger constant M to satisfy (1.1), but we need these specific bounds in our estimates
later. The critical point c is mapped to either 0 or 1 under each of the good maps and
both 0 and 1 are (eventually) fixed points or periodic points (with period 2) by (G1) that
are repelling by (G4). Examples include the doubling map and any surjective unimodal
map, see Figures 3(a) and (b).

The choice of conditions (G1)-(G4) is based on two factors: firstly, these conditions
incorporate the most important properties of the ‘good’ logistic map T4(x) = 4x(1 − x),
which is the primary motivating example for this work, and secondly, the techniques used
in this paper are motivated by the work of Nowicki and Van Strien [32] where the following
result has been proven. Throughout the text we let λ denote the one-dimensional Lebesgue
measure.

Theorem 1.1. Suppose that T : [0, 1] → [0, 1] is unimodal, C3, has negative Schwarzian
derivative and that the critical point of T is of order r ≥ 1. Moreover assume that the
growth rate of |DT n (c1)|, c1 = T (c), is so fast that

(1.2)
∞∑
n=0

|Dfn (c1)|−1/r <∞.

Then T has a unique absolutely continuous invariant probability measure µ which is ergodic
and of positive entropy. Furthermore, there exists a positive constant K such that

(1.3) µ(A) ≤ Kλ(A)1/r,

for any measurable set A ⊂ (0, 1). Finally, the density ρ = dµ
dλ

of the measure µ with respect

to λ is an Lτ−-function where τ = r/(r − 1) and Lτ− =
⋂

1≦t<τ L
t and Lt =

{
ρ ∈ L1 :∫ 1

0
|ρ|tdλ <∞

}
.

Formally this result is not immediately applicable to the good maps we introduced. The
difference, however, is not principal and the conclusion remains exactly the same, the main
reason being that the conditions (G1) and (G4) imply the growth rate (1.2), and hence
any good map admits a unique probability acim.

A map Tb : [0, 1] → [0, 1] is in the class of bad maps, denoted by B, if

(B1) Tb|(0,c) and Tb|(c,1) are C3 diffeomorphisms onto (0, c) or (c, 1), Tb({0, 1}) ⊆ {0, 1} and
Tb(c) = c;
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(d) x 7→ 2x(1− x)

Figure 3. Four maps with critical point c = 1
2
. (a) and (b) show two good

maps, while in (c) and (d) we see the graphs of two bad maps.

(B2) Tb has non-positive Schwarzian derivative on [0, c) and (c, 1];
(B3) to Tb we can associate three constants ℓb > 1, 0 < Kb < 1 and Mb > ℓb such that

Kb|x− c|ℓb−1 ≤ |DTb(x)| ≤Mb|x− c|ℓb−1;(1.4)

(B4) we have |DTb(0)|, |DTb(1)| > 1.

In particular (B1) implies that Tb is continuous, and that Tb strictly monotone on the
intervals [0, c] and [c, 1]. In contrast to (G3), note that in (B3) we have assumed that ℓb is
not equal to one. This means that DTb(c) = 0, so c is a superattracting fixed point for each
bad map. An immediate consequence of the presence of a globally attracting fixed point
at c is that the only finite invariant measures are linear combinations of Dirac measures at
0, c, and 1. For examples, see Figures 3(c) and (d).

The random systems we consider in this article are the following. Let T1, . . . , TN ∈ G∪B
be a finite collection of good and bad maps. Write ΣG = {1 ≤ j ≤ N : Tj ∈ G} and
ΣB = {1 ≤ j ≤ N : Tj ∈ B} for the index sets of the good and bad maps respectively
and assume that ΣG,ΣB ̸= ∅. Write Σ = {1, . . . , N} = ΣG ∪ ΣB. The skew product
transformation or random map F is defined by

(1.5) F : ΣN × [0, 1] → ΣN × [0, 1], (ω, x) 7→ (σω, Tω1(x)),

where σ denotes the left shift on sequences in ΣN. Let p = (pj)j∈Σ be a probability vector
representing the probabilities with which we choose the maps Tj, j ∈ Σ. We will consider
measures of the form P× µp, where P is the p-Bernoulli measure on ΣN and µp is a Borel
measure on [0, 1] absolutely continuous with respect to λ and satisfying∑

j∈Σ

pjµp(T
−1
j A) = µp(A), for all Borel sets A ⊆ [0, 1].(1.6)

In this case P×µp is an invariant measure for F and we say that µp is a stationary measure
for F . We also say that a stationary measure µp is ergodic for F if P × µp is ergodic for
F . Our main results are the following.

Theorem 1.2. Let {Tj : j ∈ Σ} be as above and p = (pj)j∈Σ a positive probability vector.
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(1) There exists a unique (up to scalar multiplication) stationary σ-finite measure µp

for F that is absolutely continuous with respect to the one-dimensional Lebesgue
measure λ. Moreover, this measure is ergodic.

(2) The density dµp

dλ
is bounded away from zero, is locally Lipschitz on (0, c) and (c, 1)

and is not in Lq for any q > 1.

We call the measure µp from Theorem 1.2 an acs measure.

Theorem 1.3. Let {Tj : j ∈ Σ} be as above and p = (pj)j∈Σ a positive probability vector.
Let µp be the unique acs measure from Theorem 1.2. Set θ =

∑
b∈ΣB

pbℓb. Then µp is finite
if and only if θ < 1. In this case, there exists a constant C > 0 such that

µp(A) ≤ C ·
∞∑
k=0

θkλ(A)ℓ
−k
maxr

−1
max(1.7)

for any Borel set A ⊆ [0, 1], where rmax = max{rg : g ∈ ΣG} and ℓmax = max{ℓb : b ∈ ΣB}.

As we shall see in (4.12) the bound in (1.7) can be improved by not bounding mixtures

ℓbrg =
∏k

i=1 ℓbirg by their maximal value ℓkmaxrmax, but this improvement does not change
the qualitative behaviour of the bound.

It will become clear that the density dµp

dλ
in Theorem 1.2 blows up to infinity at the points

zero and one and also (at least on one side) at c. Theorem 1.3 says that dµp

dλ
is integrable

if and only if θ is small enough, namely θ < 1. This intuitively makes sense since for a
smaller value of θ the attraction of orbits to c is weaker on average and consequently orbits
typically spend less time near zero and one once a good map is applied.

The inequality (1.7) is the counterpart of the Nowicki-Van Strien inequality (1.3), and
naturally gives a substantially worse bound due to the presence of bad maps. It is not
immediately clear how much worse (1.7) is in comparison to (1.3). However, the following
holds.

Corollary 1.1. Let {Tj : j ∈ Σ} be as above and p = (pj)j∈Σ a positive probability vector.
Suppose θ =

∑
b∈ΣB

pbℓb < 1. Then there exist K > 0 and κ > 0 such that for any Borel
set A ⊆ [0, 1] with λ(A) ∈ (0, 1) one has

µp(A) ≤ K
1

logκ(1/λ(A))
.

Moreover, the acs measure µp from Theorem 1.2 depends continuously on the probability
vector p ∈ RN .

Corollary 1.2. Let {Tj : j ∈ Σ} be as above. For each n ≥ 0, let pn = (pn,j)j∈Σ be a
positive probability vector such that supn

∑
b∈ΣB

pn,bℓb < 1 and assume that limn→∞ pn = p

in RN
+ . Then the sequence µpn converges weakly to µp.

The problem of finding acs probability measures for random interval maps that are
expanding on average is well studied and results often rely on bounded variation techniques
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from Lasota and Yorke [27]. There are several articles that extend these techniques to
include random interval maps that are not expanding on average. See in particular [33,
Section 4] and [14, 31, 30]. These methods require the infimum of the absolute value of
the derivative of the random map to be positive and thus they do not apply to our class of
maps with a critical point. Therefore, we resort to techniques similar to the ones used by
Nowicki and Van Strien in their proof of Theorem 1.1 rather than the techniques introduced
by Lasota and Yorke.

To be more precise, for the existence result from Theorem 1.2 we use an inducing scheme.
This approach is inspired by [2], but the choice of the inducing domain needed some care.
With the help of Kac’s Lemma we then obtain that the acs measure is infinite in case
θ ≥ 1. To prove that this measure is finite for θ < 1 we use an approach similar to the
one employed in [32]. The main difficulty here is that it may take an arbitrarily long time
before the superattracting fixed point is mapped onto the repelling orbit by one of the
good maps, which decreases the regularity of the density of the acs measure.

In (B3) we have assumed that for any bad map Tb the corresponding value ℓb is not equal
to one. Note that a bad map Tb for which we allow ℓb = 1 satisfies |DTb(c)| > 0, so in this
case c is an attracting fixed point for Tb but not superattracting. It should not come as a
surprise that results similar to Theorem 1.2 and Theorem 1.3 also hold in case some or all
of the bad maps Tb have ℓb = 1. The proofs presented for these theorems, however, do not
immediately carry over. In the last section we explain how the results are affected in case
some or all maps Tb satisfy ℓb = 1 and what the necessary changes in the proofs are.

The paper is organised as follows. In Section 2 we list some preliminaries and first
consequences of the conditions (G1)–(G4) and (B1)–(B4). Section 3 is devoted to the
proof of Theorem 1.2 and in Section 4 we prove Theorem 1.3. In Section 5 we prove
Corollaries 1.1 and 1.2 and explain what the analogues of Theorem 1.2 and 1.3 are in case
ℓb = 1 for one or more b ∈ Σ and how the proofs of Theorem 1.2 and 1.3 need to be
modified to get these results. We end with some final remarks.
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2. Preliminaries

We start by introducing some notation and collecting some general preliminaries.

2.1. Words, sequences and invariant measures. For any finite subset Σ ⊆ N and any
n ≥ 1 we use u ∈ Σn to denote a word u = u1 · · ·un. Σ0 contains only the empty word,
which we denote by ϵ. On the space of infinite sequences Ω = ΣN we use

[u] = [u1 · · ·un] = {ω ∈ Ω : ω1 = u1, . . . , ωn = un}
to denote the cylinder set corresponding to u. The notation |u| indicates the length of u,
so |u| = n for u ∈ Σn. For two words u ∈ Σn and v ∈ Σm the concatenation of u and



8 HOMBURG, KALLE, RUZIBOEV, VERBITSKIY, ZEEGERS

v is denoted by uv ∈ Σn+m. For a probability vector p = (pj)j∈Σ and u ∈ Σn we write
pu =

∏n
i=1 pui

with pu = 0 if n = 0. We use σ to denote the left shift on Ω: for ω ∈ Ω and
all n ∈ N, (σω)n = ωn+1.

Given a finite family of Borel measurable maps {Tj : [0, 1] → [0, 1]}j∈Σ, the skew product
or the random map F is defined by

F : Ω× [0, 1] → Ω× [0, 1], (ω, x) 7→
(
σω, Tω1(x)

)
.

We use the following notation for the iterates of the maps Tj. For each ω ∈ Ω and each
n ∈ N0 define

Tω1···ωn(x) = T n
ω (x) =

{
x, if n = 0,

Tωn ◦ Tωn−1 ◦ · · · ◦ Tω1(x), for n ≥ 1.
(2.1)

With this notation, we can write the iterates of the random system F as

F n(ω, x) = (σnω, T n
ω (x)).(2.2)

The following lemma on invariant measures for F holds.

Lemma 2.1 ([?], see also Lemma 3.2 of [19]). If all maps Tj are non-singular with respect
to λ (that is, λ(A) = 0 if and only if λ(T−1

j A) = 0 for all A ⊆ [0, 1] measurable) and P
is the p-Bernoulli measure on Ω for some positive probability vector p, then the P × λ-
absolutely continuous F -invariant measures are precisely the measures of the form P × µ
where µ is absolutely continuous w.r.t. λ and satisfies∑

j∈Σ

pjµ(T
−1
j A) = µ(A) for all Borel sets A.(2.3)

Now let (X,F ,m) be a measure space and T : X → X measurable and non-singular
with respect to m. For a set Y ∈ F such that 0 < m(Y ) <∞ and m

(
X \

⋃
n≥1 T

−nY
)
= 0,

the first return time map φY : Y → N ∪ {∞} given by

(2.4) φY (y) = inf{n ≥ 1 : T n(y) ∈ Y }

is finite m-a.e. on Y , and moreover m-a.e. y ∈ Y returns to Y infinitely often. If we
remove from Y the m-null set of points that return to Y only finitely many times, and for
convenience call this set Y again, then we can define the induced transformation TY : Y →
Y by

TY (y) = TφY (y)(y).

