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Abstract. Intermittent dynamics is characterized by long periods of different types of
dynamical characteristics, for instance almost periodic dynamics alternated by chaotic
dynamics. Critical intermittency is intermittent dynamics that can occur in iterated
function systems, and involves a superattracting periodic orbit.

This paper will provide and study examples of iterated function systems by two
rational maps on the Riemann sphere that give rise to critical intermittency. The main
ingredient for this is a superattracting fixed point for one map that is mapped onto
a common repelling fixed point by the other map. We include a study of topological
properties such as topological transitivity.

1. Introduction

This paper will provide and study examples of iterated function systems by two rational
maps on the Riemann sphere that give rise to intermittent time series. The central
example of the paper is intermittency of a type that we call critical intermittency, where
the main ingredient is a superattracting fixed point for one map that is mapped by the
other map onto a common repelling fixed point. We consider a topological description
of the dynamics for which we study density of orbits of the semi group generated by the
iterated function system. And we consider a metrical description by looking at statistical
properties of the intermittent time series.

In dynamical systems theory, intermittency stands for time series that alternate be-
tween different characteristics. It in particular indicates times series that appear station-
ary over long periods of time and are interrupted by bursts of nonstationary dynamics.
These are called the laminar phase and relaminarization. Explanations for the occur-
rence of intermittent time series were given by Pomeau and Manneville [13], see also [3].
They offered explanations using bifurcation theory, and distinguished different types of
intermittency caused by different local bifurcations. Later research added to the list
of mechanisms giving intermittency, including crisis induced intermittency, homoclinic
intermittency, on-off intermittency and in-out intermittency.

1.1. Critical intermittency in iterated function systems of logistic maps. The
type of dynamics we consider in this paper is related to the following example from
interval dynamics.

Denote ga(x) = ax(1 − x) for the logistic map on the interval [0, 1], with 0 < a ≤ 4.
Consider the iterated function system generated by the two maps f0 = g2 and f1 = g4.
This defines a semi-group 〈f0, f1〉 of compositions of f0 and f1. For each iterate we pick
i ∈ {0, 1} at random, i.i.d., with probabilities p0 and p1 = 1− p0, and then iterate using
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fi. Note that this defines a Markov process and recall that a stationary measure for the
Markov process is a measure m satisfying

m = p0f0m+ p1f1m.

Here fim, i = 0, 1, stands for the push forward fim(A) = m(f−1
i (A)). Carlsson [4]

observed that the only stationary measure for this iterated function system is the delta
measure at 0 if p0 > 1/2. This was further investigated in [1] where σ-finite stationary
measures were constructed for p0 > 1/2, and in [9] that studied stationary measures for
all values of p0.

We summarize results on this iterated function system in the theorem below. Write
Σ = {0, 1}N and endow Σ with the product topology and the Borel σ-algebra. Further
write ω = (ωi)i∈N for elements of Σ. We denote

fnω (x) = fωn−1 ◦ · · · ◦ fω0(x).

On Σ we consider the Bernoulli measure νp0,p1 given the probabilities p0, p1.

Theorem 1.1 (see [1]). Consider the iterated function system 〈f0, f1〉 on [0, 1] given with
probabilities p0, p1.

Assume p1 ≥ 1/2. Then the delta measure δ0 at 0 is the unique stationary probability
measure. There is an absolutely continuous σ-finite stationary measure with support equal
to [0, 1]. For any ε > 0 and for Lebesgue almost any x ∈ [0, 1],

(1) fnω (x) 6∈ (0, ε) for infinitely many n;
(2) limN→∞

1
N |{0 ≤ n < N : fnω (x) ∈ (0, ε)}| = 1,

for almost all ω ∈ Σ.

The theorem expresses the occurrence of intermittent time series; orbits spend most
time near 0 but there are infrequent but repeated bursts away from 0. Under the con-
ditions of the theorem, the only stationary probability measure is δ0, even though 0 is
repelling for both maps f0, f1. The explanation lies in the existence of a superattracting
fixed point 1/2 for f0, which will be mapped onto the repelling fixed point 0 after iterat-
ing under f1. Iterates of f0 bring a point superexponentially close to 1/2, after iterating
f1 the point will get superexponentially close to 0, after which many iterates are needed
to escape neighborhoods of 0.

The bound p1 ≥ 1/2 is optimal: it is shown in [9] that for p1 < 1/2 there does exist
an absolutely continuous stationary probability measure.

