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Abstract
We describe algorithms for computing hyperbolic invariant sets of diffeomorphisms and their
stable and unstable manifolds. This includes the calculation of Smale horseshoes and the stable and

unstable manifolds of periodic points in any finite dimension.

Introduction

In understanding the dynamics of a dynamical system, governed by some diffeomorphism, stable and
unstable manifolds play a crucial role. If the stable and unstable manifolds of a hyperbolic periodic point
have transverse intersections, this implies the existence of nontrivial hyperbolic sets (‘horseshoes’). For
a family of diffeomorphisms, the dynamics can alter profoundly if the family goes through a homoclinic
tangency (where the stable and unstable manifolds of some hyperbolic periodic point are tangent). How-
ever stable and unstable manifolds are not easily available analytically. An algorithm implemented on a



computer computing stable and unstable manifolds of hyperbolic periodic points and detecting tangencies
can therefore be of great help in comprehending the dynamics. In this paper we describe and discuss
such an algorithm. Additionally we describe an algorithm to compute orbits in a hyperbolic invariant
set, e.g. a horseshoe, as well as their stable and unstable manifolds.

These algorithms are currently being implemented in the program DUNRO [Sands & de Vilder,1995].
The authors hope to make DUNRO publically available in the near future. Please contact them for
further information.

Acknowledgements. We thank Sebastian van Strien and Floris Takens for helpful discussions. RdV
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CNRS/CEPREMARP in Paris, whose kind hospitality is gratefully acknowledged. DS was supported by
Human Capital and Mobility Grant ERB CHB ICT 941633. He acknowledges the kind hospitality of the
Free University of Berlin and AJH that of CNRS/CEPREMAP in Paris.

1 Stable and unstable manifolds of hyperbolic fixed points

In this section we explain the algorithm to compute stable and unstable manifolds of a hyperbolic fixed
point. The algorithm is based on a variant of an existence proof by Perron [Perron,1929], see also
[Trwin,1980], [Shub,1980], [Homburg,1993].

First we recall some definitions, mostly to fix the notation, see [Shub,1980] for details. Let f be a
diffeomorphism of R"™. The stable set W?*(z) of # € R" is the set of points y such that the distance
between f"(y) and f" () goes to zero for n — co:

W) = {yek’, /"y - @) —0, n—oo} (1)

The local stable set W% _.(x) consists of the points y in W* () such that f(y) is in a small neighborhood
of f*(x) for all n > 0. Observe that

W (e) = |J /" (Wike(e)). (2)

The unstable set W*(z) and the local unstable set W% (z) are defined as the (local) stable set for f=!:
Wiz) = {yek", /") = ()| =0, n——oc}. (3)

and

W) = [J /1 (Wike()). (4)

n>0

If we want to stress the dependence of stable sets on f, we write ij(x) for the stable set of z and Wi ioe
for the local stable set of &. Similarly for unstable sets.



Suppose f has a hyperbolic fixed point at p, that is, f(p) = p and the eigenvalues of Df(p) all have
magnitude different from 1. Let E° be the sum of the generalized eigenspaces of those eigenvalues of
Df(p) that have magnitude smaller than one. Let E* be the sum of the generalized eigenspaces of those
eigenvalues of Df(p) that have magnitude larger than one. For simplicity we work in stable and unstable
coordinates. By this we mean that we will work in £* x E%, and identify F* x E* with R” via the map
(x®,2%) € B* x E% — p+ 2° + 2%, taking (0,0) to p. We continue to write the diffecomorphism as f. In
these coordinates the derivative D f(0,0) is block diagonal of the form

Df(0,0) = (‘g 3)

where S : F* — F® and U : E¥ — E". For some m > 0, S contracts vectors and U™ expands vectors.
Define A; = max{|A|, A is an eigenvalue of S} < 1 and A, = min{|A|, A is an eigenvalue of U} > 1.

We recall the stable manifold theorem, saying that stable and unstable sets of hyperbolic fixed points
are smooth manifolds, see [Shub,1980], [Trwin,1980].