The following result can be found in e.g. [1, Proposition 1.5.7]. Note that this statement
asks for T to be conservative. This is not used in the proof however and the condition
m
(
X \

⋃
n≥1 T

−nY
)
= 0 is enough to guarantee that the induced transformation is well

defined.

Lemma 2.2 (see e.g. Proposition 1.5.7. in [1]). Let T be a measurable and non-singular
transformation on a measure space (X,F ,m) and let Y ∈ F be such that 0 < m(Y ) < ∞
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and m
(
X \

⋃
n≥1 T

−nY
)
= 0. If ν ≪ m|Y is a finite invariant measure for the induced

transformation TY , then the measure µ on (X,F ,m) defined by

µ(B) =
∑
k≥0

ν
(
Y ∩ T−kB \

k⋃
j=1

T−jY
)

for B ∈ F is T -invariant, absolutely continuous with respect to m and µ|Y = ν.

We will also use the following result on the first return time.

Lemma 2.3 (Kac’s Formula, see e.g. 1.5.5. in [1]). Let T be a conservative, ergodic,
measure preserving transformation on a measure space (X,F ,m). Let Y ∈ F be such that
0 < m(Y ) <∞ and let φY be the first return map to Y . Then

∫
Y
φY dm = m(X).

One can also obtain invariant measures via a functional analytic approach. Here we
give a specific result for interval maps. Let I be an interval. If T : I → I is piecewise
strictly monotone and C1, then the Perron-Frobenius operator PT is defined on the space
of non-negative measurable functions h on I by

(2.5) PTh(x) =
∑

y∈T−1{x}

h(y)

|DT (y)|
.

A non-negative measurable function φ on I is a fixed point of PT if and only if it provides
an invariant measure µ for T that is absolutely continuous with respect to λ by setting
µ(A) =

∫
A
φdλ for each Borel set A.

For a random map F using a finite family of transformations {Tj : I → I}j∈Σ, such
that each map Tj is piecewise strictly monotone and C1, and a positive probability vector
p = (pj)j∈Σ, the Perron-Frobenius operator PF is given on the space of non-negative
measurable functions h on I by

PFh(x) =
∑
j∈Σ

pjPTj
h(x),(2.6)

where each PTj
is as given in (2.5). Let P denote the p-Bernoulli measure on Ω. Then a

non-negative measurable function φ on I is a fixed point of PF if and only if the measure
P× µ, where µ is the absolutely continuous measure with dµ

dλ
= φ, is F -invariant.

In Subsection 3.3 it will be shown that the density dµp

dλ
from Theorem 1.2, which is a

fixed point of the Perron-Frobenius operator for the random system F given by (1.5), is

bounded away from zero. From this it is easy to see that (2.6) implies that dµp

dλ
blows up

to infinity at the points zero and one and also at least on one side of c.

2.2. Estimates on good and bad maps. Now let T : I → I be a C3 map of an interval
I into itself. The Schwarzian derivative of T at x ∈ I with DT (x) ̸= 0 is defined by

(2.7) ST (x) =
D3T (x)

DT (x)
− 3

2

(D2T (x)

DT (x)

)2
.
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We say that T has non-positive Schwarzian derivative on I if DT (x) ̸= 0 and ST (x) ≤ 0 for
all x ∈ I. A direct computation shows that the Schwarzian derivative of the composition
of two transformations T1, T2 : I → I satisfies

(2.8) S(T2 ◦ T1)(x) = ST2
(
T1(x)

)
· |DT1(x)|2 + ST1(x).

Hence, S(T2 ◦ T1) ≤ 0 provided ST1 ≤ 0 and ST2 ≤ 0.

From (2.8) it follows that for a finite collection {Tj : I → I}j∈Σ of C3 interval maps with
non-positive Schwarzian derivative, we can write the Schwarzian derivative of T n

ω , n ∈ N
and ω ∈ Ω, as

ST n
ω (x) =

n−1∑
i=0

STωi+1

(
T i
ω(x)

)
·
∣∣∣ i∏
j=1

DTωj
(T j−1

ω (x))
∣∣∣2.(2.9)

By (G2) and (B2) this implies that for a collection of good and bad maps {Tj}j∈Σ, T n
ω

has non-positive Schwarzian derivative on [0, 1] outside of the critical points of T n
ω for all

ω ∈ Ω and n ∈ N.

We will use the following two well-known properties of maps with non-positive Schwarzian
derivative (see e.g. [17, Section 4.1]).

Minimum Principle: Let I = [a, b] be a closed interval and suppose that T : I → I has
non-positive Schwarzian derivative. Then

(2.10) |DT (x)| ≥ min{DT (a), DT (b)}, ∀x ∈ [a, b].

A consequence of the Minimum Principle is that for any T ∈ G∪B the derivative |DT |
has locally no strict minima in the intervals (0, c) and (c, 1). In particular, there cannot be
any attracting fixed points for T in (0, c) and (c, 1). Therefore, if T ∈ B, then T n(x) → c
as n→ ∞ for all x ∈ (0, 1).

Koebe Principle: For each ρ > 0 there exist K(ρ) > 1 and M (ρ) > 0 with the following
property. Let J ⊆ I be two intervals and suppose that T : I → I has non-positive
Schwarzian derivative. If both components of T (I)\T (J) have length at least ρ · λ(T (J)),
then

1

K(ρ)
≤ DT (x)

DT (y)
≤ K(ρ), ∀x, y ∈ J(2.11)

and ∣∣∣DT (x)
DT (y)

− 1
∣∣∣ ≤M (ρ) · |T (x)− T (y)|

λ(T (J))
, ∀x, y ∈ J.(2.12)

Note that the constants K(ρ),M (ρ) only depend on ρ and not on the map T .

From (2.11) one can obtain a bound on the size of the images of intervals: Let J ′ ⊆ J
be another interval. By the Mean Value Theorem there exists an x ∈ J ′ with |DT (x)| =
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λ(T (J ′))
λ(J ′)

and a y ∈ J with |DT (y)| = λ(T (J))
λ(J)

. Hence,

(2.13)
1

K(ρ)

λ(J ′)

λ(J)
≤ DT (x)

DT (y)

λ(J ′)

λ(J)
=
λ(T (J ′))

λ(T (J))
≤ K(ρ)λ(J

′)

λ(J)
.

Recall the constants ℓb, Kb andMb from condition (B3) and set ℓmin = min{ℓb : b ∈ ΣB}
and ℓmax = max{ℓb : b ∈ ΣB}. (B3) gives us control over the distance between T n

ω (x) and
c.

Lemma 2.4. For all n ∈ N, ω ∈ ΣN
B and x ∈ [0, 1],(

K̃|x− c|
)ℓω1 ···ℓωn

≤ |T n
ω (x)− c| ≤

(
M̃ |x− c|

)ℓω1 ···ℓωn

,(2.14)

with constants K̃ =
(min{Kb : b∈ΣB}

ℓmax

) 1
ℓmin−1 ∈ (0, 1) and M̃ =

(
max{Mb : b∈ΣB}

ℓmin

) 1
ℓmin−1 > 1.

Proof. It follows from (B3) that for any j ∈ ΣB and x ∈ [0, 1],

|Tj(x)− c| = |Tj(x)− Tj(c)| =
∣∣∣ ∫ x

c

DTj(y)dy
∣∣∣ ≥ min{Kb : b ∈ ΣB}

ℓmax

|x− c|ℓj .

By induction we get that for each n ∈ N and ω ∈ ΣN
B,

|T n
ω (x)− c| ≥

(
min{Kb : b ∈ ΣB}

ℓmax

)1+
∑n−2

i=0 ℓωn ···ℓωn−i

· |x− c|ℓω1 ···ℓωn .(2.15)

From (B3) we see that min{Kb : b∈ΣB}
ℓmax

< 1. The lower bound now follows by observing that

(
1 +

n−2∑
i=0

ℓωn · · · ℓωn−i

)
/(ℓω1 · · · ℓωn) ≤

n∑
i=1

1

ℓimin

<
1

ℓmin − 1
.

The result for the upper bound follows similarly, by noticing that in this case from (B3) it

follows that max{Mb : b∈ΣB}
ℓmin

> 1. □

It follows that under iterations of bad maps the distance |T n
ω (x) − c| is eventually de-

creasing superexponentially fast in n.
Furthermore, note that there exists a δ > 0 such that |DTb(x)| < 1 for all x ∈ [c−δ, c+δ]

and b ∈ ΣB. This implies

|Tb(x)− c| < |x− c|(2.16)

for all x ∈ [c− δ, c+ δ] and b ∈ ΣB.

The upper bound on |T n
ω (x)− c| that we obtained in Lemma 2.4 will be used in Section

4 to prove that µp in Theorem 1.3 is infinite if θ ≥ 1. The lower bound from Lemma 2.4
will be used for the proof that µp is finite if θ < 1.
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3. Existence of a σ-finite acs measure

From now on we fix an integer N ≥ 2 and consider a finite collection T1, . . . , TN ∈ G∪B
of good and bad maps in the classes G and B. As in the Introduction write ΣG = {1 ≤
j ≤ N : Tj ∈ G} and ΣB = {1 ≤ j ≤ N : Tj ∈ B} for the corresponding index sets and
assume that ΣG,ΣB ̸= ∅. Write Σ = {1, 2, . . . , N} and set Ω = ΣN for the set of infinite
sequences of elements in Σ. In this section we prove Theorem 1.2, i.e., we establish the
existence of an ergodic acs measure and several of its properties using an inducing scheme
for the random system F . We fix the index g ∈ ΣG of one good map Tg and start by
constructing an inducing domain that depends on this g.

3.1. The induced system and return time partition. The first lemma is needed to
specify the set on which we induce. For each k ∈ N let xk and x′k in (0, c) denote the
critical points of T k

g closest to 0 and c, respectively. Furthermore, let yk and y′k in (c, 1)

denote the critical points of T k
g closest to 1 and c, respectively.

Lemma 3.1. We have xk ↓ 0, x′k ↑ c, y′k ↓ c, yk ↑ 1 as k → ∞.

Proof. Let a and b denote the critical points of T 2
g in (0, c) and (c, 1), respectively. Then at

least one of the branches T 2
g |(0,a) and T 2

g |(b,1) is increasing. Suppose that T 2
g |(0,a) is increas-

ing. It then follows from the Minimum Principle that T 2
g (x) ≥ min{x

a
, DT 2

g (0) ·x} for each

x ∈ [0, a]. To see this, suppose there is an x ∈ (0, a) with T 2
g (x) < min{x

a
, DT 2

g (0)·x}. Then
there must be a y ∈ (0, x) with DT 2

g (y) < min{DT 2
g (0),

1
a
} and a z ∈ [x, a) with DT 2

g (z) >
1
a
. On the other hand, by the Minimum Principle, DT 2

g (y) ≥ min{DT 2
g (0), DT

2
g (z)},

a contradiction. Combining this with DT 2
g (0) > 1 and defining L : (0, 1) → (0, a) by

L = (T 2
g |(0,a))−1, we see that Lk(a) ↓ 0 as k → ∞. Furthermore, define R : (0, 1) → (b, 1)

by R = (T 2
g |(b,1))−1. If T 2

g |(b,1) is increasing, we see that similarly Rk(b) ↑ 1 as k → ∞. On

the other hand, if T 2
g |(b,1) is decreasing, we have RLk(a) ↑ 1 as k → ∞. Finally, if T 2

g |(0,a)
is decreasing, then T 2

g |(b,1) must be increasing, which yields LRk(b) ↓ 0 as k → ∞. We
conclude that xk ↓ 0 and yk ↑ 1 as k → ∞. It follows from (G1) that c is a limit point of
both of the sets

⋃
k∈N(Tg|(0,c))−1({xk, yk}) and

⋃
k∈N(Tg|(c,1))−1({xk, yk}). So x′k ↑ c, y′k ↓ c

as k → ∞. □

By the previous lemma and (G1), for k ∈ N large enough it holds that

Tg(x
′
k) ≤ x′k or Tg(x

′
k) ≥ y′k, and

Tg(y
′
k) ≤ x′k or Tg(y

′
k) ≥ y′k,

(3.1)

and, using also (G4), (B1) and (B4), for every j ∈ Σ,

Tj
(
[0, xk] ∪ [yk, 1]

)
⊆ [0, x′k) ∪ (y′k, 1] and

|DTj(x)| > d > 1 for all x ∈ [0, xk) ∪ (yk, 1] and some constant d.
(3.2)
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Fix a κ ∈ N for which (3.1) and (3.2) hold. We introduce some notation. Let t ∈ Σ be
such that t ̸= g, and define

C = [g · · · g︸ ︷︷ ︸
κ times

t] = [gκt],(3.3)

J0 = (xκ, x
′
κ), J1 = (y′κ, yκ), J = J0 ∪ J1,(3.4)

Y = C × J.(3.5)

The next lemma shows that P× λ-almost all (ω, x) eventually enter Y under iterations of
F , and hence that P× λ-almost all (ω, x) ∈ Y will return to Y infinitely many times.

