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Abstract

In [15] Melbourne discusses an example of a robust heteroclinic network that is
not asymptotically stable but which has the strong attracting property called essential
asymptotic stability. We establish that this phenomenon is possible for homoclinic
networks, where all heteroclinic trajectories are symmetry related. Moreover, we study
a transverse bifurcation from an asymptotically stable to an essentially asymptotically
stable homoclinic network. The essentially asymptotically stable homoclinic network
turns out to attract all nearby points except those on codimension-one stable manifolds
of equilibria outside the homoclinic network.

1 Introduction

In symmetric (i.e. equivariant) ordinary differential equations heteroclinic cycles can, in
contrast to differential equations without symmetry, occur robustly. The heteroclinic net-
works given as group orbits of such heteroclinic cycles can moreover be asymptotically
stable. For differential equations with discrete symmetry, an example of Melbourne [15]
shows that a more intricate stability property, called essential asymptotic stability, is possi-
ble for heteroclinic networks. Here, for sufficiently small neighborhoods of the heteroclinic
network, trajectories for an arbitrary large portion of initial points in it converge to the
heteroclinic network but trajectories for the remainder of initial points escape. Additional
research has shown a number of contexts in which heteroclinic networks arise that are
essentially asymptotically stable, see for example [3, 9, 12]. These examples are all for
heteroclinic networks containing equilibria with different index (dimension of the unstable
manifold) which are therefore not symmetry related. Postlethwaite and Dawes [16] study
heteroclinic networks in Z6 ⋉ Z

6
2-equivariant differential equations in R

6, for which the
equilibria lie in a single group orbit. They establish trajectories that follow heteroclinic
trajectories in an irregular order while converging to the heteroclinic network.

The possibility of essentially asymptotically stable homoclinic cycles is mentioned in
a specific setting and without proof in [5]. The purpose of this paper is to prove, through
the construction of an elementary example, the occurrence of essentially asymptotically
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stable homoclinic cycles. Furthermore we study a transverse bifurcation [4] through which
an asymptotically stable homoclinic network loses its asymptotic stability and becomes
essentially asymptotically stable. We prove that after the bifurcation there is an attractor
and that for initial points outside a codimension-one manifold, their trajectories converge
to the original network. (Here, an attractor is a compact invariant set that is Lyapunov
stable so that the ω-limit set of each nearby point is in it.)

We now briefly introduce concepts relevant to our study, thus refraining from a treat-
ment in full generality, referring to [10] for further information. Consider a differential
equation

ẋ = f(x) (1.1)

in R
n. Let G be a finite group with a representation on R

n. A system of differential
equations (1.1) is G-equivariant if x(t) is a solution to (1.1) if and only if gx(t) is a
solution to (1.1), for all g ∈ G. Equivalently, if

gf(x) = f(gx),

for all g ∈ G.
We adopt the following definitions of heteroclinic and homoclinic cycles and networks.

Note that different definitions occur in the literature.

Definition. A heteroclinic networkH is an invariant set consisting of finitely many equilib-
ria and of a set of heteroclinic trajectories connecting these equilibria, that is G-symmetric,
i.e. GH = H (without real loss of generality, one may in addition demand connectedness).

A homoclinic cycle Γ is an invariant set that is equal to a group orbit 〈h〉γ̄, for a
heteroclinic trajectory γ connecting p to hp for some h ∈ G. Here γ̄ is the closure of γ
and 〈h〉 denotes the cyclic subgroup generated by h. The element h is called the twist for
the homoclinic cycle. A homoclinic network is the group orbit GΓ of a homoclinic cycle
Γ.

Let γ(t) be a heteroclinic trajectory satisfying limt→−∞ γ(t) = p, for a hyperbolic
equilibrium p, and limt→∞ γ(t) = hp for some h ∈ G. The isotropy groups Σγ(t) = {g ∈
G ; gγ(t) = γ(t)} do not depend on t, so that one can speak of the isotropy group Σγ of the
heteroclinic trajectory γ. Let P denote the fixed point space {x ∈ R

n ; gx = x, g ∈ Σγ}.
Assume that hp ∈ P is a sink when restricting the differential equations to P . The system
then possesses a robust homoclinic network Gγ.