Theorem 1.1 Let f be a diffeomorphism of E* x E% with a hyperbolic fized point at (0,0) as above.
Then W .(0,0) is diffeomorphic to a disk tangent to E° x {0} at (0,0), WL (0,0) is diffeomorphic to a
disk tangent to {0} x E* at (0,0). W*(0,0) and W"¥(0,0) are smooth injectively immersed manifolds.

1.1 Algorithms

In this section we describe iterative algorithms for calculating the local stable manifold of the hyperbolic
fixed point (0,0). In order to use the basic algorithm one must know both f and its inverse f=1. A variant
is provided in case only f is known. We also propose an alternative algorithm which has a theoretically
faster convergence rate. The corresponding algorithms for the local unstable manifold are given at the
end of the section.

Let my © B* x B% — E° 7, : B® x E* — E" be the coordinate projections m;(2°,2%) = #°
mu(®, 2¥) = v,

The projection ; restricted to W*(0,0) is one-to-one near (0, 0) because the stable manifold W?*(0,0)
is tangent at (0,0) to E® x {0}. Therefore there is an inverse map o from a neighborhood of 0 in E*
onto a neighborhood of (0,0) in W*(0,0). The algorithms calculate o(a) given a € E* close enough

bl

to 0; in fact they calculate the entire forward orbit of o(a) under f as a fixed point of a contraction
mapping S, defined on an appropriately chosen sequence space Cp(N, E® x E¥), see below. Starting with
an approximation to the forward orbit of ¢(a), one simply iterates S,. The iterates will converge to the
forward orbit of o(a) as long as the initial approximation was good enough. In practice, of course, one
only iterates finite sequences, as discussed in the section on implementation below.

Let Cp(N, E* x E*) denote the set of bounded sequences N — E* x E%, equipped with the supnorm.
An element x of Cg(N, E* x E") will be written x = {x3, k € N} = {(x},x}), k € N}.



The basic algorithm. Consider the following map S, on Cp(N, E® x E%), depending on a parameter
a € F°:

S,  xw—x,
x, = (a ;T fTH(x),
x;c = (st(xk_l) , wuf_l(xk+1)) if £ > 0.

For a small enough, S, is a contraction in a neighborhood of (0,0). If f is linear then this is clear. Since
f is differentiable at (0,0) it is approximately linear near (0,0), and thus &, is a contraction on a small
enough neighborhood of (0,0). The contraction rate can be made arbitrarily close to max{A;,1/A,} by
taking sufficiently small neighborhoods of (0, 0), see [Homburg et al,1995].

The unique fixed point of &, in a small neighborhood of (0,0) is the sequence (o(a), f(o(a)),...), the
forward orbit of o(a), so we get o(a) as the first coordinate. By varying a, one obtains the local stable
manifold.

The algorithm when f~' is unknown. For the above construction, the inverse f~1 of f has to be
explicitly known. A variant of the construction does not require knowledge of f=1:

Sa : X = X/a
x, = (a , muxo = U™ (mex — mu f(%0))),
x, = (mf(xk-1) , wuxp — UM (muxpqn — muf(xz))) if & > 0.

The contraction rate is the same as for the basic algorithm; namely, arbitrarily close to max{A;, 1/A,}.

A faster algorithm. Define S, by

Se : x—¥X,
X6 = (a ,  TMTuXg — U_l(ﬂ'uf(Xo) - ﬂ-uxll))’
X = (T f(xpo1) + S(MeXf_q — TsXpo1) , TuXp —U_l(ﬁuf(xk)_ﬁux;cﬂ)) if k> 0.

This map is well defined in spite of x’ appearing on both sides of the equations. Indeed, the stable
coordinates wyx} can calculated inductively from #;x{ = a. The unstable coordinates m,xj, are more
problematic since one needs to know 7TUX§C+1 in order to calculate m,x). If one chooses m,x% = 0 then
this determines values for m,x{, ..., T,X% in an N-dependent way. These values converge in the limit
N — oo, and we take the limit values as defining x'.
The contraction rate can be made arbitrarily close to
AU AS

(/\u—1+1—As

) llall - 1D* £(0, 0)]]

by taking small enough neighborhoods of (0,0). This formula can be derived by expanding f(z) in a
Taylor series around (0,0) up to second order terms. Thus the contraction rate can be made arbitrarily



close to zero by taking a close enough to zero.