Lemma 3.2.

P× λ
(
Ω× [0, 1] \

∞⋃
n=1

F−nY
)
= 0.(3.6)

Proof. For P-almost all ω ∈ Ω we have σnω ∈ [g] for infinitely many n ∈ N. For any such n
and each x ∈ (0, c)∪(c, 1) either T n

ω (x) ∈ J or T n
ω (x) ̸∈ J . If T n

ω (x) ∈ (0, xκ]∪[yκ, 1), then it
follows from (3.2) that there is an m ≥ 1 such that T n+m

ω (x) ∈ J . If T n
ω (x) ∈ [x′κ, c)∪ (c, y′κ]

it follows from (3.1) that T n+1
ω (x) = Tg ◦ T n

ω (x) ∈ (0, x′κ]∪ [y′κ, 1), which means that we are
in the first case if T n+1

ω (x) /∈ J . Hence, there exists a measurable set A ⊆ Ω × [0, 1] with
P× λ(A) = 1 such that for each (ω, x) ∈ A we have T n

ω (x) ∈ J for infinitely many n ∈ N.
We define

E = A \
∞⋃
n=1

F−nY(3.7)

and for each x ∈ [0, 1] we define

Ex =
{
ω ∈ Ω : (ω, x) ∈ A \

∞⋃
n=1

F−nY
}
,(3.8)

which is the x-section of E . It follows from Fubini’s Theorem that Ex is measurable for
λ-almost all x ∈ [0, 1] and that

P× λ(E) =
∫
[0,1]

P(Ex)dλ(x).(3.9)

Combining this with P × λ(A) = 1, it remains to show that P(Ex) = 0 holds for λ-almost
all x ∈ [0, 1] for which Ex is measurable.
Let x ∈ [0, 1] for which Ex is measurable. According to the Lebesgue Differentiation

Theorem (see e.g. [38]) we have that P-almost all ω ∈ Ω is a Lebesgue point of the function
1Ex . Consider such an ω and suppose that ω ∈ Ex. Then (ω, x) ∈ A, so there exists an
increasing sequence (nj)j∈N in N that satisfies T

nj
ω (x) ∈ J for each j ∈ N. Recall that σ

denotes the left shift on sequence. If ω′ ∈ σ−njC ∩ [ω1 · · ·ωnj
], then T

nj

ω′ (x) = T
nj
ω (x) ∈ J
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and so F nj(ω′, x) ∈ Y , which gives ω′ /∈ Ex. So Ex and σ−njC ∩ [ω1 · · ·ωnj
] are disjoint for

each j ∈ N, which together with ω being a Lebesgue point of 1Ex yields that

1 ≥
P
(
(Ex ∪ σ−njC) ∩ [ω1 · · ·ωnj

]
)

P
(
[ω1 · · ·ωnj

]
) =

P
(
Ex ∩ [ω1 · · ·ωnj

]
)

P
(
[ω1 · · ·ωnj

]
) +

P
(
σ−njC ∩ [ω1 · · ·ωnj

]
)

P
(
[ω1 · · ·ωnj

]
)

→ 1Ex(ω) + P(C), as j → ∞.

Since P(C) > 0, we find that ω ∈ Ex gives a contradiction. We conclude that P(Ex) = 0. □

By Lemma 3.2 the first return time map φY , see (2.4), and the induced transformation
FY are well defined on the full measure subset of points in Y that return to Y infinitely
often under iterations of F , which we call Y again. The set of points in Y that return to
Y after n iterations of F can be described as

(3.10) Y ∩ F−n(Y ) =
⋃

ω∈C∩σ−nC

[ω1 · · ·ωn]× (T n
ω |J)−1(J) mod P× λ,

which is empty for n ≤ κ. Note that in (3.10) in fact [ω1 · · ·ωn] = [gκtωk+2 · · ·ωng
κt] and

that by construction each map T n
ω |J in (3.10) consists of branches that all have range (0, c)

or (c, 1) or (0, 1), since any branch of T κ
ω |J maps onto (0, 1). Therefore, Y ∩F−n(Y ) can be

written as a finite union of products A = [ugκt] × I of cylinders [ugκt] ⊆ C with |u| = n
and open intervals I ⊆ J , each of which is mapped under F n onto C × J0 or C × J1. Call
the collection of these sets Pn and let α =

⋃
n>κ Pn. Let PC and λJ denote the normalized

restrictions of P to C and λ to J respectively.

Lemma 3.3.

(1) The collection α forms a countable return time partition of Y , i.e., the measure
PC × λJ(

⋃
A∈αA) = 1, any two different sets A,A′ ∈ α are disjoint and on any

A ∈ α the first return time map φY is constant.
(2) Let π denote the canonical projection onto the second coordinate. Any x ∈ J is

contained in a set π(A) for some set A ∈ α.

Proof. The fact that PC ×λJ(
⋃

A∈αA) = 1 follows from Lemma 3.2 and it is clear from the
construction that the first return time map φY is constant on any element A ∈ α. To show
that any two elements are disjoint, note that for A,A′ ∈ Pn this is clear. Suppose there
are 1 ≤ m < n, A = [ugκt]× I ∈ Pn and A′ = [vgκt]× I ′ ∈ Pm such that A∩A′ ̸= ∅. Since
t ̸= g we get n ≥ m + κ + 1 and [ugκt] = [gκtvκ+2 · · · vmgκtum+κ+2 · · ·ungκt]. Moreover,
I ∩ ∂I ′ ̸= ∅ or I = I ′. In both cases, note that Fm+κ+1([vgκt] × ∂I ′) ⊆ Ω × {0, 1}, so by
(G1) and (B1) also F n([vgκt] × ∂I ′) ⊆ Ω × {0, 1}, contradicting that F n(A) ⊆ Y . This
proves (1).

For (2) note that, since α is a partition of Y , for each x ∈ J it holds that there is an
A = [ugκt] × I ∈ α with x ∈ I or x ∈ ∂I. In the first case there is nothing to prove, so
assume that x ∈ ∂I. Then Tu(x) ∈ ∂Ji for some i ∈ {0, 1}. From the first part of the proof
of Lemma 3.2 it then follows that there is an n > |u| and an ω ∈ C such that T n

ω (x) ∈ J .
If we write I ′ for the interval in T−n

ω (J) containing x, then this means that there exists a
set A′ = [vgκt]× I ′ ∈ α with x ∈ π(A′). □
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The second part of Lemma 3.3 shows that even though the partition elements of α are
disjoint, their projections on the second coordinate are not. The same is true for the first
coordinate as the same string u can lead points in J to J0 and J1.

3.2. Properties of the induced transformation. It follows from (3.10) and Lemma 3.3
that for each A ∈ α we have either FY (A) = C × J0 or FY (A) = C × J1. For any
[ugκt] × I ∈ α, the transformation Tu|I is invertible from I to one of the sets J0 or J1.
Define the operator Pu,I : L

1(J, λJ) → L1(J, λJ) by

Pu,Ih(x) =


h(Tu|−1

I (x))∣∣DTu|I(Tu|−1
I (x))

∣∣ , if Tu|−1
I {x} ≠ ∅,

0, otherwise.

(3.11)

The random Perron-Frobenius-type operator PY : L1(J, λJ) → L1(J, λJ) on Y is given by

PY =
∑

[ugκt]×I∈α

PC([u])Pu,I .(3.12)

Note that PY is not exactly of the same form as the usual Perron-Frobenius operator in
(2.6). Nonetheless, we have the following result.

Lemma 3.4. If φ ∈ L1(J, λJ) is a fixed point of PY , then the measure PC×ν with ν = φdλJ
is invariant for FY .

Proof. For each cylinder K ⊆ C and each Borel set E ⊆ J we have

PC × ν
(
F−1
Y (K × E)

)
=

∑
[ugκt]×I∈α

PC([ug
κt] ∩ σ−|u|K)ν(I ∩ T−1

u E)

= PC(K)
∑

[ugκt]×I∈α

PC([u])

∫
E

Pu,IφdλJ

= PC(K)

∫
E

PY φdλJ

= PC × ν(K × E). □

In Lemma 3.5 below we show that a fixed point of PY exists. For m ∈ N, set αm =∨m−1
j=0 F

−j
Y α. Atoms of this partition are the m-cylinders of FY . Introducing for each

Z =
⋂m−1

j=0 F
−j
Y ([ujg

κt]× Ij) in αm the notation

(3.13) CZ =
m−1⋂
j=0

σ−
∑j−1

i=0 |ui|[ujg
κt] and JZ =

m−1⋂
j=0

T−1
u0u1···uj−1

(Ij),

we obtain Z = CZ × JZ . Writing σZ = σ
∑m−1

i=0 |ui||CZ
and TZ = Tu0u1···um−1|JZ we have

Fm
Y |Z = σZ × TZ . Each TZ has non-positive Schwarzian derivative, so we can apply the

Koebe Principle. The image TZ(JZ) either equals J0 or J1. Choose a ρ̄ > 0 such that
I0 := [xκ− ρ̄, x′κ+ ρ̄] ⊆ (0, c) and I1 := [y′κ− ρ̄, yκ+ ρ̄] ⊆ (c, 1). There is a canonical way to
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extend the domain of each TZ to an interval I containing JZ , such that TZ(I) equals either
I0 or I1 and S(TZ) ≤ 0 on I. Then by the Koebe Principle there exist constants K(ρ̄) > 1
and M (ρ̄) > 0 such that for all m ∈ N, Z ∈ αm and x, y ∈ JZ ,

1

K(ρ̄)
≤ DTZ(x)

DTZ(y)
≤ K(ρ̄),(3.14)

∣∣∣DTZ(x)
DTZ(y)

− 1
∣∣∣ ≤ M (ρ̄)

min{λ(I0), λ(I1)}
· |TZ(x)− TZ(y)|.(3.15)

Note that for the random Perron-Frobenius-type operator from (3.12) we have for each
m ≥ 1 that

Pm
Y =

1

P(C)
∑
Z∈αm

PC(CZ)PTZ
,(3.16)

where PTZ
is as in (2.5).

Lemma 3.5 (cf. Lemmata V.2.1 and V.2.2 of [17]). PY admits a fixed point φ ∈ L1(J, λJ)
that is bounded, Lipschitz and bounded away from zero.

Proof. For each m ∈ N and x ∈ J ,

Pm
Y 1(x) =

1

P(C)
∑

Z∈αm:

x∈TZ(JZ)

PC(CZ)

|DTZ(T−1
Z x)|

.(3.17)

Using the Mean Value Theorem, for all m ∈ N and Z ∈ αm there exists a ξ ∈ JZ such that

(3.18)
λ
(
TZ(JZ)

)
λ(JZ)

= |DTZ(ξ)|.

Set K1 =
max{K(ρ̄),M(ρ̄)}

P(C)·min{λ(J0),λ(J1)} , where ρ̄ is as in (3.14) and (3.15). Since DTZ(ξ) and DTZ(y)

have the same sign for any y ∈ JZ , (3.18) together with (3.14) implies

(3.19) Pm
Y 1(x) ≤

∑
Z∈αm

PC(CZ)

P(C)
·K(ρ̄) λ(JZ)

λ(TZ(JZ))
≤ K1

∑
Z∈αm

PC × λJ(CZ × JZ) = K1.

Moreover, if for A = [ugκt] × I ∈ α we take x, y ∈ I, then for any Z ∈ αm it holds that
x ∈ TZ(JZ) if and only if y ∈ TZ(JZ). For such Z, let xZ , yZ ∈ JZ be such that TZ(xZ) = x
and TZ(yZ) = y. Then by (3.15)

|Pm
Y 1(x)− Pm

Y 1(y)| ≤
∑

Z∈αm:

x∈TZ(JZ)

PC(CZ)

P(C)

∣∣∣∣ 1

|DTZ(xZ)|
− 1

|DTZ(yZ)|

∣∣∣∣
≤

∑
Z∈αm:

x∈TZ(JZ)

PC(CZ)
1

|DTZ(xZ)|
K1|TZ(xZ)− TZ(yZ)|

= K1Pm
Y 1(x)|x− y|.