Other examples of this phenomenon, which we call critical intermittency, are possible
[9]. In section 2 we will introduce conditions on pairs of 1-parameter families of rational
functions that guarantee critical intermittency. Two key assumptions are the existence of
a joint fixed point, which is attracting for the first map, and repelling for the second. In
order for critical intermittency to occur, we assume the common fixed point is repelling
on average. The first map will moreover have a superattracting fixed point, which is
mapped back to the common fixed point by the second map. The proof of intermittency
is aided by proving the density of semigroup orbits, which is shown for parameter values
for which the common fixed point is not resonant.
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In section 3 we introduce an explicit pair of 1-parameter rational maps of degree 2 that
satisfy the conditions that imply critical intermittency for non-resonant parameter values.
We moreover show that density of orbits still frequently occurs for parameter values where
the common fixed point is resonant. In section 4 we will treat another explicit example,
where the common fixed point is on average neutral instead of repelling. We show that
intermittency can still occur, just as for real interval maps.

2. Iterated function systems on the Riemann sphere

In this section we will cover key assumptions that cause critical intermittency for
rational iterated function systems on the Riemann sphere. We will work with a pair of
1-parameter families of rational functions, and show that critical intermittency holds for
almost every parameter value. In later sections we will discuss explicit pairs of rational
functions where it is possible to decide more precise when critical intermittency holds.

Key assumptions. Throughout this section let f0 = f0,λ and f1 = f1,λ be rational
functions, both depending analytically on a parameter λ ∈ D. We will stipulate the
behavior of f0 and f1 on two marked points in Ĉ. Without loss of generality we may
assume that these two points are 0 and ∞.

We assume that 0 is a fixed point for each f0 and f1. We assume it to be repelling for
each f0 and attracting for each f1. The point∞ is assumed to be a superattracting fixed
point of f0, and mapped to the fixed point 0 by f1. We will write d ≥ 2 for the local
degree of f0 at infinity, so that f0 is locally conjugate to z 7→ zd. Finally, we assume
that each function f0 is hyperbolic, and that all the other attracting fixed or periodic
points of f0 are mapped to the immediate basin of ∞ for f0 by some iterate fk1 . Note
that by hyperbolicity, the attracting periodic points vary holomorphically with λ, hence
the iterate k only depends on the choice of attracting periodic point, not on the value of
λ.

For each fixed λ we write 〈f0, f1〉 for the iterated function system generated by the
functions f0 and f1. We iterate by picking the maps at random, i.i.d., with probabilities
p0, p1 for f0, f1. We write µ(λ) = f ′0(0) and ν(λ) = f ′1(0), where |µ(λ)| > 1 and |ν(λ)| < 1
for each λ. The Lyapunov exponent at 0 is the average p0 ln |f ′0(0)|+ p1 ln |f ′1(0)| and we
assume this to be positive:

p0 ln |µ(λ)|+ p1 ln |ν(λ)| > 0. (2.1)

This makes the common fixed point 0 repelling on average.

2.1. Dense semigroup orbits. Recall that the action of the semi-group G = Gλ =

〈f0, f1〉 is said to be topologically transitive if for every non-empty and open U, V ⊂ Ĉ
there exists g ∈ G with g(U) ∩ V 6= ∅.

Given an invariant set S = f0(S)∪f1(S), the action of G is said to be minimal on S if
for all z ∈ S the G-orbit of z is dense in S. We are interested in G-orbits that are dense
in Ĉ. As this can not hold for all points, it can for instance not hold for z = 0,∞, the
best that we can hope for is that G-orbits of all but finitely many points are dense.

We start with a result on topological transitivity.
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Lemma 2.1. For each λ ∈ D the action of the semi-group G is topologically transitive.

Proof. Consider an open set U ⊂ Ĉ. By hyperbolicity of f0 the set U must intersect
the attracting basin of some attracting fixed point or periodic cycle. Let V ⊂ U be an
open connected subset contained in this basin. Then for some large n the set fn0 (V ) is
contained in a small neighborhood of an attracting periodic point x of f0. Let k be such
that fk1 (x) is in a small neighborhood of ∞. Then fk1 ◦ fn0 (V ) is contained in a small
neighborhood of the point ∞.

Recall that near ∞ the map f0 is holomorphically conjugate to a map z 7→ zd, for
d ≥ 2. It follows that for large ` the set f `0 ◦ fk1 ◦ fn0 (U) contains an annulus around the
point ∞. Moreover, by increasing ` if necessary we can guarantee that the modulus of
this annulus is arbitrarily large.

It follows that f1 ◦f `0 ◦fk1 ◦fn0 (U) contains a small annulus of arbitrarily large modulus
around the point 0. Since the repelling fixed point 0 is a non-isolated point of the Julia
set of f0, and since f0 acts in local coordinates as multiplication by the multiplier at the
fixed point, it follows that a small annulus around 0 of sufficiently large modulus must
contain a point on the Julia set of f0, and thus also an open neighborhood of such a
point. It follows that ⋃

m∈N
fm0 ◦ f1 ◦ f `0 ◦ fk1 ◦ fn0 (U) ⊃ Ĉ \ Ef0 ,

where Ef0 is the exceptional set of f0, which contains at most 2 points. This completes
the proof. �

Remark 2.2. One can verify that the exceptional set of f0 is in fact empty. By com-
pactness of Ĉ it follows that there exist integers n, k, `, and m such that

fm0 ◦ f1 ◦ f `0 ◦ fk1 ◦ fn0 (U) = Ĉ.