Algorithms for the unstable manifold. The local unstable manifold is the local stable manifold for f=!
and can thus be computed analogously to the local stable manifold. If one does not explicitly know f1!,
use the following contraction Uy on Cp(—N, E* x E%), where b € E¥:

U, : x— x,
xy, = (msf(x-1) , b)),
Xt = (mf(xp-1) , wuxp — U N (muXppr — mo f(xx))) if k < 0.

The unique fixed point of U in a small neighborhood of (0,0) is the sequence (..., f~1(pu(b)), u(b)), the

backward orbit of p(b), where p : E¥ — W¥(0,0) is the local inverse of m, : W*(0,0) — E%. We get u(b)

as the first coordinate. By varying b, one obtains the local unstable manifold. The contraction rate is

the same as for the basic algorithm for the stable manifold; namely, arbitrarily close to max{As, 1/A,}.
The analogous fast algorithm for the unstable manifold is

U,  x—x,
X6 = (Tsf(x_1)+5(7TsX/_1 —7TSX_1) ) b)a
X;c = (st(xk—l) + S(ﬂ'sx;c—l - stk—l) y  TuXp — U_l(ﬂ-uf(xk) - 7T“X§C+1)) if k <0.

1.2 Implementation

In this section we discuss some aspects of the implementation of the above algorithms on a computer.

Stability. Since we are iterating a contraction Sy, the method is unaffected by small perturbations,
eg: rounding errors; errors in the evaluation of f; errors in the calculation of the fixed point p or of the
splitting into stable and unstable eigenspaces; the truncation of sequences to a finite number of terms, etc.
A small perturbation of &, is still a contraction with approximately the same fixed point and contraction
rate. Thus the method is numerically stable.

Finite sequences. Only finite pieces of orbits can be stored in a computer. Denote by 7y the projection
Tn(x) = (x0,...,%xn,0,0,...). Effectively we are replacing S, by S; v = mny 0Ssomn for some sufficiently
large N. This map is a small perturbation of S, if N is large enough, so will be a contraction on the
space of sequences {0,..., N} — R” with fixed point close to the fixed point of S,.

To get points on W2 .(p) with precision A, compute the fixed point v of S; y — for some parameter
value a — with N large enough that ||vy|| < A(1— &), where 0 < £ < 1 is the contraction rate of S, see
above. One easily checks that then || — v||sup < A, where 7 is the fixed point of S, for the same value of
a. There is another reason for checking that ||Jvy|| is small: if N is not large enough then the algorithm
may nonetheless converge, but to the wrong sequence, with vy close to some other fixed point of f.

Global manifolds. The above algorithms enable one to calculate W% _(0,0) to any desired accuracy.
Iterating W.(0,0) by f (or more exactly, iterating the points approximating W% _.(0,0) by f) gives the
global unstable manifold W*%(0,0). One has to take care that the distance between calculated points on



the manifold does not grow too large when iterating. Keeping track of this distance and if necessary
computing additional points, one ensures a correct approximation of a piece of the unstable manifold by
a sequence of computed points.

If f=1 is known then IW*(0,0) can be calculated by iterating W} .(0,0) by f~!. If not, then continua-
tion methods can be used (these may work even if f is not invertible): the edge of the piece of the stable
manifold calculated so far is sent by f closer to the origin, into a part of W?*(0,0) already calculated
(for example W .(0,0)). This leads to the continuation problem of extending the known piece of stable
manifold beyond the current edge, using the fact that the extension must be sent by f into a known curve
(the stable manifold closer to (0,0)). Standard methods allow one to extend W?(0,0) until a singularity
of Df is encountered.

2 Computing jets of manifolds

In the introduction we mentioned the importance of being able to detect tangencies of invariant manifolds.
Suppose f, is a family of diffeomorphisms on R", such that f, has a hyperbolic fixed point p,, depending
continuously on yu. Assume further that at ¢ = pg, the stable and unstable manifolds of p, are tangent.
To be able to give information on the bifurcations occurring when p is varied, one has to know the order
of tangency and the change in relative position of the stable and unstable manifolds as p varies. In this
section we indicate how the relevant derivatives can be computed.

