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Abstract

We consider a family of differential equations that describes traveling waves in a reaction diffusion
equation modeling oxidation of carbon oxide on a platinum surface, near the onset of spatio-temporal
chaos. The organizing bifurcation for the bifurcation structure with small carbon oxide pressures, turns
out to be a codimension three bifurcation involving a homoclinic orbit to an equilibrium undergoing a
transcritical bifurcation. We show how infinitely many T -point bifurcations of multi loop heteroclinic
cycles occur in the unfolding.

PACS: 05.45.+b; 47.20.Ky; 47.52.+j; 82.65.Jv
Keywords: Surface catalysis; Global bifurcation theory.

1 Introduction

We consider a set of differential equations describing traveling waves, and fronts and pulses, of a reaction
diffusion system modeling the oxidation of CO on a Pt(110) surface. The purpose of this paper is to shed
light on the structure of the global bifurcations relating to the behavior of pulses and fronts.

Let us briefly introduce the system. We refer to [1, 2, 3] for a deeper description of the model. Other
papers discussing various aspects of the system include [4, 5, 6, 7, 8, 9, 10]. The FitzHugh-Nagumo type of

∗To whom correspondence should be addressed.
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partial differential equations are given by

∂u

∂t
= −1

ε
u(u − 1)(u − b + v

a
) +

∂2u

∂x2
,

∂v

∂t
= f(u) − v,

with

f(u) =







0, 0 ≤ u < 1/3,
1 − 27u(u− 1)2/4, 1/3 ≤ u ≤ 1,
1, u > 1.

The parameters ε, b, a are physical parameters, related to pressures of oxide, carbon oxide and to temperature.
The partial differential equations reduce to a system of ordinary differential equations when looking for
traveling wave solutions:

u̇ = w,

ẇ = −cw +
1

ε
u(u − 1)(u − b + v

a
),

v̇ = (v − f(u))/c,

where c is the traveling wave speed. Pulses in the pde-system correspond to homoclinic loops in the ordinary
differential equations. The three parameters that are varied are b, c, ε. The value of a is fixed (in [7] at 0.84).

For small values of b the bifurcation diagram in the (c, ε) plane contains two curves of homoclinic loops
to hyperbolic equilibria P = (0, 0, 0) and Q = (b/a, 0, 0), that terminate in a heteroclinic bifurcation point.
The homoclinic loops to Q correspond to pulses that are unstable. The homoclinic loops to P give stable
pulses. The existence of homoclinic loops to P for ε sufficiently small can be proved by a straightforward
application of the results in [11, 12]. These stable pulses disappear when ε is increased at the heteroclinic
bifurcation point in what has been called a backfiring instability [5, 7, 9, 10]. The heteroclinic cycle consists
of a codimension two connection from P to Q and a robust connection from Q to P , see Figure 1. Such
heteroclinic bifurcation points, involving a robust and a codimension two connection between two equilibria,
are known as T -points [13].

The two equilibria P, Q come together in a transcritical bifurcation at b = 0. Numerical computations
[7, 8, 9] support our assumption of the existence of a particular organizing center in the bifurcation diagram.
The organizing center, occurring at a point (b, c, ε) = (0, c∗, ε∗) for some positive c∗, ε∗, consists of a trans-
critical bifurcation with a homoclinic orbit approaching the non-hyperbolic equilibrium along the normally
hyperbolic directions. The bifurcation structure for small values of b can be uncovered from a bifurcation
study of this organizing center. Doing so, we reveal the mechanisms in which multiple pulses are created.

We stress that we provide a bifurcation study not restricted to the particular system under consideration,
but valid for any system (where we note that we make generic assumptions on eigenvalues) with a similar
homoclinic loop to an equilibrium undergoing a saddle node or transcritical bifurcation.

The most interesting phenomenon we prove to exist is an infinite set of T -point bifurcations, involving
the equilibria P and Q, the robust connection from Q to P and codimension two connections from P to Q
of arbitrary arc length. To each finite sequence on two symbols there corresponds a T -point bifurcation. See
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Figure 2 for a sketch of the bifurcation set and Section 5 (in particular Theorem 5.1) for the corresponding
precise statements on the unfolding of the organizing center.

We acknowledge fruitful conversations with Hiroshi Kokubu. We gratefully acknowledge support from
NWO, the Netherlands Organization for Scientific Research as well as from Vetenskapsr̊adet in Sweden.

2 Homoclinic loops and heteroclinic cycles

In this section we explain the geometry of the differential equations at and near the organizing center, with
a homoclinic loop to a saddle-node equilibrium.

Under the assumption of non-resonance conditions among the eigenvalues [14], the normal form for a
flow near a saddle-node in R

3 is given by

ẋ =
x2 − σ

1 + kx
,

ẏ = λ(x)y, (1)

ż = z.

That is, in the absence of rational relations among the nonzero eigenvalues at the saddle-node equilibrium,
a smooth coordinate change together with a smooth reparametrization of the time variable brings the vector
field into the above expression. The adjective smooth stands for CK for some sufficiently high unspecified
integer K. Alternatively, one can write ẋ = x2 − kx3 for the equation in x, but the coefficient of the third
order term cannot be altered, or removed, by smooth coordinate changes. Note that the computations in [8]
were performed under the simplifying assumption k = 0. The function λ is negative. Note that λ depends
on σ as well, but we do not make this explicit in the notation. We will in the sequel be concerned with the
case −λ(0) > 1 for σ = 0, which is the relevant case for the numerical observations of reference [7]. We
are interested in σ ≥ 0 and write µ1 =

√
σ. This turns the local bifurcation into a transcritical bifurcation,

consistent with the model.
Take two cross-sections Σin = {y = c1} and Σout = {z = c2}, where c1 and c2 are suitable positive

constants. By rescaling the y and z coordinates, we get c1 = 1 and c2 = 1. Let Ψloc : Σin → Σout

be the local transition map. The transition time according to (1) is t = − ln z. The first return map
Ψglob : Σout → Σin is a local diffeomorphism which can be developed as

Ψglob(x, y) =

(

µ2

µ3

)

+

(

A B
C D

)(

x
y

)

+ h.o.t., (2)

where the higher order terms are at least second order terms in (x, y). The Poincaré map Ψ : Σout → Σout

is the composition Ψ = Ψloc ◦Ψglob. The two parameters µ2, µ3 describe global properties of the flow. Note
that in reference [8] the role of A, C and B, D is interchanged because of the choice of coordinates.