Theorem 2.3. Let λ be such that the set

S = Sλ := {µ(λ)n · ν(λ)m : n,m ∈ N}
coincides with C. Then there exists an r > 0 such that for all z ∈ Br(0)\{0} the Gλ-orbit
of z is dense in Ĉ.

Remark 2.4. For ν(λ) ∈ B(0, 1) one of the following must be satisfied:
(1) S = C.
(2) S is a finite union of real lines passing through the origin.
(3) S is a discrete union of concentric circles.
(4) S is discrete.

It is possible that case (2), (3), or (4) occurs persistently for all λ, in which case we say
that G is persistently resonant. If Gλ is not persistently resonant, the equality S = C
will hold for almost every λ ∈ D. Indeed, the parameters λ for which cases (2), (3), and
(4) hold are given by countably many real analytic equations in λ. Each such equation
either holds throughout, in which case Gλ is persistently resonant, or is satisfied in a real
analytic subvariety of real dimension 1.
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Proof of Theorem 2.3. We will consider semi-group orbits that remain in Br(0), and accu-
mulate on a small annulus around the origin of arbitrarily large modulus. The argument
that concludes the proof of 2.1 can then be used to determine density of the orbit in all
of Ĉ.

Since we will remain in Br(0), we may assume that r > 0 is sufficiently small so that
we can use linearizing coordinates for the map f0, i.e. f0(z) = µ(λ)z. Since the multiplier
is preserved under conjugation we obtain f1(z) = ν(λ)z+O(z2). Let us denote the local
linearization map of this function by ϕ = ϕλ, which is unique once we demand that
ϕ(z) = z +O(z2). Thus ϕ ◦ f1 ◦ ϕ−1 : z 7→ ν(λ)z on Br(0), by shrinking r if necessary.

Consider diverging sequences (mj) and (nj) for which µ(λ)mj · ν(λ)nj converges to
w ∈ Br(0) \ {0}. Then

f
mj
0 ◦ fnj1 = µmjϕ−1(νnjϕ(z0))→ w · ϕ(z0).

It follows that the semi-group orbit of z accumulates on a small annulus around 0 of
arbitrarily large modulus, which completes the proof. �

Remark 2.5. Theorem 2.3 implies the density of the G-orbit G(z0) of z0 for an arbitrary
initial value z0 whenever some element in G(z0) lies in a small punctured neighborhood
of the origin, which is of course a necessary condition. It is also clear that this condition
is not always satisfied. For example, if z equals one of the attracting periodic points of f0

and is mapped exactly onto∞ by f1, then the orbit G(z) is finite. In general there could
be different subsets in the Julia set of f0 that are invariant under both f0 and f1, which
we exclude in the Lemma below. We will later discuss explicit examples of the functions
f0 and f1 for which we can deduce that there are no non-trivial invariant subsets, and
as a result we obtain density for all but finitely many initial values z0 ∈ Ĉ. In those
examples we can moreover deduce that density also occurs for most resonant parameters
λ, where S satisfies case (ii), (iii), or (iv). In the resonant setting more precise knowledge
of the higher order terms is required to deduce density of local orbits near the origin.

Theorem 2.3 and Remark 2.5 yield the following result.

Lemma 2.6. Suppose that the hypotheses of Theorem 2.3 are satisfied. Moreover, assume
that none of the attracting fixed or periodic points of f0 are mapped exactly to ∞ under
iteration by f1. In addition, assume that for any z0 ∈ Ĉ \ {0,∞} there is g ∈ Gλ so that
g(z0) lies in the immediate basin of attraction of ∞ for f0. Then for z ∈ Ĉ \ {0,∞} the
Gλ-orbit of z is dense in Ĉ.

2.2. Critical Intermittency. As in the real setting we write Σ = {0, 1}N and endow Σ
with the product topology and the Borel σ-algebra. We write ω = (ωi)i∈N for elements of
Σ. The iterated function system 〈f0, f1〉 defines a skew product system F : Σ×Ĉ→ Σ×Ĉ
given by

F (ω, z) = (σω, fω0(z)).

Here σ is the left shift operator. Denote

Fn(ω, z) = (σnω, fnω (z)).
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We write [i0 . . . ik] for the cylinder {ω ∈ Σ : ω0 = i0, . . . , ωk = ik}. On Σ we con-
sider the Bernoulli measure νp0,p1 for the probabilities p0, p1, which is invariant under σ.
A stationary measure m for the iterated function system defines an invariant measure
νp0,p1 ×m for F .