(3.20)
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Together (3.19) and (3.20) imply that the sequence
(

1
m

∑m−1
j=0 Pj

Y 1
)
m
is uniformly bounded

and equicontinuous on I for each A = [ugκt] × I. By Lemma 3.3(2) it follows that the
same holds on J . Hence, by the Arzela-Ascoli Theorem there exists a subsequence(

1

mk

mk−1∑
j=0

Pj
Y 1

)
mk

converging uniformly to a function φ : J → [0,∞) satisfying φ ≤ K1 and for each A =
[ugκt]× I ∈ α and x, y ∈ I,

(3.21) |φ(x)− φ(y)| ≤ K1φ(x)|x− y|.
Hence, φ is bounded and by Lemma 3.3(2) it is clear that φ is Lipschitz (with Lipschitz

constant bounded by K2
1). It is readily checked that φ is a fixed point of PY , so that PC×ν

with ν = φdλ is an invariant probability measure for FY .

What is left is to verify that for each A = [ugκt] × I ∈ α the function φ is bounded
from below on the interior of I. Suppose that there is such an A = [ugκt] × I for which
infx∈I φ(x) = 0. Then from (3.21) it follows that φ(y) = 0 for all y ∈ I, hence ν(I) = 0.
Either I ⊆ J0 or I ⊆ J1. If I ⊆ J0, then for any set A′ = [vgκt]× I ′ ∈ α with Tv(I

′) = J0
it holds that

PC × λJ(A
′ ∩ F−1

Y A) > 0

and, by the FY -invariance of PC × ν,

PC × ν(A′ ∩ F−1
Y A) ≤ PC × ν(F−1

Y A) = PC × ν(A) = 0,

which together give infx∈I′ φ(x) = 0 and therefore, like before, ν(I ′) = 0. There are sets
A′ = [vgκt]× I ′ with I ′ ⊆ J1 and Tv(I

′) = J0, so we can repeat the argument to show that
also for any set A′′ = [vgκt]×I ′′ ∈ α with Tv(I

′′) = J1 we have ν(I
′′) = 0. So PC×ν(A) = 0

for all A ∈ α. If I ⊆ J1 we come to the same conclusion. This gives a contradiction, so φ
is bounded from below on each interval I. □

It follows from Lemma 3.4 that PC × ν with ν = φdλJ is a finite FY -invariant measure.
To show that PC × λJ is FY -ergodic we need the following result, which states that the
sets π(A) for A ∈ αm shrink uniformly to λ-null sets as m→ ∞.

Lemma 3.6. lim
m→∞

sup{λJ(JZ) : Z ∈ αm} = 0.

Proof. Set δ = sup{λJ(JZ) : Z ∈ α} < 1. Fix an m and let Z =
⋂m−1

j=0 F
−j
Y ([ujg

κt]× Ij) =

CZ × JZ ∈ αm as in (3.13). Set

J̃Z =
m−2⋂
j=0

T−1
u0u1···uj−1

(Ij),

so that JZ = J̃Z ∩ T−1
u0···um−2

(Im−1). Let Ji, i ∈ {0, 1}, be such that Tu0···um−2(J̃Z) = Ji. It
holds that Tu0···um−2(JZ) = Im−1, so λ(Tu0···um−2(JZ)) ≤ δ and thus

λ(Tu0u1···um−2(J̃Z \ JZ) ≥ λ(Ji)− δ.
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Since J̃Z \ JZ consists of at most two intervals, with (3.14) and (2.13) this gives

1− λJ(JZ)

λJ(J̃Z)
=
λJ(J̃Z \ JZ)
λJ(J̃Z)

≥ 1

K(ρ̄)

λJ(Tu0···um−2(J̃Z \ JZ)
λJ(Tu0···um−2(J̃Z))

≥ 1

K(ρ̄)

λJ(Ji)− δ

λJ(Ji)
.

Set K1 := max
{
1 − 1

K(ρ̄)

λJ (Ji)−δ
λJ (Ji)

: i = 0, 1
}
∈ (0, 1). Then by repeating the same steps,

we obtain

λJ(JZ) ≤ K1λJ(J̃Z) ≤ · · · ≤ Km
1 λJ(I0) < Km

1 ,

which proves the lemma. □

Lemma 3.7. The measure PC × λJ is FY -ergodic.

Proof. Suppose E ⊆ Y with PC × λJ(E) > 0 satisfies F−1
Y E = E mod PC × λJ . We show

that PC × λJ(E) = 1. The Borel measure ρ on Y given by

ρ(V ) =

∫
V

1E(ω, x)φ(x)dPC(ω)dλJ(x)

for Borel sets V is FY -invariant. According to Lemma 2.2 and Lemma 2.1 this yields a
stationary measure µ̃ on [0, 1] that is absolutely continuous w.r.t. λ and satisfies (P×µ̃)|Y =
ρ. Let L := supp(µ̃|J) denote the support of the measure µ̃|J . Since ρ is a product
measure, this gives supp(ρ) = C × L and so by the definition of ρ we get C × L ⊆ E and
ρ(E\(C × L)) = 0. Since φ is bounded away from zero, this yields

E = C × L mod PC × λJ .(3.22)

To obtain the result, it remains to show that λJ(J\L) = 0.

We have C × L =
⋃

Z∈αm
CZ × (JZ ∩ L) and F−m

Y (C × L) =
⋃

Z∈αm
CZ × T−1

Z L. From
the non-singularity of FY w.r.t. PC × λJ it follows that for each m ∈ N,

C × L = E = F−m
Y E = F−m

Y (C × L) mod PC × λJ ,(3.23)

which yields

JZ ∩ L = T−1
Z L mod λJ , for each Z ∈ αm.(3.24)

Let ε > 0. Since λJ(L) > 0, it follows from Lemma 3.6 and the Lebesgue Density Theorem
that there are i ∈ {0, 1}, mi ∈ N and Zi ∈ αmi

such that

TZi
(JZi

) = Ji and λJ(JZi
∩ L) ≥ (1− ε)λJ(JZi

).

By (3.24), T−1
Zi

(Ji \ L) = JZi
\ L mod λJ . The Mean Value Theorem gives the existence of

a ξ ∈ JZi
such that

λJ(TZi
(JZi

))

λJ(JZi
)

= |DTZi
(ξ)|,

and from (3.14) it follows that

λJ(TZi
(JZi

\ L)) =
∫
JZi

\L
|DTZi

|dλ ≤ K(ρ̄)|DTZi
(ξ)|λJ(JZi

\ L).
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Hence,

λJ(Ji\L)
λJ(Ji)

=
λJ(TZi

(JZi
\ L))

λJ(TZi
(JZi

))
≤ K(ρ̄)λJ(JZi

\L)
λJ(JZi

)
≤ K(ρ̄)ε.(3.25)

So, for each ε > 0 we can find an i = i(ε) for which (3.25) holds. If for each ε0 > 0
and each i0 ∈ {0, 1} there exists an ε ∈ (0, ε0) such that i(ε) = i0, we obtain from (3.25)
that λJ(J\L) = 0. Otherwise, there exists ε0 > 0 and i0 ∈ {0, 1} such that i(ε) = i0
for all ε ∈ (0, ε0). Without loss of generality, suppose that i0 = 0. Then (3.25) gives
λJ(J0\L) = 0. By the equivalence of ν and λJ and the fact that every good map has full
branches it follows that

PC × ν
(
(C × J0) ∩ F−1

Y (C × J1)
)
> 0.(3.26)

Together with the Poincaré Recurrence Theorem this gives that

A = {(ω, x) ∈ C × J0 : F
m
Y (ω, x) ∈ C × J1 for infinitely many m ∈ N}(3.27)

satisfies PC × ν(A) > 0, and therefore PC × λJ(A) > 0. Together with λJ(J0\L) = 0 it
follows from the Lebesgue Density Theorem that there exists a Lebesgue point x ∈ π(A)∩L
of 1π(A)∩L. Since x ∈ π(A), for infinitely many m ∈ N there exists Zm ∈ αm such that
x ∈ JZm and TZm(JZm) = J1. This again together with Lemma 3.6 yields that for each
ε > 0 there exist m ∈ N and Z ∈ αm such that

TZ(JZ) = J1 and λJ(JZ ∩ L) ≥ (1− ε)λJ(JZ).

Similar as before, this gives λJ(J1\L) = 0, so λJ(J\L) = 0. □

3.3. The proof of Theorem 1.2. In the previous paragraphs we collected all the ingre-
dients necessary to prove Theorem 1.2.

Proof of Theorem 1.2. (1) We have constructed a finite FY -invariant measure PC×ν which
is absolutely continuous with respect to PC × λJ . Since F is non-singular with respect to
P×λ, we can therefore by Lemma 2.2 extend PC×ν to an F -invariant measure P×µ which
is absolutely continuous with respect to P × λ. Lemma 3.2 immediately implies that µ is
σ-finite. What is left to show is that P×µ is the unique such measure (up to multiplication
by constants) and that it is ergodic.

A well known result [1, Theorem 1.5.6] states that a conservative ergodic non-singular
transformation T on a probability space (X,B,m) admits at most one (up to scalar mul-
tiplication) m-absolutely continuous σ-finite invariant measure. Therefore, it suffices to
show that F is conservative and ergodic with respect to P × λ. We are going to deduce
these properties of F from the corresponding properties of the induced transformation FY .

In the proof of part (2) below we will see that the density of dµ
dλ

is bounded away from zero.
Hence, λ≪ µ. Combining Lemma 3.2 with Maharam’s Recurrence Theorem gives that F
is conservative with respect to P × µ and thus also with respect to P × λ. Furthermore,
from the ergodicity of FY with respect to PC × λJ it follows by Lemma 3.2 combined with
[1, Proposition 1.5.2(2)] that F is ergodic with respect to P× λ.
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(2) For the density ψ := dµ
dλ

it holds that ψ|J = φ. Since we can take κ in the definition
of J as large as we want, ψ is locally Lipschitz on (0, c) and (c, 1). Moreover, it is a fixed
point of the Perron-Frobenius operator from (2.6) and thus for all x ∈ [0, 1],

ψ(x) = Pκ
Fψ(x) ≥ pκg

φ(T−κ
g x)

|DT κ
g (T

−κ
g x)|

.(3.28)

From Lemma 3.5 we conclude that ψ is bounded from below by some constant C > 0. It
remains to show that ψ is not in Lq for any q > 1. To see this, fix a b ∈ ΣB. Since ψ is
bounded from below by C > 0, we have for all k ∈ Z≥0 and x ∈ [0, 1] that

ψ(x) = Pk+1
F ψ(x) ≥ C · pgpkb

∑
y∈(TgTk

b )−1{x}

1

|D(TgT k
b )(y)|

.(3.29)

Let ℓb,Mb, rg,Mg, Kg be as in (B3) and (G3). From (B3), (G3) and Lemma 2.4 we get

|D(TgT
k
b )(y)| = |DTg(T k

b (y))|
k∏

i=1

|DTb(T k−i
b (y))|

≤Mg|T k
b (y)− c|rg−1

k−1∏
i=0

(Mb|T i
b (y)− c|ℓb−1)

≤MgM
k
b (M̃ |y − c|)ℓkb (rg−1)

k−1∏
i=0

(M̃ |y − c|)ℓib(ℓb−1)

=K1|y − c|ℓkb rg−1,

(3.30)

for the positive constant K1 = MgM
k
b M̃

ℓkb rg−1. On the other hand, from (G3) we obtain
for any y ∈ (TgT

k
b )

−1{x} as in the proof of Lemma 2.4 that

|x− Tg(c)| = |TgT k
b (y)− Tg(c)| ≥

Kg

rg
|T k

b (y)− c|rg

and then Lemma 2.4 yields

(3.31) |x− Tg(c)| ≥ K2|y − c|ℓkb rg

for the positive constant K2 = Kg

rg
K̃ℓbrg . Now for any q > 1 we can choose k ∈ Z≥0 large

enough so that τ := (1− ℓ−k
b r−1

g )q ≥ 1. Combining (3.28), (3.30) and (3.31) we obtain

ψq(x) ≥
(Cpgpkb

K1

)q( ∑
y∈(TgTk

b )−1{x}

|y − c|1−ℓkb rg
)q

≥ K3|x− Tg(c)|−τ

for a positive constant K3. This gives the result. □
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Remark 3.1. The result from Theorem 1.2 still holds if we allow the critical order ℓb from
(B3) to be equal to 1 for some b, as long as ℓmax > 1. To see this, note that in the proof

of Theorem 1.2 condition (B3) only plays a role in proving that dµp

dλ
̸∈ Lq for any q > 1.