Definition ([3, 15]). A flow-invariant compact set H is essentially asymptotically stable if
for any open neighborhood U of H there is a set C so that for any given number a ∈ (0, 1)
there is an open ε-neighborhood V ⊂ U of H such that all trajectories starting in V − C
remain in U and are asymptotic to H and µ(V − C)/µ(V ) > a, where µ is the Lebesgue
measure.

Our example of an essentially asymptotically stable robust homoclinic network will
be for differential equations (1.1) in R

5. It is constructed by taking a robust homoclinic
network in R

3 (reminiscent of the example in [1, 17]), adding two transverse directions and
extending the symmetries in such a way that the old three-dimensional space is invariant.
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Figure 1: A sketch of the three-dimensional homoclinic network GΓ in R.

With x = (x, y, z, u, v), we will assume that the differential equations are G-equivariant
under the representation of G ∼= Z

3
2 ⋊ Z4 generated by

g1 : (x, y, z, u, v) → (x, y,−z, u, v),
g2 : (x, y, z, u, v) → (x,−y, z, u, v),
g3 : (x, y, z, u, v) → (x, y, z, u,−v),
h : (x, y, z, u, v) → (−x, z, y,−v, u).

We make the following assumptions on the existence of a homoclinic cycle. Write Σγ =
Z

2
2(h

2, g1).

Assumption. Suppose p = (−x̄, 0, 0, 0, 0) and hp = (x̄, 0, 0, 0, 0) in Fix(Z3
2(g1, g2, h

2)) are
equilibria, such that restricted to the fixed point space

P = Fix(Σγ) = {z = u = v = 0},

p is a saddle and hp is a sink. Assume there is a heteroclinic trajectory γ = {γ(t), t ∈ R}
connecting p to hp, with isotropy subgroup Σγ and hence contained in the fixed point space
P . Let Γ be the homoclinic cycle 〈h〉γ.

Note that GΓ is a robust homoclinic network that consists of four heteroclinic trajec-
tories contained in

R = Fix(Z2(h
2)) = {u = v = 0},

see Figure 1. The stability of GΓ depends on the eigenvalues of Df at p. From the G-
equivariance it follows that the eigenvalues are real. Choose local coordinates by shifting
the origin to p. It follows that Df(p) = Λ is diagonal. Write λx, λy, λz, λu and λv for the
eigenvalues which are the radial, expanding, contracting and two transverse eigenvalues
respectively, see [11]. By assumption, λx < 0, λz < 0 and λy > 0. From [11] it follows
that GΓ is asymptotically stable within the subspace R if −λz > λy. Hence, GΓ is
asymptotically stable if −λz > λy and λu, λv < 0.

When one transverse eigenvalue is positive, say λv > 0, the homoclinic network GΓ
is not asymptotically stable but may be essentially asymptotically stable. Key to this
stability property is the swapping of the u and v directions by h. The instability when
passing the equilibrium p, caused by the positive eigenvalue λv in the direction of the
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v-axis, can be compensated by a contraction in the same direction when passing near hp.
The theorem below is proved in Section 2. We need the following definition.

Definition. A set of eigenvalues {λ1, . . . , λj} satisfies the nonresonance condition up to

order N if for every i1, . . . , ij ∈ N, 2 ≤ ∑j
k=1 ik ≤ N and λ ∈ {λ1, . . . , λj}

j
∑

k=1

ikλk 6= λ. (1.2)

Theorem 1.1. Let ẋ = f(x) be a G-equivariant differential equation on R
5, G ∼= Z

3
2 ⋊ Z4

generated by g1, g2, g3 and h, possessing a robust homoclinic network GΓ contained in
the fixed point space R as above. Assume nonresonance conditions on {λx, λy, λz, λu, λv}
up to a sufficiently high order N . Assume that 0 < λv/λy < min{λu/λz , 1}, λu < 0 and
−λz/λy > 1. Then GΓ is essentially asymptotically stable.