Theorem 2.7. Consider the iterated function system 〈f0, f1〉 given with probabilities
p0, p1. Suppose that the key assumptions and the additional hypotheses of Lemma 2.6
hold. Assume

p0 >
1

d
.

Then the delta measure δ0 is the only finite stationary measure. Moreover, for any ε > 0,
and for Lebesgue almost any z ∈ Ĉ,

(1) fnω (z) 6∈ B(0, ε) for infinitely many n;
(2) limN→∞

1
N |{0 ≤ n < N : fnω (z) ∈ B(0, ε)}| = 1,

for almost all ω ∈ Σ.

In the proof we use Kac̆ theorem. We recall a version we use. Consider a measurable
map f : X → X with a finite invariant measure µ. Let E ⊂ X with µ(E) > 0. Define
the first return time R : E → N ∪ {∞} by

R(x) = min{i > 0 : f i(x) ∈ E}.

We use the statement that the average first return time to E is finite.

Theorem 2.8 (Kac̆ theorem, see [14]). Let f : X → X be a measurable map with a finite
invariant measure µ. Let E ⊂ X with µ(E) > 0.

Then ∫
E
R(x) dµ(x) <∞.

If µ is an ergodic invariant measure, then
∫
E R(x) dµ(x) = µ(X)/µ(E).

Proof of Theorem 2.7. Assume there is a finite stationary measure m that assigns zero
measure to {0,∞}. By Lemma 2.6 the support of m is all of Ĉ. Then νp0,p1 ×m is a
finite invariant measure for F . (We may assume that νp0,p1 × m is ergodic.) Given a
set A ⊂ Σ× Ĉ of positive measure νp0,p1 ×m(A) > 0, Kac̆ theorem yields finite average
return time. We will derive a contradiction by providing a set A of positive measure and
with infinite average return time.

For A we take the product set A = [0]×A where A is an annulus around 0 between a
small circle C(0, δ) around 0 and f0

(
C(0, δ)

)
. Take A so that it includes [0]×C(0, δ) but

excludes [0]× f0

(
C(0, δ)

)
. Since the support of m is all of Ĉ and νp0,p1 ×m is a product

measure, we find νp0,p1 ×m(A) > 0. Then Kac̆ theorem yields∫
A
R(ω, z) dνp0,p1 ×m(ω, z) <∞

for the first return time R to A.
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Since∞ is a superattracting fixed point for f0 and f1(∞) = 0, it follows that for every
z ∈ Ĉ with |z| ≥ R we have f1 ◦ fN0 (z) ∈ B(0, δ) for large enough R and N larger than
some N0.

A calculation in the spirit of [1, 4] establishes infinite average return time to A for
p0 > 1/d. Recall that the local degree of f0 at infinity is d. Thus for given z ∈ C with
|z| ≥ R we have |f1 ◦ fN0 (z)| ≤ c/|z|dN for some c > 0. Each iterate maps a point in
B(0, δ) at most a constant factor further away from 0. Therefore for a given ω ∈ Σ,
fMω ◦ f1 ◦ fN0 (z) may enter A only if M > CdN for some C > 0 and∫

A
Rdνp0,p1 ×m ≥

∑
i≥N0

∫
[0i1]×A

Rdνp0,p1 ×m ≥ C
∑
n≥N0

pn0d
n

for some C > 0. Hence
∫
ARdνp0,p1 ×m =∞ if p0 > 1/d.

Consequently the only stationary probability measure is the delta measure δ0. Item (1)
follows from (2.1), which implies that for z ∈ B(0, ε), with probability one the orbit fnω (z)
leaves B(0, ε).

We continue with item (2). We follow reasoning from [2] which is also used in [1].
Instead of using B(0, ε) we find it convenient to replace it with the union W of B(0, ε)

and a small disc {z ∈ C : |z| > r} ∪ {∞} in Ĉ around ∞. We will establish that for
almost all ω, fnω (z) spends on average a bounded number of iterates between leaving and
re-entering W . Item (2) in the formulation of the theorem will be deduced from this, and
it gives in fact additional information on the duration of the relaminarization.

Given ε > 0, there is a finite partition {Qi} of Ĉ \W so that for Qi there is a cylinder
Bi of uniformly bounded depth Ki ≤ K, so that fKiω (z) ∈ W for (ω, z) ∈ Bi × Qi.
As νp0,p1(Bi) is bounded from below, it follows that the expected first hitting time for
z ∈ Ĉ \W to enter W is finite: if U(ω, z) = min{i > 0 : f iω(z) ∈W}, then U(ω, z) <∞
almost surely and ∫

Σ
U(ω, z) dνp0,p1 <∞

uniformly in z.
Take an orbit zn = fnω (z0) with for definiteness z0 ∈W . Also assume that z0 is not in

the inverse orbit of 0. Define subsequent escape times from W and Ĉ \W : T0 = 0 and

T2k+1 = inf{n ∈ N | n > T2k and zn 6∈W},
T2k = inf{n ∈ N | n > T2k−1 and zn ∈W}.

