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Abstract. We establish the existence of intermittent two-point dynamics and infinite
stationary measures for a class of random circle endomorphisms with zero Lyapunov ex-
ponent, as a dynamical characterisation of the transition from synchronisation (negative
Lyapunov exponent) to chaos (positive Lyapunov exponent).

1. Introduction

In dynamical systems theory, the phenomenon of chaos (with hallmark sensitive depen-
dence on initial conditions) has been an important motivation and focal point of research. In
particular, the question of when and why chaotic dynamics emerges from more predictable
motion, for instance in a parametrized family of dynamical systems, has been a central
question in bifurcation theory.

While several routes to chaos have been identified for deterministic dynamical systems (see
for instance [26]), the corresponding transition in random dynamical systems (dynamical
systems driven by a signal with certain probabilistic characteristics) remains much less
understood.

In this paper, we address this problem for a class of random circle endomorphisms, adopt-
ing notions of order and chaos in terms of the sign of the Lyapunov exponent, with negative
Lyapunov exponent implying synchronisation (almost sure convergence of the distance be-
tween different trajectories with different initial conditions) and positive Lyapunov exponent
implying chaos (including sensitive dependence on initial conditions). We are led to address
the question how this transition happens, and in particular to identify dynamical aspects
that accompany the change of sign of the Lyapunov exponent. We focus in this respect
on the so-called two-point motion from the topological and (invariant) measure theoretical
point of view.

In late 1980s, Baxendale and Stroock [9, 11] studied the dynamics of stochastic differ-
ential equations, characterising stationary measures for the two-point motion in different
Lyapunov exponent regimes, establishing in particular the existence of an infinite ergodic
invariant measure at the zero Lyapunov transition point between synchronisation (station-
ary probability measure on the diagonal) and chaos (stationary probability measures on and
off the diagonal).

2020 Mathematics Subject Classification. 37H15,37H20.
Key words and phrases. Random circle endomorphisms, two-point motion, Lyapunov exponent, moment

Lyapunov function, intermittency, transition to chaos.
1



2 V.P.H. GOVERSE, A.J. HOMBURG, J.S.W. LAMB

In the early 1990s, Pikovsky [48] and Yu, Ott and Chen [51] studied the transition to
chaos in the discrete time setting (random maps), leading to numerical evidence supporting
several heuristic conjectures concerning intermittency.

Recently, Homburg and Kalle [32] obtained explicit results about stationary measures for
certain random affine iterated function systems on the circle. They also point out the fact
that the infinite stationary measure of the two-point motion at the transition corresponds
to intermittent dynamics.

This leads to the natural question whether intermittency and associated infinite ergodic
stationary measure of the two-point motion are generic features of the transition to chaos
in random dynamical systems.

In this paper, we answer this question in the affirmative, in the specific setting of circle
endomorphisms of degree two with additive noise. Importantly, we develop techniques to
analyse the two-point dynamics near the diagonal, expanding on results developed by Bax-
endale and Stroock [9,11] for stochastic differential equations. In particular, we analyse the
spectral properties and actions of annealed Koopman operators for one- and two-point mo-
tions, allowing us to derive quantitative estimates on various escape times of the quenched
process, which are key to our results. In Section 2.2, we present a summary of our techniques.

We anticipate that the techniques introduced in this paper will turn out to be fundamental
to settle our question in general.

1.1. Main results. Consider a smooth monotone circle endomorphism T : T → T of degree
k > 1, where T = R/Z denotes the circle endowed with the topology induced by the arc-
length metric d, and the parameter family of maps defined as

Ta(x) := T (x+ a (mod 1)).

We consider random iteration of maps from this family

xn = Tn
ω (x0) := Tωn−1 ◦ · · · ◦ Tω1 ◦ Tω0(x0)

where ω := (ωi)i∈N and ωi is drawn randomly (i.i.d.) from [−ϑ, ϑ] with uniform measure
Leb/(2ϑ). We denote the corresponding sequence space

Σϑ := [−ϑ, ϑ]N.
with corresponding product measure P.

Our results require certain mild hypotheses, Hypothesis (H1)-(H5), which we proceed to
sketch with reference to Section 2 for details.

We assume that T and ϑ are such that the random dynamical system has a unique
stationary measure µ with smooth and everywhere positive density. As a result, the random
dynamical system has a single Lyapunov exponent

λ =
1

2ϑ

∫
T

∫
[−ϑ,ϑ]

ln (DTω(x)) dLeb(ω)dµ(x),

which can be negative, zero, or positive, depending on T and ϑ. When we consider the
case where the random dynamical system depends smoothly on an additional parameter,
the Lyapunov exponent also varies smoothly with this parameter (due to our hypotheses).
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Then, a transition to chaos corresponds to the Lyapunov exponent traversing zero from
below.

We consider the two-point motion to gain insights into the dynamics:

(xn, yn) = (T (2)
ω )n(x0, y0) := (Tn

ω (x0), T
n
ω (y0)) .

Stationary measures for the two-point random dynamical system provide information well
beyond stationary measure for (the one-point dynamics of) Tω. Note that the stationary
measure for Tω is also a stationary measure of the two-point motion, supported on the
diagonal

∆ :=
{
(x, x) ∈ T2 ; x ∈ T

}
.

We are primarily interested in stationary measures with support outside of ∆, providing de-
tail on the comparison between orbits with different initial conditions. The ε-neighbourhood
of the diagonal is denoted as

∆ε :=
{
(x, y) ∈ T2 ; d(x, y) < ε

}
.

Our main result concerns the following trichotomy in phenomenology from a topological
and measure theoretic point of view:

Theorem 1.1 (Topological random dynamics). Let Tω be a random dynamical system satis-
fying hypotheses (H1) to (H5), λ be its Lyapunov exponent, and let T (2)

ω be the corresponding
two-point random dynamical system. Then,

(1) Synchronisation: if λ < 0, for all x, y ∈ T,

lim
n→∞

d (Tn
ω (x), T

n
ω (y)) = 0, P− a.s.

(2) Intermittency: if λ = 0, for all (x, y) ∈ T2 \∆,

lim
n→∞

1

n

n−1∑
i=0

d
(
T i
ω(x), T

i
ω(y)

)
= 0 and lim sup

n→∞
d (Tn

ω (x), T
n
ω (y)) > 0, P− a.s.

(3) Chaos: if λ > 0, for all (x, y) ∈ T2 \∆,

lim
n→∞

1

n

n−1∑
i=0

d
(
T i
ω(x), T

i
ω(y)

)
> 0 and lim inf

n→∞
d (Tn

ω (x), T
n
ω (y)) = 0, P− a.s.

This result mirrors those in [32], obtained for special random affine circle maps. The most
interesting aspect concerns the existence of intermittency in part (2). The existence of syn-
chronisation in the presence of negative Lyapunov exponent has already been well-studied,
see e.g. [46], and the properties highlighted under part (3) also align with existing insights.
The characterization of intermittency in part (2) is reminiscent of synchronisation on av-
erage [29] and that of chaos in part (3) of Li-Yorke chaos [16, 39]. These characterisations
are not exhaustive. For instance, recently the positive Lyapunov exponent regime has been
associated with the existence of so-called random horse-shoes [35,36].

The proof of Theorem 1.1, which uses techniques introduced in Sections 2 and 3, is
given in Section 4. The results for λ < 0, λ = 0 and λ > 0 are presented separately in
Propositions 4.8, 4.3 and 4.6, respectively.
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Theorem 1.2 (Stationary measures). Let Tω be as in Theorem 1.1, and let µ denote its
unique stationary (probability) measure.

Then,

(1) If λ < 0, µ on ∆ is the unique stationary measure for T (2)
ω .

(2) If λ = 0, µ on ∆ is the unique stationary probability measure for T (2)
ω . In addition,

T
(2)
ω admits an infinite stationary (Radon) measure µ(2) on T2 \ ∆, which has full

support. Moreover, for each such measure there exist α, β ∈ (0,∞) such that

α ≤ lim inf
ε→0

µ(2)(T2 \∆ε)

− ln(ε)
≤ lim sup

ε→0

µ(2)(T2 \∆ε)

− ln(ε)
≤ β.

(3) If λ > 0, in addition to the unique stationary measure µ on ∆, T (2)
ω admits a sta-

tionary probability measure µ(2) on T2 \∆, which has full support.
Moreover, if the non-zero root γ < 0 of the moment Lyapunov function1 associated

with Tω is also larger than −1
2 , then for each such measure there exists α, β ∈ (0,∞),

such that

α ≤ lim inf
ε→0

µ(2)(∆ε)

ε−γ
≤ lim sup

ε→0

µ(2)(∆ε)

ε−γ
≤ β.

As in Theorem 1.1, the most interesting aspect of this result is the intermittent case in
part (2), where we find that ergodic invariant measures off the diagonal are infinite, together
with the estimate on how such measures grow near the diagonal.

The asymptotics of the stationary invariant measure near the diagonal in the positive
Lyapunov exponent scenario (in part (3)) relies on the condition that γ ∈ (−1

2 , 0). If
γ < −1

2 , then the asymptotics may be different due to points being mapped more frequently
close to the diagonal, see Proposition 5.5.

The construction of stationary measures off the diagonal for the two-point motion in parts
(2) and (3) makes use of an inducing scheme with randomized return times. It should be
noted stationary measures constructed in this way do not need to be unique.

The heart of the proof of the above theorem is presented in Section 5, with arguments
relying on estimates from Sections 3, 4. The existence of the stationary measure on ∆ follows
from Proposition 2.1. For λ < 0, Theorem 1.1 (1) directly implies the unique stationary
measure in Theorem 1.2 (1). The results for λ = 0 and λ > 0 follow from Proposition 5.1,
Proposition 5.4 and Proposition 5.5.

We proceed to illustrate our results in an example.

Example 1.3. We consider a one-parameter family of random circle endomorphism

xn = Tn
ν,ω(x0) := Tν,ωn−1 ◦ · · · ◦ Tν,ω1 ◦ Tν,ω0(x0)

with ωi drawn i.i.d. from the uniform distribution on a subinterval of the circle [−ϑ, ϑ], and

Tν,a(x) := Tν(x+ a (mod 1)), (1.1)

1See Eq. (3.1) and Lemma 3.4.
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Figure 1. The graph of Tν (1.2) at ν = 0.6.

with

Tν(x) :=

∫ x

0
ν + 140(2− ν)t3(1− t)3dt (mod 1). (1.2)

Note that Tν(0) = 0 and DTν(0) = ν. In Figure 1 we sketch the graph of Tν for ν = 0.6.
For parameter ranges discussed in this example Tν,ω satisfies the Hypotheses (H1) to (H5),

see Example 2.6.
We first consider the behaviour of the Lyapunov exponent at a fixed value of ν = 0.6

with varying ϑ. In Figure 2(a), we observe noise-induced chaos, as the Lyapunov exponent
increases monotonically from −0.4 to 0.45 with increasing θ ∈ [0.1, 0.5]. In this interval, the
noise is large enough to ensure the existence of a unique stationary measure for T0.6,ω on T.

The dynamics of the two-point motions is illustrated by examples of time series for two
different values of ϑ in Figure 2(c) (θ = 0.17, close to intermittency) and Figure 2(d) (θ = 0.2,
chaos), displaying qualitative differences consistent with Theorem 1.1.

Figure 2(b) shows the distribution of the two-point distance for an example time-series,
displaying inverse-power-law behavior near zero, as asserted in Theorem 1.2.

Rather than varying the noise level for fixed parameter ν, one may also consider varying
ν at fixed noise level. Fixing the noise level at θ = 0.5 (full noise), yields one-point mo-
tion orbits to be random i.i.d. sample from the stationary measure µ = (Tν)∗ (Leb), see
Figure 3(b).

We include this example as it highlights the difference between the one- and two-point
motion. In particular, at full noise, the one-point dynamics is essentially a full shift while
the dynamics may be synchronising or chaotic. Indeed, varying ν between 0.025 and 0.2 we
observe (in Figure 3(a) ) a monotonically increasing Lyapunov exponent going from negative
(synchronisation) to positive (chaos).
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(a) Numerical approximation of the Lyapunov ex-
ponent for fixed ν = 0.6 and varying ϑ. The
Lyapunov exponent increases monotonically with
the noise level, from negative to positive (noise-
induced chaos).
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two orbits (106 iterations) with different initial
conditions and the same noise realisation, consis-
tent with Theorem 1.2 (3).
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(c) Example of a time series of the distance be-
tween two orbits for ϑ = 0.17, when λ ≈ 0, close
to intermittency.
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tween two orbits for ϑ = 0.2, when λ ≈ 0.11, in
the chaotic regime.

Figure 2. Illustration of aspects of the dynamics in Example 1.3 regarding
the family of random maps Tν,ω with ν = 0.6.

We revisit the full noise case in the context of this example, in Example 3.9 and Example
3.12, where this assumption leads to simplified statements.

1.2. Context. In this paper we have established a link between intermittency (of the two-
point motion) and the transition to chaos in random dynamical systems. In the deterministic
setting, intermittency has been recognized as a hallmark of only one of several routes to
chaos [49]. We thus conjecture that the presence of noise "destroys" the others.

Intermittency and infinite ergodic measures are already known to be linked to nonhy-
perbolic fixed points and zero Lyapunov exponents. For instance, for random dynamical
systems on unbounded state spaces, a zero Lyapunov exponent may yield infinite stationary



INTERMITTENT TWO-POINT DYNAMICS AT THE TRANSITION TO CHAOS 7

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

= 0.5

(a) Numerical approximation of the Lyapunov ex-
ponent for fixed ϑ = 0.5 and varying ν. The Lya-
punov exponent increases monotonically with ν,
from negative to positive.
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(b) Numerical approximation of the stationary
density, with ν = 0.6 and ϑ = 0.5.

Figure 3. Illustration of aspects of the dynamics of Example 1.3 regarding
the family of random maps Tν,ω, with ϑ = 0.5 and varying ν.

measures [5, 18–20, 24]. In random maps on bounded state spaces with common neutral
fixed points, research has focused on two cases: invariant neutral fixed points (e.g., in ran-
dom intermittent maps [6]) and on-average neutral fixed points (e.g., the Pelikan map [47]).
Both scenarios exhibit infinite invariant Radon measures on the complement of the fixed
point. A number of case studies focus on random logistic maps with zero Lyapunov expo-
nents [1, 4, 28]. For specific results on synchronisation on average (equivalent to our notion
of intermittency) in random maps, see also [29,42].

While the majority of research in ergodic theory of dynamical systems focusses on one-
point motions, two-point motions are central to this paper. The importance of two-point
motions, or more general n-point motions, has been recognized in the study of stochastic
differential equations, see for instance [34], and in particular by Ledrappier & Young [37,38]
and Baxendale & Stroock [9, 11] focussing on different Lyapunov exponent regimes. More
recently, their importance has been recognized in stochastic fluid dynamics [12–15,17].

Synchronisation in random dynamical systems constitutes the most elementary type of
dynamical behaviour, and has been studied extensively [27,31,43]. In particular, it has been
established in the negative Lyapunov exponent regime that synchronisation is equivalent to
a mild contractability condition [46]. Specifically, random circle homeomorphism have been
discussed in [2, 33,41,52].