We note that the stability results in [12], consisting of checkable conditions for asymp-
totic stability and essential asymptotic stability of heteroclinic networks, do not apply in
the context of the above theorem (from conditions (S1)–(S4) in [12], condition (S2) fails).

An explicit example of differential equations admitting an essentially asymptotically
stable homoclinic network can be obtained by extending differential equations in R

3 from
[18] to G-equivariant differential equations in R

5. Consider the family of differential equa-
tions

ẋ = νx+ z2 − y2 − x3 + βx(y2 + z2),

ẏ = y(λ+ ay2 + bz2 + cx2) + yx,

ż = z(λ+ az2 + by2 + cx2) − zx,

u̇ = µu+ dux,

v̇ = µv − dvx.

A homoclinic cycle in the (x, y, z)-space exists for ν > 0 small, λ ∈ (λH(ν),
√
ν + cν)

for some λH(ν) = −1
2ν + O(v) [18]. It connects the equilibria p±=(±ν, 0, 0, 0, 0). The

contracting, expanding, radial and transverse eigenvalues are given by

λx = −2ν, λy = λ+ cν +
√
ν, λz = λ+ cν −√

ν,

λu = µ+ d
√
ν, λv = µ− d

√
ν.

The eigenvalue conditions for asymptotic stability, i.e. −λz > λy and λu, λv < 0, are
equivalent to c < −λ/ν, µ < 0 and |d| < |µ|/√ν. For c < −λ/ν, µ < 0 and |d| > |µ|/√ν,
the homoclinic network is essentially asymptotically stable.

We include a bifurcation study of a transition from an asymptotically stable to an
essentially asymptotically stable homoclinic network. Consider G-equivariant differential
equations

ẋ = f(x, ε) (1.3)

as above, now depending on a parameter ε. Assume Γ is a robust homoclinic cycle as
before. We make the following assumptions.
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Assumption. Assume there is a transverse bifurcation at ε = 0, in which the transverse
eigenvalue λv is zero [4]. We assume the unfolding condition ∂

∂ελv(ε)|ε=0 > 0 and also
that the transverse bifurcation results from a supercritical pitchfork bifurcation.

The homoclinic network GΓ is then asymptotically stable for small negative ε and un-
stable for small positive ε. Near the equilibrium p two new equilibria p′, g3p

′ are created
in the subspace Fix(Z2

2(g1g3h
2, g2g3h

2)) = {y = z = u = 0}. For small positive ε a hetero-
clinic network GΓ′ containing the equilibria p, p′, g3p

′ and the images hp, hp′, hg3p
′ exists.

Indeed, the one-dimensional unstable manifold of p′ lies inside the invariant subspace

Q = Fix(Z2(g1g3h
2)) = {z = u = 0}

in which hp is a sink. For ε > 0 small enough, the unstable manifold of p′ is close to
the unstable manifold of p for ε = 0 and therefore there is a heteroclinic connection
between p′ and hp, see Figure 2. Clearly a heteroclinic connection exists between the
nearby equilibria p and p′. The heteroclinic network GΓ′ arises as the group orbit under
G of these heteroclinic connections. For ε > 0 small enough we not only have essential

p hp

γ
P

x
v

p′

y

Figure 2: Inside Q one finds connecting heteroclinic trajectories from p to p′ and from
p, p′ to hp. Note that hp is a sink within Q.

asymptotic stability of GΓ but also the stability property that all points near GΓ outside
the stable manifolds of Gp′, are attracted to GΓ. The following theorem is proved in
Section 3.

