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Computing Invariant SetsAle Jan HomburgInstitut f�ur Mathematik IFreie Universit�at BerlinArnimallee 2-614195 BerlinGermany Duncan SandsD�epartement de Math�ematiqueUniversit�e de Paris-SudBâtiment 42591405 OrsayFranceRobin de VilderAfdeling WiskundeUniversiteit van AmsterdamPlantage Muidergracht 241018 WB AmsterdamNetherlandsRobin de Vilder would like to dedicate this paper to the loving memory of his wife Annemiek.AbstractWe describe algorithms for computing hyperbolic invariant sets of di�eomorphisms and theirstable and unstable manifolds. This includes the calculation of Smale horseshoes and the stable andunstable manifolds of periodic points in any �nite dimension.IntroductionIn understanding the dynamics of a dynamical system, governed by some di�eomorphism, stable andunstable manifolds play a crucial role. If the stable and unstable manifolds of a hyperbolic periodic pointhave transverse intersections, this implies the existence of nontrivial hyperbolic sets (`horseshoes'). Fora family of di�eomorphisms, the dynamics can alter profoundly if the family goes through a homoclinictangency (where the stable and unstable manifolds of some hyperbolic periodic point are tangent). How-ever stable and unstable manifolds are not easily available analytically. An algorithm implemented on a1



computer computing stable and unstable manifolds of hyperbolic periodic points and detecting tangenciescan therefore be of great help in comprehending the dynamics. In this paper we describe and discusssuch an algorithm. Additionally we describe an algorithm to compute orbits in a hyperbolic invariantset, e.g. a horseshoe, as well as their stable and unstable manifolds.These algorithms are currently being implemented in the program DUNRO [Sands & de Vilder,1995].The authors hope to make DUNRO publically available in the near future. Please contact them forfurther information.Acknowledgements. We thank Sebastian van Strien and Floris Takens for helpful discussions. RdVwas supported by the Human Capital and Mobility program of the EC during his six months stay atCNRS/CEPREMAP in Paris, whose kind hospitality is gratefully acknowledged. DS was supported byHuman Capital and Mobility Grant ERB CHB ICT 941633. He acknowledges the kind hospitality of theFree University of Berlin and AJH that of CNRS/CEPREMAP in Paris.1 Stable and unstable manifolds of hyperbolic �xed pointsIn this section we explain the algorithm to compute stable and unstable manifolds of a hyperbolic �xedpoint. The algorithm is based on a variant of an existence proof by Perron [Perron,1929], see also[Irwin,1980], [Shub,1980], [Homburg,1993].First we recall some de�nitions, mostly to �x the notation, see [Shub,1980] for details. Let f be adi�eomorphism of Rn. The stable set W s(x) of x 2 Rn is the set of points y such that the distancebetween fn(y) and fn(x) goes to zero for n!1:W s(x) = fy 2 Rn; kfn(y) � fn(x)k ! 0; n!1g: (1)The local stable set W sloc(x) consists of the points y in W s(x) such that fn(y) is in a small neighborhoodof fn(x) for all n � 0. Observe that W s(x) = [n�0fn(W sloc(x)): (2)The unstable set W u(x) and the local unstable set W uloc(x) are de�ned as the (local) stable set for f�1:Wu(x) = fy 2 Rn; kfn(y) � fn(x)k ! 0; n!�1g: (3)and Wu(x) = [n�0 fn(W uloc(x)): (4)If we want to stress the dependence of stable sets on f , we write W sf (x) for the stable set of x and W sf;locfor the local stable set of x. Similarly for unstable sets.2