1.3. Organization of the paper. This paper is divided into six sections. In Section 2,
we discuss the underlying hypotheses of this paper and provide a summary of the strategy
of the proof. In Section 3, the technical machinery involving Koopman operators is de-
veloped, which is required in the subsequent sections. Section 4 is dedicated to the proof
of Theorem 1.1, where the three different scenarios with zero, positive, and negative Lya-
punov exponent are treated, respectively in Subsections 4.1, 4.2, and 4.3. The construction
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of stationary measures and the derivation of their properties, leading to Theorem 1.2, are
contained in Section 5.

2. Setting and strategy of the proof

This section introduces the hypotheses on the system and includes a summary of the
strategy of the proof. We start with a circle endomorphism T : T → T with the following
property.

T is a circle endomorphism in C2(T), of degree two with derivative positively
bounded from above and below; there exist positive real numbers a1 < a2,
such that

a1 < DT (x) < a2
for all x ∈ T.

(H1)

Note that every point has exactly two inverse images under T . Degree two is not essential
in this paper, higher degree works the same with minor modifications. Define

Rmin := max {r ; a1d(x, y) ≤ d (T (x), T (y)) ≤ a2d(x, y) for all x, y ∈ T with d(x, y) ≤ r} .
(2.1)

In particular T (x) ̸= T (y) if d(x, y) ≤ Rmin.
For ω ∈ T write

Tω(x) = T (x+ ω (mod 1))

for the circle endomorphism obtained by composing T with a translation. We take a random
process ωi, i ∈ N, where the ωi are independently drawn from a uniform distribution on

Ωϑ := [−ϑ, ϑ].

This yields a random dynamical system

xn+1 = Tωn(xn) (2.2)

for an initial point x0 ∈ T.
Let the sequence space

Σϑ := ΩN
ϑ

be endowed with the product topology. We write ω = (ωi)i∈N for points in Σϑ. Cylinders
are sets [A0, A1 . . . , Ak] = {ω ∈ Σϑ ; ωi ∈ Ai, 0 ≤ i ≤ k} for Borel sets Ai ⊂ T. Cylinders
are the basis for the product topology. Given the normalized Lebesgue measure Leb/(2ϑ)
on Ωϑ, write P for the corresponding product measure on Σϑ. For a function X on Σϑ we
use common notation such as

E [X] :=

∫
Σϑ

X(ω) dP(ω).

By identifying Ωϑ with the cylinder [Ωϑ] we can also use P for normalized Lebesgue measure
Leb/(2ϑ) on Ωϑ. So, with a slight abuse of notation, if a function ω 7→ X(ω) depends on a
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single symbol ω ∈ Ωϑ, we write E [X] =
∫
Ωϑ
X(ω) dP(ω). Recall that a measure µ on T is

called a stationary measure if∫
Σϑ

µ
(
(Tω)

−1 (A)
)
dP(ω) = µ(A),

for any (Borel) measurable set A ⊂ T.
The skew product map Θ : Σϑ × T → Σϑ × T is defined by

Θ(ω, x) := (σω, Tω0(x)).

Here σ is the left shift operator σω := (ωi+1)i∈N. With a slight abuse of notation we write

Tn
ω (x) := Tωn−1 ◦ · · · ◦ Tω0(x)

for iterates.
We compares two different trajectories by studying the random dynamical system. For

ω ∈ Σϑ, the two-point map (x, y) 7→ T
(2)
ω (x, y) on T2 is the product

(x, y) 7→ (Tω(x), Tω(y)).

This yields the random dynamical system

(xn+1, yn+1) = T (2)
ωn

(xn, yn). (2.3)

The two-point skew product map Θ(2) : Σϑ × T2 → Σϑ × T2 is denoted by

Θ(2)(ω, x, y) = (σω, T (2)
ω (x, y)).

A measure µ(2) on T2 is a stationary measure of the random dynamical system T
(2)
ω on T2 if∫

Σϑ

µ(2)
((

T (2)
ω

)−1
(A)

)
dP(ω) = µ(2)(A),

for any (Borel) measurable set A ⊂ T2.

2.1. Hypotheses. We focus on random circle endomorphisms whose trajectories are not
confined to subintervals of the circle but spread over the entire circle.

There is k > 0 so that for any x, y ∈ T, there is ω ∈ Σϑ so that T k
ω (x) = y. (H2)

This hypothesis guarantees the existance of a unique absolutely continuous stationary
measure of full support, but also has further applications that are used throughout the
paper.

Proposition 2.1. Suppose the random dynamical system described by (2.2) with ωn i.i.d.
picked from a uniform distribution for [−ϑ, ϑ], adheres to Hypotheses (H1), (H2).

Then the random dynamical system admits an absolutely continuous stationary measure
µ with full support and smooth density.
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The proof is omitted and be obtained from standard arguments using Perron-Frobenius
operators. A similar setup is in [7], to which we refer for details.

The following assumption provides a local source for contraction. This is needed to achieve
a negative or zero Lyapunov exponent.

The map T has a hyperbolic attracting periodic orbit. (H3)

We must avoid that points in T2 \∆ are mapped into ∆ by T (2)
a with positive probability,

and more generally we must control and bound the probability that points are mapped very
close to the diagonal by the two-point maps T (2)

a . The following hypothesis provides us with
an assumption to prevent this.

For every (x, y) ∈ T2 \ ∆, the curve a 7→ (Ta(x), Ta(y)) in T2 intersects the
diagonal ∆ transversely or with at most a single quadratic tangency. (H4)

Hypothesis (H4) is a generic condition.

Lemma 2.2. There is an open and dense set of degree two circle endomorphisms T : T → T
in the C2 topology so that the corresponding random system satisfies Hypothesis (H4).

Proof. In the argument to prove denseness we take the random parameter a in Ta from the
whole circle T; taking a from a larger interval only shrinks the set of circle endomorphisms
that satisfy Hypothesis (H4).

Let w(x, y) denote the signed distance of x, y ∈ T, The hypothesis can be rephrased as
stating that the graph of the function a 7→ w(T

(2)
a (x, y)) has only transverse intersections

and at most one quadratic tangency to the graph of the zero function.
Present T as an interval map on [0, 1] with two monotone branches ψ1 : I1 → [0, 1] and

ψ2 : I2 → [0, 1] on intervals I1 = [0, d] and I2 = [d, 1], where both maps are surjective. For
x ∈ I1, there is a unique point y ∈ I2 with T (x) = T (y). For R < Rmin, d(T (x), T (y)) ̸= 0
for all (x, y) with 0 < d(x, y) < R.

By a small perturbation of T near the boundary points of I1, we get that DT (0) ̸= DT (d).
Write χ1 = ψ−1

1 and χ2 = ψ−1
2 , both defined on [0, 1]. Note that z = ψ1(x) = ψ2(y)

means χ2(z) − χ1(z) = y − x. Using x ̸= y, note that Ta(x) = Ta(y) or equivalently
T (x+ a) = T (y + a) can only occur if

χ2(z)− χ1(z) = y − x

for z = Ta(x) = Ta(y). Also, a transverse intersection of a 7→ w(T
(2)
a (x, y)) with zero occurs

if Dχ2(z) ̸= Dχ1(z), a tangency if Dχ2(z) = Dχ1(z). Such a tangency is quadratic if
D2χ2(z) ̸= D2χ1(z).

A small perturbation of χ2 (and thus of T ) will ensure that the critical points of z 7→
χ2(z)−χ1(z) are quadratic (have a nonzero second order derivative) and the critical values
are different. So z 7→ χ2(z) − χ1(z) − (y − x) is either transverse or at most quadratically
tangent to 0, and there is at most one tangency for fixed (x, y). Thus the graph of the
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function a 7→ w(T
(2)
a (x, y)) has only transverse intersections and quadratic tangencies to the

graph of the zero function, with at most one such tangency. As (x, y) can be taken from
the compact region T2 \∆R, the numbers of transverse intersections and of tangencies are
bounded uniformly in (x, y) from T2 \ ∆ε. For the same reason, there is a uniform lower
bound on the second order derivatives at tangencies. Openness is now clear. □

The integrability statement in the following lemma is a consequence of Hypothesis (H4),
and results in an estimate that is required in later arguments (Proposition 4.6, Proposi-
tion 5.4 and Proposition 5.5).

Lemma 2.3. For all R > 0 there exists C1 > 0 with

E
[
− ln(d(T (2)

ω (x, y)))
]
< C1, (2.4)

for all (x, y) ∈ T2 \∆R.

Proof. As earlier we let w(x, y) denote the signed distance of x, y ∈ T. Consider the real
valued function

a 7→ f(a) := w
(
T (2)
a (x, y)

)
on T. Hypothesis (H4) implies that (see also the proof of Lemma 2.2) for (x, y) ∈ T2 \∆δ,
there exist δ > 0, C > 0 so that ∣∣D2f(a)

∣∣ ≥ C

whenever |f(a)| < δ and |Df(a)| < δ.
If I ⊂ T is an interval so that for a ∈ I, |f(a)| < δ and |Df(a)| ≥ δ, then

∫
I − ln (|f(a)|) da

is bounded by some Cδ > 0.
To prove the lemma it remains to consider f on an interval J ⊂ T so that |f(a)| < 2δ for

a ∈ J and J contains a point d ∈ J with Df(d) = 0. If f(d) = 0 and Df(d) = 0, we have a
bound 0 < c(a−d)2 < |f(a)| for some c > 0. The same bound applies if Df(d) = 0 and f is
never zero on J . The possibility that is left is where f has two zeros f(d1) = f(d2) = 0 for
nearby points d1, d2 on different sides of d. Then a bound 0 < c|(a − d1)(a − d2)| < |f(a)|
for some c > 0 holds. In all cases c is uniformly bounded away from 0. As the logarithms of
c(a− d)2 and c|(a− d1)(a− d2)| are integrable, we find that

∫
J − ln (|f(a)|) da is bounded

by some Cδ > 0. Noting that − ln(|f(a)|) is bounded if |f(a)| > δ, proves the lemma. □

We make a final assumption that will be used to prove full support of stationary measures
for the two-point motion. The random two-point system maps a point (x, y) to a curve
a 7→ (Ta(x), Ta(y)) in T2. For the composition of two iterates, we have

Ha0,a1(x, y) := det

(
∂

∂(a0, a1)
T (2)
a1 ◦ T (2)

a0 (x, y)

)
= DTa1(Ta0(x))DTa1(Ta0(y)) (DTa0(x)−DTa0(y)) . (2.5)

Consider now the following hypothesis.

For each (x, y) ∈ T2 \∆, there are a0, a1 so that Ha0,a1(x, y) ̸= 0. (H5)
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This condition implies that for each (x, y) ∈ T2 \∆, the image of

(a0, a1) 7→ T (2)
a1 ◦ T (2)

a0 (x, y),

with a0, a1 ∈ [−ϑ, ϑ], contains an open set.
Recall that a map F : X → X on a topological space X is called topologically exact if

for any open U ⊂ X, there is n ∈ N so that Fn(U) = X.

Lemma 2.4. The skew product systems Θ : Σϑ×T → Σϑ×T and Θ(2) : Σϑ×T2 → Σϑ×T2

are topologically exact.

Proof. We first consider Θ and we start with the following statement: for any open interval
I ⊂ T there is ω ∈ Σϑ and k ∈ N so that T k

ω (I) = T. The reasoning will also show that
there is a cylinder D ⊂ Σϑ that contains ω, so that T k

ζ (I) = T for any ζ ∈ D.
Given the interval I, take x ∈ I. Let y ∈ T be a periodic point in an uncountable

transitive hyperbolic repelling set Λ of a map Ta [44]. Write k for the period of y. Given an
open neighborhood V of y, there is an iterate T kn

a that maps V onto all of T (if ∪nT
kn
a (V ) is

an interval, then T k
a is a diffeomorphism on it, but it also admits an uncountable hyperbolic

repelling set, which is not possible). By Hypothesis (H2) there is ς ∈ Σϑ and m ∈ N so
that Tm

ς (x) = y. Hence there is n ∈ N so that T kn
a ◦ Tm

ς maps I onto T. By continuity the
same applies to Tm+kn

ν for ν in a suitable cylinder D that contains ς0 · · · ςm−1a · · · a (with
nk times a). This proves the statement with which we started.

To conclude the proof of topological exactness of Θ, let U ⊂ Σϑ × T be an open set. By
shrinking U we may assume that U is a product set U = C×J of a cylinder C and an open
interval J . There is an iterate Θj(U) that contains an open set Σϑ × I for an open interval
I ⊂ T. Now use the above statement to establish that a further iterate covers Σϑ × T.

Next we consider Θ(2). Take an open set U ⊂ Σϑ × T2. By shrinking U we may assume
that U is a product set U = C × I × J of a cylinder C and open intervals I, J .

By the above reasoning, there is l ∈ N and ω ∈ C so that
(
T
(2)
ω

)l
(I × J) contains

T ×K for an open interval K ⊂ T. Applying the above reasoning again, there is l ∈ N so

that
(
T
(2)
ω

)l
(I × J) equals T2. The proof of topological exactness of Θ(2) is concluded as

above. □

Hypotheses (H3), (H5) and Lemma 2.4 show that P-almost surely all orbits of the two
point motion get arbitrarily close to the diagonal ∆. The following lemma formalizes this.

Lemma 2.5. For all ε > 0, there exists a N ∈ N, C > 0 such that for all (x, y) ∈ T2, we
have

P
({
ω ∈ Σϑ ; d(T i

ω(x), T
i
ω(y)) < ε for some 0 ≤ i ≤ N

})
> C.

Proof. Take (x, y) ∈ T2 \∆ε. By Hypothesis (H5) we find that ω 7→
(
T
(2)
ω

)2
(x, y) contains

an open product set Ix × Iy ⊂ T2. By compactness we find δ > 0 so that Ix and Iy have
diameter at least δ, uniformly in x, y ∈ T2 \ ∆ε. The argument of Lemma 2.4 shows that
for any (x, y) ∈ T2 \ ∆ε there is an open neighborhood U of (x, y) and a positive integer
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N so that
(
T
(2)
ω

)N
(x′, y′) covers T2 for any (x′, y′) ∈ U . By compactness N is bounded

uniformly in (x, y) ∈ T2 \∆ε. This implies the lemma. □

Example 2.6. We continue from Example 1.3, giving concise justifications that the required
hypotheses hold. Hypotheses (H1) and (H3) are trivially satisfied. Hypothesis (H2) can be
checked via a simulation or some naive bounds.

Regarding Hypothesis (H4), observe that there is exactly one point y ∈ T that has two
preimages x1, x2 ∈ T with

DT (x1) = DT (x2).

At this point y, the second derivatives DT (x1) and DT (x2) have opposite signs. The
curvature of the curve a 7→ (Ta(x1), Ta(x2)) at the point of tangency with ∆ is therefore
nonzero, and the tangency is quadratic.