The image of {y = 0} ⊂ Σout by the global map will be a curve on Σin. The placement of the curve
will depend on the values of (µ2, µ3). The inclination of the curve will depend on A and C. Numerical
observations indicate that for the model,

C < 0 < A. (3)
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Figure 1: The return map for positive µ1, in case A > 0 and C < 0. Depicted on the right is the codimension two

heteroclinic cycle involving P and Q.

The consideration on orientability of stable and unstable manifolds of the equilibria at the T -point bifurca-
tion, see [7], suggests C < 0. Further numerical experiments, not explicitely contained in [7, 8] but consisting
of plotting images of transition maps, leads to the assumption (3).

With these sign conditions, the curve cuts the axis {z = 0} ⊂ Σin transversally, crossing from top-left to
bottom-right, compare Figure 1. The numerical observations that are commented upon but not explicitely
contained in [7, 8], suggest this to be the case. We mention that considerations on orientability of stable and
unstable manifolds of the equilibria at the T -point bifurcation in [7] imply C < 0. Although our analysis
can be used for other sign conditions on A and C, and we do discuss some of the other possible cases where
they are dynamically interesting, most of the bifurcation analysis in this paper concerns the case (3).

Consider µ1 > 0. Two equilibria, P = (−µ1, 0, 0) and Q = (µ1, 0, 0), exist. A homoclinic orbit to P occurs
if Ψglob(−µ1, 0) ∈ {x < µ1, z = 0}. A homoclinic orbit to Q occurs if (µ1, 0) ∈ Ψglob({x > −µ1, y = 0}). This
yields two surfaces in the (µ1, µ2, µ3) parameter space, bounded by a curve where Ψglob(−µ1, 0) = (µ1, 0),
which gives a heteroclinic cycle. The intersections of these bifurcation sets with a small sphere in the
(µ1, µ2, µ3) parameter space around the origin are depicted, in Figure 2, as the homoclinic bifurcation curves
HomP, HomQ and the heteroclinic bifurcation point HetPQ. At HetPQ, a heteroclinic cycle exists containing
a codimension two connection from P to Q and a persistent connection from Q to P along the x-axis. The
heteroclinic bifurcation HetPQ was considered by V.V. Bykov [15], see also [13, 16].

Along the curves HomQ, HomP there are codimension two orbit flip bifurcations. At OFP, the homoclinic
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Figure 2: Sketch of the bifurcation set in case A > 0, C < 0, drawn on a half-sphere with µ3 ≥ 0 around the

origin in the (µ1, µ2, µ3) parameter space. The circle is the intersection with µ3 = 0, for which the transcritical

bifurcation occurs. Solid curves indicate homoclinic bifurcations, dashed curves are period doubling bifurcations and

dotted curves are saddle node bifurcations of periodic orbits. Infinitely many inclination flips occur close to OFP and

infinitely many T -points occur close to the homoclinic bifurcation curve connecting HetPQ and OFQ.

orbit to P approaches P along the strong stable direction, when time goes to infinity. Here Ψglob(−µ1, 0) =
(−µ1, 0). At OFQ, the homoclinic orbit to Q approaches Q along the strong unstable direction, for negative
time. Here Ψglob(µ1, 0) = (µ1, 0). Bifurcations of orbit flips were studied in [17, 18]. Summarizing: if
λ1 < λ2 < 0 < λ3 denote the eigenvalues at the equilibrium, then three possibilities occur. If −λ1 > −λ2 > λ3

then no additional bifurcation curves branch from the orbit flip point. If −λ1 > λ3 > −λ2, a homoclinic
doubling bifurcation takes place where, in addition to curves of saddle node and period doubling bifurcations
of periodic orbits, a curve of doubled homoclinic loops branches from the orbit flip point. The remaining case
λ3 > −λ1 > −λ2 shows curves of n-homoclinics for all n branching from the orbit flip point. At the point
P , the eigenvalues of the linearized vector field are λ(−µ1),−2µ1/(1 − kµ1) and 1. As λ(−µ1) < −1 and
−2µ1/(1− kµ1) is small negative, a doubled homoclinic loop, and no other homoclinic loops, branches from
OFP. Similarly one sees that near OFQ, there are infinitely many homoclinic loops, as well as infinitely many
saddle node and period doubling bifurcation curves for periodic orbits. The sketch in Figure 2 indicates how
the different bifurcation curves are connected, backed up by the analysis in the following sections.
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The curves HomP, HomQ end at µ3 = 0 at codimension two bifurcations indicated by Homsn in Figure 2,
involving a saddle node equilibrium and a homoclinic loop to it. These bifurcations were studied in [19, 20].
These codimension two bifurcations involve a saddle-node equilibrium and a homoclinic loop that approaches
it along the center direction and along a normally hyperbolic direction for large positive and negative times.
The unfolding of these codimension two bifurcations involves only simple dynamics, and in fact only a
single curve of homoclinic loops to a hyperbolic equilibrium is found to branch from the curve of saddle-
node bifurcations. It is therefore remarkable that the codimension three bifurcation, where the homoclinic
loop approaches the saddle-node equilibrium along the normally hyperbolic directions for large positive and
negative times, can lead to complicated and new bifurcational phenomena.

3 Rescalings

We show how approximate interval maps are obtained from the return maps. The analysis of these interval
maps, in the following section, reveals the intricate bifurcation structure sketched in Figure 2.

3.1 µ1 = 0

Recall the expression (1) for the local flow. For µ1 = 0, the equation in x integrates as

x(t)

1 − kx(t) ln |x(t)| =
x(0)

1 − kx(0) ln |x(0)| − x(0)t
.