Suppose f has a hyperbolic �xed point at p, that is, f(p) = p and the eigenvalues of Df(p) all havemagnitude di�erent from 1. Let Es be the sum of the generalized eigenspaces of those eigenvalues ofDf(p) that have magnitude smaller than one. Let Eu be the sum of the generalized eigenspaces of thoseeigenvalues of Df(p) that have magnitude larger than one. For simplicity we work in stable and unstablecoordinates. By this we mean that we will work in Es �Eu, and identify Es �Eu with Rn via the map(xs; xu) 2 Es �Eu 7! p+ xs + xu, taking (0; 0) to p. We continue to write the di�eomorphism as f . Inthese coordinates the derivative Df(0; 0) is block diagonal of the formDf(0; 0) = � S 00 U �where S : Es ! Es and U : Eu ! Eu. For some m > 0, Sm contracts vectors and Um expands vectors.De�ne �s = maxfj�j; � is an eigenvalue of Sg < 1 and �u = minfj�j; � is an eigenvalue of Ug > 1.We recall the stable manifold theorem, saying that stable and unstable sets of hyperbolic �xed pointsare smooth manifolds, see [Shub,1980], [Irwin,1980].Theorem 1.1 Let f be a di�eomorphism of Es � Eu with a hyperbolic �xed point at (0; 0) as above.Then W sloc(0; 0) is di�eomorphic to a disk tangent to Es � f0g at (0; 0), W uloc(0; 0) is di�eomorphic to adisk tangent to f0g �Eu at (0; 0). W s(0; 0) and W u(0; 0) are smooth injectively immersed manifolds.1.1 AlgorithmsIn this section we describe iterative algorithms for calculating the local stable manifold of the hyperbolic�xed point (0; 0). In order to use the basic algorithm one must know both f and its inverse f�1. A variantis provided in case only f is known. We also propose an alternative algorithm which has a theoreticallyfaster convergence rate. The corresponding algorithms for the local unstable manifold are given at theend of the section.Let �s : Es � Eu ! Es, �u : Es � Eu ! Eu be the coordinate projections �s(xs; xu) = xs,�u(xs; xu) = xu.The projection �s restricted toW s(0; 0) is one-to-one near (0; 0) because the stable manifoldW s(0; 0)is tangent at (0; 0) to Es � f0g. Therefore there is an inverse map � from a neighborhood of 0 in Esonto a neighborhood of (0; 0) in W s(0; 0). The algorithms calculate �(a) given a 2 Es close enoughto 0; in fact they calculate the entire forward orbit of �(a) under f as a �xed point of a contractionmapping Sa de�ned on an appropriately chosen sequence space CB(N; Es�Eu), see below. Starting withan approximation to the forward orbit of �(a), one simply iterates Sa. The iterates will converge to theforward orbit of �(a) as long as the initial approximation was good enough. In practice, of course, oneonly iterates �nite sequences, as discussed in the section on implementation below.Let CB(N; Es�Eu) denote the set of bounded sequences N! Es�Eu, equipped with the supnorm.An element x of CB(N; Es � Eu) will be written x = fxk; k 2 Ng = f(xsk;xuk); k 2 Ng.3



The basic algorithm. Consider the following map Sa on CB(N; Es � Eu), depending on a parametera 2 Es: Sa : x 7! x0;x00 = (a ; �uf�1(x1));x0k = (�sf(xk�1) ; �uf�1(xk+1)) if k > 0:For a small enough, Sa is a contraction in a neighborhood of (0; 0). If f is linear then this is clear. Sincef is di�erentiable at (0; 0) it is approximately linear near (0; 0), and thus Sa is a contraction on a smallenough neighborhood of (0; 0). The contraction rate can be made arbitrarily close to maxf�s; 1=�ug bytaking su�ciently small neighborhoods of (0; 0), see [Homburg et al,1995].The unique �xed point of Sa in a small neighborhood of (0; 0) is the sequence (�(a); f(�(a)); : : :), theforward orbit of �(a), so we get �(a) as the �rst coordinate. By varying a, one obtains the local stablemanifold.The algorithm when f�1 is unknown. For the above construction, the inverse f�1 of f has to beexplicitly known. A variant of the construction does not require knowledge of f�1:Ŝa : x 7! x0;x00 = (a ; �ux0 � U�1(�ux1 � �uf(x0)));x0k = (�sf(xk�1) ; �uxk � U�1(�uxk+1 � �uf(xk))) if k > 0:The contraction rate is the same as for the basic algorithm; namely, arbitrarily close to maxf�s; 1=�ug.A faster algorithm. De�ne �Sa by�Sa : x 7! x0;x00 = (a ; �ux0 � U�1(�uf(x0)� �ux01));x0k = (�sf(xk�1) + S(�sx0k�1 � �sxk�1) ; �uxk � U�1(�uf(xk)� �ux0k+1)) if k > 0:This map is well de�ned in spite of x0 appearing on both sides of the equations. Indeed, the stablecoordinates �sx0k can calculated inductively from �sx00 = a. The unstable coordinates �ux0k are moreproblematic since one needs to know �ux0k+1 in order to calculate �ux0k. If one chooses �ux0N = 0 thenthis determines values for �ux00; : : : ; �ux0N in an N -dependent way. These values converge in the limitN !1, and we take the limit values as de�ning x0.The contraction rate can be made arbitrarily close to( �u�u � 1 + �s1� �s ) � kak � kD2f(0; 0)kby taking small enough neighborhoods of (0; 0). This formula can be derived by expanding f(x) in aTaylor series around (0; 0) up to second order terms. Thus the contraction rate can be made arbitrarily4