Here we refer to Lemma 2.4 and the constants K̃ and M̃ , which are not well defined if
ℓmin = 1. In (3.30) however, we use the estimates from Lemma 2.4 only for one arbitrary
fixed b ∈ ΣB. By the same reasoning as in the proof of Lemma 2.4 it follows that((Kb

ℓb

) 1
ℓb−1 |x− c|

)ℓnb

≤ |T n
b (x)− c| ≤

((Mb

ℓb

) 1
ℓb−1 |x− c|

)ℓnb

.(3.32)

for any b ∈ ΣB with ℓb > 1. Hence, if there exists at least one b ∈ ΣB with ℓb > 1, then
we can replace the bounds obtained from Lemma 2.4 in (3.30) and (3.31) by constants

K1 = MgM
k
b (

Kb

ℓb
)(ℓ

k
b rg−1)/(ℓb−1) and K2 = Kg

rg
(Mb

ℓb
)ℓbrg/(ℓb−1) and obtain the same result. In

case ℓmax = 1, then most parts from Theorem 1.2 still remain valid with the exception that
then we can only say that dµp

dλ
̸∈ Lq if q ≥ rmax

rmax−1
. This follows from the above reasoning

by taking k = 0 in the definition of τ in the proof of Theorem 1.2 and by noting that
τ = (1− r−1

max)q ≥ 1 if q ≥ rmax

rmax−1
.

4. Estimates on the acs measure

In this section we prove Theorem 1.3. Recall the definition of θ from Theorem 1.3:

θ =
∑
b∈ΣB

pbℓb.

4.1. The case θ ≥ 1. To prove one direction of Theorem 1.3, namely that the unique acs
measure µ from Theorem 1.2 is infinite if θ ≥ 1, we introduce another induced transfor-
mation.

Proposition 4.1. Suppose θ ≥ 1. Then the unique acs measure µ from Theorem 1.2 is
infinite.

Proof. Fix a b ∈ ΣB. Recall the definitions of M̃ from Lemma 2.4 and δ from in and below
the proof of Lemma 2.4, and set γ = min{δ, 1

2
M̃−1}. Let a ∈ [c− γ, c). Then there exists

a ξ ∈ (a, c) such that Tb(a) > ξ and T 2
b (a) > ξ. Take [bb] × (a, ξ) as the inducing domain

and let

κ(ω, x) = inf{k ∈ N : F k(ω, x) ∈ [bb]× (a, ξ)}(4.1)

be the first return time to [bb] × (a, ξ) under F . If P × µ([bb] × (a, ξ)) = ∞, there is
nothing left to prove. If not, then we compute

∫
[bb]×(a,ξ)

κ dP × µ and use Kac’s Formula

from Lemma 2.3 to prove the result.

So, assume that P× µ([bb]× (a, ξ)) <∞. The conditions that Tb(a) > ξ and T 2
b (a) > ξ

together with the fact that any bad map has c as a fixed point and is strictly monotone
on the intervals [0, c] and [c, 1], guarantee that for each n ∈ N and ω ∈ ΣN

B ∩ [bb] we get

T n
ω ((a, ξ)) ∩ (a, ξ) = ∅.(4.2)
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For any ω ∈ [bb] and x ∈ (a, ξ) it follows by (4.2) and (2.16) that T n
ω (x) can only return to

(a, ξ) after at least one application of a good map. Assume that ω ∈ [bb] is of the form

ω = (b, b, ω3, ω4, . . . , ωn, g, ωn+2, . . .),

with n ≥ 2, ωi ∈ ΣB for 3 ≤ i ≤ n, g ∈ Σg, and x ∈ (a, ξ). Then κ(ω, x) ≥ n+ 1. Lemma
2.4 yields that

|T n
ω (x)− c| ≤ (M̃γ)ℓω1 ···ℓωn < 2−ℓω1 ···ℓωn .(4.3)

From (G3) and (4.3) we obtain that

|TgT n
ω (x)− Tg(c)| =

∣∣∣∣∣
∫ Tn

ω (x)

c

DTg(y) dy

∣∣∣∣∣ ≤ Mg

rg
|T n

ω (x)− c|rg < Mg

rg
· 2−ℓω1 ···ℓωnrg .(4.4)

Set

ζ = sup{|DTj(x)| : j ∈ Σ, x ∈ [0, 1]}.(4.5)

Then ζ > 1 by (G4), (B4). Assume κ(ω, x) = m+n for somem ≥ 1. Then Tm+n
ω (x) ∈ (a, ξ)

so that by (G1),

|Tm+n
ω (x)− Tg(c)| ≥ min{a, 1− ξ}.(4.6)

Because of (4.4) this implies

ζm−1Mg

rg
· 2−ℓω1 ···ℓωnrg ≥ min{a, 1− ξ}.(4.7)

Solving for m yields

m ≥ K1 +K2ℓω1 · · · ℓωn(4.8)

for constants K1 =
(
1 + log

(min{a,1−ξ}rg
Mg

))
/ log ζ ∈ R and K2 = log(2rg)/ log ζ > 0. Note

that K1, K2 are independent of ω, x,m and n.

We obtain that for any g ∈ ΣG,∫
[bb]×(a,ξ)

κ dP× µ ≥
∑

n∈N≥2

∑
ω3,...,ωn∈ΣB

P([bbω3 · · ·ωng])µ((a, ξ))
(
n+K1 +K2ℓ

2
b

n∏
i=3

ℓωi

)
.

Since ∑
n∈N≥2

∑
ω3,...,ωn∈ΣB

P([ω3 · · ·ωn])
n∏

i=3

ℓωi
= 1 +

∑
n∈N

θn = ∞,

we get
∫
[bb]×(a,ξ)

κ dP×µ = ∞ and from Lemma 2.3 we now conclude that µ is infinite. □
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4.2. The case θ < 1. For the other direction of Theorem 1.3, assume θ < 1. We first
obtain a stationary probability measure µ̃ for F as in (1.5) using a standard Krylov-
Bogolyubov type argument. For this, let M denote the set of all finite Borel measures on
[0, 1], and define the operator P : M → M by

Pν =
∑
j∈Σ

pjν ◦ T−1
j , ν ∈ M,(4.9)

where ν ◦ T−1
j denotes the pushforward measure of ν under Tj. Then P is a Markov-Feller

operator (see e.g. [26]) with dual operator U on the space B([0, 1]) of all bounded Borel
measurable functions given by1 Uf =

∑
j∈Σ pjf ◦ Tj for f ∈ B([0, 1]). As before, let λ

denote the Lebesgue measure on [0, 1], and set λn = Pnλ for each n ≥ 0. Furthermore,
for each n ∈ N define the Cesáro mean µn = 1

n

∑n−1
k=0 λk. Since the space of probability

measures on [0, 1] equipped with the weak topology is sequentially compact, there exists
a subsequence (µnk

)k∈N of (µn)n∈N that converges weakly to a probability measure µ̃ on
[0, 1]. Using that a Markov-Feller operator is weakly continuous, it then follows from a
standard argument that Pµ̃ = µ̃, that is, µ̃ is a stationary probability measure for F . The
next theorem will lead to the estimate (1.7) from Theorem 1.3. For any b = b1 · · · bk ∈ Σk

B,

k ≥ 0, recall that we abbreviate pb =
∏k

i=1 pbi and also let ℓb =
∏k

i=1 ℓbi where we use
pb = 1 = ℓb in case k = 0.

Theorem 4.1. There exists a constant C > 0 such that for all n ∈ N and all Borel sets
A ⊆ [0, 1] we have

λn(A) ≤ C ·
∑
g∈ΣG

pg

∞∑
k=0

∑
b∈Σk

B

pbℓb · λ(A)ℓ
−1
b r−1

g .(4.10)

Before we prove this theorem, we first show how it gives Theorem 1.3.

Proof of Theorem 1.3. The first part of the statement follows from Proposition 4.1. For
the second part, assume that θ < 1 and that Theorem 4.1 holds. Let A ⊆ [0, 1]. Using
the regularity of λ, for any δ > 0 there exists an open set G ⊆ [0, 1] such that A ⊆ G
and λ(G) ≤ λ(A) + δ. Using that (µnk

)k∈N converges weakly to µ̃, we obtain from the
Portmanteau Theorem together with Theorem 4.1 that

µ̃(A) ≤ µ̃(G) ≤ lim inf
k

µnk
(G)

≤ C ·
∑
g∈ΣG

pg

∞∑
k=0

∑
b∈Σk

B

pbℓb · (λ(A) + δ)ℓ
−1
b r−1

g .(4.11)

1By definition of a Markov-Feller operator, the space of bounded continuous functions is required to be
invariant under the dual operator U . If there is a g ∈ ΣG for which Tg is discontinuous (namely at c), we
then first identify [0, 1] with the unit circle S1 so that Tg can be viewed as a continuous map on S1. With
the same identification any acs measure on S1 then gives an acs measure on [0, 1].
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Since θ < 1, the sum is bounded and with the Dominated Convergence Theorem we can
take the limit as δ → 0 to obtain

µ̃(A) ≤ C ·
∑
g∈ΣG

pg

∞∑
k=0

∑
b∈Σk

B

pbℓb · λ(A)ℓ
−1
b r−1

g .(4.12)

This proves that µ̃ is absolutely continuous with respect to the Lebesgue measure on [0, 1].
It follows that the probability measure µ̃ is equal to the unique acs measure µp from
Theorem 1.2. The estimate (1.7) follows directly from (4.12). □

It remains to give the proof of Theorem 4.1. We shall do this in a number of steps.

Proposition 4.2. There exists a constant K1 > 0 such that for all n ∈ N, all u ∈ Σn and
all Borel sets A ⊆ [0, 1] with 0 < 3λ(A) < 1

2
min{c, 1− c} we have

λ(T−1
u A) ≤ K1

(
λ(T−1

u [0, 3η)) + λ(T−1
u (c− 3η, c+ 3η)) + λ(T−1

u (1− 3η, 1])
)
,

where η = λ(A).

Proof. Let n ∈ N, u ∈ Σn and a Borel set A ⊆ [0, 1] with 0 < 3λ(A) < 1
2
min{c, 1− c} < 1

be given and write η = λ(A). The map Tu has non-positive Schwarzian derivative on any
of its intervals of monotonicity (see (2.9)) and the image of any such interval is [0, c], [c, 1]
or [0, 1]. Set A1 = (η, c − η) and A2 = (2η, c − 2η). Let I be a connected component of
T−1
u A1, and set f = Tu|I and I∗ = f−1A2. The Minimum Principle yields

|Df(x)| ≥ min
z∈∂I∗

|Df(z)|, for all x ∈ I∗.(4.13)

Suppose the minimal value is attained at f−1(2η) and set A3 = (2η, 3η) and J = f−1A3.
By the condition on the size of A it follows from the Koebe Principle that

K(η)|Df(f−1(2η))| ≥ |Df(x)|, for all x ∈ J .(4.14)

Combining (4.13) and (4.14) gives

λ(f−1(A ∩ A2)) =

∫
A∩A2

1

|Df(f−1y)|
dλ(y) ≤ λ(A) · 1

|Df(f−1(2η))|

≤ K(η)

∫
A3

1

|Df(f−1y)|
dλ(y) = K(η)λ(f−1(A3)).

We conclude that

λ
(
T−1
u

(
A ∩ (2η, c− 2η)

))
≤ K(η)λ

(
T−1
u (2η, 3η)

)
.(4.15)

In case minz∈∂I∗ |Df(z)| = f−1(c− 2η), a similar reasoning yields

λ
(
T−1
u

(
A ∩ (2η, c− 2η)

))
≤ K(η)λ

(
T−1
u (c− 3η, c− 2η)

)
.(4.16)

Furthermore, a similar reasoning can be done for the interval [c, 1] to conclude that

λ
(
T−1
u

(
A ∩ (c+ 2η, 1− 2η)

))
≤ K(η)

(
λ
(
T−1
u (c+ 2η, c+ 3η)

)
+ λ
(
T−1
u (1− 3η, 1− 2η)

))
.