Since x ln x < xω for 0 < ω < 1, it follows that

x(t) =
x(0)

1 − kx(0) ln |x(0)| − x(0)t
+ O

(

x(0)

1 − kx(0) ln |x(0)| − x(0)t

)1+ω

, (4)

for 0 < ω < 1. For the y coordinate, one has

y(t) = e
∫

t
0

λ(x(s))ds. (5)

Since λ(x) = λ(0) + O(x), computing e
∫

t
0
O(x(s))ds one realizes that y(t) is dominated by e−ν̃t for some ν̃

close to −λ(0) = ν for t large enough:

y(t) ≤ Ce−ν̃t, (6)

for some C > 0.
Take ξ with 1 < ξ < ν̃. For µ2 6= 0, consider the following rescaled coordinates,

|µ2|x̄ = x,

|µ2|ξ ȳ = y,

and define |µ2|µ̄3 = µ3. One considers values of x, y, µ3 so that |x̄|, |ȳ|, |µ̄3| are bounded (so µ3 is restricted
to be of the order of µ2).
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Lemma 3.1 Let Ψ̄ be the return map in the rescaled coordinates (x̄, ȳ). In the limit µ2 → 0, one can write

Ψ̄(x̄, ȳ) =

(

sgn(µ2)+Ax̄
1+|µ2|(sgn(µ2)+Ax̄) ln(µ̄3+Cx̄)

0

)

.

Remark 3.2 Note that a term containing µ2 is retained, because its factor is large if µ̄3 +Cx̄ is small. The

convergence is uniform only away from x̄ with µ̄3 + Cx̄ = 0. Away from x̄ = −µ̄3/C, the first coordinate of

Ψ̄ converges uniformly to x̄ 7→ sgn(µ2) + Ax̄.

Proof. Take (x, y) ∈ Σout. Composing (2) with (4), (5) for t = − ln z gives the return map (x, y) 7→ Ψ(x, y).
Further, the rescaling is given by a map h(x, y) = (|µ2|x, |µ2|ξy). A direct computation of Ψ̄ = h−1 ◦ Ψ ◦ h
gives, after taking the limit µ2 → 0, the asymptotic form for the return map in the rescaled coordinates. �

Another set of rescaled coordinates, for µ3 6= 0, is given by

|µ3|x̂ = x,

|µ3|ξ ŷ = y.

Here one introduces |µ3|µ̂2 = µ2. One considers values of x, y, µ2 so that |x̂|, |ŷ|, |µ̂2| are bounded (hence µ2

is required to be of the order of µ3).

Lemma 3.3 Let Ψ̂ be the return map in the rescaled coordinates (x̂, ŷ). In the limit µ3 → 0, one can write

Ψ̂(x̂, ŷ) =

( µ̂2+Ax̂
1+|µ3|(µ̂2+Ax̂) ln(sgn(µ3)+Cx̂)

0

)

.

Note that now a term multiplying µ3 is retained. Away from x̂ = −sgn(µ3)/C, the first coordinate of
Ψ̂ converges uniformly to x̂ 7→ µ̂2 + Ax̂. The two rescalings together cover all small values of µ2 and µ3,
(µ2, µ3) 6= (0, 0).

3.2 µ1 > 0

For µ1 > 0, two equilibria P = (−µ1, 0, 0) and Q = (µ1, 0, 0) exist. We are interested in understanding the
details of the dynamics in a region with x coordinate containing the interval [−µ1, µ1], which is relevant for
nonzero µ1. It is convenient to rescale x̄µ1 = x. Multiplying the differential equation for x̄ with a factor
1/µ1 (or rescaling time by this factor) yields the differential equation

˙̄x = (x̄2 − 1)/(1 + kµ1x̄). (7)

Note that for bounded x̄ the differential equation converges to ˙̄x = x̄2 − 1 as µ1 → 0. The differential
equation (7) is solved by

(1 − x̄(t))1+kµ1

(1 + x̄(t))1−kµ1
= e2t (1 − x̄(0))1+kµ1

(1 + x̄(0))1−kµ1
. (8)
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This defines x̄(t) as a smooth function of x̄(0), t and µ1, for µ1 close to 0. This is clear away from x̄(0) = ±1
and µ1 = 0. If e.g. x̄(0) = −1 and µ1 = 0, after taking the 1

1−kµ1
-th power of the equation, smoothness

follows from the implicit function theorem. Recall that ȳ(t) is given by

y(t) = e
∫

t
0

λ(x(s))ds. (9)

For the return map (x, y) 7→ Ψ(x, y), we scale x = µ1x̄ as above and y = µξ
1ȳ, with 1 < ξ < ν̃. Rename

µ2 and µ3 as µ1µ̄2, µ1µ̄3.

Lemma 3.4 Let Ψ̄ be the return map in the rescaled coordinates (x̄, ȳ). In the limit µ1 → 0, one can write

Ψ̄(x̄, ȳ) =





(µ̄3+Cx̄)2µ1−
1−(µ̄2+Ax̄)
1+µ̄2+Ax̄

(µ̄3+Cx̄)2µ1+
1−(µ̄2+Ax̄)

1+µ̄2+Ax̄

0



 . (10)

Remark 3.5 The term (µ̄3 + Cx̄)2µ1 containing µ1 is kept in the limit map, since this equals 1 for µ1 = 0
except at x̄ = −µ̄3/C where µ̄3 + Cx̄ = 0. The convergence is uniform only away from x̄ = −µ̄3/C. Away

from x̄ = −µ̄3/C, the first coordinate of the return map converges to the affine map

x̄ 7→
1 − 1−(µ̄2+Ax̄)

1+µ̄2+Ax̄

1 + 1−(µ̄2+Ax̄)
1+µ̄2+Ax̄

= µ̄2 + Ax̄. (11)

Proof. Consider first k = 0 in (1). The local flow for (7) is then given by

x̄(t) =
e−2t + x̄(0)−1

x̄(0)+1

e−2t − x̄(0)−1
x̄(0)+1

, (12)

where t = −µ1 ln z and z = µ3 +Cx+Dy = µ1µ̄3 +Cµ1x̄+Dµξ
1ȳ. Combining this with (2) gives asymptotics

for the rescaled return map.
Now suppose k 6= 0 in (7) and let ζ = kµ1. Denote s = e−2t. The local flow for (7) satisfies

s(x̄(t) − 1)1+ζ(x̄(0) + 1)1−ζ = (x̄(t) + 1)1−ζ(x̄(0) − 1)1+ζ .