close to zero by taking a close enough to zero.Algorithms for the unstable manifold. The local unstable manifold is the local stable manifold for f�1and can thus be computed analogously to the local stable manifold. If one does not explicitly know f�1,use the following contraction Ub on CB(�N; Es �Eu), where b 2 Eu:Ûb : x 7! x0;x00 = (�sf(x�1) ; b);x0k = (�sf(xk�1) ; �uxk � U�1(�uxk+1 � �uf(xk))) if k < 0:The unique �xed point of Ub in a small neighborhood of (0; 0) is the sequence (: : : ; f�1(�(b)); �(b)), thebackward orbit of �(b), where � : Eu !W u(0; 0) is the local inverse of �u :W u(0; 0)! Eu. We get �(b)as the �rst coordinate. By varying b, one obtains the local unstable manifold. The contraction rate isthe same as for the basic algorithm for the stable manifold; namely, arbitrarily close to maxf�s; 1=�ug.The analogous fast algorithm for the unstable manifold is�Ub : x 7! x0;x00 = (�sf(x�1) + S(�sx0�1 � �sx�1) ; b);x0k = (�sf(xk�1) + S(�sx0k�1 � �sxk�1) ; �uxk � U�1(�uf(xk)� �ux0k+1)) if k < 0:1.2 ImplementationIn this section we discuss some aspects of the implementation of the above algorithms on a computer.Stability. Since we are iterating a contraction Sa, the method is una�ected by small perturbations,eg: rounding errors; errors in the evaluation of f ; errors in the calculation of the �xed point p or of thesplitting into stable and unstable eigenspaces; the truncation of sequences to a �nite number of terms, etc.A small perturbation of Sa is still a contraction with approximately the same �xed point and contractionrate. Thus the method is numerically stable.Finite sequences. Only �nite pieces of orbits can be stored in a computer. Denote by �N the projection�N (x) = (x0; : : : ;xN ; 0; 0; : : :). E�ectively we are replacing Sa by Sa;N = �N �Sa��N for some su�cientlylarge N . This map is a small perturbation of Sa if N is large enough, so will be a contraction on thespace of sequences f0; : : : ; Ng ! Rn, with �xed point close to the �xed point of Sa.To get points on W sloc(p) with precision �, compute the �xed point � of Sa;N | for some parametervalue a | with N large enough that k�Nk � �(1� �), where 0 < � < 1 is the contraction rate of Sa, seeabove. One easily checks that then k�� �ksup � �, where � is the �xed point of Sa for the same value ofa. There is another reason for checking that k�Nk is small: if N is not large enough then the algorithmmay nonetheless converge, but to the wrong sequence, with �N close to some other �xed point of f .Global manifolds. The above algorithms enable one to calculate W uloc(0; 0) to any desired accuracy.Iterating W uloc(0; 0) by f (or more exactly, iterating the points approximatingW uloc(0; 0) by f) gives theglobal unstable manifoldW u(0; 0). One has to take care that the distance between calculated points on5



the manifold does not grow too large when iterating. Keeping track of this distance and if necessarycomputing additional points, one ensures a correct approximation of a piece of the unstable manifold bya sequence of computed points.If f�1 is known then W s(0; 0) can be calculated by iterating W sloc(0; 0) by f�1. If not, then continua-tion methods can be used (these may work even if f is not invertible): the edge of the piece of the stablemanifold calculated so far is sent by f closer to the origin, into a part of W s(0; 0) already calculated(for example W sloc(0; 0)). This leads to the continuation problem