Theorem 1.2. Let ẋ = f(x, ε) be a G-equivariant system of differential equations de-
pending on a parameter ε. Assume that it possesses a robust homoclinic network GΓ as
above, asymptotically stable for ε < 0, with at ε = 0 a supercritical transverse bifurcation
and no other bifurcation simultaneously, i.e. −λz(0) > λy(0) > 0, λx(0) < 0, λu(0) < 0
and a(0) > 0 (here a(ε) is a coefficient in the local normal form close to the equilibrium
p, see (3.7)). Assume the generic unfolding condition

dλv(ε)

dε
|ε=0 > 0
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and nonresonance conditions up to a sufficiently high order N for the set of eigenvalues
{λx, λy, λz, λu}. Then for ε > 0 small enough the heteroclinic network A = G(W u(p′) ∪
W u(p)) is an attractor. Furthermore there is an open invariant neighborhood U of GΓ, so
that for ε > 0 small enough, trajectories starting at x ∈ U −GW s(p′) converge for positive
time to GΓ.

Recall that a compact invariant set A is weakly asymptotically stable if the ω-limit
set of each nearby point is contained in A, but A is not Lyapunov stable (trajectories
starting near A may leave neighborhoods of A before converging to A). The set GΓ has
stability properties akin to weak asymptotic stability, except for the existence of some
codimension-one manifolds accumulating onto GΓ whose points have ω-limit sets outside
GΓ.

This research was supported by a grant from the Netherlands Scientific Organization
(NWO). We are grateful for the detailed comments by the referees.

2 Essential asymptotic stability

To prove the stability result of Theorem 1.1 we compute a first return map Π as the
composition of a local first hit map Πloc and a connecting diffeomorphism Πfar. Consider
two cross sections close to p, in local coordinates given by

Σin = {x2 + z2 = d2; |y|, |u|, |v| < d},
Σout = {|y| = d; |x|, |z|, |u|, |v| < d}.

Scale the coordinates so that d = 1. Define Πloc as the first hit map from Σin to Σout and
Πfar as the first hit map from Σout to hΣin. By identifying Σin with hΣin through the twist
map h, the transition map from Σin to hΣin yields a ”first return map” Π : Σin → Σin;

Π = h ◦ Πfar ◦ Πloc.

Lemma 2.1. For any k there is a function N = N(λx, λy, λz, λu, λv) such that if the set
of eigenvalues {λx, λy, λz , λu, λv} satisfies the nonresonance condition up to order N , then
(1.1) is Ck-equivalent to a G-equivariant system that around p equals ẋ = Λx and outside
a neighborhood of Gp equals (1.1). Here Λ = Diag(λx, λy, λz, λu, λv).

Proof. Note that the linear part of the equation is already diagonal by the G-equivariance.
The nonresonance conditions give a Ck-equivalence to linear differential equations on
a neighborhood of p, see e.g. [7]. By using a test function there is a Ck-equivalence
globally that leaves the system invariant outside a small neighborhood of p and is linear
and diagonal inside a smaller neighborhood. This can be done so that the reflectional
symmetries are respected. We do the same around hp (by using h composed with this
function) and this yields a system that is linear and diagonal locally around p and hp and
it is G-equivariant. �

We will refer to this Ck-equivalent system as the locally linearized system. Define the
local transition time τ : Σin → R as the time it takes to flow from Σin to Σout. By solving
the linearized equation ẏ(t) = λyy(t) and using y(τ) = 1 we get τ = −1

λy
log |y(0)|. The

following lemma yields asymptotic expansions for Π.
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Lemma 2.2. The ”first return map” Π : Σin → Σin of the locally linearized system is at
lowest order













x
y
z
u
v













Π→













x∗ +A1x|y|−λx/λy +B1z|y|−λz/λy + C1u|y|−λu/λy +D1v|y|−λv/λy

B2z|y|−λz/λy

z∗ +A3x|y|−λx/λy +B3z|y|−λz/λy + C3u|y|−λu/λy +D3v|y|−λv/λy

D4v|y|−λv/λy

C5u|y|−λu/λy













,

where (x∗, 0, z∗, 0, 0) ∈ GΓ ∩Σin, and A1, . . . ,D4 are constants. The constants B2, C5,D4

as well as z∗ are nonzero (note that z∗ does depend on the sign of y).