As remarked before, for s 6= 0, this gives x̄(t) as a smooth function of x̄(0), s, ζ. Note that x̄(t) = −1 if s = 0.
Taking the 1

1−ζ -th power of this equation and letting u = s1/(1−ζ), we get

u(x̄(t) − 1)(1+ζ)/(1−ζ)(x̄(0) + 1) = (x̄(t) + 1)(x̄(0) − 1)(1+ζ)/(1−ζ).

If x̄(0) and x̄(t) are away from 1, the implicit function theorem lets us solve x̄(t) depending smoothly on
u, x̄(0), ζ. The solution therefore converges to the solution for k = 0, as µ1 → 0.

Combined with (2) this shows the following. Away from x̄ = −µ̄3/C, the return map converges to the
affine map x̄ 7→ µ̄2 + Ax̄ as µ1 → 0. And, assuming that µ̄2 + Ax̄ 6= ±1 at x̄ = −µ̄3/C, convergence to (10)
holds also near x̄ = −µ̄3/C. �
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Let C =
(

Ψglob
)−1

({z = 0}) and C̄ the same in rescaled coordinates. Note that C̄ is close to the line of
constant x̄ coordinate x̄r = −µ̄3/C. The rescaled return map Ψ̄ is defined only on one side of C̄.

For later use we indicate how estimates on partial derivatives of Ψ̄ for µ1 small are obtained. These are
straightforward to obtain using estimates on derivatives of x(t) and y(t) from (8) and (9) for t = −µ1 ln z.
With x̄0 = x̄(0) and x̄1 = x̄(t) at t = −µ1 ln z, we get x̄1 as function of x̄0 and z. Differentiating (8) yields

∂x̄1

∂x̄0

∂

∂x̄1

(

(1 − x̄1)
1+ζ

(1 + x̄1)1−ζ

)

= z−2µ1
∂

∂x̄0

(

(1 − x̄0)
1+ζ

(1 + x̄0)1−ζ

)

from which one obtains (after some manipulation using (8) which allows for rewriting to equivalent forms)

∂x̄1

∂x̄0
= z−2µ1/(1+ζ)

(

1 + x̄1

1 + x̄0

)2/(1+ζ)
1 + ζx̄0

1 + ζx̄1
. (13)

Similarly,
∂x̄1

∂z

∂

∂x̄1

(

(1 − x̄1)
1+ζ

(1 + x̄1)1−ζ

)

= −2µ1z
−2µ1−1 (1 − x̄0)

1+ζ

(1 + x̄0)1−ζ

from which one gets
∂x̄1

∂z
= µ1

1

z

(1 + x̄1)(1 − x̄1)

1 + ζx̄1
. (14)

Formulas (13) and (14) with (8) enable an estimate of the derivatives ∂x̄1

∂x̄0
and ∂x̄1

∂z for small µ1 when also ζ
is small. Analogously,

∂y

∂x̄0
= e

∫

t
0

λ(µ1x̄(s))ds

∫ t

0

µ1λ
′(µ1x̄(s))

∂x̄(s)

∂x̄0
ds

and
∂y

∂z
= −µ1e

∫

t
0

λ(µ1x̄(s))ds 1

z
λ(µ1x̄1),

from which one estimates ∂y
∂x̄0

and ∂y
∂z .

The computations show for instance that away from C̄ (i.e. away from x̄ = −µ̄3/C for small µ1),
∂
∂x̄ Ψ̄(x̄, ȳ) → (A, 0) and ∂

∂ȳ Ψ̄(x̄, ȳ) → (0, 0) as µ1 → 0. We indicate how an estimate on DΨ̄(x̄, ȳ) as

(x̄, ȳ) → C̄ is obtained. Suppose the positive orbit of the flow starting at (x̄, ȳ) intersects Σin in a point with
rescaled x coordinate x̄0 and z coordinate z, such that x̄0 ∈ (−1, 1) and z > 0 small. If x̄0 is strictly away
from −1, then 1 + x̄1 ≥ kz−2µ1/(1−η) for some k > 0. If further x̄1 (the x coordinate of Ψ̄(x̄, ȳ)) is strictly
away from 1, then ∂x̄1

∂z ≥ kµ1z
−1+2µ1/(1−ζ) for some k > 0. With similar estimates for the other derivatives

this implies that under these conditions the x coordinate of ∂
∂x̄Ψ̄(x̄, ȳ) diverges as (x̄, ȳ) → C̄.

4 Analysis of the interval maps

As shown above, for µ1 = 0 as well as for µ1 > 0, we have an interval map roughly describing the overall
dynamics. The map depends on the parameters µ1, µ2, µ3 and also on the coefficients A and C of the global
map. In this section we will discuss bifurcations of the intervals maps, thereby using terminology suggested
by the interpretation for the differential equations.
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Figure 3: Graphs of the interval maps for µ1 = 0. Pictures assume |A| > 1.

4.1 µ1 = 0

We have f(x̄) = sgn(µ2)+Ax̄
1−µ2(sgn(µ2)+Ax̄) ln(µ̄3+Cx̄) with |µ2|µ̄3 = µ3. Provided µ2 is small and sgn(µ2) + Ax̄ < 0 at

x̄ = −µ̄3/C, the denominator in f is never zero in the natural domain of definition for f (i.e., µ̄3 + Cx̄ > 0).
Indeed, for values of x̄ such that µ̄3 + Cx̄ is away from zero, f(x̄) will behave roughly as the linear function
x̄ 7→ sgn(µ2) + Ax̄ if µ2 is sufficiently small. When x̄ approaches −µ̄3/C, f(x̄) will bend approaching zero
with infinite slope, since the denominator goes to ∞. If sgn(µ2) + Ax̄ > 0 at x̄ = −µ̄3/C, f diverges to plus
or minus ∞ close to x̄ = −µ̄3/C. If A, C have the same sign, the above conditions hold for µ̄3 > sgn(µ2)C/A.
The graph of f is then unimodal. If A, C have opposite signs, one does not obtain a unimodal graph for f .

Define the line in the parameter plane D = {µ2 = µ3(A − 1)/C, µ3 < 0)}.