Hence, setting K1 = max{K(η), 1} gives the desired result. □
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Proposition 4.2 shows that to get the desired estimate from Theorem 4.1 it suffices to
consider small intervals on the left and right of [0, 1] and around c, i.e., sets of the form

Ic(ε) := (c− ε, c+ ε) and I0(ε) := [0, ε) ∪ (1− ε, 1]

for ε > 0. We first focus on estimating the measure of the intervals Ic(ε).

Lemma 4.1. There exists a constant K2 ≥ 1 such that for all n ∈ N, u ∈ Σn−1 ×ΣG and
all ε > 0 we have

λ(T−1
u Ic(ε)) ≤ K2ε.(4.17)

Proof. Let n ∈ N and u ∈ Σn−1 × ΣG. Let ε > 0. Suppose that ε ≥ 1
4
min{c, 1− c}. Then

λ(T−1
u Ic(ε)) ≤ 1 ≤ 4ε

min{c, 1− c}
.(4.18)

Now suppose ε < 1
4
min{c, 1−c}. Again the map Tu has non-positive Schwarzian derivative

on the interior of any of its intervals of monotonicity and since un ∈ ΣG the image of any
such interval is [0, 1]. Use I to denote the collection of connected components of T−1

u Ic(ε).
Let A ∈ I and write J = JA and I = IA for the intervals that satisfy A ⊆ J , A ⊆ I and

Tu(J) =
[
c− 1

2
min{c, 1− c}, c+ 1

2
min{c, 1− c}

]
,

Tu(I) =
[
c− 3

4
min{c, 1− c}, c+ 3

4
min{c, 1− c}

]
.

Also, write f = Tu|I . Since f has non-positive Schwarzian derivative, it follows from (2.13)
that

λ(A)

λ(J)
≤ K( 1

4
)λ(f(A))

λ(f(J))
= K( 1

4
) 2ε

min{c, 1− c}
.(4.19)

We conclude that

λ(T−1
u Ic(ε)) =

∑
A∈I

λ(A) ≤ K( 1
4
) 2ε

min{c, 1− c}
∑
A∈I

λ(JA) ≤ K( 1
4
) 2ε

min{c, 1− c}
.(4.20)

Defining K2 =
2max{2,K( 14 )}
min{c,1−c} , the desired result now follows from (4.18) and (4.20). □

To find λn
(
Ic(ε)

)
, first note that from Lemma 2.4 it follows that for all ε > 0, n ∈ N,

u ∈ Σn
B,

(4.21) T−1
u

(
Ic(ε)

)
⊆ Ic

(
K̃−1εℓ

−1
u
)
.
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By splitting Σn according to the final block of bad indices, we can then write using (4.21)
and Lemma 4.1 that

λn
(
Ic(ε)

)
=

n−1∑
k=0

∑
v∈Σn−k−1

∑
g∈ΣG

∑
b∈Σk

B

pvgbλ
(
T−1
vgbIc(ε)

)
+
∑
b∈Σn

B

pbλ
(
T−1
b Ic(ε)

)
≤

n−1∑
k=0

∑
v∈Σn−k−1

∑
g∈ΣG

∑
b∈Σk

B

pvgbλ
(
T−1
vg Ic(K̃

−1εℓ
−1
b )
)
+
∑
b∈Σn

B

pbλ
(
Ic(K̃

−1εℓ
−1
b )
)

≤
n−1∑
k=0

∑
g∈ΣG

∑
b∈Σk

B

pgpbK2K̃
−1εℓ

−1
b +

∑
b∈Σn

B

pb2K̃
−1εℓ

−1
b .

Taking K3 = max
{
K2, 2

(∑
g∈ΣG

pg
)−1} · K̃−1 ≥ 1 then gives

(4.22) λn
(
Ic(ε)

)
≤ K3

∑
g∈ΣG

n∑
k=0

∑
b∈Σk

B

pgpbε
ℓ−1
b .

We now focus on I0(ε) = [0, ε) ∪ (1− ε, 1]. Fix an 0 < ε0 <
1
2
min{c, 1− c} and a t > 1

that satisfy

|DTj(x)| > t, for all x ∈ I0(ε0) and each j ∈ Σ.(4.23)

Such ε0 and t exist because of (G4) and (B4). From (G3) it follows that for each 0 < ε < ε0
and g ∈ ΣG,

|Tg(x)− Tg(c)| =
∣∣∣∣∫ x

c

DTg(y)dy

∣∣∣∣ ≥ Kg

rg
· |x− c|rg .

Set K4 = max{(K−1
g rg)

r−1
g : g ∈ ΣG} ≥ 1. Then (G1) implies that

(4.24) T−1
g I0(ε) ⊆ I0(εt

−1) ∪ Ic(K4ε
r−1
g ).

Furthermore, from (B1) it follows that for each ε ∈ (0, ε0) and b ∈ ΣB,

T−1
b I0(ε) ⊆ I0(εt

−1).(4.25)

Write each u ∈ Σn as

u = b1g1 · · ·bs̃gs̃(4.26)

for some s̃ ∈ {1, . . . , n}, where for each i we have bi = bi,1 · · · bi,ki ∈ Σki
B and gi =

gi,1 · · · gi,mi
∈ Σmi

G for some k1,ms̃ ∈ Z≥0 and k2, . . . , ks̃,m1, . . . ,ms̃−1 ∈ N. Define

s =

{
s̃, if ms̃ ≥ 1,

s̃− 1, if ms̃ = 0.

Moreover, we introduce notation to indicate the length of the tails of the block u:

di = |bigi · · ·bs̃gs̃|, i ∈ {1, . . . , s̃},
qi,j = |gi,j+1 · · · gi,mi

bi+1gi+1 · · ·bs̃gs̃|, i ∈ {1, . . . , s̃}, j ∈ {0, . . . ,mi}.
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If necessary to avoid confusion, we write s(u), ki(u), etcetera to emphasize the dependence
on u.

Lemma 4.2. There exists a constant K5 > 0 such that for each 0 < ε < ε0, n ∈ N and
u = b1g1 · · ·bs̃gs̃ ∈ Σn,

T−1
u I0(ε) ⊆ I0(εt

−d1) ∪
s⋃

i=1

T−1
b1g1···bi−1gi−1

Ic

(
K5(εt

−qi,1)
ℓ−1
bi

r−1
gi,1

)
∪

s⋃
i=1

mi⋃
j=2

T−1
b1g1···bi−1gi−1bigi,1···gi,j−1

Ic(K5(εt
−qi,j)r

−1
gi,j ).

Proof. We prove the statement by an induction argument for s̃. Let u be a word with
symbols in Σ, and write u = b1g1 · · ·bs̃gs̃ for its decomposition as in (4.26). First suppose
that s̃ = 1. If m1 = 0, then the statement immediately follows from repeated application
of (4.25). If m1 ≥ 1, then repeated application of (4.24) gives

(4.27) T−1
g1
I0(ε) ⊆ I0(εt

−q1,0) ∪ Ic
(
K4(εt

−q1,1)r
−1
g1,1

)
∪

m1⋃
j=2

T−1
g1,1···g1,j−1

Ic

(
K4(εt

−q1,j)r
−1
g1,j

)
.

By setting K5 = K̃−1K4, applying (4.21) and (4.25) then yields

T−1
b1g1

I0(ε) ⊆ I0(εt
−d1) ∪ Ic

(
K5(εt

−q1,1)ℓ
−1
b1

r−1
g1,1

)
∪

m1⋃
j=2

T−1
b1g1,1···g1,j−1

Ic

(
K5(εt

−q1,j)r
−1
g1,j

)
.

Note that this is true for the case that k1 = 0 as well. This proves the statement if
s̃ = 1. Now suppose s̃(u) > 1 and suppose that the statement holds for all words v with
s̃(v) = s̃(u)− 1. In particular, the statement then holds for the word b2g2 · · ·bs̃gs̃. Note
that m1 ≥ 1. Again, by repeated application of (4.24) it follows that

(4.28) T−1
g1
I0(εt

−d2) ⊆ I0(εt
−q1,0)∪ Ic

(
K4(εt

−q1,1)r
−1
g1,1

)
∪

m1⋃
j=2

T−1
g1,1···g1,j−1

Ic

(
K4(εt

−q1,j)r
−1
g1,j

)
.

Furthermore, applying (4.21) and (4.25) then yields

T−1
b1g1

I0(εt
−d2) ⊆ I0(εt

−d1) ∪ Ic
(
K5(εt

−q1,1)ℓ
−1
b1

r−1
g1,1

)
∪

m1⋃
j=2

T−1
b1g1,1···g1,j−1

Ic

(
K5(εt

−q1,j)r
−1
g1,j

)
.

This together with the statement being true for the word b2g2 · · ·bs̃gs̃ yields the statement
for u. □

Combining Lemma 4.1 and Lemma 4.2 gives

λ(T−1
u I0(ε)) ≤ 2εt−d1 +

s∑
i=1

K2K5(εt
−qi,1)

ℓ−1
bi

r−1
gi,1 +

s∑
i=1

mi∑
j=2

K2K5(εt
−qi,j)r

−1
gi,j .
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Let rmax = max{rg : g ∈ ΣG} and set α := t1/rmax > 1. Then

s∑
i=1

mi∑
j=2

α−qi,j ≤
∞∑
ℓ=0

α−ℓ =
1

1− 1/α
,

so that

λ(T−1
u I0(ε)) ≤ 2ε1/rmax +K2K5

s∑
i=1

mi∑
j=2

ε1/rmaxα−qi,j +
s∑

i=1

K2K5(εt
−qi,1)

ℓ−1
bi

r−1
gi,1

≤
(
2 +

K2K5

1− 1/α

)
ε1/rmax +K2K5

s∑
i=1

(εt−qi,1)
ℓ−1
bi

r−1
gi,1 .

(4.29)

Proposition 4.3. There exists a constant K6 > 0 such that for each ε ∈ (0, ε0) and n ∈ N,

λn(I0(ε)) ≤ K6

∑
g∈ΣG

pg

n−1∑
k=0

∑
b∈Σk

B

pbℓb · εℓ
−1
b r−1

g .

Proof. Let n ∈ N. Then with (4.29) we obtain

λn(I0(ε)) =
∑
u∈Σn

puλ
(
T−1
u (I0(ε))

)
≤
(
2 +

K2K5

1− 1/α

)
ε1/rmax +K2K5

∑
u∈Σn

pu

s(u)∑
i=1

(
εt−qi,1(u)

)ℓ−1
bi(u)

r−1
gi,1(u)

=

(
2 +

K2K5

1− 1/α

)
ε1/rmax +K2K5

τ∑
i=1

∑
u∈Σn

1{1,...,s(u)}(i)pu
(
εt−qi,1(u)

)ℓ−1
bi(u)

r−1
gi,1(u) ,(4.30)

where we defined τ = ⌊n+1
2
⌋ which is the largest value s(u) can take. Let us consider the

second term in (4.30). First of all, note that a word u ∈ Σn satisfies s(u) ≥ 1 if and only
if m1(u) ≥ 1. Therefore,

{u ∈ Σn : s(u) ≥ 1} =
n−1⋃
k=0

Σk
B × ΣG × Σn−k−1.

Hence, defining the function χ on {0, . . . , n− 1}2 by

χ(k, q) =
∑
b∈Σk

B

∑
g∈ΣG

pbpg
(
εt−q

)ℓ−1
b r−1

g , (k, q) ∈ {0, . . . , n− 1}2.(4.31)
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we can rewrite and bound the term with i = 1 in (4.30) as follows:

∑
u∈Σn

1{1,...,s(u)}(1)pu
(
εt−q1,1(u)

)ℓ−1
bi(u)

r−1
g1,1(u) =

n−1∑
k=0

∑
v∈Σn−k−1

pvχ(k, n− k − 1)

≤ ε1/rmax +
n−1∑
k=1

χ(k, n− k − 1).(4.32)

Secondly, note that for each i ∈ {2, . . . , τ} a word u ∈ Σn satisfies s(u) ≥ i if and only
if mi−1(u), ki(u),mi(u) ≥ 1. For each k ∈ {1, . . . , n − 1} and q ∈ {0, . . . , n − k − 2} and
i ∈ {2, . . . , τ} we define

Ai,k,q = {v ∈ Σn−k−q−1 : s̃(v) = i− 1, vn−k−q−1 ∈ ΣG}.(4.33)

The set Ai,k,q contains all words of length n−k−q−1 that can precede the word bigi · · ·bs̃gs̃

with |bi| = k and |gi,2 · · · gi,mi
bi+1gi+1 · · ·bs̃gs̃| = q. So

{u ∈ Σn : s(u) ≥ i} =
n−1⋃
k=1

n−k−2⋃
q=0

Ai,k,q × Σk
B × ΣG × Σq, i ∈ {2, . . . , τ}.