Note that such a sequence of escape times exists almost surely. Write ηk = T2k−1−T2k−2

and ξk = T2k − T2k−1 for the duration of the orbit pieces in W and Ĉ \W . Define for
n ∈ [T2k, T2k+1),

Nη(n) = k, Nξ(n) = k

and η̃(n) = n + 1 − T2k, ξ̃(n) = 0, so that η̃ counts the number of iterates from T2k on
where zn ∈W . Likewise define for n ∈ [T2k+1, T2k+2),

Nη(n) = k + 1, Nξ(n) = k
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and η̃(n) = 0, ξ̃(n) = n+ 1− T2k+1, so that ξ̃ counts the number of iterates from T2k+1

on where zn 6∈W .
Finally calculate

1

n

n−1∑
i=0

1W (f iω(x0)) =
1

n

Nη(n−1)∑
k=1

ηk + η̃(n− 1)


=

Nη(n−1)∑
k=1

ηk + η̃(n− 1)

/Nη(n−1)∑
k=1

ηk + η̃(n− 1) +

Nξ(n−1)∑
k=1

ξk + ξ̃(n− 1)


=

1 +

Nξ(n−1)∑
k=1

ξk + ξ̃(n− 1)

/Nη(n−1)∑
k=1

ηk + η̃(n− 1)

−1

≥

1 +

Nξ(n−1)+1∑
k=1

ξk

/Nη(n−1)∑
k=1

ηk

−1

. (2.2)

Construct independent stochastic variables σk ≥ ξk that have uniformly bounded
expectation and variance. This can be done as follows: by shrinking Bi one constructs
cylinders Bi of constant depth K and with constant measure νp0,p1(Bi), still satisfying
fKω (Qi) ⊂W for ω ∈ Bi. Define G : Σ× Ĉ→ Σ× Ĉ by G ≡ F on Σ×W and G(ω, z) =
(σω, 0) for z ∈W . Take a cylinder B in Σ of depth K and measure νp0,p1(B) = νp0,p1(Bi)
and add (B,W ) to the collection {(Bi, Qi)}. Consider the stochastic variable σ that gives
the first time to enter a Bi ×Qi by iterating GK . Take independent copies σk ≥ ξk of σ.

An application of the strong law of large numbers (see for instance [11]) gives that
1
m

∑m
k=1 ξk ≤

1
m

∑m
k=1 σk stays bounded for large m, almost surely. For z ∈ W , let

V (ω, z) = min{i > 0 : F i(ω, z) ∈ Ĉ \ W}. Let ρ be the minimal escape time to
Ĉ\W , minimized over initial points z ∈W ; ρ = minz∈W V (ω, z). There are independent
copies ρn of ρ with ρn ≤ ηn. Now limm→∞

1
m

∑m−1
i=0 ρi = ∞ almost surely and hence

limm→∞
1
m

∑m−1
i=0 ηi =∞ almost surely. We conclude that the last term in (2.2) goes to

1 for almost all ω, as n → ∞ (note that Nη(n − 1) − Nξ(n − 1) ≤ 1). Item (2) follows
since the average escape time out of {z ∈ C : |z| > r} ∪ {∞} is finite. �

Remark 2.9. We get that for any z ∈ Ĉ,

lim
n→∞

1

n

n−1∑
i=0

δf iω(z) = δ0,

where the convergence is in the weak star topology, for νp0,p1 almost all ω.
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3. Degree 2 example

In this section we discuss an explicit pair of 1-parameter rational functions for which
critical intermittency can be shown. Given a parameter λ ∈ C, consider the two maps

f0(z) = 2z + z2,

f1(z) = λ
z

(z + 1)2
(3.1)

on the Riemann sphere Ĉ. The first map, f0, is conjugate to z 7→ z2 through a translation
by 1. Its Julia set equals the circle {|z+ 1| = 1}. The maps f0 and f1 have 0 as common
fixed point. Moreover, the set of three points {0,∞,−1} is forward invariant by both
maps. The points are mapped under f0 , f1 in the following way:

f0(0) = 0, f1(0) = 0,

f0(∞) =∞, f1(∞) = 0,

f0(−1) = −1, f1(−1) =∞.

As in the general setting we write 〈f0, f1〉 for the iterated function system generated by
f0, f1, and work with associated probabilities p0, p1. Again we assume that the Lyapunov
exponent at 0 is positive:

p0 ln |2|+ p1 ln |λ| > 0. (3.2)

We will use the skew product notation

F (ω, z) = (σω, fω0(z))

introduced in the previous section.