Lemma 4.1 Suppose A > 0, C > 0. Parameters along the µ2 axis correspond to homoclinic bifurcations to

the saddle-node fixed point. Non-hyperbolic periodic orbits occur for parameters near D.

Proof. The line µ3 = 0 is clearly in the bifurcation set. Bifurcations of periodic orbits occur near parameter
values where the critical point is fixed. That is, if x̄ 7→ sgn(µ2)+Ax̄ intersects the diagonal near x̄ = −µ̄3/C.
This happens near the line µ̄3 = sgn(µ2)C/(A − 1), that is, near D. �

Homoclinic orbits to the saddle-node equilibrium correspond to points x̄ > 0 with f i(x̄) = −µ̄3/C for
some i ≥ 1. Assume that A > 1. Then there is a fixed point p for f , with p → sgn(µ2)/(1 − A) as µ2 → 0.
See Figure 3a) for an illustration. For A > 1 and µ2 > 0 one can find the persistent occurrence, for the
interval map, of infinitely many homoclinic orbits. The fixed point of the interval map corresponds to a
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Figure 4: Interval maps for µ1 > 0. Pictures assume A > 1.

saddle periodic orbit for the vector field. Its unstable manifold intersects the stable manifold of the saddle
node equilibrium, whereas the unstable manifold of the saddle node equilibrium intersects the stable manifold
of the periodic orbit (for the interval map this translates to iterates of points slightly larger than −µ̄3/C
eventually hitting p).

4.2 µ1 > 0

The system in study has some interesting additional structure which is only present for positive µ1. Fix
µ1 > 0 and consider the obtained interval map

f(x̄) =
(µ̄3 + Cx̄)2µ1 − 1−(µ̄2+Ax̄)

1+µ̄2+Ax̄

(µ̄3 + Cx̄)2µ1 + 1−(µ̄2+Ax̄)
1+µ̄2+Ax̄

, (15)

in the appropriate scaled coordinates, for A > 0 > C and depending on parameters µ̄2, µ̄3 (recall that
µ̄2µ1 = µ2, µ̄3µ1 = µ3). When the global map hits the line z = 0 then the local map drives the corresponding
x̄ value to −1 except when the value of x̄ is exactly the one corresponding to the stable manifold of +1. In
order to let f comply with these constraints we let f(−µ̄3/C) = +1 if µ̄2+Ax̄ = 1. Note that f(−µ̄3/C) = −1
if µ̄2 + Ax̄ < 1.

For arbitrarily small µ1, the term (µ̄3 + Cx̄)2µ1 will be essentially unity, unless µ̄3 + Cx̄ is too close to
zero. Hence, for most values of x̄, f will approximately behave as x̄ 7→ µ̄2 + Ax̄. When µ̄3 + Cx̄ approaches
zero, f(x̄) approaches −1 with infinite slope. See Figure 4 for an illustration.
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Suppose then that µ̄3 + Cx̄1 = 0 for some x̄1 ∈ [−1, 1]. Further let X1 = µ̄2 + Ax̄1 ∈ [−1, 1] for the
same value x̄1. If this holds for x̄1 = −X1 = −1 we have a heteroclinic loop connecting the fixed points at
x̄ = −1 and x̄ = +1. If −1 < x̄1 ≤ X1 = 1 we have then a 1-parameter curve of homoclinic loops at x̄ = +1.
Similarly if −1 = x̄1 ≤ X1 < 1 there is a 1-parameter curve of homoclinic loops at x̄ = −1.

4.3 Orbit flip results for the case A > 0 > C.

We summarize the discussion for A > 0 and C < 0.

• A homoclinic orbit to −1 occurs if µ̄3 + Cx̄ = 0 and µ̄2 + Ax̄ < 1 for x̄ = −1, i.e. on the line H−1 =
{(µ̄2 < 1 + A, µ̄3 = C)} in the parameter plane. An orbit flip occurs if moreover µ̄2 + A(−1) = −1,
thus at O−1 = (A − 1, C). This orbit flip is a homoclinic doubling bifurcation [18, 17, 21].

• A homoclinic orbit to 1 occurs if µ̄2 + Ax̄ = 1 for x̄ = −µ̄3/C so that x̄ > −1. This yields the line
H1 = {(µ̄2 = 1 + Aµ̄3/C, µ̄3 > C)} in the parameter plane. An orbit flip occurs if also −µ̄3/C = 1.
This gives the point O1 = (1−A,−C). Infinitely many curves of homoclinic bifurcations branch from
this point [18, 17].

• A heteroclinic bifurcation or T -point occurs at the mutual end point of H−1 ∩ H1 = (1 + A, C). The
homoclinic orbits that branch from this point are twisted [17].

The last item is clear since the two half-lines with homoclinic orbits to both equilibria terminate at a
point (µ̄2, µ̄3) = (1 + A, C). This corresponds to a heteroclinic bifurcation. Let D denote the line in the
parameter plane connecting the points O−1 and O1 on which the line x̄ 7→ µ̄2 +Ax̄ intersects the diagonal at
x̄ = −µ̄3/C: D = {(µ̄2 = −µ̄3(1 − A)/C, C < µ̄3 < −C)}. Define the line H∞ with constant µ̄2 coordinate
that extends between the orbit flip point O−1 and H1: H∞ = {(µ̄2 = −1 + A, C < µ̄3 < (−2 + A)C/A)}.
For parameter values on this line, x̄ = −1 is a fixed point of x̄ 7→ µ̄2 + Ax̄. Write g(x̄) = µ̄2 + Ax̄ and define
the line Hk connecting H−1 with H1, on which gk−1(−1) = −µ̄3/C. In the limit µ1 = 0, this corresponds
to k-homoclinic loops to the point −1. The line Hk lies on µ̄2(1 + . . . + Ak−2) − Ak−1 = −µ̄3/C.

Lemma 4.2 Suppose A > 1, C < 0. As µ1 ↓ 0, the line D is the limit of bifurcations of non-hyperbolic

periodic orbits, while the loci of homoclinic and heteroclinic bifurcations, converge to H−1 ∪H1 ∪H2 ∪H3 ∪
. . . ∪ H∞.