Hence, using (4.31) we can rewrite and bound the sum in (4.30) that runs from i = 2 to τ
as follows:

τ∑
i=2

∑
u∈Σn

1{1,...,s(u)}(i)pu
(
εt−qi,1(u)

)ℓ−1
bi(u)

r−1
gi,1(u) =

τ∑
i=2

n−1∑
k=1

n−k−2∑
q=0

∑
v1∈Ai,k,q

∑
v2∈Σq−1

pv1pv2χ(k, q)

=
n−1∑
k=1

n−k−2∑
q=0

χ(k, q)
τ∑

i=2

∑
v1∈Ai,k,q

∑
v2∈Σq−1

pv1pv2

≤
n−1∑
k=1

n−k−2∑
q=0

χ(k, q).(4.34)

Here the last step follows from the fact that

τ∑
i=2

∑
v1∈Ai,k,q

pv1 ≤
∑

v∈Σn−k−q−2

∑
g∈ΣG

pvpg ≤ 1.(4.35)

Combining (4.32) and (4.34) gives

τ∑
i=1

∑
u∈Σn

1{1,...,s(u)}(i)pu
(
εt−qi,1(u)

)ℓ−1
bi(u)

r−1
gi,1(u) ≤ ε1/rmax +

n−1∑
k=1

n−k−1∑
q=0

χ(k, q).(4.36)
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Furthermore, for each b ∈ Σk
B and g ∈ ΣG we have again by setting rmax = max{rj : j ∈

ΣG} and α = t1/rmax that

n−k−1∑
q=0

(t−q)ℓ
−1
b r−1

g ≤
n−k−1∑
q=0

(
α−ℓ−1

b

)q ≤ 1

1− α−ℓ−1
b

≤ αℓ−1
b

αℓ−1
b − 1

ℓb ≤ α

log(α)
ℓb,(4.37)

where the last step follows from the fact that f(x) = x
αx−1

is a decreasing function and

limx↓0 f(x) =
1

logα
. Hence, combining (4.30), (4.36) and (4.37) gives

λn(I0(ε)) ≤
(
2 +

K2K5

1− 1/α
+K2K5

)
ε1/rmax +K2K5

n−1∑
k=1

n−k−1∑
q=0

∑
b∈Σk

B

∑
g∈ΣG

pbpg
(
εt−q

)ℓ−1
b r−1

g

≤
(
2 +K2K5

2α− 1

α− 1

)
ε1/rmax +K2K5

n−1∑
k=1

∑
b∈Σk

B

∑
g∈ΣG

pbpgε
ℓ−1
b r−1

g
αℓb

log(α)

≤ K6

∑
g∈ΣG

pg

n−1∑
k=0

∑
b∈Σk

B

pbℓbε
ℓ−1
b r−1

g ,

where K6 =
1

min{pg : g∈ΣG}

(
2 +K2K5

2α−1
α−1

)
+ K2K5α

logα
. □

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let A ⊆ [0, 1] be a Borel set. First suppose that λ(A) ≥ ε0
3
. Then

there exists a constant C = C( ε0
3
) > 0 such that

λn(A) ≤ 1 ≤ C
∑
g∈ΣG

pg

∞∑
k=0

∑
b∈Σk

B

pbℓb · λ(A)ℓ
−1
b r−1

g .(4.38)

Now suppose that λ(A) < ε0
3
and set ε = 3λ(A). It follows from Proposition 4.2 that for

all n ∈ N and all u ∈ Σn we have

λ
(
T−1
u A

)
≤ K1

(
λ(T−1

u I0(ε)) + λ(T−1
u Ic(ε))

)
.

Together with (4.22) and Proposition 4.3 this yields for all n ∈ N that

λn(A) ≤ K1 · (K3 +K6)
∑
g∈ΣG

pg

∞∑
k=0

∑
b∈Σk

B

pbℓb · εℓ
−1
b r−1

g .

This gives the result. □

5. Further results and final remarks

5.1. Proof of Corollaries 1.1 and 1.2. In this section we prove Corollaries 1.1 and 1.2.
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Proof of Corollary 1.1. We use the bound (1.7) obtained in Theorem 1.3. For convenience,
we set ℓ = ℓmax and x = λ(A)1/rmax . The asymptotics is determined by the interplay

between θk ↘ 0 and x1/ℓ
k ↗ 1. First suppose θ < x1/ℓ. Then λ(A) > θℓrmax , so there exists

a constant C = C(θℓrmax) > 0 such that

µp(A) ≤ C · 1

logκ(1/λ(A))
.

Now suppose θ ≥ x1/ℓ. Note that θN ≥ x1/ℓ
N
if and only if

logN +N log ℓ ≤ log

(
log x

log θ

)
.

Since logN ≤ N , this last inequality is satisfied if we take for example

(5.1) N =

⌊
1

1 + log ℓ
log

(
log x

log θ

)⌋
=

⌊
1

1 + log ℓ
log

(
log(1/x)

log(1/θ)

)⌋
,

where ⌊y⌋ denotes the largest integer not exceeding y. Taking N as in (5.1), note that it

follows from θ ≥ x1/ℓ that N ≥ 0. Then θk ≥ x1/ℓ
k
for all k ≤ N as well, and hence

∞∑
k=0

θkx1/ℓ
k

=
N∑
k=0

θkx1/ℓ
k

+
∞∑

k=N+1

θkx1/ℓ
k ≤

N∑
k=0

θk · x1/ℓN +
∞∑

k=N+1

θk · 1

≤ 1

1− θ
x1/ℓ

N

+
θN+1

1− θ
≤ 1

1− θ
(1 + θ)θN .

From (5.1) we see that N ≥ 1
1+log ℓ

log
(
log x
log θ

)
− 1, thus

θN = exp(N log θ) ≤ exp

((
1

1 + log ℓ
log

(
log(1/x)

log(1/θ)

)
− 1

)
log θ

)
= exp

(
log θ

1 + log ℓ
log log(1/x) + C(ℓ, θ)

)
= C(ℓ, θ)

(
log(1/x)

) log θ
1+log ℓ = C(ℓ, θ)

(
rmax

log(1/λ(A))

)κ

,

where we set κ = log(1/θ)
1+log ℓ

> 0, and where C(ℓ, θ) ∈ R and C(ℓ, θ) > 0 are constants that

only depend on ℓ and θ. We conclude from the bound (1.7) that

µp(A) ≤ K · 1

logκ(1/λ(A))

for some positive constant K. □

The proof of Corollary 1.2 consists of two steps. Firstly we show that any weak limit
point of µpn is a stationary measure, i.e., satisfies (2.3), and secondly that any weak limit
point of µpn is absolutely continuous with respect to the Lebesgue measure. The corollary
then follows from the uniqueness of absolutely continuous stationary measures given by
Theorem 1.2.
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Proof of Corollary 1.2. For each n ≥ 0, let pn = (pn,j)j∈Σ be a positive probability vector
such that supn

∑
b∈ΣB

pn,bℓb < 1 and assume that limn→∞ pn = p in RN
+ for some p =

(pj)j∈Σ. Let µ̃ be a weak limit point of µpn . Again, note that such a µ̃ exists because
the space of probability measures on [0, 1] equipped with the weak topology is sequentially
compact. After passing to a subsequence we have for any continuous function φ : [0, 1] → R
that

lim
n→∞

∫
[0,1]

φdµpn =

∫
[0,1]

φdµ̃.

Moreover, by the stationarity of the measures µpn it follows that for each n ≥ 1,∫
[0,1]

φdµpn =
∑
j∈Σ

pn,j

∫
[0,1]

φ ◦ Tj dµpn .

To prove that µ̃ is stationary for p, it is sufficient to show that for each j ∈ Σ,

(5.2) lim
n→∞

pn,j

∫
[0,1]

φ ◦ Tj dµpn = pj

∫
[0,1]

φ ◦ Tj dµ̃.

If j ∈ ΣB this is obvious, since then φ ◦ Tj is continuous. For j ∈ ΣG the map φ ◦ Tj
might have a discontinuity at c. In this case, we let φδ be the continuous function given
by φδ(x) = φ ◦ Tj(x) for x ∈ I \ (c− δ, c+ δ) and φδ is linear otherwise. Then we have

lim
n→∞

∣∣∣∣pn,j ∫
[0,1]

φδ dµpn − pj

∫
[0,1]

φδ dµ̃

∣∣∣∣ = 0,

by the weak convergence and since pn,j → pj as n→ ∞. Also, we have∣∣∣∣pn,j ∫
[0,1]

φ ◦ Tj dµpn − pn,j

∫
[0,1]

φδ dµpn

∣∣∣∣ ≤ Cµpn([c− δ, c+ δ]) → 0 as δ → 0,

where the convergence is uniform in n because of (1.7). Similarly,∣∣∣∣pj ∫
[0,1]

φ ◦ Tjdµ̃− pj

∫
[0,1]

φδdµ̃

∣∣∣∣ ≤ Cµ̃([c− δ, c+ δ]) → 0 as δ → 0,

The last three relations imply (5.2).

To show that µ̃ is absolutely continuous with respect to the Lebesgue measure λ we
proceed as in the proof of Theorem 1.3. We set θ̃ = supn

∑
b∈ΣB

pn,bℓb < 1. Let A ⊆ [0, 1]
be a Borel set. By Theorem 1.2 every µpn satisfies (1.7), so that

µpn(A) ≤ Cn

∞∑
k=0

θ̃kλ(A)ℓ
−k
maxr

−1
max ,

where the constant Cn depends on (
∑

g∈ΣG
pn,g
)−1

and (min{pn,g : g ∈ ΣG})−1 (and

properties of the good and bad maps themselves that are not linked to the probabilities).
Since each pn, n ≥ 0, is a positive probability vector and limn→∞ pn = p, both these
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quantities can be bounded from above and C̃ := supnCn <∞. From the weak convergence
of µpn to µ̃ we obtain as in (4.12) using the Portmanteau Theorem that

µ̃(A) ≤ C̃

∞∑
k=0

θ̃kλ(A)ℓ
−k
maxr

−1
max .

Hence, µ̃≪ λ. By Theorem 1.2 we know that µp is the unique acs probability measure for
F and p. So, µ̃ = µp. □

5.2. The non-superattracting case. With some modifications the results from Theorem
1.2 and Theorem 1.3 can be extended to the class B1 ⊇ B of bad maps of which critical
order ℓb in (B3) is allowed to be equal to 1. We will list the modified statements and the
necessary modifications to the proofs here. Note that for each T ∈ B1\B, we haveDT (c) ̸=
0, and due to the minimal principle, |DT (c)| < 1. So we consider T1, . . . , TN ∈ G ∪ B1

with Σ1
B = {1 ≤ j ≤ N : Tj ∈ B1} and ΣG, ΣB as before and such that ΣG,Σ

1
B\ΣB ̸= ∅.

Furthermore, we write again Σ = {1, . . . , N} = ΣG ∪ Σ1
B.

Theorem 5.1. Let {Tj : j ∈ Σ} be as above and p = (pj)j∈Σ a positive probability vector.

(1) There exists a unique (up to scalar multiplication) stationary σ-finite measure µp

for F that is absolutely continuous with respect to the one-dimensional Lebesgue
measure λ. This measure is ergodic and the density dµp

dλ
is bounded away from zero

and is locally Lipschitz on (0, c) and (c, 1).
(2) Suppose ℓmax > 1.

(i) The measure µp is finite if and only if θ =
∑

b∈Σ1
B
pbℓb < 1. In this case, for

each θ̂ ∈ (θ, 1) there exists a constant C(θ̂) > 0 such that

µp(A) ≤ C(θ̂) ·
∞∑
k=0

θ̂kλ(A)ℓ
−k
maxr

−1
max(5.3)

for any Borel set A ⊆ [0, 1], where rmax = max{rg : g ∈ ΣG} and ℓmax =
max{ℓb : b ∈ ΣB}.

(ii) The density dµp

dλ
is not in Lq for any q > 1.