3.1. Dense semi-group orbits. Since our explicit semigroup satisfies the general as-
sumptions from the previous section, we immediately obtain topological transitivity from
Lemma 2.1. Our next goal is to prove the density of orbits. Lemma 2.6 implies that den-
sity occurs for almost all values of λ, and for initial values sufficiently close to 0. We
will see that in our explicit setting density also occurs frequently for parameter values
for which the semigroup Gλ is resonant.

Of course, for λ ∈ R the invariance of R implies that density does not occur for real
initial values. We will focus on proving density when λ ∈ B(0, 1) \ R. We need a lemma
on linearizing coordinates.

Lemma 3.1. Let λ 6= 0. Then the rational functions f0 and f1 are not simultaneously
linearizable at 0.

Proof. Recall that the linearization map is unique up to a multiplicative constant. It
is therefore sufficient to consider the linearization map ϕ for f0 of the form ϕ(z) =
z+a2z

2+a3z
3+O(z4), and to show that ϕ does not also linearize f1. Since f0(z) = 2z+z2

we have that a2 = −1/2 and a3 = 1/6. Observe that

f1(z) =
λz

1 + 2z + z2
= λz − 2λz2 + 3λz3 +O(z3).
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It follows that

ϕ ◦ f1 − λϕ =
1

6
λz2

(
−3(3 + λ) + (17 + 12λ+ λ2)z +O(z2)

)
.

Therefore the second order part of ϕ ◦ f1−λϕ only vanishes when λ = −3, in which case

ϕ ◦ f1 − λϕ = 5z3 +O(z4).

Hence regardless of the value of λ 6= 0 the maps f0 and f1 cannot be simultaneously
linearizable. �

Next we exclude nontrivial forward invariant sets for the semi-group outside {−1, 0,∞}.

Lemma 3.2. Let λ = C \ R. If the semi-group orbit of z ∈ Ĉ is contained in {|z + 1| =
1} ∪ {−1,∞}, then z ∈ {0,−1,∞}.

Proof. For simplicity of notation we work with w = z + 1, which gives f0 : w 7→ w2 and

f1 : w 7→ λ(w − 1)

w2
+ 1.

Assume that both w and f1(w) are contained in ∂D. Analysis of the image of ∂D under
w 7→ w−1

w2 shows that for each fixed λ there are at most 4 points w ∈ ∂D whose image
can lie in ∂D, including the fixed point w = 1. Therefore it is sufficient to only consider

-1
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Figure 1. Left panel: The curve f1(∂D) for λ = 1/2, together with ∂D.
Right panel: f1(∂D) for λ = 1

2 + 1
2

√
3.

w ∈ ∂D whose forward f0-orbit contains at most 3 points, possibly with 1 added. Up
to complex conjugation we therefore obtain the following eight candidates for a forward
invariant sets.

{1,−1}, {1, i,−1},

{1, e2πi/3, e4πi/3}, {1,−1,−i, i}

{1, eπi/4, i,−1}, {1, i,−1, e5πi/4},

{1, e2πi/7, e4π/7, e8πi/7}, {1, eπi/3, e2πi/3, e4πi/3}.
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A case by case analysis shows that for any of these sets the f1-image does not leave the
set invariant for λ /∈ R. �

Theorem 3.3. Let λ ∈ B(0, 1) \ R and let z0 ∈ C \ {−1, 0,∞}. Then the G-orbit of z0

is dense in Ĉ.

Proof. We use the notation introduced in the proof of the previous proposition. Since
z0 /∈ {−1, 0,∞} Lemma 3.2 implies that its G-orbit intersects B(0, r)\{0}, hence we may
assume that z0 ∈ B(0, r) \ {0}. By topological transitivity of the G-action it is sufficient
to prove that the G-orbit is dense in some open U ⊂ B(0, r). We will prove this using
only the local orbits fnω (z0) with ω ∈ Ω (recall that Ω is the set of all sequences ω ∈ {0, 1}
for which fnω (z0) ∈ B(0, r)).

Define
S := {2m · λn}.

As in the general setting we distinguish four cases:
(i) S is dense in C.
(ii) S is a union of real lines passing through the origin.
(iii) S is a union of concentric circles.
(iv) S is discrete.
The simplest case (i) was treated in the general setting, in Lemma 2.1. It is clear that

in the other cases it is not sufficient to consider the linear part only, and one needs to
take into account the higher order terms. An idea that will be used in several different
places is the following: if the G-orbit of a accumulates on a point b, and the G-orbit of
b accumulates on c, then the G-orbit of a accumulates on c as well.

Case (ii). Observe that there exists a minimal k such that λk > 0. Use linearization co-
ordinates as in case (i). Since by Lemma 3.1 f0 and f1 are not simultaneously linearizable
at 0 it follows that ϕ is not linear.