Finally, by Equation (2.5), and the fact that for all (x, y) ∈ T2 \ ∆, there exists an
a0 ∈ [−ϑ, ϑ] such that DTa0(x)−DTa0(y) ̸= 0, Hypothesis (H5) follows. ■

2.2. Strategy of the proof. This section gives a helicopter view on the reasoning in Sec-
tions 3 and 4 that leads to Theorem 1.1 on dynamics of the random two-point maps. For
the study of orbits of the random two-point maps it is crucial to understand the duration
of trajectories of two nearby points staying close to each other. In terms of the two-point
motion this is the duration of trajectories of the two-point motion staying close to the diago-
nal. Suppose x0, y0 ∈ T are close, so that d0 = d(x0, y0) is close to zero. With xn = Tn

ω (x0),
yn = Tn

ω (y0) and dn = d(xn, yn), we find that as long as dn is small,

dn+1 ≈ DTωn(xn)dn. (2.6)

Taking logarithms un = ln(dn) this reads

un+1 ≈ un + ln (DTωn(xn)) , (2.7)

which is a random walk driven by the one-point motion xn+1 = Tωn(xn).
In the special case where xn is identically and independently distributed (see Example 1.3,

with ϑ = 0.5), the approximation is a random walk with i.i.d. steps. But this is not true
in general. We derive estimates for the duration of passages near the diagonal by adapting
reasoning in [9, 11] for continuous time settings to our discrete time setting. We base our
analysis on properties of the Koopman operator for the two-point system.

For the one-point motion, the annealed Koopman operator P acting on a real valued
function ϕ on T is defined as

Pϕ(x) = E [ϕ(Tω(x))] .

Here E stands for an expectation over ω ∈ Σϑ. Analogously the annealed two-point Koopman
operator P(2) acting on a real valued function ϕ on T2 \∆ is defined as

P(2)ϕ(x, y) = E
[
ϕ(T (2)

ω (x, y))
]
.

To estimate stopping times for trajectories of the two-point motion from strips ∆δ \∆ε

near the diagonal (so with 0 < ε < δ small) we construct sub- and supermartingales for the
stopped dynamics. The key statements are Proposition 3.14 and Proposition 3.16 below. The
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constructions rely on an analysis of P(2), which in turn is facilitated by the approximations
(2.6) and (2.7) and a study of the corresponding linearized Koopman operator, defined for
continuous real valued functions ϕ on T× R+ by

TPϕ(x, u) = E [ϕ(Tω(x), DTω(x)u)] .

Formulas for the mentioned sub- and supermartingales are obtained from a study of the
twisted Koopman operator Pq whose action on a real valued function ψ on T is defined as

Pqψ(x) = E
[
ψ (Tω(x))

(DTω(x))q

]
.

This in turn connects to the moment Lyapunov exponent

Λ(q) = lim
n→∞

1

n
ln (E [DTn

ω (x)
q]) .

The moment Lyapunov exponent plays a central role in our analysis, similar to [9, 11].
Originally introduced by Molchanov [45] and subsequently developed in particular by Arnold
[3], it can be viewed as a generalization of the Lyapunov exponent [21]. The relationship
between the moment Lyapunov exponent and the Lyapunov exponent was first described
in [22].

The above comments on methodology refer to a study of the two-point motion near the
diagonal. Our setting of endomorphisms, instead of diffeomorphisms, brings the effect that
points away from the diagonal may be mapped directly onto the diagonal by an application of
the two-point map. Hypothesis (H4) controls the probability with which points are mapped
onto or near the diagonal by the two-point maps.

3. Koopman operators

This section develops theory of Koopman operators needed for our analysis on random
dynamics. The contents of this section are crucial for the arguments in the following sections,
although the statements in the lemmas and propositions in the following sections can be read
without reference to this section.

Below we define in particular the annealed Koopman operator and the linearized Koop-
man operator for the random one-point maps, and the annealed Koopman operator for the
random two-point maps. We consider the twisted Koopman operator and the moment Lya-
punov exponent and use it to obtain eigenfunctions for the linearized Koopman operator.
The approximation of the two-point random maps applied to nearby points by the linearized
random map allows us to obtain, from these eigenfunctions, functions on which the two-point
Koopman operator acts in a desired way: these functions appear in the construction of sub-
and supermartingales for the random two-point maps considered near the diagonal.

3.1. Twisted Koopman operator and moment Lyapunov function. Write C(T,R)
for the space of real valued continuous functions on T. Denote the C0-norm as ∥ · ∥. The
(annealed) Koopman operator P : C(T,R) → C(T,R) is defined as

Pϕ(x) := E [ϕ(Tω(x))] .
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The twisted Koopman operator, Pq : C(T,R) → C(T,R) with q ∈ R, is defined for contin-
uous functions ψ : T → R by

Pqψ(x) := E
[
ψ (Tω(x))

(DTω(x))q

]
.

Note that P = P0.
The following lemma establishes basic properties of Pq. Similar statements in other set-

tings are in [3, 30].

Lemma 3.1. For q ∈ R, the operator Pq on C(T,R) is positive, compact and irreducible.

Proof. It is clear that Pqψ ≥ 0 if ψ ≥ 0, that is, that Pq is positive. Hypothesis (H2) yields
the following property. There exists n ∈ N, so that for any ψ ∈ C(T,R) with ψ ≥ 0 and
ψ ̸= 0, Pn

q ψ > 0 everywhere. This means that Pq is irreducible.
Let B be the unit ball in C(T,R). For ψ ∈ B, note that (for readability skipping the

(mod 1) from the arguments)

Pqψ(x) =
1

2ϑ

∫ ϑ

−ϑ
DT (x+ ω)−qψ(T (x+ ω)) dω =

1

2ϑ

∫ x+ϑ

x−ϑ
DT (y)−qψ(T (y)) dy

is a continuously differentiable function of x ∈ T. As ∥Pqψ∥ ≤ C for a constant C (for q > 0
we can take C = aq2/ϑ, for q < 0 we can take C = aq1/ϑ with a1, a2 from Hypothesis (H1)),
Pq is a bounded operator. Now

|DPqψ(x)| =
1

2ϑ

∣∣DT (x+ ϑ)−qψ(T (x+ ϑ))−DT (x− ϑ)−qψ(T (x− ϑ))
∣∣

≤ C∥ψ∥
for the same constant C. It follows that Pqψ for ψ ∈ B is an equicontinuous family of
functions. By the Arzela–Ascoli theorem we get that Pq is a compact operator. □

Using this lemma we get the following results on the dominant eigenvalue and correspond-
ing eigenvector of Pq.

We make use of the qth moment Lyapunov exponent Λ(q) (see [3, 10, 30]) defined as

Λ(q) := lim
n→∞

1

n
ln (E [DTn

ω (x)
q]) . (3.1)

We also write moment Lyapunov function, especially when discussing its dependence on q.
We will find that the limit does not depend on x, and that it exists as an analytic function
of q. Denote 1T : T → R as the constant function equal to 1 on the circle.

Proposition 3.2. For q ∈ R, Pq has a dominant simple eigenvalue eΛ(−q). The rest of the
spectrum of Pq is contained in a disk of radius less then eΛ(−q). Write ϕq ∈ C(T,R) for the
dominant eigenfunction of Pq, so

Pqϕq = eΛ(−q)ϕq. (3.2)

Then
(1) ϕ0 = 1T and eΛ(0) = 1,
(2) ϕq is a positive function,



16 V.P.H. GOVERSE, A.J. HOMBURG, J.S.W. LAMB

(3) Λ(q) and ϕq depend analytically on q,
(4) Λ is convex,
(5) Λ(q) ≥ λq.

Proof. The proof follows ideas as in [3, 30]. The spectral properties of Pq follow from
Lemma 3.1 and the Krein-Rutman theorem (see for instance [23, Section 19.5]). Write
r(q) = σ (Pq) for the spectral radius of Pq. By the Krein-Rutman theorem, this equals the
dominant eigenvalue of Pq. We have

Pn
q 1T(x) = ⟨kq,1T⟩r(q)nϕq(x) + o(r(q)n),

as n → ∞, uniformly in x, where kq ∈ C(T,R)∗ is a probability measure, see [3]. Now we
rescale ϕq, such that ⟨kq,1T⟩ = 1 and using this, calculate

lim
n→∞

1

n
ln
(
E
[
(DTn

ω (x))
−q]) = lim

n→∞

1

n
ln
(
Pn
q 1T(x)

)
= lim

n→∞
ln
((
Pn
q 1T(x)

)1/n)
= lim

n→∞
ln
(
(r(q)nϕq(x) + o(r(q)n))1/n

)
= ln(r(q)).

We find that limn→∞
1
n ln

(
E
[
(DTn

ω (x))
−q]) does not depend on x. The remaining properties

of Λ(−q) and ϕq follow from [3,30]. □

The following lemma connects the moment Lyapunov exponent and the Lyapunov expo-
nent.

Lemma 3.3. The first derivative of the moment Lyapunov function at q = 0 is equal to the
Lyapunov exponent

Λ′(0) = lim
n→∞

1

n
E [ln (DTn

ω (x))] = λ. (3.3)

Proof. This follows from the fact that Λ(0) = 0, Λ(q) ≥ λq and the analyticity of Λ. For
the complete argument, see [3, 30]. □

We have established that Λ is a convex function that vanishes at 0. The following lemma
shows the existence of a second zero if λ ̸= 0. This second zero plays a prominent role in our
analysis and also appears in the statements of the main theorem on stationary measures.

Lemma 3.4. If λ ̸= 0 then there is a unique γ ̸= 0, with opposite sign, such that Λ(γ) = 0.
(We set γ = 0 if λ = 0.)

Proof. Assume that λ > 0, which implies by (3.3) that Λ′(0) > 0. By Hypothesis (H3) there
is a contracting periodic point xc of T . Let kc denote its period. By continuity of map,
there exist ε > 0 and δ > 0 such that the set

Hc =
{
ω ∈ Σϑ ; x ∈ Bε(xc) implies T i

ω(x) ∈ Bε(T
i(xc)), 1 ≤ i ≤ kc, ln(DT

kc
ω (x)) < −δ

}
has positive measure P(Hc) > 0.
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By Hypothesis (H2), we know that for any x ∈ T, there is a positive probability of reaching
Bε(xc) in k steps. For any m = k + nkc sufficiently large, we have

E
[
(DTm

ω (x))−q
]
≥ P(xk ∈ Bε(xc)) e

nδq P(Hc)n.

Taking the logarithm and applying the limit limn→∞
ln(·)
n , it follows that Λ(q) → ∞ as

q → −∞.
By the continuity of Λ(q) and the fact that Λ′(0) > 0, there must exist a unique γ < 0 such

that Λ(γ) = 0. The argument in the case where λ < 0 is analogous, using an expanding
periodic orbit instead of the contracting periodic orbit. The existence of an expanding
periodic orbit follows from [44]. □

We write ∂qϕq for the derivative of ϕq with respect to q, and likewise ∂2qϕq for the second
order derivative with respect to q. Recall from (3.3) that λ = Λ′(0) and let

V := Λ′′(0).

Lemma 3.5. We have the following two equalities for x ∈ T:

E [ln(DTω(x))]− λ = (P0 − I) ∂qϕ0(x) (3.4)

and, if λ = 0,

V = (P0 − I) ∂2qϕ0(x)− 2E [∂qϕ0(Tω(x)) ln(DTω(x))] + E
[
ln2(DTω(x))

]
. (3.5)

Proof. Differentiating (3.2) once with respect to q, yields for x ∈ T,

eΛ(−q)∂qϕq(x)− eΛ(−q)Λ′(−q)ϕq(x) = E
[
∂q

(
ϕq (Tω(x))

DTω(x)q

)]
= (Pq∂qϕq)(x)− E

[
ϕq (Tω(x)) ln(DTω(x))

DTω(x)q

]
. (3.6)

Equation (3.6) evaluated at q = 0 yields

∂qϕ0(x)− Λ′(0) = (P0∂qϕ0)(x)− E [ln(DTω(x))] .

Rewriting this proves (3.4).
Next, differentiating (3.6) with respect to q yields

eΛ(−q)
(
∂2qϕq − 2Λ′(−q)∂qϕq +

(
Λ′(−q)2 + Λ′′(−q)

)
ϕq
)
(x)

= Pq∂
2
qϕq(x)− 2E

[
∂qϕq (Tω(x)) ln(DTω(x))

DTω(x)q

]
+ E

[
ϕq (Tω(x)) ln

2(DTω(x))

DTω(x)q

]
. (3.7)

Evaluating (3.7) for q = 0 yields

− 2Λ′(0)∂qϕ0(x) + Λ′(0)2 + Λ′′(0)

= (P0 − I) ∂2qϕ0(x)− 2E [∂qϕ0 (Tω(x)) ln(DTω(x))] + E
[
ln2(DTω(x))

]
. (3.8)

Rewriting, and plugging in λ = 0, we obtain (3.5). □
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It is immediate from the convexity of Λ that V ≥ 0. Our set-up implies that in fact
V > 0, which we require in our analysis of the case with a zero Lyapunov exponent λ (see
Lemma 4.1 below).

Lemma 3.6. We have V > 0.

Proof. Following [10] we establish that V = 0 implies Λ(q) = λq, which will lead to a
contradiction.

Rewriting (3.8), we obtain

V + (P0 − I)
(
(∂qϕ0)

2 − ∂2qϕ0
)
(x)

= E
[
(∂qϕ0(Tω(x))− ln(DTω(x)))

2
]
− (∂qϕ0(x)− λ)2

= E
[
(∂qϕ0(Tω(x))− ln(DTω(x)))

2
]
− (E [∂qϕ0(Tω(x))− ln(DTω(x))])

2 . (3.9)

The last step uses (3.4). We conclude that

V + (P0 − I)
(
(∂qϕ0)

2 − ∂2qϕ0
)
(x) ≥ 0.

Now suppose V = 0, for the sake of contradiction. From (P0 − I)
(
(∂qϕ0)

2 − ∂2qϕ0
)
(x) ≥ 0

we conclude that (∂qϕ0)2−∂2qϕ0 is constant (to see this, note that if a continuous function χ :
T → R takes a maximum at x, then the property E [χ(Tω(x))] ≥ χ(x) with Hypothesis (H2)
implies that χ is maximal at every point of T). So in fact

(P0 − I)
(
(∂qϕ0)

2 − ∂2qϕ0
)
(x) = 0

and (3.9) implies that

∂qϕ0(Tω(x))− ln(DTω(x)) = ∂qϕ0(x)− λ

for all x and ω. Then also

∂qϕ0(T
n
ω (x))− ln(DTn

ω (x)) = ∂qϕ0(x)− nλ.

As Λ(q) = limn→∞
1
n ln (E [(DTn

ω (x))
q]) we find Λ(q) = qλ. Lemma 3.4 shows that this is

not the case in our set-up. □

3.2. Linearized Koopman operator. We introduce the linearized Koopman operator,
defined for continuous real valued functions ϕ on T× R+ by

TPϕ(x, u) := E [ϕ(Tω(x), DTω(x)u)] .

Recall from Proposition 3.2 that ϕq is the dominant eigenfunction of Pq. Define W̃q :
T× R+ → R by

W̃q(x, u) = u−qϕq (x) . (3.10)

We reserve the tilde notation for functions on T× R+.