Proof. Solving the linear system with initial condition (x, y, z, u, v) and evaluating at time
τ yields the local first hit map Πloc : Σin → Σout,













x
y
z
u
v













Πloc

→













x|y|−λx/λy

±1

z|y|−λz/λy

u|y|−λu/λy

v|y|−λv/λy













.

The connecting diffeomorphism Πfar : Σout → hΣin is of the form












x
1
z
u
v













Πfar

→













x∗ + a1x+ b1z + c1u+ d1v + O(|(x, z, u, v)|2)
z∗ + a3x+ b3z + c3u+ d3v + O(|(x, z, u, v)|2)

b2z + O(|z||(x, z, u, v)|)
c5u+ O(|u||(x, z, u, v)|)
d4v + O(|v||(x, z, u, v)|)













,

for some constants a1, . . . , d4 and with coordinates on hΣin obtained from the (x, y, z, u, v)
coordinates on R

5 with hp shifted to the origin. This form follows from the G-equivariance
(here for Ck with k ≥ 2, for k = 1 the higher order terms are of smaller order then linear).
For instance, the existence of the fixed point space Fix(Z2(g1)) = {z = 0} forces the
z-coordinate of Πfar to be of order |z|. Likewise Fix(Z2(g3h

2)) = {u = 0} implies that the
u-coordinate of Πfar is of order |u| and Fix(Z2(g3)) = {v = 0} implies that the v-coordinate
of Πfar is of order |v|. Note also that b2, c5, d4 are necessarily nonzero as Πfar is a local
diffeomorphism. Also, z∗ 6= 0 by invariance of P = {z = u = v = 0}.

Composition of these maps, and then composing with the twist h (to identify hΣin

with Σin through h), gives the first return map with asymptotics as stated in the lemma
(where we note that coefficients stay the same or change sign and also that there are other
invariant subspaces whose consequences we do not consider). �

When one of the transverse eigenvalues, say λv, is positive the homoclinic network GΓ is
not asymptotically stable. However, for −λv not too large GΓ is essentially asymptotically
stable.

Proof of Theorem 1.1. By the nonresonance conditions, the system is Ck-equivalent, k ≥
1, to the locally linearized system and Lemma 2.1 applies. For each δ define N(δ), a
neighborhood of GΓ ∩ Σin = (x∗, 0, z∗, 0, 0) in Σin, as

N(δ) = {|x− x∗| < δm, |z − z∗| < δm, |y| < δ, |u| < δ, |v| < δ,x ∈ Σin}, (2.4)
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where m = 1
2 min{1,−λx/λy}. We fix a small open neighborhood U of GΓ∩Σin inside Σin

and α ∈ (0, 1). Choose δ̃ > 0 so that N(δ̃) ⊂ U . Define a cusp shaped region C ⊂ N(δ),

C = {|v| > δ̃

K
|y|λv/λy},

where K = max{8|D1|, 8|D3|, 2|D4|}. This region depends on δ̃, which depends on U .
Note that for λv/λy < 1 we have

lim
δ→0

µ(N(δ) − C)

µ(N(δ))
= 1.

We claim that

1. for every δ̃ there is a δ so that Π(N(δ) − C) ⊂ N(δ̃) − C,

2. for all δ small enough Π2(N(δ) − C) ⊂ N(δ/2) − C,

implying essential asymptotic stability by choosing δ̃ small enough. Write Π = (Πx, . . . ,Πv).
We get the following estimates for points in N(δ) − C:

|Πy| < 2|B2||z∗||y|−λz/λy < δ/2 < δ̃,

for δ small enough, using |z − z∗| < δm with z∗ 6= 0, −λz/λy > 1 and −λu/λy > 0.
Likewise

|Πv | < 2|C5||u||y|−λu/λy < δ/2 < δ̃

for δ small enough. The u component Πu is estimated by

|Πu| < 2|D4||v||y|−λv/λy < 2|D4|δ̃/K ≤ δ̃.