Proof. The graph of f is unimodal for parameter values inside the region bounded by H−1 and H1. As
µ1 ↓ 0, the graph of f converges to the union of a line µ̄2 +Ax̄, x̄ < −µ̄3/C and a vertical line at x̄ = −µ̄3/C.
Notice that for parameter values away from D, intersections of f with the diagonal have slope either close to
A > 1 or large negative. It follows that bifurcations involving non-hyperbolicity of orbits, such as saddle-node
and period-doubling bifurcations of periodic orbits, occur only near D. Possible remaining bifurcations, in
particular homoclinic and heteroclinic bifurcations, involve the points −1 and 1. Due to the large negative
slope of f as x̄ approaches −µ̄3/C, these bifurcations accumulate onto H−1 ∪ H1 ∪ H2 ∪ H3 ∪ . . . ∪ H∞ as
µ1 ↓ 0. �

For 0 < A < 1, the lines H−1 and H1, as well as the points O−1, O1, T , are as above. Write g(x̄) = µ̄2+Ax̄.
Let Hk be the set of parameters on the line piece between H−1 and H1, for which gk−1(−1) = −µ̄3/C.
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map f consists of two line segments where −1 and 1 are fixed points and countable many line segments connecting

between these two.

Again this correpsonds, in the limit µ1 = 0, to k-homoclinic loops to −1. Let D be the parameters satisfying
g(−µ̄3/C) = −µ̄3/C.

Lemma 4.3 Suppose 0 < A < 1, C < 0. As µ1 ↓ 0, the bifurcation set of f converges to a union of line

pieces H−1∪H1∪D∪H2∪ . . .. The line D is the limit of bifurcations involving non-hyperbolic periodic orbits.

Homoclinic and heteroclinic bifurcations, in the limit µ1 ↓ 0, are contained in H−1 ∪ H1 ∪ H2 ∪ H3 ∪ . . ..

5 Accumulations of heteroclinic bifurcations

The result below makes clear the complexity of the bifurcation diagram when µ2 and µ3 are varied and µ1 is
fixed. It will follow from the arguments that at least generically, there are infinitely many curves formed by
homoclinic loops to P , where each of these curves terminates at a T -point. Let µ̄2, µ̄3 be rescaled parameters,
rescaled by 1/µ1, as in Lemma 3.4.

The proof of the following theorem will follow from a series of lemma’s in this section. The theorem
supposes A > 1, the case 0 < A < 1 is discussed at the end of the section.

Theorem 5.1 Suppose A > 1, C < 0. Consider two parameter families ẋ = Xµ̄2,µ̄3(x) for fixed values of

µ1 > 0. For all µ1 > 0 sufficiently small, there are infinitely many T -point bifurcations accumulating onto

H1 as µ1 → 0. There are infinitely many inclination flips of homoclinic loops to P accumulating onto O−1

as µ1 → 0.
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connecting between these two.

The strategy to prove this theorem consists of pathfollowing curves of homoclinic bifurcations (of homo-
clinic loops to P ), using the general continuation theory in [21] to describe the possibilities in which the
pathfollowing is terminated, and developing analysis particular to the case to rule out several of the possi-
bilities. This will show that the pathfollowing of curves of homoclinic loops to P terminates at T -points.

Consider ẋ = Xµ̄2,µ̄3(x) for small fixed values of µ1 > 0. We first rule out the occurrence of orbit flip
bifurcations of n-homoclinic loops to P for n > 1. For small µ1 there are curves of homoclinic bifurcations
close to the line pieces H−1 and H1. We write H−1(µ1) and H1(µ1) for these curves, joining at a T -point
bifurcation.

Lemma 5.2 Suppose C < 0 < A. For small µ1 > 0, there are no orbit flip homoclinic bifurcations of

n-homoclinic loops to P with n > 1, in the region bounded by H−1(µ1) and H1(µ1).

Proof. An orbit flip of an n-homoclinic loop occurs if Ψglob ◦ Ψn−1(−µ1, 0) = (−µ1, 0). Since Ψglob is
orientation preserving, it maps a strip {0 ≤ y < y∗} ⊂ Σout to the right (i.e. with larger values of x) of the
curve Ψglob({y = 0}). The curve Ψglob({y = 0}) intersects the x-axis (in the stable manifold of P ) in a point
Z depending on the parameters.

For parameters in the region bounded by H−1 and H1, one has Z > −µ1. Then (−µ1, 0) lies outside the
image under Ψglob of the strip {0 ≤ y < y∗} ⊂ Σout. It is therefore clear that orbit flips cannot occur. See
Figure 7 for an illustration.

Of course Ψglob(−µ1, 0) = (Z, 0) for Z < −µ1 corresponds to the curve of single homoclinic loops to P ,
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Figure 7: This picture illustrates the reasoning to show that orbit flips of n-homoclinic loops to P with
n > 1, do not occur for parameters from the wedge between H−1(µ1) and H1(µ1).
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Figure 8: T -points are sought for in a region E in the (µ̄2, µ̄3) parameter plane. The rescaled return map
admits a stable foliation for parameters from a slightly smaller region D, which does not include H1.

while Z = −µ1 along that curve is the orbit flip of the single homoclinic loops to P . �

Homoclinic bifurcations of n-homoclinic loops to P with n > 1 are found, for µ1 > 0 small, near the line
pieces H2, . . . ,H∞. Take a small neighborhood in the (µ̄2, µ̄3) parameter plane of the union of these line
pieces and cut out a small disk around the point O−1 where the line pieces join (corresponding to the orbit
flip bifurcation to P ). We may assume that the resulting region E is disjoint from the line piece D and from
the points T and O1, see Figure 8. Removing from E a small neighbourhood of H1 results in a region D as
depicted in Figure 8.

Recall the rescaled interval map f given by (15). Consider f for parameters from D. Note that f(x̄) is
defined for x̄ < x̄r = −µ̄3/C. Let x̄l < x̄r. Write I = [x̄l, x̄r) and I∗ = I ∩ f−1(I). Observe that I∗ consists
of two intervals (having chosen x̄l sufficiently smaller than x̄r). Consider f : I∗ → I . Since D is disjoint
from D, see Figure 8, the critical point of f (and a whole interval around that point) is not in I∗ hence |f ′| is
either close to A (on one branch) or very large (on the other branch) as µ1 → 0. In any case, |f ′| is bounded
away from 0 on I∗.