Lemma 3.7. The function W̃q is an eigenfunction of TP , with eigenvalue eΛ(−q):

TPW̃q(x, u) = eΛ(−q)W̃q(x, u). (3.11)
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Proof. This follows from a straightforward computation. For (x, u) ∈ T× R+,

TPW̃q(x, u) = E
[
W̃q(Tω(x), DTω(x)u)

]
= E

[
(DTω(x)u)

−qϕq (Tω(x))
]

= u−qE
[
DTω(x)

−qϕq (Tω(x))
]

= u−qPqϕq(x)

= eΛ(−q)u−qϕq(x)

= eΛ(−q)W̃q(x, u).

□

Remark 3.8. Consider a random sequence

(xn+1, un+1) = (Tσnω(xn), DTσnω(xn)un) ,

with x0, u0 ∈ T× R+. Take γ as in Lemma 3.4 such that eΛ(γ) = 1. Then

(TP − I)W̃γ(x, u) = 0,

which shows that W̃γ(xn, un) is a martingale. ■

Example 3.9. In the case of Example 1.3, with ϑ = 0.5, we get

W̃q(x, u) = ∥ϕq∥u−q,

which does not depend on x, as the one point dynamics is essentially a full shift.˙ ■

Lemma 3.10. There exist K > 0 and two continuous functions

ϕ̃, η̃ ∈ C0(T× R+,R),

such that the following holds for (x, u) ∈ T× R+. For ϕ̃ we have

|ϕ̃(x, u)− ln(u)| ≤ K, (3.12)

(TP − I) ϕ̃(x, u) = λ. (3.13)

Assume λ = 0. Then for η̃ we have

|η̃(x, u)− ln2(u)| ≤ K| ln(u)|, (3.14)
(TP − I) η̃(x, u) = V. (3.15)

Concerning notation in the following proof and further below, π1 is the function π1(x, u) =
x on T× R+, π2 stands for the function π2(x, u) = u on T× R+.

Proof of Lemma 3.10. We give a constructive proof for Lemma 3.10, where we use Propo-
sition 3.2 and Lemma 3.5. We first find the function ϕ̃ for which (3.12) and (3.13) holds.
Subsequently we find η̃ for which (3.14) and (3.15) holds.

For (x, u) ∈ T× R+, let

ϕ̃(x, u) = ln(u)− ∂qϕ0(x). (3.16)
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Note that

ϕ̃ ∈ C0(T× R+,R).

Furthermore, for all (x, u) ∈ T× R+, we have

(TP − I) ϕ̃(x, u) = (TP − I) ln(π2)(x, u)− (P0 − I) (∂qϕ0) (x)

= E [ln(DTω(x)u)]− ln(u)− E [ln(DTω(x))] + λ

= λ.

In the first line we use that ∂qϕ0(x) only depends on x. For the second equality we apply
(3.4) in Lemma 3.5.

For the second part of the proof, we take λ = 0 and let

η̃(x, u) = ln2(u)− 2 ln(u)∂qϕ0(x) + ∂2qϕ0(x).

And again note that

η̃ ∈ C0(T× R+,R).

From a straightforward computation, we obtain, for (x, u) ∈ T× R+

(TP − I) η(x, u) =

(TP − I) ln2(π2)(x, u)− 2 (TP − I) ln(π2)∂qϕ0(π1)(x, u) + (TP − I) ∂2qϕ0(π1)(x, u).

We analyse the terms on the right hand side separately. For the first term, we have

(TP − I)
(
ln2(π2)

)
(x, u) = E

[
ln2(DTω(x)u)

]
− ln2(u)

= E
[
(ln(DTω(x)) + ln(u))2

]
− ln2(u)

= E
[
ln2(DTω(x))

]
+ 2 ln(u)E [ln(DTω(x))] . (3.17)

For the second term we have

2 (TP − I) ln(π2)∂qϕ0(π1)(x, u) = 2E [ln(DTω(x)u)∂qϕ0(Tω(x))]− 2 ln(u)∂qϕ0(x)

= 2E [ln(DTω(x))∂qϕ0(Tω(x))] + 2 ln(u) (E [∂qϕ0(Tω(x))]− ∂qϕ0(x))

= 2E [ln(DTω(x))∂qϕ0(Tω(x))] + 2 ln(u)(P − I)∂qϕ0(x)

= 2E [ln(DTω(x))∂qϕ0(Tω(x))] + 2 ln(u)E [ln(DTω(x))] , (3.18)

where in the third to fourth line we make use of the properties of ∂qϕ0, as described by (3.4)
in Lemma 3.5. For the third term, we have

(TP − I) ∂2qϕ0(π1)(x, u) = V + 2E [ln(DTω(x))∂qϕ0 (Tω(x))]− E
[
ln2(DTω(x))

]
. (3.19)

Here we use (3.5) in Lemma 3.5. Combining (3.17), (3.18) and (3.19), we conclude, for
(x, u) ∈ T× R+,

(TP − I) η̃(x, u) = V. (3.20)

Finally, (3.12) and (3.14) follow from the analyticity in q of ϕq(x)(see Proposition 3.2). □
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Remark 3.11. Consider a random sequence

(xn+1, un+1) = (Tσnω(xn), DTσnω(xn)un) ,

with (x0, u0) ∈ T × R+. Then (3.13) expresses that the function ϕ̃(xn, un) − nλ is a mar-
tingale. Assuming λ = 0, (3.15) expresses that the function η̃(xn, un)− nV is a martingale.
■

Example 3.12. In the case of Example 1.3, with ϑ = 0.5, we get ϕ̃(x, u) = ln(u) + ∥∂qϕ0∥
and η̃(x, u) = ln2(u)− 2∥∂qϕ0∥ ln(u) + ∥∂2qϕ0∥. Both functions are independent of x, as the
one point dynamics is essentially a full shift. ■

3.3. Two-point Koopman operator. The (annealed) two-point Koopman operator P(2)

is defined for a real valued function ϕ on T2 \∆ by

P(2)ϕ(x, y) := E
[
ϕ(T (2)

ω (x, y))
]
.

The following lemma addresses the approximation of P(2) by TP .
Define ϕ : T2 \∆ → R by

ϕ(x, y) := ln(d(x, y))− ∂qϕ0(x).

With ϕ̃ from Lemma 3.10 (see (3.16)) we have, for (x, y) ∈ T2 \∆,

ϕ(x, y) = ϕ̃(x, d(x, y)). (3.21)

Let η : T2 \∆ → R be defined as

η(x, y) := ln2(d(x, y))− 2∂qϕ0(x) ln(d(x, y)) + ∂qϕ0(x).

Note that for (x, y) ∈ T2 \∆,
η(x, y) = η̃(x, d(x, y)). (3.22)

Define Wq : T2 \∆ → R by
Wq(x, y) := d(x, y)−qϕq(x). (3.23)

With W̃q from (3.10) we have for (x, y) ∈ T2 \∆,

Wq(x, y) = W̃q(x, d(x, y)). (3.24)

The next lemma compares the action of TP and P(2).

Lemma 3.13. There exist R,B > 0, such that we have the following bounds, for (x, y) ∈
∆R \∆, ∣∣∣TP ϕ̃(x, d(x, y))− P(2)ϕ(x, y))

∣∣∣ ≤ Bd(x, y), (3.25)∣∣TP η̃(x, d(x, y))− P(2)η(x, y)
∣∣ ≤ Bd(x, y)| ln(d(x, y))|, (3.26)

and for q ∈ [−|γ| − 1, |γ|+ 1],∣∣∣TPW̃q(x, d(x, y))− P(2)Wq(x, y)
∣∣∣ ≤ Bd(x, y)−q+1. (3.27)
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Proof. We will work out the estimates for (3.25), then the computation for (3.26) is analo-
gous, and will be left to the reader. We will sketch the proof for (3.27).

Recall that w(x, y) denotes the signed distance between x and y, for nearby points x, y ∈
T. Take R > 0 small enough so that Tω is injective on all intervals of length R. For
(x, y) ∈ ∆R \∆,

TP ϕ̃(x, |w(x, y)|) = E [ln(|DTω(x)w(x, y)|)]− (P0∂qϕ0)(x)

= ln(|w(x, y)|) + E [ln(DTω(x))]− E [∂qϕ0 (Tω(x))] . (3.28)

To determine P(2)ϕ, we use a Taylor expansion for Tω. We obtain,

w(T (2)
ω (x, y)) = DTω(x)w(x, y) +

1

2
D2Tω(ξ)w(x, y)

2,

for a ξ in the interval between x and x+w(x, y). Therefore, for (x, y) ∈ ∆R \∆ with R > 0
small enough,

P(2)ϕ(x, y) = E
[
ln
(∣∣∣w(T (2)

ω (x, y))
∣∣∣)]− P0∂qϕ0(x)

= E
[
ln

(∣∣∣∣w(x, y)DTω(x) + D2Tω(ξ)w(x, y)
2

2

∣∣∣∣)]− P0∂qϕ0(x)

= ln(|w(x, y)|) + E [ln (DTω(x))] + E
[
ln

(∣∣∣∣1 + D2Tω(ξ)w(x, y)

2DTω(x)

∣∣∣∣)]− E[∂qϕ0(Tω(x))].

(3.29)

Combining (3.28) and (3.29) yields, for (x, y) ∈ ∆R \∆,

∣∣P(2)ϕ(x, y)− TPϕ(x, |w(x, y)|)
∣∣ ≤ E

[
ln

(∣∣∣∣1 + D2Tω(ξ)w(x, y)

2DTω(x)

∣∣∣∣)] . (3.30)

The right hand side of (3.30) can be bounded using the standard inequalities x/(1 + x) ≤
ln(1+x) ≤ x for x > −1. For R small we have

∣∣∣D2Tω(ξ)w(x,y)
2DTω(x)

∣∣∣ < 1 for (x, y) ∈ ∆R \∆. Then
for the upper bound we obtain

E
[
ln

(
1 +

D2Tω(ξ)w(x, y)

2DTω(x)

)]
≤ |w(x, y)|∥D2Tω∥

2a1
.
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Similarly for the lower bound, when we take R small enough so that |w(x, y)|∥D2Tω∥ < a1
for (x, y) ∈ ∆R \∆, we obtain

E
[
ln

(
1 +

D2Tω(ξ)w(x, y)

2DTω(x)

)]
≥ E


D2Tω(ξ)w(x, y)

2DTω(x)

1 +
D2Tω(ξ)w(x, y)

2DTω(x)


≥ E

[
D2Tω(ξ)w(x, y)

2DTω(x) +D2Tω(ξ)w(x, y)

]
≥ −|w(x, y)|∥D2Tω∥E

[
1

2DTω(x) +D2Tω(ξ)w(x, y)

]
≥ −|w(x, y)|∥D2Tω∥

a1
.

Setting B = ∥D2Tω∥
a1

finishes the first part.
In a similar manner, we can choose B such that (3.26) holds for (x, y) ∈ ∆R \∆ with R

small enough.
For (3.27), take (x, y) ∈ ∆R \ ∆ with R small and assume, without loss of generality,

x < y. Then∣∣∣TPW̃q(x, d(x, y))− P(2)Wq(x, y)
∣∣∣

≤ ∥ϕq∥E

[∣∣∣∣∣|DTω(x)w(x, y)|−q −
∣∣∣∣DTω(x)w(x, y) + 1

2
D2Tω(ξ)w(x, y)

2

∣∣∣∣−q
∣∣∣∣∣
]
.

With (3.3) and the mean value theorem for a 7→ a−q, we get∣∣∣TPW̃q(x,w(x, y))− P(2)Wq(x, y)
∣∣∣ ≤ Cq|q|E

[
|w(x, y)|−q−1|D2Tω(ξ)w(x, y)|2

]
≤ Cq|q|∥D2T∥2|w(x, y)|−q+1

≤ Bd(x, y)−q+1,

for some positive constant Cq. As Cq|q| depends continuous on q, restricting q to [−|γ| −
1, |γ|+1] allows us to uniformly bound it with a constant B. This completes the proof. □

The following lemma is a key lemma that adapts the equalities and estimates in Lemma 3.13
for TP to the setting for P(2), but only near the diagonal ∆, using that near ∆, P(2) can be
approximated by TP (Lemma 3.13).

Proposition 3.14. There exists a R,K > 0, and continuous integrable functions

ϕ±, η± ∈ C0(T2 \∆,R),

such that the following holds for (x, y) ∈ ∆R \∆.
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For ϕ± we have

|ϕ±(x, y)− ln(d(x, y))| ≤ K, (3.31)(
P(2) − I

)
ϕ−(x, y) ≤ λ ≤

(
P(2) − I

)
ϕ+(x, y). (3.32)

Assume λ = 0. Then for η± we have

|η±(x, y)− ln2(d(x, y))| ≤ K| ln(d(x, y))|, (3.33)(
P(2) − I

)
η−(x, y) ≤ V ≤

(
P(2) − I

)
η+(x, y). (3.34)

Proof. We can bound
(
P(2) − I

)
ϕ(x, y), by applying the triangle inequality and using (3.13),

(3.21) and (3.25):∣∣(P(2) − I
)
ϕ(x, y)

∣∣ ≤
≤Bd(x,y) by (3.25)︷ ︸︸ ︷∣∣∣TP ϕ̃(x, d(x, y))− P(2)ϕ(x, y)

∣∣∣+
=λ by (3.13)︷ ︸︸ ︷∣∣∣(TP − I) ϕ̃(x, d(x, y))

∣∣∣+
=0 by (3.21)︷ ︸︸ ︷∣∣∣ϕ(x, y)− ϕ̃(x, d(x, y))

∣∣∣,
for (x, y) ∈ ∆R \∆. So ∣∣(P(2) − I

)
ϕ(x, y)− λ

∣∣ ≤ Bd(x, y), (3.35)
for (x, y) ∈ ∆R \∆.

This basically means that
(
P(2) − I

)
ϕ near the diagonal is close to λ. To obtain functions

ϕ± so that P(2)− I applied to them, after subtracting λ, has a definite sign, we add suitable
functions to ϕ: we take ϕ± : T2 \∆ → R of the form

ϕ±(x, y) = ϕ(x, y)± c1W−q0(x, y), (3.36)

for a small positive value q0 ∈ (0, 1/2), such that Λ(q0) ̸= 0, and |c1| large enough (will be
defined below), with sign such that c1(eΛ(q0) − 1) > 0. Note that ϕ± ∈ C0(T2 \∆,R).