The estimates on the x and z components are similar to each other. We give the estimate
for the x component, assuming for simplicity that the constants are nonzero (otherwise
replace them by the maximum of the constant and 1):

|Πx − x∗| < 2|A1||x∗||y|
−λx
λy + 2|B1||z∗||y|

−λz
λy + 2|C1||u||y|

−λu
λy + 2|D1||v||y|

−λv
λy

< 2|A1||x∗|δ
−λx
λy + δ/4 + δ/4 + δ̃/4

< 2|A1||x∗|δ
−λx
2λy δ

−λx
2λy +

1

2
δ̃m

<
1

2
δ̃

−λx
2λy +

1

2
δ̃m < δ̃m,

where we used that δ < δ̃/2, δ̃ ≤ δ̃m and δ̃−λx/2λy ≤ δ̃m. We show that Π(N(δ)−C)∩C = ∅
which concludes the proof for the first part of the claim. We have to show that

|Πv | <
δ̃

K
|Πy|λv/λy . (2.5)

We estimate |Πy| from below and |Πv | from above as follows:

|Πy| > 1
4 |B2||z∗||y|−λz/λy , |Πv| < 2|C5||u||y|−λu/λy .
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It follows that if the following estimate holds then so does (2.5),

|y|−
λu
λy

+ λz
λy

λv
λy < (|B2||z∗|/4)λv/λy

2|C5|K
.

For λv/λy < λu/λz there is a δ so that this estimate holds for all x ∈ N(δ) − C.
Next we prove the second part of the claim, i.e for δ small enough Π2(N(δ) − C) ⊂

N(δ/2) − C. We first apply Π two times and estimate

|(Π2)x − x∗| < 2x∗|A1||Πy|
−λx
λy + 2z∗|B1||Πy|

−λz
λy + 2|C1||Πu||Πy|

−λu
λy + 2|D1||Πv ||Πy|

−λv
λy

< M |y|
−λx
λy +M |y|

−λz
λy +M |v||y|

−λv
λy

+ λz
λy

λu
λy +M |u||y|

−λu
λy

+ λz
λy

λv
λy

< (δ/2)m/4 + δ/4 + δ/4 + δ/4 < (δ/2)m,

where M > 0 is some constant. In this estimate we used −λz/λy > 1 and λv/λy < λu/λz,
ensuring −λv

λy
+ λz

λy

λu
λy
> 0 and −λu

λy
+ λz

λy

λv
λy
> 0. In the same way we have |Π2

z−z∗| < (δ/2)m.
The other coordinates are estimated by

|(Π2)y| < 2|z∗||B2||Πy|−λz/λy < M |y|λ2
z/λ2

y < δ/2,

|(Π2)u| < 2|D4||C5||u||y|−λu/λy(|B2||z∗||y|−λz/λy)−λv/λy < M |u||y|
−λu
λy

+−λz
λy

−λv
λy < δ/2,

|(Π2)v| < |C5||D4||v||y|−λv/λy(|B2|z∗||y|−λz/λy)−λu/λy < M |v||y|
−λv
λy

+−λz
λy

−λu
λy < δ/2.

Note that these estimates only hold for points that are close to GΓ after one return, so
the estimates hold for points in N(δ) −C. To complete the proof of the claim we need to
show that

Π2(N(δ) − C) ∩ C = ∅. (2.6)

There are K1 > 0, K2 > 0 so that:

|(Π2)v| < K1δ̃|y|−λv/λy+λzλu/λ2
y ,

δ̃/K|(Π2)y|λv/λy > δ̃/K(
1

2
|B2||z∗||Πy|−λz/λy)λv/λy > K2δ̃|y|λvλ2

z/λ3
y .