First we discuss the computation of higher order jets of stable and unstable manifolds of a single map
f with a hyperbolic fixed point at the origin 0, as before. Let ns; and n, be the dimensions of £ and E*
respectively. Write G for the Grassmanian manifold of ns-dimensional linear subspaces L of R™. Define
F:R*xG—R"xGby F(e,L) = (f(x), Df(x)L). Tt can be shown that (0, £*) is a hyperbolic fixed
point of F'| its eigenvalues being those of Df(0) supplemented by eigenvalues of the form A,/A; where
Ay and A; are eigenvalues of Df(0) with [A,| > 1 and |A;] < 1. The stable manifold of F' at (0, E*)
consists of all points (x, L) where # € W?*(0) and L is the tangent space to W?*(0) at «. That is, one can
calculate the tangent space to W?*(0) at & by calculating the corresponding point of W5 (0, E®). Doing
this for both W*(0) and W*"(0) lets one detect, for example, homoclinic tangencies.

If one chooses a specific parametrization for W _(0), for example that given by ¢ in section 1, then it
is possible to calculate the derivative of ¢ at a point a € E*. Let £ be the space of linear maps from E*
to E* C R" and define F: R" x £ — R" x L by F(z, A) = (f(z), 7 Df(2)(I + A)(ms Df(2)(I + A))~L).
This has (0,0) as a hyperbolic fixed point. The local stable manifold of F' at (0, 0) consists of all points
(x, A) where z € W*(0) and A gives a parametrization of the tangent space to W*(0) at x via the map
Do : B — R", v+ v+ Av. The formula for F represents composing v +— v + Av with Df(z), writing
the composition in the form v+ v + A’v, and putting F(z, A) = (f(z), A).

Higher dimensional jets of W?*(0) can be calculated similarly, for example quadratic approximations
to W#(0). One works with the space J* of k-jets from E* to R™ (see e.g. [Golubitsky & Guillemin,1973]
for definitions and properties of jet bundles). One defines F : J¥ — J* by F(j) = f.(j) where f. is the



action induced by f on k-jets. For example, if k£ = 1 then J* = B" x G and F = F is as above. The
k-jet of W*(0) at 0, which we write as j&(W*(0)), is a hyperbolic fixed point of F. The stable manifold
of F at j¥(W*(0)) consists of all k-jets of 1W*(0). That is, one can calculate the k-jet of W*(0) at a point
z € W*(0) by calculating the corresponding point of W (j&(W#(0))). One can calculate for example
whether a homoclinic tangency is generic by checking that the second order jets of W#(0) and W*(0) are
different at the point of tangency.

Now we discuss calculating derivatives with respect to a parameter. Suppose the parameter p belongs
to R™. The set W* = {(z, p), « € W} (py), pt near po} is an injectively immersed (n, +m)-dimensional
submanifold of R"*”. One can calculate its tangent planes as follows (similarly, given a parametrization,
for the derivative of W} (pu) with respect to p). Write G for the Grassmanian manifold of all (n, + m)-
dimensional linear subspaces of R**™ . Define f : R*17 — R?H+™ phy f(a:,u) = (fu(z), p). Clearly f has
fixed points at (p,, p). Let E* be the tangent space to W* at (Puos o). Define F:R'"xG—R'%xG
by F(x,L) = (f(x,uo),Df(x,p)L). It can be shown that (puD,Es) is a hyperbolic fixed point of F.
The supplementary eigenvalues of DF(])ND , ES) are of the form A, /A; and A, /1. The stable manifold of
F at (puD,Es) consists of all points (z, L) where z € W;M (puo) and L is the tangent space to W* at
(z, po). Using this, one can calculate, for example, whether a tangency of W?*(0) and W*(0) unfolds with
non-zero speed as p crosses po.