By Proposition 3.2, we obtain

(TP − I) W̃−q0(x, u) =
(
eΛ(q0) − 1

)
uq0ϕ−q0(x), (3.37)

for (x, u) ∈ T× R+.
Combining (3.35), (3.37), (3.27) and (3.24) allows us to prove the first inequality of (3.32),

by choosing |c1| in (3.36) large enough. For (x, y) ∈ ∆R \∆,(
P(2) − I

)
ϕ+(x, y)− λ =

(
P(2) − I

)
ϕ(x, y)− λ+ c1

(
P(2) − I

)
W−q0(x, y)

=

≥−Bd(x,y) by (3.35)︷ ︸︸ ︷(
P(2) − I

)
ϕ(x, y)− λ +

≥c1(eΛ(q0)−1)d(x,y)q0/C by (3.37)︷ ︸︸ ︷
c1(TP − I)W̃−q0(x, d(x, y))

+

≥−|c1|Bd(x,y)q0+1 by (3.27)︷ ︸︸ ︷
c1

(
P(2)W−q0(x, y)− TPW̃−q0(x, d(x, y))

)
+

=0 by (3.24)︷ ︸︸ ︷
c1

(
W−q0(x, y)− W̃−q0(x, d(x, y))

)
≥ −Bd(x, y) + c1

(
eΛ(q0) − 1

)
d(x, y)q0/C − |c1|Bd(x, y)q0+1, (3.38)
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so that (
P(2) − I

)
ϕ+(x, y) ≥ λ,

if R is small and |c1| is chosen large enough. The second inequality regarding ϕ− is obtained
using similar bounds. The bound (3.31) for suitableK > 0 is immediate from the expressions
for ϕ±.

We take λ = 0 and proceed with the construction of η±. We can bound
(
P(2) − I

)
η(x, y)

by applying the triangle inequality and using (3.20), (3.26) and (3.22). This yields

∣∣(P(2) − I
)
η(x, y)− V

∣∣ ≤ ≤Bd(x,y)| ln(d(x,y))| by (3.20)︷ ︸︸ ︷∣∣(TP η̃(x, d(x, y))− P(2)ϕ(x, y)
)∣∣+

=0 by (3.26)︷ ︸︸ ︷
|(TP − I)ϕ(x, d(x, y))− V |+

=0 by (3.22)︷ ︸︸ ︷∣∣∣ϕ(x, y)− ϕ̃(x, d(x, y))
∣∣∣

so that ∣∣(P(2) − I
)
η(x, y)− V

∣∣ ≤ Bd(x, y)| ln(d(x, y))|, (3.39)

for all (x, y) ∈ ∆R \∆. We may not have that
(
P(2) − I

)
η(x, y)− V has a definite sign. We

therefore add functions to η (as we did to obtain ϕ± from ϕ) and let

η±(x, y) = η(x, y)± c2W−q0(x, d(x, y)), (3.40)

with |c2| large enough (will be defined below), with sign such that c2(eΛ(q0) − 1) > 0. We
clearly have that η± ∈ C0(T2 \∆,R).

Combining (3.20),(3.27) and (3.37) allows us to prove the first inequality of (3.34), by
choosing c2 in (3.40) large enough. For (x, y) ∈ ∆R \∆, we get through a straightforward
combination of previous inequalities,(

P(2) − I
)
η+(x, y)

=

≥V−Bd(x,y)| ln(d(x,y))|−CBd(x,y) by (3.39)︷ ︸︸ ︷(
P(2) − I

)
η(x, y) +

≥c2(eΛ(q0)−1)d(x,y)q0/C−|c2|Bd(x,y)q0+1 by (3.38)︷ ︸︸ ︷
c2
(
P(2) − I

)
W−q0(x, y),

so that (
P(2) − I

)
η+(x, y) ≥ V,

for R small enough, by choosing c2 large enough. Here we use the fact that for 0 < R < 1,
and q0 ∈ (0, 1), there exists a C > 0, such that for all x ∈ (0, R), Cxq0 > −x ln(x). The
second inequality in (3.34) for η− is obtained using similar bounds.

Finally, (3.33) forK large enough is clear from the expression for η±, using Proposition 3.2.
□

Remark 3.15. We can use (3.32) to get

±E
[
ϕ+(Tω(x), Tω(y))

]
− λ ≥ ±ϕ±(x, y),
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for d(x, y) small enough. Similarly if we assume λ = 0, we get

±E
[
η+(Tω(x), Tω(y))

]
− V ≥ ±η±(x, y),

for d(x, y) small enough. Applying Doob’s stopping time theorem (we refer to standard ref-
erences such as [50] or [25]) with suitable stopping times we build sub- and supermartingales
for such random sequences from the functions ϕ+, ϕ−, η+ and η−. This is done in the proof
of Lemma 4.1. ■

Proposition 3.16. There exists a R,K > 0, and a family of continuous functions,

W±
q ∈ C0(T2 \∆,R),

for q ∈ [−|γ| − 1/2, |γ|+ 1/2], such that the following holds for all (x, y) ∈ ∆R \∆.
For W±

q we have

1

K
d(x, y)−q ≤W±

q (x, y) ≤ Kd(x, y)−q, (3.41)(
P(2) − eΛ(−q)

)
W−

q (x, y) ≤ 0 ≤
(
P(2) − eΛ(−q)

)
W+

q (x, y). (3.42)

Proof. We can bound
(
P(2) − eΛ(−q)

)
Wq(x, y), by applying the triangle inequality and using

Lemma 3.13:∣∣∣(P(2) − eΛ(−q)
)
Wq(x, y)

∣∣∣ ≤
≤Bd(x,y)−q+1 by (3.27)︷ ︸︸ ︷∣∣∣P(2)Wq(x, y)− TPW̃q(x, d(x, y))

∣∣∣+
=0 by (3.11)︷ ︸︸ ︷∣∣∣(TP − eΛ(−q)

)
W̃q(x, d(x, y))

∣∣∣
+ eΛ(−q)

=0 by (3.24)︷ ︸︸ ︷∣∣∣Wq(x, y)− W̃q(x, d(x, y))
∣∣∣,

for (x, y) ∈ ∆R \∆. So ∣∣∣(P(2) − eΛ(−q)
)
Wq(x, y)

∣∣∣ ≤ Bd(x, y)−q+1, (3.43)

for (x, y) ∈ ∆R \∆.
This basically means that

(
P(2) − eΛ(−p)

)
Wq near the diagonal is close to 0. To obtain

functions W±
q so that P(2) − eΛ(−p) applied to them, has a definite sign, we add suitable

functions to Wq: we take W±
q : T 2 \∆ → R of the form

W±
q (x, y) =Wq(x, y)± c3Wq1(x, y),

for q1 ∈ (q − 1/2, q), such that Λ(−q)− Λ(−q1) ̸= 0, and |c3| large enough (will be defined
below), with sign such that c3(eΛ(−q) − eΛ(−q1)) > 0.
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By applying (3.43) we get for (x, y) ∈ ∆R \∆,(
P(2) − eΛ(−q)

)
W+

q (x, y) =

≥−Bd(x,y)−q+1 by (3.43)︷ ︸︸ ︷(
P(2) − eΛ(−q)

)
Wq(x, y)+

≥−c3(Bd(x,y)−q1+1) by (3.43)︷ ︸︸ ︷
c3

(
P(2) − eΛ(−q1)

)
Wq1(x, y)

+

≥c3(eΛ(−q1)−eΛ(−q))d(x,y)−q1/K by (3.23)︷ ︸︸ ︷
c3(e

Λ(−q1) − eΛ(−q))Wq1 .

Picking c3 large enough and R small enough yields,(
P(2) − eΛ(−q)

)
W+

q (x, y) ≥ 0, for (x, y) ∈ ∆R \∆.

Similarly we get (
P(2) − eΛ(−q)

)
W−

q (x, y) ≤ 0, for (x, y) ∈ ∆R \∆.

Now set K again large enough such that (3.41) holds. □

Remark 3.17. Suppose γ is such that eΛ(γ) = 1. We can use (3.42) to get

±E
[
W±

−γ(Tω(x), Tω(y))
]
≥ ±W±

−γ(x, y),

for d(x, y) small enough. Applying Doob’s stopping time theorem with suitable stopping
times we build sub- and supermartingales for such random sequences from the functions
W+

γ and W−
γ . This is done in the proof of Lemma 4.5.

4. Topological random dynamics

In this section we prove Theorem 1.1(3) and construct tools to prove Theorem 1.2 in
Section 5, for λ ≥ 0. We look separately at cases with zero Lyapunov exponent, positive
Lyapunov exponent and negative Lyapunov exponent.

4.1. Zero Lyapunov exponent. The next part of the analysis is to calculate escape proba-
bilities and expected escape times for escape from neighborhoods of the diagonal and strips
near the diagonal. The proofs in this section rely on an analysis of Koopman operators,
which is developed in Section 3. The statements can be read without reference to Section 3,
but for the proofs the reader has to familiarize with the results in Section 3.

For suitable small R, numbers 0 < ε < δ < R and points (x, y) ∈ ∆R with ε < d(x, y) < δ,
we define stopping times

τδ,+(x, y) = min{n ∈ N ; d(Tn
ω (x), T

n
ω (y)) > δ}, (4.1)

τε,−(x, y) = min{n ∈ N ; d(Tn
ω (x), T

n
ω (y)) < ε}. (4.2)

The following lemma addresses statistics of these stopping times.
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Lemma 4.1. For λ = 0, there exists an sufficiently small R > 0, and sufficiently large
K > 0, such that if 0 < ε < d(x, y) < δ < R, then

P(min{τε,−(x, y), τδ,+(x, y)} <∞) = 1, (4.3)

as well as

ln
(

δ
d(x,y)

)
− 2K

ln
(
δ
ε

) ≤ P ({τε,−(x, y) < τδ,+(x, y))} ≤
ln
(

δ
d(x,y)

)
+ 2K

ln
(
δ
ε

) (4.4)

and

1

V

(
ln

(
δ

d(x, y)

)
ln

(
d(x, y)

ε

)
− 6K| ln(ε)| − 2K2

)
≤ E [min{τε,−(x, y), τδ,+(x, y)}]

≤ 1

V

(
ln

(
δ

d(x, y)

)
ln

(
d(x, y)

ε

)
+ 6K| ln(ε)|+ 2K2

)
. (4.5)

Proof. We follow reasoning of [9, 11]. As indicated above, we will use statements from
Section 3. The functions ϕ± and η± come directly from Proposition 3.14. Denote (xn, yn) =
Tn
ω (x0, y0), for (x0, y0) ∈ T2 \ ∆, such that 0 < ε < d(x, y) < δ < R. Now η+(xn, yn)

stopped at min{τε,−(x, y), τδ,+(x, y)} is a submartingale, by Proposition 3.14, Remark 3.15
and applying Doob’s stopping time theorem. So, with

ñ = min{n, τε,−(x, y), τδ,+(x, y)},
we have

η+(x, y) ≤ E
[
η+(xñ, yñ)− ñV

]
.

Rewriting, we obtain

E[ñ]V ≤ E
[
η+(xñ, yñ)

]
− η+(x, y)

≤ ln2(d(x, y)) + ln2(εa1) +K| ln(εa1)| <∞.

This implies that P(ñ = ∞) = 0, which then implies (4.3).
By Proposition 3.14 and Remark 3.15 and applying Doob’s stopping time theorem,

ϕ+(xn, yn) stopped at min{τε,−(x, y), τδ,+(x, y)} is a submartingale. Therefore we have

ϕ+(x, y) ≤ E
[
ϕ+(xñ, yñ)

]
.

Letting n go to infinity, and conditioning separately on τε,−(x, y) < τδ,+(x, y) or τε,−(x, y) <
τδ,+(x, y) , we get

ϕ+(x, y) ≤ lim
ñ→∞

E
[
ϕ+(xñ, yñ)

]
= P (τε,−(x, y) < τδ,+(x, y))E

[
ϕ+(xτε,−(x,y), yτε,−(x,y)) | τε,−(x, y) < τδ,+(x, y)

]
+ P (τε,−(x, y) > τδ,+(x, y))E

[
ϕ+(xτδ,+(x,y), yτδ,+(x,y)) | τε,−(x, y) > τδ,+(x, y)

]
. (4.6)

By (4.3) we have

P (τε,−(x, y) > τδ,+(x, y)) = 1− P (τε,−(x, y) < τδ,+(x, y)) . (4.7)
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From (3.31) we get

ln(d(x, y))−K ≤ ϕ+(x, y). (4.8)

Note that once the distance d(xñ, yñ) is outside of (ε, δ), the distance is either in (εa1, ε] or
in [δ, δa2) by Hypothesis (H1). Therefore we can bound the conditional expectation in (4.6)
in the following manner,

E
[
ϕ+(xτε,−(x,y), yτε,−(x,y)) | τε,−(x, y) < τδ,+(x, y)

]
≤
sup

r∈[a1ε,ε)
{ln(r) +K} ≤ ln(ε) +K (4.9)

and

E
[
ϕ+(xτδ,+(x,y), yτδ,+(x,y)) | τε,−(x, y) > τδ,+(x, y)

]
≤

sup
r∈[δ,a2δ]

{ln(r) +K} ≤ ln(δ) + 2K, (4.10)

for K chosen large enough. Using the bounds (4.8), (4.9), (4.10) and the equality (4.7) in
(4.6), we get

P (τε,−(x, y) < τδ,+(x, y)) ≤
ln

(
d(x, y)

δ

)
− 4K

ln
(ε
δ

) .

In a similar fashion we get the counterpart of (4.6) for ϕ−,

ϕ−(x, y) ≥ lim
n→∞

E
[
ϕ−(xñ, yñ)

]
= P (τε,−(x, y) < τδ,+(x, y))E

[
ϕ−(xτε,−(x,y), yτε,−(x,y)) | τε,−(x, y) < τδ,+(x, y)

]
+ P (τε,−(x, y) > τδ,+(x, y))E

[
ϕ−(xτδ,+(x,y), yτδ,+(x,y)) | τε,−(x, y) > τδ,+(x, y)

]
,

from which we obtain a bound

P (τε,−(x, y) < τδ,+(x, y)) ≥
ln

(
d(x, y)

δ

)
+ 4K

ln
(ε
δ

) , (4.11)

again assuming that K is chosen large enough. This finishes the proof of (4.4).
For (4.5) we use the submartingale property of η+ stopped at τε,−(x, y) < τδ,+(x, y) or

τε,−(x, y) < τδ,+(x, y) (see Remark 3.15 and apply Doob’s stopping time theorem.) and we
let time go to infinity. Denoting

τ = min{τδ,+(x, y), τε,−(x, y)},

this yields

η+(x, y) ≤ E
[
η+(xτ , yτ )− V τ

]
.
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Rewriting and conditioning on τε,−(x, y) < τδ,+(x, y) and τε,−(x, y) < τδ,+(x, y) separately,
we obtain

V E [τ ] ≤ P (τε,−(x, y) < τδ,+(x, y))E
[
η+(xτ , yτ )|τε,−(x, y) < τδ,+(x, y)

]
+ P (τε,−(x, y) > τδ,+(x, y))E

[
η+(xτ , yτ )|τε,−(x, y) > τδ,+(x, y)

]
− η+(x, y). (4.12)

As above we have bounds

E
[
η+(xτ , yτ )|τε,−(x, y) < τδ,+(x, y)

]
≤ ln2(a1ε) +K |ln(a1ε)| ≤ ln2(ε) + 3K |ln(ε)|+ 2K2,

E
[
η+(xτ , yτ )|τε,−(x, y) > τδ,+(x, y)

]
≤ ln2(δ) +K |ln(δ)| ,

Now for a different, larger K, we have E [η+(xτ , yτ )|τε,−(x, y) < τδ,+(x, y)] ≤ ln2(ε) +
K| log(ε)| and we have

−η+(x, y) ≤ − ln2(d(x, y)) +K |ln(d(x, y))| .