(3) Suppose ℓmax = 1.
(i) The measure µp is finite, and for each η = (ηb)b∈Σ1

B
such that ηb > 1 for each

b ∈ Σ1
B and θ̂(η) =

∑
b∈Σ1

B
pbηb < 1 there exists a constant C(η) > 0 such that

µp(A) ≤ C(η) ·
∞∑
k=0

θ̂(η)kλ(A)η
−k
maxr

−1
max(5.4)

for any Borel set A ⊆ [0, 1], where ηmax = max{ηb : b ∈ Σ1
B}. If

∑
b∈Σ1

B

pb
|DTb(c)|

<

1, so if the bad maps are expanding on average at the point c, then we can get
the estimate

µp(A) ≤ C · λ(A)r
−1
max(5.5)

for some constant C > 0 and any Borel set A ⊆ [0, 1].
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(ii) If rmax > 1, then dµp

dλ
̸∈ Lq for any q ≥ rmax

rmax−1
. If, moreover,

∑
b∈Σ1

B

pb
|DTb(c)|

<

1, then dµp

dλ
∈ Lq for all 1 ≤ q < rmax

rmax−1
.

(iii) If rmax = 1 and
∑

b∈Σ1
B

pb
|DTb(c)|

< 1, then dµp

dλ
∈ L∞.

The main issue we need to deal with in order to get Theorem 5.1 is adapting Lemma 2.4,
i.e., finding suitable bounds for |T n

ω (x)− c|, since the constants K̃ and M̃ from Lemma 2.4
are not well defined in case ℓmin = 1. This is done in the next two lemmata. For the upper
bound of |T n

ω (x)− c| we assume ℓmax > 1 since we only need it for the proof of part (2)(i).

Lemma 5.1. Let {Tj : j ∈ Σ} be as above. Suppose ℓmax > 1. There are constants M̂ > 1
and δ > 0 such that for all n ∈ N, ω ∈ (Σ1

B)
N and x ∈ [c− δ, c+ δ] we have

|T n
ω (x)− c| ≤

(
M̂ |x− c|

)ℓω1 ···ℓωn

.(5.6)

Proof. Similar as in the proof of Lemma 2.4 it follows that there exists an M > 1 such
that for any b ∈ ΣB and x ∈ [0, 1] we have

|Tb(x)− c| ≤M |x− c|ℓb .(5.7)

Furthermore, there exists a δ > 0 such that |DTb(x)| < 1 for all x ∈ [c − δ, c + δ] and
b ∈ Σ1

B. This implies

|Tb(x)− c| < |x− c|(5.8)

for all x ∈ [c − δ, c + δ] and b ∈ Σ1
B. Note that ΣB ̸= ∅ because ℓmax > 1. We set

υ = min{ℓb : b ∈ ΣB} > 1 and M̂ =M
1

υ−1 . For each n ∈ N and ω ∈ (Σ1
B)

N, write

m(n, ω) = #{1 ≤ ωi ≤ n : ℓωi
> 1}.(5.9)

The statement follows by showing that for all n ∈ N, ω ∈ (Σ1
B)

N and x ∈ [c− δ, c + δ] we
have

|T n
ω (x)− c| ≤

(
M (1−υ−m(n,ω))/(υ−1)|x− c|

)ℓω1 ···ℓωn

.(5.10)

We prove (5.10) by induction. From (5.7) and (5.8) it follows that (5.10) holds for n = 1.
Now suppose (5.10) holds for some n ∈ N. Let ω ∈ (Σ1

B)
N and y ∈ [c−δ, c+δ]. If ℓωn+1 = 1,

then the desired result follows by applying (5.8) with j = ωn+1 and x = T n
ω (y). Suppose

ℓωn+1 > 1. Then, using (5.7),

|T n+1
ω (y)− c| ≤M |T n

ω (y)− c|ℓωn+1

≤
(
M (1−υ−m(n,ω))/(υ−1)+υ−m(n+1,ω) |y − c|

)ℓω1 ···ℓωn+1

.

Using that

υ−m(n+1,ω) =
υ−m(n,ω) − υ−m(n+1,ω)

υ − 1
,(5.11)

the desired result follows. □
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Lemma 5.2. Let {Tj : j ∈ Σ} be as above. Let η = (ηb)b∈Σ1
B
be a vector such that ηb > 1

for each b ∈ Σ1
B. Set η̂b = max{ηb, ℓb} for each b ∈ Σ1

B. Then there exists a constant

K̂(η) ∈ (0, 1) such that for all n ∈ N, ω ∈ (Σ1
B)

N and x ∈ [0, 1] we have(
K̂(η)|x− c|

)η̂ω1 ···η̂ωn

≤ |T n
ω (x)− c|.(5.12)

Proof. Note from (B3) that for each b ∈ Σ1
B we have

Kb|x− c|η̂b−1 ≤ Kb|x− c|ℓb−1 ≤ |DTb(x)|.

The result now follows in the same way as in the proof of Lemma 2.4 by setting η̂min =

min{η̂b : b ∈ Σ1
B}, η̂max = max{η̂b : b ∈ Σ1

B} and K̂(η) =
(min{Kb : b∈Σ1

B}
η̂max

) 1
η̂min−1 . □

Proof of Theorem 5.1. Firstly, note that (1), (2)(ii) and the first part of (3)(ii) immediately
follow from Remark 3.1. Moreover, as in [17, Section 5.4] it can be shown that (5.5) implies

that dµp

dλ
is in Lq if rmax > 1 and 1 ≤ q < rmax

rmax−1
, giving the remainder of 3(ii). It is

immediate that (5.5) implies that dµp

dλ
is in L∞ if rmax = 1, so (3)(iii) holds. Hence, it

remains to prove (2i) and (3i).

Suppose θ =
∑

b∈Σ1
B
pbℓb ≥ 1, which means that ℓmax > 1. The proof that in this

case µp is infinite follows by the same reasoning as in Subsection 4.1 by now taking γ =

min{δ, 1
2
M̂−1} with δ and M̂ as in the proof of Lemma 5.1. Now suppose θ < 1. Let

η = (ηb)b∈Σ1
B
be a vector such that ηb > 1 for each b ∈ Σ1

B and θ̂(η) =
∑

b∈Σ1
B
pbη̂b < 1 with

again η̂b = max{ηb, ℓb}. Applying Lemma 5.2 yields that for all ε > 0, n ∈ N, b ∈ (Σ1
B)

n,

(5.13) T−1
b

(
Ic(ε)

)
⊆ Ic

(
K̂(η)−1εη̂

−1
b

)
,

where we used the notation η̂b = η̂b1 · · · η̂bn for a word b = b1 · · · bn. Following the line
of reasoning in Subsection 4.2 with (5.13) instead of (4.21), we obtain that there exists a
constant C(η) > 0 such that

µp(A) ≤ C(η) ·
∞∑
k=0

θ̂(η)kλ(A)η̂
−k
maxr

−1
max(5.14)

for any Borel set A ⊆ [0, 1]. In case ℓmax > 1 we can choose η to satisfy η̂max = ℓmax

and such that θ̂(η) − θ is arbitrarily small, which yields (2)(i). In case ℓmax = 1, then
η̂max = ηmax, so this together with (5.14) yields the first part of (3)(i).

Finally, for the second part of (3)(i), suppose ℓmax = 1 and Λ =
∑

b∈Σ1
B

pb
|DTb(c)|

< 1.

Setting Kb = |DTb(c)| for each b ∈ (Σ1
B)

n and n ∈ N, note that for all ε > 0, n ∈ N,
b ∈ (Σ1

B)
n,

(5.15) T−1
b

(
Ic(ε)

)
⊆ Ic

(
K−1

b ε
)
.

By using (5.15) instead of (4.21), letting p̃b = K−1
b pb play the role of pb in the reasoning

of Subsection 4.2 and noting that Λk =
∑

b∈(Σ1
B)k p̃b, we arrive similarly as for Theorem
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4.1 to the conclusion that there exists a constant C̃ > 0 such that for all n ∈ N and all
Borel sets A ⊆ [0, 1],

λn(A) ≤ C̃ ·
∑
g∈ΣG

pg

( ∞∑
k=0

Λk
)
λ(A)r

−1
g .(5.16)

This proves the remaining part of (3)(i). □

5.3. Final remarks. The results from Theorem 5.1 contain one possible extension of our
main results to another set of conditions (G1)–(G4), (B1)–(B4). In this section we discuss
some of the questions that our main results brought up in this respect, i.e., about whether
or not some of the conditions (G1)–(G4), (B1)–(B4) can be relaxed, and questions about
other possible future extensions.

A condition that plays a fundamental role in the proofs of Theorem 1.2 and Theorem 1.3
is the fact that the critical point is mapped to a point that is a common repelling fixed
point for all maps Tj. We considered whether this condition can be relaxed, for instance
by assuming that the branches of one of the good maps are not full. However, in this case
the critical values of the random system are not just 0, c, 1 but contain all the values of all
possible postcritical orbits of c. This has several consequences:

- An invariant density (if it exists) clearly cannot be locally Lipschitz on (0, c) and (c, 1).

- Proposition 4.2 and all subsequent arguments fail, since it is not sufficient to restrict
to neighbourhoods around only 0, c and 1. One might try to solve this issue by requiring
that the postcritical orbits ‘gain enough expansion’ as was done in for instance [32] for
deterministic maps. An analogous condition for random systems, however, would become
much stronger since it would have to hold for all possible random orbits of c.

- The argument using Kac’s Lemma might fail, because in that case there exist words u
with symbols in Σ and neighbourhoods U of c such that Tu(x) is bounded away from zero
and one uniformly in x ∈ U .

The dynamical behaviour of the system is governed by the interplay between the super-
exponential convergence at c and the exponential divergence from 0 and 1. In this article
we fixed the exponential divergence away from 0 and 1 and the two regimes θ < 1 and
θ ≥ 1 in Theorem 1.3 only refer to the convergence at c: For smaller θ orbits are less
attracted to c. It would be interesting to see under what other conditions on the rates of
convergence to c and divergence from 0 and 1 the system admits an acs measure. Could
one for example

- take exponential convergence to c and polynomial divergence from 0 and 1, or

- replace the conditions (G4) and (B4) stating that all good and bad maps are expanding
at 0 and 1 by the condition that the random system is expanding on average at a sufficiently
large neighbourhood of 0 and 1?

There are also some additional questions that our main results raise. It would be in-
teresting for example to study further statistical properties of the random system such as
mixing properties and if possible mixing rates in case the acs measure is finite. It is not
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clear a priori if the behaviour of the good maps dominates the statistical properties of the
random system, since trajectories spend long periods of time near the points 0, c and 1.
In this respect the dynamics resembles that of the Manneville-Pomeau maps, and mixing
rates might be polynomial rather than exponential. A way to approach this problem is by
estimating the measures P× λ({φY > n}), where φY is the first return time to Y defined
in Section 3 as they give information on the rates of decay of correlations. To obtain the
desired decay rates it is sufficient to obtain estimates for P × λ({φY = k}) for all k > n.
Recall that every returning set {φY = k} is of the form Ck × J(Ck), where Ck ⊂ ΣN is a
cylinder set and J(Ck) ⊂ I is an interval with return time k, which depends only on Ck.
Obtaining effective estimates on individual intervals J by directly looking at pre-images
of Y under the skew product system does not seem very feasible at the moment, since
cylinders can contain a positive proportion of bad maps. An alternative approach could
be a combinatorial construction as in [3] or [13], where a two step induction process is
introduced. To perform a similar construction we have to find a suitable way to define
the binding period or the slow recurrence to the critical set, which takes into account the
existence of bad maps.

Finally, in Theorems 1.2 and 5.1 we have seen that the regularity of the density dµp

dλ
depends on whether or not there is a bad map for which c is superattracting: If ℓmax > 1,
then dµp

dλ
is not in Lq for any q > 1. On the other hand, if ℓmax = 1 and the bad maps are

expanding on average at c, i.e.
∑

b∈Σ1
B

pb
|DTb(c)|

< 1, then the density has the same regularity

as in the setting of Theorem 1.1 by Nowicki and van Strien. Indeed, in this case, if rmax > 1,
we have dµp

dλ
∈ Lq if and only if 1 ≤ q < rmax

rmax−1
and in the case that rmax = 1 we have

dµp

dλ
∈ Lq for all q ∈ [1,∞]. In view of this, one could wonder for which q > 1 we have

dµp

dλ
∈ Lq in the intermediate case that ℓmax = 1 and

∑
b∈Σ1

B

pb
|DTb(c)|

≥ 1, i.e. if c is not

superattracting for any bad map and the bad maps are not expanding on average at c.
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