2.1 Implementation

The special structure of the extended function F' greatly simplifies the stable manifold algorithms
given in section 1. Indeed, suppose the forward orbit x = (xg,2; = f(xg),...) of some point zy €
W= (0) with ms(xg) = @ has already been calculated. If L = (Lg, L1,...) is a bounded sequence of
points in G then the stable manifold algorithm gives Sy(x,L) = (x/,L’) where x’ = x and L' =
(Df(x1)" Ly, Df(x2)"1tLa,...). The calculation of the tangent plane to W*(0) at g reduces to evalu-
ating limy _ o (DfN(a:N))_lEs. Similar simplifications occur for the other algorithms.

This method of calculating jets has both advantages and disadvantages compared to the numerical
differentiation of W?(0). It seems most suitable for calculating first and second order derivatives of
one-dimensional manifolds. The main advantage is in being fairly well-behaved numerically, since the
eigenvalues of the manifold problem become more rather than less hyperbolic as additional derivatives
are taken. The main disadvantage, particularly when E° has dimension > 1, or when taking more than
one or two derivatives, is in the greatly increased dimension of the space and the number of calculations
required. A further problem is that of representing jets in a computer. In general it is necessary to keep
them in a normal form or regularly rescale them.



3 Stable and unstable manifolds of hyperbolic orbits

The previously described algorithms can be generalized to compute stable and unstable manifolds of
hyperbolic periodic orbits. For this, the splitting in stable and unstable directions along the periodic orbit
has to be known. In fact, we will deal with the more general situation of computing stable and unstable
manifolds of points contained in some hyperbolic invariant set. We first describe the algorithm that
computes such invariant manifolds. In the next section we examine the special case of a diffeomorphism
of B? possessing a horseshoe.

Suppose {Zm }mez is an orbit of f contained in a hyperbolic invariant set 2. This means that at each
point x,, € ® a splitting R = E*(x,,) x E%(x,) exists, depending continuously on x,,, such that

Df(xm)E*(tm) = E*(xme1), (5)
Df(zm)E (xm) = E“(2me1), (6)

and further, for some N € N, DfN(l‘m)| B (en) contracts vectors and DfN(l‘m)| Br(en) expands vectors.
The orbit {#m,},,cz can in particular be a hyperbolic periodic orbit where , = @4, for all m € Z,
where p is the period.

Let 75 m  R" — E*(2) and @y m : R" — E¥(2,,) be the linear projections of R" onto E*(z,,) and
E"(&,) respectively. A point & € R" can be decomposed as & = 7; 5, & + Ty m ©. Consider the following
map S,, depending on a parameter a € F*(xg), on the space of those sequences x : N — R” such that

SUP el ||Xm — Zm|| is bounded:

S, : x+—x,
Xy = a+moTo+muof t(x1),
X, = mopf(Xp—1)+ Tuk f_l(xk_H) if k> 0.

The map S, is a contraction if a is small. Its fixed point is the positive orbit {v }, ;g on Wi (z0) with
Tu,0(v0 — o) = a. By varying a, W} .(zo) is obtained. The local unstable manifold W (o) is computed
analogously.

3.1 Implementation

In order to apply these algorithms, one needs to know the hyperbolic orbit {#, },,cz. Here we make
some comments on the calculation of periodic orbits. The calculation of general orbits is discussed in the
next section.

A point zg of period p should not in general be calculated as a fixed point of fP. The reason is that the
evaluation of fP can be highly inaccurate especially if p is large, due to the possible sensitive dependence
to initial conditions of f.! An alternative approach is to calculate the orbit (zo, f(xo), ..., fP71(x0)) as

1 None of our algorithms involve iterating f many times on a point; they involve iterating associated contraction mappings

many times. This is numerically stable.



a fixed point of the mapping F' : R"" — R"? taking (yo,...,¥p—1) to (f(¥p=1), f(¥0), ..., f(yp—2)). This
results in an important gain in numerical accuracy at the price of dealing with large vectors.

Similarly, it is better to calculate the stable and unstable manifolds of (zg, ..., fF~!(zo)) using the
methods of this section rather than by considering zg as a fixed point of fP and using the methods of
section 1.