of extending the known piece of stablemanifold beyond the current edge, using the fact that the extension must be sent by f into a known curve(the stable manifold closer to (0; 0)). Standard methods allow one to extend W s(0; 0) until a singularityof Df is encountered.2 Computing jets of manifoldsIn the introduction we mentioned the importance of being able to detect tangencies of invariant manifolds.Suppose f� is a family of di�eomorphisms on Rn, such that f� has a hyperbolic �xed point p�, dependingcontinuously on �. Assume further that at � = �0, the stable and unstable manifolds of p� are tangent.To be able to give information on the bifurcations occurring when � is varied, one has to know the orderof tangency and the change in relative position of the stable and unstable manifolds as � varies. In thissection we indicate how the relevant derivatives can be computed.First we discuss the computation of higher order jets of stable and unstable manifolds of a single mapf with a hyperbolic �xed point at the origin 0, as before. Let ns and nu be the dimensions of Es and Eurespectively. Write G for the Grassmanian manifold of ns-dimensional linear subspaces L of Rn. De�neF : Rn � G ! Rn � G by F (x; L) = (f(x); Df(x)L). It can be shown that (0; Es) is a hyperbolic �xedpoint of F , its eigenvalues being those of Df(0) supplemented by eigenvalues of the form �u=�s where�u and �s are eigenvalues of Df(0) with j�uj > 1 and j�sj < 1. The stable manifold of F at (0; Es)consists of all points (x; L) where x 2W s(0) and L is the tangent space to W s(0) at x. That is, one cancalculate the tangent space to W s(0) at x by calculating the corresponding point of W sF (0; Es). Doingthis for both W s(0) and W u(0) lets one detect, for example, homoclinic tangencies.If one chooses a speci�c parametrization for W sloc(0), for example that given by � in section 1, then itis possible to calculate the derivative of � at a point a 2 Es. Let L be the space of linear maps from Esto Eu � Rn and de�ne �F : Rn �L ! Rn �L by �F (x;A) = (f(x); �uDf(x)(I +A)(�sDf(x)(I +A))�1).This has (0; 0) as a hyperbolic �xed point. The local stable manifold of �F at (0; 0) consists of all points(x;A) where x 2 W s(0) and A gives a parametrization of the tangent space to W s(0) at x via the mapD� : Es ! Rn, v 7! v + Av. The formula for �F represents composing v 7! v + Av with Df(x), writingthe composition in the form v 7! v +A0v, and putting �F (x;A) = (f(x); A0).Higher dimensional jets of W s(0) can be calculated similarly, for example quadratic approximationsto W s(0). One works with the space Jk of k-jets from Es to Rn (see e.g. [Golubitsky & Guillemin,1973]for de�nitions and properties of jet bundles). One de�nes F : Jk ! Jk by F(j) = f�(j) where f� is the6



action induced by f on k-jets. For example, if k = 1 then Jk = Rn � G and F = F is as above. Thek-jet of W s(0) at 0, which we write as jk0 (W s(0)), is a hyperbolic �xed point of F . The stable manifoldof F at jk0 (W s(0)) consists of all k-jets of W s(0). That is, one can calculate the k-jet of W s(0) at a pointx 2 W s(0) by calculating the corresponding point of W sF (jk0 (W s(0))). One can calculate for examplewhether a homoclinic tangency is generic by checking that the second order jets of W s(0) and W u(0) aredi�erent at the point of tangency.Now we discuss calculating derivatives with respect to a parameter. Suppose the parameter � belongsto Rm. The set W s = f(x; �); x 2 W sf�(p�); � near �0g is an injectively immersed (ns +m)-dimensionalsubmanifold of Rn+m. One can calculate its tangent planes as follows (similarly, given a parametrization,for the derivative of W sf� (p�) with respect to �). Write G for the Grassmanian manifold of all (ns +m)-dimensional linear subspaces of Rn+m. De�ne f̂ : Rn+m ! Rn+m by f̂ (x; �) = (f�(x); �). Clearly f̂ has�xed points at (p�; �). Let Ês be the tangent space to W s at (p�0 ; �0). De�ne F̂ : Rn � G ! Rn � Gby F̂ (x; L) = (f(x; �0); Df̂(x; �)L). It