Denote by H a union of k radial half-lines, invariant under the linear map z 7→ λz.
Then it follows that g1 maps ϕ−1(H) into itself. Observe that ϕ−1(H) consists of k real
analytic curves, each tangent at the origin to a half-line. It follows that the g1-orbit of
z0 is contained in ϕ−1(H0) for some choice of half-lines H0. As in case (i), gm0 ◦ gn1 (z0)
converges to 2mλnϕ(z0) as 2mλn converges along a sequence with m,n→∞. It follows
that the set of accumulation points of gm0 ◦ gn1 (z0) contains a set of half-lines containing
ϕ(z0).

Since this description of the accumulation points holds for any base point z0 in B(0, r),
we can apply it also to each of the points z in one of the k radial half-lines in H0. Thus
we obtain a union of k-half lines H(z) that varies continuously with z. It remains to
be shown that these k-half lines vary with z, and is not constant. But this follows since
ϕ(H) is not a union of half-lines, since ϕ is not linear. It follows that we obtain an open
set of accumulation points, which completes the proof.

Case (iii). We have that 2m · λn = e2πiθ for some θ ∈ R \Q. It follows that

fm1 ◦ fn0 (z) = e2πiθz + h.o.t..
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Note that the rationality of f0 and f1 implies that the higher order terms are non-zero.
Since f0 and f1 are not simultaneously linearizable, it follows that

fn0 ◦ fm1 6= fm1 ◦ fn0 ,
and hence

f2m
1 ◦ f2n

0 6= (fm1 ◦ fn0 )2 .

Therefore the semi-group H = 〈h0, h1〉 induced by the two distinct neutral maps h0 :=

f2m
1 ◦ f2n

0 and h1 := (fm1 ◦ fn0 )2 with the same rotation number, cannot be normal in a
neighborhood of 0, see [6]. In particular the action of H on any closed curve winding
around 0 is unbounded.

Observe that {fm0 ◦ fn1 (z0)}m,n∈N accumulates on closed curves winding around 0 of
arbitrarily small radius. Hence there are points on those curves whose H-orbits must
be unbounded. But since the generators of H are both neutral at the origin, it follows
that the unbounded orbit under H starting at such a point must be arbitrarily dense on
an annulus enclosed by two of such closed curves winding around 0. It follows that by
considering the H-action on smaller and smaller scales, and repeatedly composing with
f0 to get back to a given scale, we obtain density on an open set which completes the
proof of case (iii).

Case (iv). Let us again work in linearization coordinates for f0, such that we can write
g0(z) = 2z. By the assumption in case (iv) it follow that 2mλn = 1 for certain minimal
n and m, from which it follows that

h(z) := gm0 ◦ gn1 (z) = z + h.o.t..

Straightforward computation shows that the second order term of g1 does not vanish
when |λ| < 1 (Lemma 3.1), from which it follows that the second order term of h also
does not vanish. Thus h has a parabolic fixed point at the origin with a single parabolic
basin. In order to simplify the discussion we can apply a linear coordinate transformation
to give h(z) = z + z2 + O(z3), so that all orbits in the parabolic basin of h converge to
zero along the negative real axis.

Consider base points zn = gn1 (z0) for n large with arg(zn) bounded away from 0. Then
zn lies in the parabolic basin of h at 0. Write zn,j = hj(zn) where j runs from 0 to a
large k = k(n) satisfying |zn,k| << |zn|. Recall that the points zn,j converge to zero as
j →∞, along a real analytic curve tangent to the negative real axis. Moreover, the ratios
between consecutive points satisfy

zn,j
zn,j+1

→ 1

as n → ∞. Write wn,j = g1(zn,j), so that the points wn,j converge to zero along the
half line through −λ, which is different from the negative real axis, and since λ /∈ R also
different from the positive real axis. Choose J > 0 such that arg(wn,j) ∼ arg(−λ) for
j ≥ J . It follows that the points wn,j still lie in the parabolic basin for j ≥ J . Now
define wn,j,` = h`(wn,j) for j ≥ J and ` ≥ 0.