It follows that (2.6) holds for δ small and λv/λy < λu/λz. The claim implies that

Π2n(N(δ) − C) ⊂ N(δ/2n) − C ⊂ N(δ̃/2n) − C

and
Π2n+1(N(δ) − C) ⊂ Π2n(N(δ̃) − C) ⊂ N(δ̃/2n) − C

and thus all trajectories converge to GΓ. �

3 Transverse bifurcation

In this section we prove Theorem 1.2 dealing with a transverse bifurcation from an asymp-
totically stable to an essentially asymptotically stable homoclinic network. The unfolding
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condition ∂
∂ελv(ε)|ε=0 > 0 enables a reparametrization λv = ε for ε close to zero. Assum-

ing that the bifurcation is supercritical, there are two equilibria p′, g3p
′ bifurcating from

p for ε > 0.
The homoclinic network GΓ is asymptotically stable for ε < 0, but unstable for ε > 0.

For ε > 0 small it follows from Theorem 1.1 that the homoclinic network GΓ is essentially
asymptotically stable. To study the dynamics in an open neighborhood of GΓ there is
need of a normal form containing higher order terms in the equation for v.

Lemma 3.1. Suppose (1.3) unfolds a supercritical pitchfork bifurcation at ε = 0. For any
k ∈ N there is a N = N(λx, λy, λz, λu) ∈ N so that under the condition of nonresonance
up to order N for the set of eigenvalues {λx, λy, λz, λu}, the system (1.1) is Ck-equivalent
to a system that is locally around p given by

ẋ = λx(v, ε)x,

ẏ = λy(v, ε)y,

ż = λz(v, ε)z,

u̇ = λu(v, ε)u,

v̇ = λv(ε)v − a(ε)v3, (3.7)

where the occurring functions are smooth, a(ε) > 0, and this system is G-equivariant.

Proof. Takens [20] proved that under these nonresonance conditions there are C l(N) coor-
dinates, l(N) → ∞ for N → ∞, so that the system is locally in standard form, i.e.

ẋ = a11(v, ε)x + a12(v, ε)z + a13(v, ε)u,

ẏ = λy(v, ε)y,

ż = a21(v, ε)x + a22(v, ε)z + a23(v, ε)u,

u̇ = a31(v, ε)x + a32(v, ε)z + a33(v, ε)u,

v̇ = f(v, ε)

for smooth functions a11, . . . , a33, λy, see also Il’yashenko and Yakovenko [8]. Furthermore
Bonckaert [2] shows that we can do this so that the system respects a symmetry S. In
the proof in [2] it is used that S is similar to an orthonormal matrix T , i.e. there is an
invertible matrix M and an orthonormal matrix T so that MSM−1 = T . Then a suitable
cut-off function is chosen of the form φ(v) = ψ(|Mv|). In our case we can choose M = Id,
for all S ⊂ G and it follows that there exists a coordinate transformation which respects
the entire symmetry group G.

The symmetries of G force the matrix A = (aij) to be diagonal, i.e.

a12(v, ε) = a13(v, ε) = a21(v, ε) = a23(v, ε) = a31(v, ε) = a32(v, ε) = 0.

The equivariance implies f(v, ε) = −f(−v, ε) and thus f(0, 0) = fvv(0, 0) = 0. Because
there is a pitchfork bifurcation at ε = 0 in the v direction, we have fv(0, 0) = 0. Further-
more we assume the nondegeneracy condition fvvv(0, 0) 6= 0. From the finitely smooth
case of the Malgrange preparation theorem, see [6, 14], we can write

f(v, ε) = H(v, ε)P (v, ε)
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where P (v, ε) = v3 +
∑2

i=0 bi(ε)v
i is a polynomial with Ch coefficients and H(v, ε) is a

C l invertible function. Here h = [l(N)/3] − 1 and l = [(l(N) − 1)/3] − 1. Because we
assumed the bifurcation to be supercritical, H(v, ε) < 0 on a small neighborhood of (0, 0).
Simple calculations show that b0(ε) = b2(ε) = 0 and λv(ε) = H(0, ε)b1(ε). Multiply the
vectorfield by H(0, ε)/H(v, ε) and write a(ε) = −H(0, ε) so that the equation for v reads

v̇ = λv(ε)v − a(ε)v3.