We extend these estimates to the rescaled return map

Ψ̄ = (f(x̄), 0) + (h1(x̄, ȳ), h2(x̄, ȳ)).

Lemma 5.3 below make this precise. The curve C =
(

Ψglob
)−1

({z = 0}) in the stable manifold of P bounds
the domain of definition of Ψ. In rescaled coordinates the domain of definition of Ψ̄ is bounded by the
curve C̄, which lies close to the line of constant x̄ coordinate x̄r = −µ̄3/C. Consider a box ∆ bounded by
C̄, {x̄ = x̄l} and {ȳ = ±k}. Write ∆∗ = ∆ ∩ Ψ̄−1(∆) for the set of points in ∆ that are mapped into ∆ by
Ψ̄ and consider Ψ̄ : ∆∗ → ∆.
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Lemma 5.3 Suppose A > 1 and C < 0. For µ1 > 0 small enough and parameters from D, the rescaled

return map Ψ̄ restricted to ∆ admits a stable foliation.

Proof. The proof follows Lemma 4.2 in [21], to which we refer for some of the details. For (µ̄2, µ̄3) ∈ D
and µ1 small, the domain of Ψ̄ has two connected components, see Figure 9.

Ψ̄

Figure 9: This picture illustrates the action of Ψ̄ on ∆. The existence of a stable foliation for Ψ̄ allows for a reduction

to interval maps. Indicated are domain and range of Ψ̄.

A stable foliation is obtained by iterating a trial foliation on ∆ by the inverse map Ψ̄−1. Since Ψ̄−1(∆)
does not cover ∆, one chooses a trial foliation F on ∆ such that the union of Ψ̄−1(F) and F restricted to
∆\Ψ̄−1(∆) provides a foliation on ∆. In particular, the vertical boundaries {x̄ = x̄l} and C̄ of ∆ as well as
their images under Ψ̄−1 are leaves of F . Compare also [21] and the construction of invariant foliations near
hyperbolic basic sets in [22]. Iterating this procedure yields a well defined foliation in each iteration step.

The iteration of a trial foliation defines a graph transform on the space of sections in the vector bundle
∆ × L(R, R). We will show that the graph transform yields a fiber contraction, and therefore provides an
invariant section σ ∈ C0(∆,L(R, R)). The invariant section σ defines the stable foliation by integration. Let
(x̄, ȳ, σ) 7→ (Ψ̄−1(x̄, ȳ), Σ(x̄, ȳ, σ)) be the map induced by Ψ̄−1 on ∆ ×L(R, R):

Σ(Ψ̄(x̄, ȳ), σ) =
d(x̄, ȳ)σ − b(x̄, ȳ)

−c(x̄, ȳ)σ + a(x̄, ȳ)
,

where

DΨ̄(x̄, ȳ) =

(

a(x̄, ȳ) b(x̄, ȳ)
c(x̄, ȳ) d(x̄, ȳ)

)

,

see [21]. We will demonstrate that Σ contracts distances in the last coordinate, that is

|Σ(x̄, ȳ, σ1) − Σ(x̄, ȳ, σ2)| ≤ k |σ1 − σ2|

for some k < 1.
By Lemma 3.4, in particular the computations following its proof, we obtain the following. For the

considered parameters (µ̄2, µ̄3) ∈ D and (x̄, ȳ) ∈ ∆∗, we have that

|a(x̄, ȳ)| ≥ L > 0 (16)
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for some L > 0 and moreover a is much larger than b, c, d:
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→ 0 (17)

as µ1 → 0. Also, a diverges as (x̄, ȳ) gets close to C̄. Away from C̄ , the partial derivative a is close to f ′

while the other three partial derivatives of Ψ̄ are small.
The eigenvalues λ1, λ2 of DΨ̄(x̄, ȳ) equal 1

2T ± 1
2T
√

1− 4D/T 2 with T, D denoting the trace and deter-
minant of DΨ̄(x̄, ȳ) respectively. It follows from (16), (17) that T is bounded away from 0. Because the
divergence at the equilibria is negative, D and therefore also D/T 2 is small. Hence DΨ̄(x̄, ȳ) has a small
eigenvalue and an eigenvalue close to T , and thus bounded away from 0. (In fact, for µ̄1 small, |T | is larger
than 1 as f ′ is close to 0 only very close to its critical point.) Using (17) one checks that the eigenvectors
are close to the x̄ and ȳ axis. This is easily seen to imply that Σ defines a fiber contraction. Note that the
contraction constant goes to 0 for (x̄, ȳ) → C̄, making clear that Σ is continuous. Therefore Σ possesses a
unique continuous fixed section σ ∈ C0(∆,L(R, R)). �

The following lemma implies that there are no codimension two homoclinic bifurcations of homoclinic
loops to P for parameters from E. Codimension two heteroclinic bifurcations inside E occur only in E\D,
close to H1.

Lemma 5.4 For (µ̄2, µ̄3) ∈ D and for µ1 > 0 small enough, Xµ̄2,µ̄3 has no heteroclinic T -point bifurcations.

For (µ̄2, µ̄3) ∈ E and for µ1 > 0 small enough, Xµ̄2,µ̄3 has no inclination flips of homoclinic loops to P .

Proof. For (µ̄2, µ̄3) ∈ D, if µ1 is small enough, Ψglob(∆) does not intersect {x̄ = 1}. This makes clear that
T -points cannot occur for such parameters.

Suppose Xµ̄2,µ̄3 with (µ̄2, µ̄3) ∈ D has a homoclinic loop γ to P . By Lemma 5.2, γ is not an orbit flip.
The stable manifold of P admits a codimension one strong stable foliation. Since γ is not an orbit flip, the
tangent spaces thereof provide a bundle of strong stable directions along γ. Lemma 5.3 implies that this
gives a continuous bundle along γ ∪ {P}, which is equivalent to the statement that γ is not an inclination
flip.