can be shown that (p�0 ; Ês) is a hyperbolic �xed point of F̂ .The supplementary eigenvalues of DF̂ (p�0 ; Ês) are of the form �u=�s and �u=1. The stable manifold ofF̂ at (p�0 ; Ês) consists of all points (x; L) where x 2 W sf�0 (p�0) and L is the tangent space to W s at(x; �0). Using this, one can calculate, for example, whether a tangency of W s(0) and W u(0) unfolds withnon-zero speed as � crosses �0.2.1 ImplementationThe special structure of the extended function F greatly simpli�es the stable manifold algorithmsgiven in section 1. Indeed, suppose the forward orbit x = (x0; x1 = f(x0); : : :) of some point x0 2W s(0) with �s(x0) = a has already been calculated. If L = (L0; L1; : : :) is a bounded sequence ofpoints in G then the stable manifold algorithm gives Sa(x;L) = (x0;L0) where x0 = x and L0 =(Df(x1)�1L1; Df(x2)�1L2; : : :). The calculation of the tangent plane to W s(0) at x0 reduces to evalu-ating limN!1 (DfN (xN ))�1Es. Similar simpli�cations occur for the other algorithms.This method of calculating jets has both advantages and disadvantages compared to the numericaldi�erentiation of W s(0). It seems most suitable for calculating �rst and second order derivatives ofone-dimensional manifolds. The main advantage is in being fairly well-behaved numerically, since theeigenvalues of the manifold problem become more rather than less hyperbolic as additional derivativesare taken. The main disadvantage, particularly when Es has dimension > 1, or when taking more thanone or two derivatives, is in the greatly increased dimension of the space and the number of calculationsrequired. A further problem is that of representing jets in a computer. In general it is necessary to keepthem in a normal form or regularly rescale them. 7



3 Stable and unstable manifolds of hyperbolic orbitsThe previously described algorithms can be generalized to compute stable and unstable manifolds ofhyperbolic periodic orbits. For this, the splitting in stable and unstable directions along the periodic orbithas to be known. In fact, we will deal with the more general situation of computing stable and unstablemanifolds of points contained in some hyperbolic invariant set. We �rst describe the algorithm thatcomputes such invariant manifolds. In the next section we examine the special case of a di�eomorphismof R2 possessing a horseshoe.Suppose fxmgm2Zis an orbit of f contained in a hyperbolic invariant setD. This means that at eachpoint xm 2D a splitting Rn = Es(xm)� Eu(xm) exists, depending continuously on xm, such thatDf(xm)Es(xm) = Es(xm+1); (5)Df(xm)Eu(xm) = Eu(xm+1); (6)and further, for some N 2 N, DfN (xm)��Es(xm) contracts vectors and DfN (xm)��Eu(xm) expands vectors.The orbit fxmgm2Zcan in particular be a hyperbolic periodic orbit where xm = xm+p for all m 2 Z,where p is the period.Let �s;m : Rn ! Es(xm) and �u;m : Rn ! Eu(xm) be the linear projections of Rn onto Es(xm) andEu(xm) respectively. A point x 2 Rn can be decomposed as x = �s;m x+ �u;m x. Consider the followingmap Sa, depending on a parameter a 2 Es(x0), on the space of those sequences x : N! Rn such thatsupm2Nkxm � xmk is bounded:Sa : x 7! x0;x00 = a+ �s;0 x0 + �u;0 f�1(x1);x0k = �s;k f(xk�1) + �u;k f�1(xk+1) if k > 0:The map Sa is a contraction if a is small. Its �xed point is the positive orbit f�mgm2N on W sloc(x0) with�u;0(�0�x0) = a. By varying a, W sloc(x0) is obtained. The local unstable manifoldW uloc(x0) is computedanalogously.3.1 ImplementationIn order to apply these algorithms, one needs to know the hyperbolic orbit fxmgm2Z. Here we makesome comments on the calculation of periodic orbits. The calculation of general orbits is discussed in thenext section.A point x0 of period p should not in general be calculated as a �xed point of fp. The reason is that theevaluation of fp can be highly inaccurate especially if p is large, due to the possible sensitive dependenceto initial conditions of f .1 An alternative approach is to calculate the orbit (x0; f(x0); : : : ; fp�1(x0)) as1None of our algorithms involve iterating f many times on a point; they involve iterating associated contractionmappingsmany times. This is numerically stable. 8