Plugging this and (4.7), (4.11), (3.33) into the estimate (4.12), we obtain

V E [τ ] ≤
ln

(
d(x, y)

δ

)
+ 4K

ln
(ε
δ

) (
ln2 (ε)− ln2 (δ) +K

∣∣∣ln(ε
δ

)∣∣∣)
+ ln2(δ) + 2K| ln(δ)| − ln2(d(x, y)) + 2K| ln(d(x, y))|.

Note that ln2 (ε)− ln2 (δ) = ln
(
ε
δ

)
ln(εδ) and ln2(δ)− ln2(d(x, y)) = ln

(
δ

d(x,y)

)
ln(d(x, y)δ).

As | ln(x)| is a decreasing function for 0 < x < 1, we have | ln(ε)| < | ln(d(x, y))| < | ln(δ)|.
Using these identities and estimates we get

V E [τ ] ≤ ln

(
d(x, y)

δ

)
ln(εδ)− ln

(
d(x, y)

δ

)
ln (d(x, y)δ) + 12K| ln(ε)|+ 8K2

≤ ln

(
d(x, y)

δ

)
ln

(
ε

d(x, y)

)
+ 12K| ln(ε)|+ 8K2.

In a similar fashion we get

V E [τ ] ≥
ln

(
d(x, y)

δ

)
− 4K

ln
(ε
δ

) (
ln2 (ε)− ln2 (δ) + 2K

∣∣∣ln(ε
δ

)∣∣∣)
+ ln2(δ)− 2K| ln(δ)| − ln2(d(x, y)) + 2K| ln(d(x, y))|,

and from this,

V E [τ ] ≥ ln

(
d(x, y)

δ

)
ln

(
ε

d(x, y)

)
− 12K| ln(ε)| − 8K2.

Replace 2K by K to get the statement of the lemma. This finishes the proof. □
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From here on, R,K are fixed as in Lemma 4.1. We now formulate a result stating that
trajectories of points (x, y) ∈ ∆δ will almost surely escape from ∆δ. However, the expected
escape time will be infinite for d(x, y) sufficiently small.

Lemma 4.2. Let R,K be as in Lemma 4.1. Then for all (x, y) ∈ T2, with 0 < d(x, y) <
δ < R,

P (τδ,+(x, y) <∞) = 1 (4.13)
and

E [τδ,+(x, y)] = ∞ whenever d(x, y) < e−6Kδ.

Proof. We apply Lemma 4.1. The first statement follows from (4.3). For the second state-
ment, by Lemma 2.5 we find that for (x, y) with d(x, y) < R, there is a positive probability
to enter ∆e−6Kδ. Now let ε→ 0 in (4.5). □

From this lemma we know that for (x0, y0) ∈ ∆δ, the expected number of orbit points

(xn, yn) =
(
T (2)
ω

)n
(x0, y0)

before escaping ∆δ, with (x0, y0) ∈ ∆e−6Kδ, is infinite.
The above results allow to conclude Theorem 1.1(2).

Proposition 4.3. If λ = 0, for all (x, y) ∈ T2 \∆,

lim
n→∞

1

n

n−1∑
i=0

d
(
T i
ω(x), T

i
ω(y)

)
= 0 and lim sup

n→∞
d (Tn

ω (x), T
n
ω (y)) > 0, P− a.s.

Proof. Let ε > 0. For (x, y) ∈ T2 \∆ and ω ∈ Σϑ, consider the empirical count of iterates
in ∆ε,

Nε(x, y, ω) = lim
n→∞

#{i ∈ N, 0 ≤ i ≤ n− 1 : d(T i
ω(x), T

i
ω(y)) < ε}

n
.

By Lemma 4.2, Lemma 2.5 and the strong law of large numbers, we get that P-almost surely
Nε(x, y, ω) = 1, for all ε > 0 implying the first part of the statement. See for example [4]
for a worked out argument. The second part follows from Lemma 2.5. □

4.2. Positive Lyapunov exponent. In this section we consider positive Lyapunov expo-
nent λ > 0. This will be assumed to hold throughout the section. Furthermore, we will
denote the second zero of the moment Lyapunov function Λ as γ.

Consider 0 < δ < R and (x, y) ∈ T2 \∆ with d(x, y) < δ. Let τ(x, y, ω) be the minimal
time with

d

((
T (2)
ω

)τ(x,y,ω)
(x, y)

)
> δ,

with τ(x, y, ω) = ∞ if this does not exist.

Lemma 4.4. Let R,K be as in Lemma 4.1. Suppose λ > 0. For 0 < δ < R and (x, y) ∈
T2 \∆ with d(x, y) < δ we have

P (d(Tn
ω (x), T

n
ω (y)) > δ for some n ∈ N) = 1.
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Moreover, for some K > 0,

1

λ

(
ln

(
δ

d(x, y)

)
− 2K

)
≤ E [τ(x, y, ω)] ≤ 1

λ

(
ln

(
δ

d(x, y)

)
+ 2K

)
. (4.14)

Proof. Write xn = Tn
ω (x) and yn = Tn

ω (x). We also use shorthand notation τ for τ(x, y, ω).
By Proposition 3.14 and Remark 3.15 we find, applying Doob’s stopping time theorem,

λE[τ ] ≤ E
[
ϕ+(xτ , yτ )− ϕ+(x, y)

]
≤ ln(δ)− ln(d(x, y)) + 2K

and

λE[τ ] ≥ E
[
ϕ−(xτ , yτ )− ϕ−(x, y)

]
≥ ln(δ)− ln(d(x, y))− 2K.

The lemma follows. □

More detailed estimates can be obtained by analysing escape times from strips ∆δ \∆ε.
The next lemma is the equivalent of Lemma 4.1 for positive Lyapunov exponent. Stopping
times τδ,+(x, y) and τε,−(x, y) are defined as before in (4.1), (4.2).

Lemma 4.5. Let R,K be as in Lemma 4.1. Suppose λ > 0. Let γ ̸= 0 be the negative value
so that Λ(γ) = 0. If 0 < ε < d(x, y) < δ < R, then

P(min{τε,−(x, y), τδ,+(x, y)} <∞) = 1. (4.15)

Furthermore, there exists a κ ∈ (0, 1), such that if 0 < ε < d(x, y) < κδ < κR, then

1

K

(
d(x, y)

ε

)γ

≤ P ({τε,−(x, y) < τδ,+(x, y)}) ≤ K

(
d(x, y)

ε

)γ

. (4.16)

Proof. The proof is similar to the proof of Lemma 4.1. Let (x, y) ∈ ∆δ \ ∆ε, so with
ε < d(x, y) < δ. Let τε,− and τδ,+ as in (4.1) and (4.2). As before we get (4.15), that is,
min{τε,−, τδ,+} <∞ for almost all ω.

We start with the upper bound in (4.16). Using Remark 3.17 and applying Doob’s
stopping time theorem, we get

W−
−γ(x, y) ≥

P (τε,−(x, y) < τδ,+(x, y))E
[
W−

−γ(xτε,−(x,y), yτε,−(x,y)) | τε,−(x, y) < τδ,+(x, y)
]

+ P (τε,−(x, y) > τδ,+(x, y))E
[
W−

−γ(xτδ,+(x,y), yτδ,+(x,y)) | τε,−(x, y) > τδ,+(x, y)
]
. (4.17)

As before, since min{τε,−, δ} is almost surely finite (see Lemma 4.1), we have

P (τε,−(x, y) > τδ,+(x, y)) = 1− P (τε,−(x, y) < τδ,+(x, y)) .

Furthermore, for some K > 1 as in Proposition 3.16, we get

E
[
W−

−γ(xτε,−(x,y), yτε,−(x,y)) | τε,−(x, y) < τδ,+(x, y)
]
≥ εγ

K
,

E
[
W−

−γ(xτδ,+(x,y), yτδ,+(x,y)) | τε,−(x, y) > τδ,+(x, y)
]
≥ δγ

K
,
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and also Kd(x, y)γ ≥W−
−γ(x, y). Then (4.17) yields

P (τε,−(x, y) < τδ,+(x, y)) ≤
(
K2d(x, y)γ − δγ

)
/ (εγ − δγ) .

From this and a condition d(x, y) ≤ κδ for small enough κ, we get the stated bound. The
lower bound in (4.16) is derived similarly. □

Using the above lemma we get the following statement in which we discuss, for orbit
pieces starting in ∆κδ \∆ε until escape from ∆δ, the expected number of points in ∆ε. It
is similar to Lemma 5.3, but for positive Lyapunov exponent.

The results in this section easily allow to conclude Theorem 1.1(3).

Proposition 4.6. If λ > 0, for all (x, y) ∈ T2 \∆,

lim
n→∞

1

n

n−1∑
i=0

d
(
T i
ω(x), T

i
ω(y)

)
> 0 and lim inf

n→∞
d (Tn

ω (x), T
n
ω (y)) = 0, P− a.s.

Proof. The reasoning follows Proposition 4.3. Let ε > 0. For (x, y) ∈ T2 \∆ and ω ∈ Σϑ,
consider the empirical count of iterates in ∆ε,

Nε(x, y, ω) = lim
n→∞

#{i ∈ N, 0 ≤ i ≤ n− 1 : d(T i
ω(x), T

i
ω(y)) < ε}

n
.

By Lemma 4.4 and Lemma 2.3 and the strong law of large numbers, we get that P-almost
surely Nε(x, y, ω) < 1, for a ε > 0 implying the first part of the statement. The second part
follows from Lemma 2.5. □

4.3. Negative Lyapunov exponent. In this section we consider negative Lyapunov ex-
ponent λ < 0. This will be assumed to hold throughout the section. The following lemma
can be obtained by the construction of local stable manifolds for Tn

ω of points in ∆, which
exists for almost all ω ∈ Σϑ [40]. We provide a proof along the lines of our reasoning in
previous sections, compare also [8].

Lemma 4.7. Let R,K be as in Lemma 4.1. Suppose λ < 0. There is 0 < χ < 1 so that the
following holds. For each 0 < δ < R there is 0 < δ′ < δ, so that for (x, y) with d(x, y) < δ′,

P
(
d(Tn

ω (x), T
n
ω (y)) < δ for all n and lim

n→∞
d(Tn

ω (x), T
n
ω (y)) = 0

)
> χ.

Proof. Let γ > 0 given by Lemma 3.4 be so that Λ(γ) = 0. The first part of the proof
is similar to the proof of Lemma 4.1 and Lemma 4.5. Take (x, y) ∈ ∆δ \ ∆ε, so with
ε ≤ d(x, y) < δ. Let τε,−(x, y) and τδ,+(x, y) as in (4.1) and (4.2). As before we get (4.15),
that is, min{τε,−(x, y), τδ,+(x, y)} <∞ for almost all ω. Thus, as in Lemma 4.1,

P (τε,−(x, y) > τδ,+(x, y)) = 1− P (τε,−(x, y) < τδ,+(x, y)) . (4.18)

Using Remark 3.17 and applying Doob’s stopping time theorem, we get

W−
−γ(x, y) ≥

P (τε,−(x, y) < τδ,+(x, y))E
[
W−

−γ(xτε,−(x,y), yτε,−(x,y)) | τε,−(x, y) < τδ,+(x, y)
]

+ P (τε,−(x, y) > τδ,+(x, y))E
[
W−

−γ(xτδ,+(x,y), yτδ,+(x,y)) | τε,−(x, y) > τδ,+(x, y)
]
. (4.19)
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For some K > 1 as in Proposition 3.16, we get

E
[
W−

−γ(xτε,−(x,y), yτε,−(x,y)) | τε,−(x, y) < τδ,+(x, y)
]
≥ εγ

K
,

E
[
W−

−γ(xτδ,+(x,y), yτδ,+(x,y)) | τε,−(x, y) > τδ,+(x, y)
]
≥ δγ

K
,

and also Kd(x, y)γ ≥W−
−γ(x, y). Using (4.18), (4.19) yields

lim
ε→0

P (τε,−(x, y) < τδ,+(x, y)) ≥ lim
ε→0

(
K2d(x, y)γ − δγ

)
/ (εγ − δγ)

= 1−K2

(
d(x, y)

δ

)γ

. (4.20)

The limit exists because the probability is monotone decreasing as ε→ 0. This lower bound
for P is strictly positive if d(x, y)/δ is small enough. The computation means that there is
a strictly positive probability

P
(
d(xn, yn) < δ for all n ∈ N and lim inf

n→∞
d(xn, yn) = 0

)
≥ 1−K2

(
d(x, y)

δ

)γ

,

at least for d(x, y)/δ small enough. Note that P goes to one if d(x, y)/δ goes to zero.
We obtain the lemma from the observation that the above argument applies to any δ. To

finish the argument, take 0 < d2 < δ2 < d(x, y) < δ and, using (4.20), consider

P (τd2,−(x, y) < τδ,+(x, y) and d(xi, yi) < δ2 for all i ≥ τd2,−(x, y))

≥
(
1−K2

(
d(x, y)

δ

)γ)(
1−K2

(
d2
δ2

)γ)
.

The lemma follows by taking d2 and δ2 to zero, with d2/δ2 small enough, and noting that
the bound on the right hand side stays strictly positive. □

Synchronisation of typical orbits expressed by Theorem 1.11 is a consequence of the above
lemma and our hypotheses on the random dynamical system.

Proposition 4.8. Suppose λ < 0. For all x, y ∈ T, for P-almost all ω ∈ Σϑ,

lim
n→∞

d(Tn
ω (x), T

n
ω (y)) = 0.

Proof. Take 0 < δ′ < δ as in Lemma 4.7. By Lemma 2.5 there is a strictly positive probability
for an orbit Tn

ω (x, y) to enter ∆δ′ in finitely many steps. That is, there exists C > 0 and
N > 0 so that for (x, y) ∈ T2 \∆δ′ ,

P ((Tn
ω (x), T

n
ω (y)) ∈ ∆δ′ for some 0 < n < N) > C.

We find that for (x, y) ∈ T2 \∆δ′ ,

P ((Tn
ω (x), T

n
ω (y)) ̸∈ ∆δ′ for all 0 ≤ n < kN) ≥ (1− C)k,

so that P ((Tn
ω (x), T

n
ω (y)) ̸∈ ∆δ′ for all n) = 0. There are therefore almost surely infinitely

many orbit points from (Tn
ω (x), T

n
ω (y)) in ∆δ′ .

As before, for 0 < ε < δ and (x, y) ∈ T2 with ε < d(x, y) < δ, (Tn
ω (x), T

n
ω (y)) will be

outside ∆δ \∆ε for some n > 0, almost surely. Combined with the above we see that almost
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surely, orbit points (Tn
ω (x), T

n
ω (y)) are in ∆ε infinitely often. This holds for any ε > 0, so

that
lim inf
n→∞

d(Tn
ω (x), T

n
ω (y)) = 0

almost surely. That is, given a sequence εk that is decreasing to zero, there is a sequence of
first iterates (Tnk

ω (x), Tnk
ω (y)) inside ∆εk . Lemma 4.7 now implies synchronisation. □

5. Stationary measures for the two-point motion

This section contains both the construction of stationary measures on T2 \∆ for the ran-
dom two-point maps, in the case of zero and positive Lyapunov exponent, and the derivation
of their asymptotics at the diagonal. The results apply to zero and positive Lyapunov ex-
ponent.