4 Calculating hyperbolic orbits

Suppose {Z }mez is an orbit of f contained in a hyperbolic invariant set . The intersection Wy (z¢)N
W (xy) equals the point zg. From this observation one can derive an algorithm to obtain the orbit
{xm}, if only known approximately. Observe first that, since the splitting R" = E*(z) x E%(x) depends
continuously on & € &), one can extend this splitting to a continuous splitting over a neighborhood of 3.
Denote by {£,,} a sequence of points near the orbit {z,,}. Let & be the following map on the space of
those sequences x : Z — R" such that sup,, ¢y [|Xm — #m|| is bounded:

S : x—x,
X = Tog f(xeo1) + Tug [T (X)),

If X, is near x,, for all m, then 8" (x) will converge to {z,n} as n — oc.

Let us discuss this idea further for a diffeomorphism of the plane possessing a horseshoe. Let f : B? —
R? be a diffcomorphism, such that a square S is mapped over itself in a horseshoe shape as indicated in
figure 1 below. Within S, f is almost linear, expanding in the vertical direction and contracting in the
horizontal direction. We have indicated vertical and horizontal rectangles satisfying f(Ho) = Vo, f(H1) =
Vi, f=1(Vo) = Ho, f~* (Vo) = Ho.

The square B contains a maximal invariant set whose dynamics can be described using symbolic
dynamics. There is a 1-1 correspondence between sequences Z — {0, 1} and orbits in this invariant set,
given by associating to an orbit {f*(x)} the sequence {o}(x)};c7 defined by

or(p) = j if f*(z) € Vj.

This symbolic sequence is called the itinerary of p. The maximal invariant set in B is not attracting: most
points in B leave this box after some iterations, since the invariant set has zero measure (assuming f is
C?). Let us explain how we can approximate orbits in this invariant set. Denote by 7., 7, the projection
to the horizontal z-axis resp. the vertical y-axis. Define a map & on the space of sequences Z — B by

S . Xb—>x/’
Xt = (T f(xe1), Ty f T (Keg)-

Theorem 4.1 Let f and S be as above. Given a symbolic sequence {0y },,c7, let the sequence x =
Xm ez satisfy xm € Vo, NHoy,, ., for allm € Z. Then S"(x) converges, as n — oo, to the unique
orbit {xzpm} of [ for which the itinerary of xg is equal to {om }mez-



1)
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Figure 1: f maps S over itself in a horseshoe shape.



PrROOF. One checks that S contracts the distance between each two sequences in Cp(Z,S) that have
their #*® point in the same component of V' N H. The condition imposed on x implies that S(x),, and
Xy, are in the same component of V N H for each m. ]

.....
=

-3

) -1 0 1 2 3
Figure 2: A period 1000 orbit for the Hénon map (z,y) — (a — y? — bz, z) with @ = 3 and b = 0.3,
indicating the position of the horseshoe this map possesses. For the splittings R = E*(#,y) x E%(z,y)
we let E¥(z,y) be the tangent space of the curve s — (a — bt — 5% s) at (s,t) = h™1(x,y) and we let
E*(z,y) be the tangent space of the curve t — (¢, (a —t? — 5)/b) at (s,t) = h(z,y).

4.1 Implementation

Both the orbit {z,} and the splitting in stable and unstable directions along it need only be known
approximately for the above procedures to work. Of course we have to work with finite symbol sequences,
finite orbits and finite precision. We can approximate periodic orbits up to any desired precision by
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working with periodic symbol sequences (we then have only a finite number of points to deal with). We
can also approximate long pieces of a non-periodic orbit {#,,} with some prescribed symbolic coding {o }
up to any desired precision. Indeed, consider the set Py = {z € R™|f*(x) € V}, for — N < k < N}. It is
easily seen that the size of Py is exponentially small in N. A periodic symbol sequence which matches
{o1} for =N < k < N therefore corresponds to a periodic point which is exponentially (in N) close to
Q.

A simple check as to whether the computed sequence actually approximates an orbit is to compare
the n*® point of the computed sequence to the f-image of the (n— l)th point, for all n.
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