a �xed point of the mapping F : Rnp ! Rnp taking (y0; : : : ; yp�1) to (f(yp�1); f(y0); : : : ; f(yp�2)). Thisresults in an important gain in numerical accuracy at the price of dealing with large vectors.Similarly, it is better to calculate the stable and unstable manifolds of (x0; : : : ; fp�1(x0)) using themethods of this section rather than by considering x0 as a �xed point of fp and using the methods ofsection 1.4 Calculating hyperbolic orbitsSuppose fxmgm2Zis an orbit of f contained in a hyperbolic invariant set D. The intersection W sloc(x0)\Wuloc(x0) equals the point x0. From this observation one can derive an algorithm to obtain the orbitfxmg, if only known approximately. Observe �rst that, since the splitting Rn = Es(x)� Eu(x) dependscontinuously on x 2D, one can extend this splitting to a continuous splitting over a neighborhood ofD.Denote by f�mg a sequence of points near the orbit fxmg. Let S be the following map on the space ofthose sequences x :Z! Rn such that supm2Nkxm � xmk is bounded:S : x 7! x0;x0k = �s;�k f(xk�1) + �u;�k f�1(xk+1):If xm is near xm for all m, then Sn(x) will converge to fxmg as n!1.Let us discuss this idea further for a di�eomorphism of the plane possessing a horseshoe. Let f : R2 !R2 be a di�eomorphism, such that a square S is mapped over itself in a horseshoe shape as indicated in�gure 1 below. Within S, f is almost linear, expanding in the vertical direction and contracting in thehorizontal direction. We have indicated vertical and horizontal rectangles satisfying f(H0) = V0; f(H1) =V1; f�1(V0) = H0; f�1(V0) = H0.The square B contains a maximal invariant set whose dynamics can be described using symbolicdynamics. There is a 1-1 correspondence between sequences Z! f0; 1g and orbits in this invariant set,given by associating to an orbit ffk(x)g the sequence f�k(x)gk2Zde�ned by�k(p) = j if fk(x) 2 Vj :This symbolic sequence is called the itinerary of p. The maximal invariant set in B is not attracting: mostpoints in B leave this box after some iterations, since the invariant set has zero measure (assuming f isC2). Let us explain how we can approximate orbits in this invariant set. Denote by �x; �y the projectionto the horizontal x-axis resp. the vertical y-axis. De�ne a map S on the space of sequences Z7! B byS : x 7! x0;x0k = (�xf(xk�1); �yf�1(xk+1)):Theorem 4.1 Let f and S be as above. Given a symbolic sequence f�mgm2Z, let the sequence x =fxmgm2Zsatisfy xm 2 V�m \H�m+1 for all m 2 Z. Then Sn(x) converges, as n ! 1, to the uniqueorbit fxmg of f for which the itinerary of x0 is equal to f�mgm2Z.9



H0H1 S f(S) f�1(S)
V0 V1Figure 1: f maps S over itself in a horseshoe shape.
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Proof. One checks that S contracts the distance between each two sequences in CB(Z; S) that havetheir ith point in the same component of V \H. The condition imposed on x implies that S(x)m andxm are in the same component of V \H for each m.
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Figure 2: A period 1000 orbit for the H�enon map (x; y) 7! (a � y2 � bx; x) with a = 3 and b = 0:3,indicating the position of the horseshoe this map possesses. For the splittings Rn = Es(x; y) � Eu(x; y)we let Eu(x; y) be the tangent space of the curve s 7! (a � bt � s2; s) at (s; t) = h�1(x; y) and we letEs(x; y) be the tangent space of the curve t 7! (t; (a� t2 � s)=b) at (s; t) = h(x; y).4.1 ImplementationBoth the orbit fxng and the splitting in stable and unstable directions along it need only be knownapproximately for the above procedures to work. Of course we have to work with �nite symbol sequences,�nite orbits and �nite precision. We can approximate periodic orbits up to any desired precision by11
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