Thus for each k there is a N so that (1.1) is Ck-equivalent to (3.7) in some neighborhood
of p. �

Proof of Theorem 1.2. Because of the nonresonance conditions up to order N , we may
assume that the system is of the form (3.7). The generic unfolding condition allows us
to reparametrize so that λv = ε for ε small. For ε going through zero there are two new
equilibria bifurcating from p given in local coordinates by

p′ = (0, 0, 0, 0,
√

ε/a(ε)), g3p
′ = (0, 0, 0, 0,−

√

ε/a(ε))

and by symmetry two equilibria are bifurcating from hp. The unstable manifolds of p′, g3p
′

are inside the invariant subspace Q = {z = u = 0} and are close to GΓ. Because hp is a
sink in Q, there are heteroclinic connections from p′ and g3p

′ to hp. Note that v̇ = εv−av3

is solved by

v(t) = sign(v(0))
√

ε
a

√

1

1+
ε−av(0)2

av(0)2
e−2εt

.

We restrict to the case where v(0) > 0, the case v(0) < 0 is handled by symmetry. We
suppress some of the dependencies from the notation. Using the formula for the transition
time, τ = − log |y|/λy, the v-coordinate Πloc

v of the local first hit map is

Πloc
v (x, ε) =

√

ε
a

√

1

1+ ε−av2

av2 |y|
2ε
λy

,

where again x = (x, y, z, u, v) ∈ Σin. The transition map Π : Σin → hΣin is at lowest order
given by













x
y
z
u
v













Π→













x∗ +A1x|y|−λx/λy +B1z|y|−λz/λy + C1u|y|−λu/λy +D1Π
loc
v

B2z|y|−λz/λy

z∗ +A3x|y|−λx/λy +B3z|y|−λz/λy +C3u|y|−λu/λy +D3Π
loc
v

D4Π
loc
v

C5u|y|−λu/λy













.

We choose a neighborhood N = N(µ), see (2.4), of GΓ ∩ Σin small enough so that for
some K > 0 the following estimates hold

|Πx − x∗| ≤ K|y|−λx/λy +K|y|−λz/λy +K|u||y|−λu/λy +KΠloc
v ,

|Πy| ≤ K|y|−λz/λy ,

|Πz − z∗| ≤ K|y|−λx/λy +K|y|−λz/λy +K|u||y|−λu/λy +KΠloc
v ,

|Πu| ≤ KΠloc
v ,

|Πv| ≤ K|u||y|−λu/λy .
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For v <
√

ε/a an estimate on Πloc
v is given by

Πloc
v ≤ min{vy−ε/λy ,

√

ε/a}.

For ε > 0 small enough, the arguments to prove Theorem 1.1 establish that GΓ is
weakly asymptotically stable. Moreover, following the proof of Theorem 1.1, we get that
for µ and ε small, Π2(N(µ)) ⊂ N(µ/2) (recall the definition of N in (2.4)). Thus, the
positive trajectory of each point x in N(µ) with y 6= 0 (so x 6∈ GW s(p′)) converges to
GΓ. We claim that the heteroclinic network A = G(W u(p′) ∪ W u(p)) is an attractor.
To see this, first note that every open neighborhood of GΓ has a nonempty intersection
with GW s(p′). The smallest invariant set which has an open neighborhood U so that its
forward flow converges to the invariant set is A. Thus A is an attractor. �
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