5.1. Construction by inducing. We construct a stationary Radon measure on T2 \∆ for
the two-point random dynamical system with Lyapunov exponent greater than or equal to
zero. We do this by inducing: we construct a stationary measure for a first return map on
a domain away from the diagonal ∆ by the Krylov-Bogolyubov method. Following work by
Deroin, Kleptsyn, Navas and Parwani [24], who study random walks on the real line, we
introduce random stopping times in order to be able to apply a Krylov-Bogolyubov method
to find stationary measures.

A stationary measure is obtained as usual by pushing forward the stationary measure
for the first return map. For a zero Lyapunov exponent, Lemma 4.2 implies that it takes
in expectation infinite time to get away from the diagonal and therefore the stationary
measure is not finite. For a positive Lyapunov exponent, a stationary measure for the
two-point motion can be constructed just as in the case of zero Lyapunov exponent. The
finite expectation of the escape time from ∆δ as expressed by Lemma 4.4, shows that the
total measure is finite. Normalizing the measure, we derive the existence of a stationary
probability measure.

Proposition 5.1. The random dynamical system (2.3) has the following properties:
• if λ = 0, then the two-point motion admits an infinite stationary Radon measure
µ(2) on T2 \∆, and

• if λ > 0, then the two-point motion admits a stationary probability measure µ(2) on
T2 \∆.

Proof. For a fixed small ε > 0 take the compact set

K = T2 \∆ε.

Because T is of degree two, each element in T has two distinct pre-images. The minimal
distance between pre-images is smaller than Rmin (recall (2.1)). Take ε < Rmin, so that
points in T2 \ (K ∪∆) can not be mapped into ∆ by T (2)

a . Note that there will be points
in K that are mapped into ∆ by some T (2)

a . Namely, any (x, y) ∈ T2 with x ̸= y and
Ta(x) = Ta(y) lies in K and will be mapped into ∆ by T

(2)
a . By Lemma 4.2, for any



36 V.P.H. GOVERSE, A.J. HOMBURG, J.S.W. LAMB

(x0, y0) ∈ K, of the random orbit (xn, yn) = T
(2)
ω (x0, y0) has almost surely infinitely many

points contained in K.
Fix a smooth function ξ : T2 → [0, 1] with support disjoint from ∆ and with ξ ≡ 1 on

K. For an initial point (x0, y0) consider the random stopping time V (ω) ≥ 1 (suppressing
dependence on (x0, y0)) so that the probability P(V = n+ 1 | V ≥ n) equals ξ(xn+1, yn+1).
So when the random orbit arrives at (xn+1, yn+1) we stop with probability ξ(xn+1, yn+1)
and continue with probability 1− ξ(xn+1, yn+1).

We use E to denote the expectation both over Σϑ and over the random process defining
the random stopping time. So E

[
δ(xV ,yV )

]
is the distribution of the stopped point (xV , yV ).

It is an element of the space P(supp ξ) of probability measures on supp ξ, which we endow
with the weak star topology.

We claim that this distribution depends continuously on (x0, y0) ∈ K in the weak star
topology. Namely, consider a sequence of distributions of stopped points for a converging
sequence of initial points (xn0 , y

n
0 ). From (4.13) we get that for ζ > 0 small there exists

N > 0 so that with probability at least 1 − ζ, the stopping time V is smaller than N . As
the maps Ta depend continuously on a, the points (xV , yV ), V < N , for (xn0 , yn0 ) are close to
those for (x0, y0). Consequently, the distribution E

[
δ(xV ,yV )

]
of the stopped point depends

continuously on (x0, y0), for (x0, y0) ∈ K, in the weak star topology.
Define

Pξµ =

∫
T2

E
[
δ(xV ,yV )

]
dµ(x0, y0) (5.1)

acting on P(supp ξ). Then (5.1) is a continuous map from P(supp ξ) to itself. We can
therefore apply the Krylov-Bogolyubov procedure of taking a converging subsequence of
Césaro averages, to find a Pξ invariant probability measure ς0,

Pξς0 = ς0,

with sup ς0 ⊂ supp ξ.
We will use this to construct a stationary Radon measure on T2 \∆. Consider the average

measures

m(x0,y0) := E

V (ω)−1∑
j=0

δ(xj ,yj)

 . (5.2)

Because 1− ξ vanishes on K, we can write , with (xj , yj) = T
(2)
ωj−1 ◦ · · · ◦ T

(2)
ω0 (x0, y0),

m(x0,y0) =
∞∑
n=0

∫∫
ω0,...,ωn−1

∈T

n∏
j=1

(1− ξ(xj , yj)) δ(xn,yn) dP(ω0) · · · dP(ωn−1). (5.3)

Integrate over (x0, y0) taken from the measure ς0 to obtain

µ(2) :=

∫
T2

m(x0,y0) dς0(x0, y0). (5.4)
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Written out this reads

µ(2)(A) =

∫
T2

E

V (ω)−1∑
j=0

1A(T
j
ω(x), T

j
ω(y))

 dς0(x0, y0)
for Borel sets A ⊂ T2 \∆.

We claim that for any continuous function ψ : T2 → R with support disjoint from ∆,∫
T2

ψ dm =

∫
T2

E

V (ω)−1∑
j=0

ψ(xj)

 dς0(x0, y0) (5.5)

is well defined and finite. We conclude from this that µ(2) is a Radon measure that assigns
finite measure to compact sets disjoint from ∆. To establish the claim note that there are
N > 0 and q > 0 so that with probability at least q an orbit starting in suppψ hits K in at
most N steps. Note that iterates outside suppψ do not contribute to the right hand side of
(5.5). We find an estimate

E

V (ω)−1∑
j=0

ψ(xj , yj)

 < ∞∑
i=1

max
(x,y)∈T2

|ψ(x, y)|N(1− q)i−1 <∞.

That is, E
[∑V (ω)−1

j=0 |ψ(xj , yj)|
]

is finite and bounded uniformly on suppψ. This implies
that the right hand side of (5.5) is finite.

We will establish that µ(2) is stationary for the two-point maps. We must thus show
Pµ(2) = µ(2) with

Pµ(2) :=

∫
T

(
T (2)
a

)
∗
µ(2) dP(a).

Applying P yields, with (xj , yj) = T
(2)
ωj−1 ◦ · · · ◦ T

(2)
ω0 (x0, y0),

Pmx0,y0 =

∫
T

(
T (2)
a

)
∗
mx0,y0 dP(a)

=

∞∑
n=0

∫∫
a,ω0,...,ωn−1

∈T

n∏
j=1

(1− ξ(xj , yj))
(
T (2)
a

)
∗
δ(xn,yn) dP(a)dP(ω0) · · · dP(ωn−1)

=
∞∑
n=0

∫∫
ω0,...,ωn

∈T

n∏
j=1

(1− ξ(xj , yj)) δ(xn+1,yn+1) dP(ω0)dP(ω1) · · · dP(ωn)

= E

V (ω)∑
j=1

δ(xj ,yj)


(again using that 1− ξ vanishes on K).
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Compared to (5.2), the index j is counting from 1 to V (ω) instead of from 0 to V (ω)− 1.
We thus find

Pm(x0,y0) = m(x0,y0) − δ(x0,y0) + E
[
δ(xV (ω),yV (ω))

]
.

Integration over ς0 yields

Pµ(2) = P

∫
T2

m(x0,y0) dς0(x0, y0)

=

∫
T2

Pm(x0,y0) dς0(x0, y0)

=

∫
T2

m(x0,y0) dς0(x0, y0)−
∫
T2

δ(x0,y0) dς0(x0, y0) +

∫
T2

E
[
δ(xV (ω),yV (ω))

]
dς0(x0, y0)

= µ(2) − ς0 + Pξς0

= µ(2),

the last step by Pξ invariance of ς0.
Note that the argument includes the observation that µ(2) assigns finite measure to com-

pact sets disjoint from ∆.
For λ = 0, Lemma 2.5 shows that iterates of points (x, y) ∈ T2 enter any small neighbor-

hood of ∆ with positive probability. Combining this with Lemma 4.2 shows

µ(2)(T2) =

∫
T2

E

V (ω)−1∑
j=0

1T2(T j
ω(x), T

j
ω(y))

 dς0(x0, y0)
= ∞.

For λ > 0, by Lemma 4.4, we see that

X =

∫
T2

E

V (x,y,ω)−1∑
j=0

1T2(T j
ω(x), T

j
ω(y))

 dς0(x, y) = ∫
T2

E [V (x, y, ω)] dς0(x, y) <∞.

Now µ(2) given by

µ(2)(A) =
1

X

∫
T2

E

V (x,y,ω)−1∑
j=0

1A(T
j
ω(x), T

j
ω(y))

 dς0(x, y)
is a stationary measure. Since µ(2)(T2) = 1, we find from this expression that µ(2) is a
probability measure. □

Remark 5.2. The stationary measure µ(2) is obtained by pushing forward the measure ς0
on the support of a test function ξ. The test function is constant one on a suitable set K.
The construction shows that µ(2) restricted to K equals ς0 restricted to K (see (5.3) and
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(5.4)). We can therefore also obtain µ(2) from ς0 restricted to K by pushing forward. That
is, with

m̂(x0,y0) =
∞∑
n=0

∫∫
ω0,...,ωn−1

∈T

n∏
j=1

(1− 1K(xj , yj)) δ(xn,yn) dλ(ω0) · · · dλ(ωn−1)

for (x0, y0) ∈ K, we find

µ(2) =

∫
K
m̂(x0,y0) dς0(x0, y0).

■

5.2. The support of the stationary measure. Hypothesis (H5) and Lemma 2.4 show
that for all ε > 0, there exists a k ∈ N, such that images under Θ(2) of a set Σϑ × {(x, y)}
for (x, y) ∈ T2 \∆ε, cover Σϑ ×T2. This implies that stationary measures for the two-point
motion have full support, if they are obtained from an inducing scheme as in Section 5.1.

5.3. The growth rate of the stationary measure at the diagonal for λ = 0. The
following lemma discusses the expected number of such orbit points that lie inside strips
∆δ \∆ε, in the limit of ε going to zero. The obtained bounds will be used below to derive
the growth-rate near the diagonal of stationary measures for the two-point motion.

Lemma 5.3. Let R,K be as in Lemma 4.1. Suppose λ = 0. Assume 0 < ε < δ < R. For
(x, y) ∈ T2 with 0 < d(x, y) < δ, define

gε,δ(x, y) = E

τδ,+(x,y)∑
i=0

1[ε,∞)(d(T
i
ω(x), T

i
ω(y)))

 .
Then

1

V

(
ln

(
δa1

d(x, y)

)
− 6K

)
≤ lim inf

ε→0

gε,δ(x, y)

− ln(ε)

≤ lim sup
ε→0

gε,δ(x, y)

− ln(ε)
≤ 1

V

(
ln

(
δa2

d(x, y)

)
+ 6K

)
.

Proof. We follow [9, Proposition 5.6], with modifications needed for the discrete time setting.
Recall that a1, a2 are given in Hypothesis (H1). Define, for ε < r < δ,

g−ε,δ(r) = inf {gε,δ(x, y) ; ra1 ≤ d(x, y) ≤ r} ,

g+ε,δ(r) = sup {gε,δ(x, y) ; r ≤ d(x, y) ≤ ra2} .

Observe that r 7→ g±ε,δ(r) is a monotone non-increasing function on [ε, δ], and constant on
(0, ε].
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We first focus on g−ε,δ. Conditioning on the smallest stopping time τδ,+ or τε,−, which have
been defined in (4.1) and (4.2), we obtain

gε,δ(x, y) = P (τε,−(x, y) > τδ,+(x, y))E[τδ,+(x, y)]
+ P (τε,−(x, y) < τδ,−(x, y))E[τε,−(x, y)]
+ P (τε,−(x, y) < τδ,−(x, y))E

[
gε,δ(xτε,− , yτε,−) | τε,−(x, y) < τδ,+(x, y)

]
= E [min{τδ,+(x, y), τε,−(x, y)}]

+ P (τε,−(x, y) < τδ,+(x, y))E
[
gε,δ(xτε,− , yτε,−) | τε,−(x, y) < τδ,+(x, y)

]
≥ E [min{τδ,+(x, y), τε,−(x, y)}] + g−ε,δ(ε)P (τε,−(x, y) < τδ,+(x, y)) .

Due to monotonicity of g−ε,δ(r) in r, we have for ε < r < δ,

g−ε,δ(ε) ≥ g−ε,δ(r)

≥ inf {gε,δ(x, y) ; a1r ≤ d(x, y) ≤ r}

≥ inf
ra1≤d(x,y)≤r

{
E [min{τδ,+(x, y), τε,−(x, y)}] + g−ε,δ(ε)P (τε,−(x, y) < τδ,+(x, y))

}
.

We get the lower bound for gε,δ(x, y) by setting r = d(x, y), using (4.4) and (4.5) from
Lemma 4.1, and g−ε,δ(ε) ≥ g−ε,δ(r),

gε,δ(x, y) ≥ g−ε,δ(r)

≥ inf
ra1≤d(x,y)≤r

{
1

V

(
ln

(
δ

d(x, y)

)
ln

(
d(x, y)

ε

)
− 6K| ln ε|+ 2K2

)

+ g−ε,δ(ε)

ln

(
δ

d(x, y)

)
− 2K

ln

(
δ

ε

) }

≥ 1

V
inf

r/a≤d(x,y)≤r

{
ln

(
δ

d(x, y)

)
ln

(
d(x, y)

ε

)}

− 6K| ln(ε)|+ 2K2 + g−ε,δ(r)

ln

(
δ

ra1

)
− 2K

ln

(
δ

ε

) .

Divide by | ln(ε)| and take lim infε→0. This yields

lim inf
ε→0

g−ε,δ(δ)

| ln(ε)|
≥ inf

a1r<d(x,y)<r

ln
(

δ
d(x,y)

)
− 6K

V
≥

ln
(

δ
r/a

)
− 6K

V
.

The bound for g+ε,δ(r) is obtained by following a similar scheme. □
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The following proposition allows us to estimate on the growth-rate of the stationary
measure µ(2) near the diagonal, in the case λ = 0.

Proposition 5.4. Suppose λ = 0. Given the stationary measure µ(2), there exist α, β ∈
(0,∞), such that

α ≤ lim inf
ε→0

µ(2)(T2 \∆ε)

− ln(ε)
≤ lim sup

ε→0

µ(2)(T2 \∆ε)

− ln(ε)
≤ β. (5.6)

Proof. Temporary fix ε > 0 small. For 0 < ε < δ for suitable small δ, set K = T2 \∆δ. For
(x, y) ∈ K, write

N(x, y, ω) = min{n > 0 ; (Tn
ω (x), T

n
ω (y)) ∈ K}

for the first return time to K. By Remark 5.2 we have that for all stationary Radon measures
µ(2) on T2 \∆, the restricted measure µK = µ(2)|K is a stationary measure for the induced
process

(xn+1, yn+1) =
(
T (2)
ω

)N(xn,yn,ω)
(xn, yn)

on K. For convenience we rescale µK so that it becomes a probability measure,

µK(K) = 1.