Recall the existence of the Fatou coordinate on the parabolic basin: a change of coor-
dinates, again denoted by ϕ, conjugating h to z 7→ z + 1. Recall that ϕ is of the form
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z 7→ −1
z + b log(z)+o(1) for some b ∈ C. It follows that each of the orbits {wn,j,`}`∈N lies

on a real analytic curve, and these real analytic curves are all transverse to the half line
through −λ, with angles bounded away from zero. After scaling by an iterate gs0 to bring
wj,J,` back to fixed scale, we obtain an arbitrarily dense set of points lying in an open
set of uniform size. By increasing n and taking a convergent subsequence of gs0(wj,J,`) we
obtain a dense set of accumulation points in an open subset, completing the proof. �

Remark 3.4. It is not clear to the authors whether Theorem 3.3 also holds for nonreal
λ with |λ| > 1. However, it does hold for generic λ. Assume that the set

S′ := {2−m · λn}
is dense in C. Using the attraction under f0 to the point ∞, we can consider a starting
value z0 that is unequal to but arbitrarily close to 0. We may therefore assume that, for
k ∈ N large, the point 2kz0 is still close to zero. For j ≤ k we obtain that

f j0f
n
1 (z0) ∼ 2jλnz0 = 2−(k−j)λn(2mz0)

when f j0f
n
1 (z0) is still sufficiently close to the origin. The assumption that S′ is dense

implies that by starting with smaller and smaller values of z0, the set of points f j0f
n
1 (z0)

becomes more and more dense in a round annulus centered at 0 of arbitrarily large
modulus. As in the proof of Theorem 2.3 it follows that the semi-group orbit is dense in
Ĉ.

Remark 3.5. The Fatou set F (G) of the semi-group G = 〈f0, f1〉 is the set of points
where G is normal. The Julia set J(G), defined as the complement Ĉ \ F (G), is a
closed backward invariant set. Under the assumptions of Theorem 3.3, J(G) equals Ĉ.
Indeed, the Julia set contains 0 and by backward invariance also ∞. By [7] it contains
a neighborhood of ∞ and then using Theorem 3.3 it equals Ĉ. By [8], repelling fixed
points of elements of G lie dense in J(G) = Ĉ.

3.2. Intermittency. Our explicit semigroup satisfies the hypotheses of Theorem 2.3.
Moreover Lemma 3.2 implies that the only invariant subset is {−1, 0,∞}. Thus the
result of Theorem 2.7 still holds for our specific example. As the density occurs for
parameter values for which the semigroup is resonant, we can state the intermittency
with larger values of λ.

Theorem 3.6. Consider the iterated function system 〈f0, f1〉 given with probabilities
p0, p1. Let λ ∈ B(0, 1) \ R. Assume (3.2) holds and

p0 >
1

2
.

Then the only finite stationary measure is the delta measure δ0. For any ε > 0, for
Lebesgue almost any z ∈ Ĉ,

(1) fnω (z) 6∈ B(0, ε) for infinitely many n;
(2) limN→∞

1
N |{0 ≤ n < N : fnω (z) ∈ B(0, ε)}| = 1,

for almost all ω ∈ Σ.
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4. Vanishing Lyapunov exponents

For iterated function systems of interval maps, Gharaei and the first author [5] showed
how intermittent time series occur if there is a common fixed point with a vanishing
Lyapunov exponent, so that the common fixed point is neutral on average. We will
present an analogous example for iterated function systems of Möbius transformations
on the Riemann sphere. Consider the maps

f0(z) = µz,

f1(z) =
z

µ+ z

We pick the maps f0, f1 with equal probability.

Theorem 4.1. Consider the iterated function system G = 〈f0, f1〉 given with probabilities
p0 = p1 = 1/2. Assume that |µ| > 1 and µ 6∈ R.

The G-orbit of any z0 ∈ Ĉ \ {0} is dense.
The only finite stationary measure is the delta measure δ0. For any ε > 0, for Lebesgue

almost any z ∈ Ĉ,
(1) fnω (x) 6∈ B(0, ε) for infinitely many n;
(2) limN→∞

1
N |{0 ≤ n < N : fnω (x) ∈ B(0, ε)}| = 1,

for νp0,p1-almost all ω ∈ Σ.

Proof. That semi-group orbits lie dense is proved as in Theorem 3.3. To prove the
remaining statements on intermittency we follow the reasoning of Theorem 3.6. Key
statement is again ∫

A
Rdνp0,p1 ×m =∞, (4.1)

where
R(ω, z) = min{i > 0 : F i(ω, z) ∈ A}

is the return time to A. Here as before A = [0]×A with A an annulus between a small
circle S around 0 and its image f0(S). By Kac̆ theorem this implies there is no finite
stationary measure with support intersecting A, so that the only stationary probability
measure is δ0.

To obtain (4.1), fix z inside S and let H(ω) = min{i > 0 : F i(ω, z) ∈ A} be the first
time that f iω(z) that enters A. We are done if we prove∫

Σ
H dνp0,p1 =∞. (4.2)

A sequence zn = |fnω (z0)| that stays near 0 satisfies |zn+1 − µzn| ≤ Cz2
n (if ωn = 0) or

|zn+1 − 1
µzn| ≤ Cz2

n (if ωn = 1) for some C > 0. Now (4.2) follows just as in the proof
of [5, Theorem 5.2].

The remaining statements follow as in the proof of Theorem 3.6. �
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