Denote the set G ⊂ K × Σϑ as the union of (x, y, ω) ∈ K × Σϑ, such that there exists
τ(x, y, ω) ∈ N with the following properties,

(1) for 0 < i < τ , (T i
ω(x), T

i
ω(y)) /∈ K,

(2) (T
τ(x,y,ω)
ω (x), T

τ(x,y,ω)
ω (y)) ∈ ∆e−7Ka1δ.

Here K is as in Lemma 4.1. By Lemma 2.5, we have (µK × P)(G) > 0.
Now we have the ingredients to prove the lower bound for the lim inf. For all measurable

sets A ⊂ T2, from Remark 5.2 we obtain

µ(2)(A) =

∫
K×Σϑ

N(x,y,ω)−1∑
j=0

1A(T
j
ω(x), T

j
ω(y)) d(µK × P)(x, y, ω). (5.7)

By (5.7) and Lemma 5.3,

µ(2)(T2 \∆ε) =

∫
K×Σϑ

N(x,y,ω)−1∑
j=0

1T2\∆ε
(T j

ω(x), T
j
ω(y)) d(µK × P)(x, y, ω)

≥
∫
G

N(x,y,ω)−1∑
j=0

1T2\∆ε
(T j

ω(x), T
j
ω(y)) d(µK × P)(x, y, ω)

≥
∫
G

N(x,y,ω)−1∑
j=τ(x,y,ω)

1T2\∆ε
(T j

ω(x), T
j
ω(y)) d(µK × P)(x, y, ω)

≥
∫
G
gε,δ

((
T (2)
ω

)τ(x,y,ω)
(x, y)

)
d(µK × P)(x, y, ω).
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To get the first inequality of (5.6) we divide both sides by − ln(ε), take the lim inf, and
apply Lemma 5.3. This yields

lim inf
ε→0

µ(2)(T2 \∆ε)

− ln(ε)
≥ (K + ln(a1))(µK × P)(G)

V
.

This proves the lower bound for the lim inf.
To get the upper bound for the lim sup we use a similar technique. Here we have to

incorporate the possibility that points in K are mapped onto, or close to, ∆ by a single
iterate of T (2)

ω . When pushing forward µK, this moves mass directly to small neighborhoods
of ∆. Write K × Σϑ = R0 ∪ R+ as a union of sets on which N is either equal to 1 or is
bigger than 1,

R0 = {(x, y, ω) ∈ K × Σϑ ; N(x, y, ω) = 1} ,
R+ = {(x, y, ω) ∈ K × Σϑ ; N(x, y, ω) > 1} .

The set R+ is a disjoint union of a set

Gd = R+ ∩ (∆Rmin × Σϑ)

(recall (2.1) for the definition of Rmin) and its complement Gc, which is contained in
(∆a2δ \∆δ)× Σϑ. For (x, y, ω) ∈ Gc we find T (2)

ω (x, y) ⊂ ∆δ \∆a1δ. We have

µ(2)(T2 \∆ε) =

∫
K

∫
Σϑ

N(x,y,ω)−1∑
j=0

1T2\∆ε
(T j

ω(x), T
j
ω(y)) dP(ω)dµK(x, y)

=

∫
K

∫
Σϑ

N(x,y,ω)−1∑
j=0

1T2\∆ε
(T j

ω(x), T
j
ω(y)) dP(ω)dµK(x, y)

≤
∫∫

R0

dP(ω)dµK(x, y) +
∫∫

R+

N(x,y,ω)−1∑
j=1

1T2\∆ε
(T j

ω(x), T
j
ω(y)) dP(ω)dµK(x, y)

≤ µK(K) +

∫∫
R+

gε,δ(T
(2)
ω (x, y)) dP(ω)dµK(x, y). (5.8)

Recall that by Lemma 2.3, we have the existence of C1 > 0 with

E
[
− ln(d(T (2)

ω (x, y)))
]
< C1, (5.9)

for all (x, y) ∈ K.
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To conclude the proposition we divide (5.8) by − ln(ε) and take the lim sup. Doing this,
applying Fatou’s lemma and using Lemma 5.3 and (2.4), yields

lim sup
ε→0

µ(2)(T2 \∆ε)

− ln(ε)

≤ lim sup
ε→0

µK(K)

− ln(ε)
+ lim sup

ε→0

∫∫
Gc∪Gd

gε,δ(T
(2)
ω (x, y))

− ln(ε)
dP(ω)dµK(x, y)

≤
∫∫

Gc∪Gd

lim sup
ε→0

gε,δ(T
(2)
ω (x, y))

− ln(ε)
dP(ω)dµK(x, y)

≤
∫∫

Gc∪Gd

1

V

(
ln

(
δa2

d(T
(2)
ω (x, y))

)
+ 6K

)
dP(ω)dµK(x, y)

≤ ln(δa2) + 6K + C1

V
,

which finishes the proof. □

5.4. The growth rate of the stationary measure at the diagonal for λ > 0. The
following proposition allows us to estimate on the growth-rate of the stationary measure µ(2)
near the diagonal, in the case of λ > 0.

Proposition 5.5. Suppose λ > 0 and let γ be the negative value so that Λ(γ) = 0. Suppose
γ ∈ (−1/2, 0). Given the stationary measure µ(2), there exist α, β ∈ (0,∞), such that

α ≤ lim inf
ε→0

µ(2)(∆ε)

ε−γ
≤ lim sup

ε→0

µ(2)(∆ε)

ε−γ
≤ β. (5.10)

To prove the above proposition, we first consider orbits near the diagonal.

Lemma 5.6. Let R be as in Lemma 4.1. Suppose λ > 0. Assume 0 < ε < δ < R. For
(x, y) ∈ T2 with 0 < d(x, y) < δ, define

fε,δ(x, y) = E

τδ,+(x,y,ω)−1∑
i=0

1(0,ε](d(T
i
ω(x), T

i
ω(y)))

 .
There exist K <∞, κ ∈ (0, 1), such that for (x, y) ∈ T2, if 0 < ε < d(x, y) < κδ < κR, then

1

K

(
d(x, y)

ε

)γ

≤ fε,δ(x, y) ≤ K

(
d(x, y)

ε

)γ

.

Proof. Let κ be as in Lemma 4.5. Let K0 be K from Lemma 4.5 and set K1 = e2λK0 . By
a straightforward computation for the lower bound, comparable to the proof of Lemma 5.3,
we obtain

fε,δ(x, y) ≥ P
(
τε/K1,−(x, y) < τδ,+(x, y)

)
E
[
τε,+(T

(2)τε/K1
ω (x, y)) | τε/K1,−(x, y) < τδ,+(x, y)

]
≥ 1

K0

(
K1d(x, y)a1

ε

)γ ( 1

λ

(
ln

(
a1
K1

)
− 2K0

))
.
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Set

f+ε,δ(r) = sup
ra1<d(x,y)≤r

E

τδ,+(x,y,ω)−1∑
i=0

1(0,ε](d(T
i
ω(x), T

i
ω(y)))

 (5.11)

and observe that f+ε,δ is monotone decreasing in r. LetK2 =
(

1
2K0

)1/γ
/a2. WhenK2ε < κR,

we have

f+ε,δ(ε) ≤ sup
εa1<d(x,y)≤ε

E
[
τ(K2ε),+(x, y)

]
+ sup

εK2<d(x,y)≤εK2a2

P (τε,−(x, y) < τδ,+(x, y)) f
+
ε,δ(ε)

≤ 1

λ

(
ln

(
K2

a1

)
+ 2K0

)
+K0 (K2a2)

γ f+ε,δ(ε).

Therefore f+ε,δ(ε) < ∞. So, using fε,δ(x, y) ≤ P (τε,−(x, y) < τδ,+(x, y)) f
+
ε,δ(ε), we get the

desired result. □

Proof of Proposition 5.5. We follow reasoning of Proposition 5.4, using Lemma 4.4 and
Lemma 5.6. Let R,K > 0 be as in Lemma 5.6. For 0 < δ < R small, take K = T2 \∆δ. As
in Proposition 5.1, a finite measure σ0 is constructed and from the restriction µK of σ0 to K,
the measure µ(2) is obtained by pushing forward µK by the two-point maps. See Remark 5.2.

By rescaling µK we may assume∫
T2

E [V (x, y, ω)] dµK(x, y) = 1.

Fix ε > 0 small enough and let δ < R. For the stationary measure of the two-point motion
we have by Proposition 5.1 that

µ(2)(∆ε) =

∫
T2

E

V (x,y,ω)−1∑
j=0

1∆ε(T
j
ω(x), T

j
ω(y))

 dµK(x0, y0).
We remark that the condition |γ| < 1/2 is to bound the mass that is transported to

neighborhoods of the diagonal from outside ∆Rmin by this construction (recall (2.1) for the
definition of Rmin).

As before, see the proof of Proposition 5.4, denote the set of G ⊂ (T2 \ ∆δ) × Σϑ as
the union of (x, y, ω) ∈ (T2 \ ∆δ) × Σϑ, such that there exists an τ(x, y, ω) ∈ N, with the
following properties:

(1) for all i ∈ N, 0 < i < τ , (T i
ω(x), T

i
ω(y)) /∈ (T2 \∆δ),

(2) (T
τ(x,y,ω)
ω (x), T

τ(x,y,ω)
ω (y)) ∈ ∆κδ.

Here κ as in the proof of Lemma 5.6.
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For the lower bound in (5.10) we consider only orbit pieces near ∆. From Lemma 2.5 we
know that (µδ × P)(G) > 0.

µ(2)(∆ε) ≥
∫
T2\∆δ×Σϑ

τδ,+(Tω(x),Tω(y),ω)−1∑
i=0

1(0,ε](d(T
i
ω(x), T

i
ω(y))) d(µK × P)(x, y, ω)

≥
∫
G

τδ,+(Tω(x),Tω(y),ω)−1∑
i=0

1(0,ε](d(T
i
ω(x), T

i
ω(y))) d(µK × P)(x, y, ω)

≥
∫
G

τδ,+(Tω(x),Tω(y),ω)−1∑
i=τ(x,y,ω)

1(0,ε](d(T
i
ω(x), T

i
ω(y))) d(µK × P)(x, y, ω)

≥ ε−γ

K(κδ)−γ
(µK × P) (G).

We proceed with an upper bound. Here we must include orbits that start outside ∆Rmin

and jump directly into ∆δ, and also directly into ∆ε. This can be seen as pushing forward
mass from K into ∆ε in a single iterate. We divide the set G into two subsets, G = Gd ∪ Gc,
with a set

Gd = G ∩
(
T2 \∆Rmin × Σϑ

)
and its complement Gc ⊂

(
∆δ/a1 \∆δ

)
× Σϑ.

Using this division, we get

µ(2)(∆ε) ≤
∫
T2\∆δ×Σϑ

τδ,+(x,y,ω)−1∑
i=0

1(0,ε](d(T
i
ω(x), T

i
ω(y))) d(µK × P)(x, y, ω)

≤
∫
Gc

τδ,+(x,y,ω)−1∑
i=0

1(0,ε](d(T
i
ω(x), T

i
ω(y))) d(µK × P)(x, y, ω)

+

∫
Gd

τδ,+(x,y,ω)−1∑
i=0

1(0,ε](d(T
i
ω(x), T

i
ω(y))) d(µK × P)(x, y, ω).

The first integral can be bounded from above by using Lemma 5.6. Recall that f+ε,δ defined
in (5.11) is a monotone function. Now

∫
Gc

τδ,+(x,y,ω)−1∑
i=0

1(0,ε](d(T
i
ω(x), T

i
ω(y))) d(µK × P)(x, y, ω)

≤
∫
Gc

f+ε,δ(d(T
(2)
ω (x, y)))d(µK × P)(x, y, ω) ≤ f+ε,δ(κδ) ≤ K

(
ε

a1κδ

)−γ

.
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To handle the second integral we consider separately the subset Gε ⊂ Gd of points that
are mapped directly in ∆ε, thus

Gε =
{
(x, y, ω) ∈ Gd ; T (2)

ω (x, y) ∈ ∆ε

}
.

For (x, y) ∈ ∆ε let, similar to (4.1),

τε,+(x, y) = min{n ∈ N ; d(Tn
ω (x), T

n
ω (y)) > ε},

τδ,+(x, y) = min{n ∈ N ; d(Tn
ω (x), T

n
ω (y)) > δ}.

By Lemma 4.4 we have an estimate

1

λ

(
ln

(
ε

d(x, y)

)
− 2K

)
≤ E [τε,+(x, y)] ≤

1

λ

(
ln

(
ε

d(x, y)

)
+ 2K

)
for some constant K > 0. For (x, y, ω) ∈ Gε we find τε,+(x, y, ω) < τδ,+(x, y, ω) almost
surely. This allows us to write

∫
Gd

τδ,+(x,y,ω)−1∑
i=0

1(0,ε](d(T
i
ω(x), T

i
ω(y))) d(µK × P)(x, y, ω)

≤
∫
Gε

τε,+(x,y,ω)−1∑
i=0

+

τδ,+(x,y,ω)−1∑
i=τε,+(x,y,ω)

1(0,ε](d(T
i
ω(x), T

i
ω(y))) d(µK × P)(x, y, ω)

+

∫
Gd\Gε

τδ,+(x,y,ω)−1∑
i=0

1(0,ε](d(T
i
ω(x), T

i
ω(y))) d(µK × P)(x, y, ω)

≤
∫
Gε

τε,+(T
(2)
ω (x, y)) d(µK × P)(x, y, ω) +

∫
Gε

f+ε,δ(ε) d(µK × P)(x, y, ω)

+

∫
Gd\Gε

f+ε,δ(d(T
(2)
ω (x, y))) d(µK × P)(x, y, ω).

To bound the first integral in the final expression we use Lemma 4.4, Lemma 2.3 and
Hypothesis (H4) to get or any 0 < s < 1 the existence of a constant C̃ > 0, such that∫

Gd

τδ,+(T
(2)
ω (x, y)) d(µK × P)(x, y, ω) ≤ C̃εs.

Hypothesis (H4) shows the existence of a constant C > 0 with (µK × P)(Gε) < C
√
ε.

Lemma 4.4 shows that

f+ε,δ(ε) ≤ C
1

λ

for some C > 0. We get therefore a bound∫
Gε

f+ε,δ(ε) d(µK × P)(x, y, ω) ≤ C
√
ε
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for some C > 0. The third integral is bounded by∫
Gd\Gε

f+ε,δ(d(T
(2)
ω (x, y))) d(ςδ × P)(x, y, ω)

≤
∫
Gd\Gε

K

(
ε

d(T
(2)
ω (x, y))

)−γ

d(ςδ × P)

≤ Kε−γ

∫
Gd\Gε

d(T (2)
ω (x, y))γd(ςδ × P)(x, y, ω) ≤ Cεγ ,

for some C > 0. Here we use Lemma 5.6 and Hypothesis (H4), and γ < 1. Combining the
above analysis yields

lim sup
ε→0

µ(2)(∆ε)

ε−γ
≤ C

for some C > 0, if γ ∈ (−1/2, 0). □
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