Similar arguments show that inclination flips of homoclinic loops to P do also not occur for parameters
in E\D. For these parameters, Ψglob(∆) may contain points in {x̄ ≥ 1}. The set of points ∆∗ ⊂ ∆ that
return to ∆ under Ψ̄ no longer consists of two strips, so that there cannot be a stable foliation on ∆ with
leaves crossing ∆ from ȳ = −k to ȳ = k. The computations in the proof of Lemma 5.3 however do show
the existence of an invariant bundle of stable directions over the recurrent set (note that estimates (16),(17)
hold if the x̄ coordinate of Ψ̄(x̄, ȳ) is away from 1 and thus for Ψ̄(x̄, ȳ) ∈ ∆). Therefore the bundle of strong
stable directions along a homoclinic loop γ to P is continuous, and inclination flips are not possible for all
(µ̄2, µ̄3) ∈ E and µ1 small. �

Consider parameter values from D. Since homoclinic loops are understood via a unimodal map, for
sufficiently small µ1 they can be labeled with two symbols, say 0 and 1, in correspondence to the order found
in symbolic dynamics of smooth unimodal maps. If 1 corresponds to the orientation reversing branch, then
non-twisted (twisted) homoclinic loops will be those labeled with an even (odd) number of 1’s.
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Lemma 5.5 There exists an infinite number of periods for which there is an odd number of non-twisted

homoclinic loops to P .

Proof. Take a prime period p. The number of homoclinic orbits is then (2p − 2)/p but only half of those
are non-twisted, i.e. (2p−1 − 1)/p. As a consequence of the Little Fermat Theorem, this number is odd. �

Proof of Theorem 5.1. We employ continuation arguments as in [21]. First the accumulation of T -points
is treated.

For small positive values of µ1, the homoclinic bifurcations involving homoclinic loops to P are close to
a set of line pieces H2, . . . ,H∞ (compare Lemma 4.2). By Lemma’s 5.2 and 5.4, for µ1 small, there are
no codimension two homoclinic bifurcations in E. Heteroclinic bifurcations in the form of T -points are not
ruled out.

We do not know whether the homoclinic and heteroclinic bifurcations in E unfold generically, which
would imply that codimension one homoclinic bifurcations occur along smooth curves and codimension two
bifurcations at isolated points. By an arbitrary small perturbation of the family {Xµ̄2,µ̄3}, the homoclinic
and heteroclinic bifurcations in E do unfold generically [21]. Perturb the family in this way for parameters
near the boundary ∂E of E, leaving the vector fields unaltered away from ∂E. Observe that heteroclinic
bifurcations are not altered by the perturbation, as they cannot occur on or very close to ∂E. Let ν be a
homoclinic bifurcation point in ∂E, for a codimension one homoclinic bifurcation of a non-twisted homoclinic
loop to P . We may further assume that ν is generically unfolding when restricting parameters to ∂E, so
that there is a local curve of codimension one homoclinic bifurcations passing through ν and transverse to
∂E.

Consider a sequence Xn
µ̄2,µ̄3

of generic families converging to Xµ̄2,µ̄3 with n, equal to Xµ̄2,µ̄3 near ∂E.
Write Γn for the continuation of ν for the family Xn

µ̄2,µ̄3
inside E. If ν gives a non-twisted homoclinic loop,

then Theorem 5.2 or Lemma 5.5 from [21] implies that one of the following possibilities holds:

• Γn has an inclination flip in its closure (in the general theory of [21] the virtual length of the homoclinic
loops along Γn becomes unbounded; in the present context this happens only at an inclination flip),

• Γn intersects ∂E twice,

• Γn has a heteroclinic bifurcation (a T -point) in its closure.

Without loss of generality we may assume the existence along ∂E of a unique homoclinic loop to P
corresponding to each finite symbol sequence of two symbols 0, 1. As a consequence, the second item of the
list above is not possible. The first item is ruled out as well by Lemma 5.4. Since the first two items in
the above list do not occur, Γn ends at a T -point bifurcation. Since compact parts of stable and unstable
manifolds vary continuously with the vector field, an accumulation point of a sequence of T -points for Xn

µ̄2,µ̄3

is a T -point for Xµ̄2,µ̄3 . This proves the statement on T -points.
The existence of inclination flips, close to O−1 for µ1 small, is shown by similar means. Take a small

neighborhood Ẽ of O−1. As above, ∂Ẽ contains infinitely many homoclinic bifurcation points. Inside Ẽ,
there are no heteroclinic bifurcations and the only orbit flip is O−1. Continuing a n-homoclinic loop to P ,
it remains a n-homoclinic loop as long as it does not undergo a bifurcation. It can end at an inclination flip
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of a m-homoclinic orbit only for m that divides n. By Lemma 5.5, there are infinitely many homoclinic bi-
furcations in ∂Ẽ that cannot be continued back to ∂Ẽ and therefore undergo an inclination flip bifurcation. �

As mentioned in the above proof, an arbitrary small perturbation of the family Xµ̄2,µ̄3 , makes homoclinic
and heteroclinic bifurcations unfold generically. Then codimension one homoclinic loops to P yield curves
inside E, and T -points give isolated bifurcation points. Further, each finite itinerary on two symbols gives a
curve of homoclinic loops ending in a T -point. The resulting picture is of a bifurcation set that is a Cantor
set equal to the the closure of a set of T -points.

We end this section with remarks on the case 0 < A < 1. The difference with the case A > 1 lies in the
fact that D is accumulated by the line pieces Hi; an invariant stable foliation for Ψ̄ will therefore not exist
for parameters near the line pieces Hi, i > 1. One can however restrict parameters (µ̄2, µ̄3) to a region Ē
covering a finite set of line pieces H2 ∪ . . .∪HK with again a disc around O−1 removed. Such a region does
not intersect D and the above reasoning for the case A > 1 can be applied to show the existence of infinitely
many T -points inside Ē for µ1 small enough.

6 Concluding remarks

The goal of this manuscript was to gain insight about the structure of homoclinic and heteroclinic bifurcations
of a model capturing the relevant features of a FitzHugh-Nagumo type description of the catalytic oxidation
of CO on a Pt(110) surface.

Part of the motivation for this work lies in the numerically observed two- and three-loop homoclinic orbits
in [7], and further numerical and theoretical results with multi-loop pulses in [8]. In fact, it was conjectured
in [7] that some numerically observed complicated behaviour of the pde could arise via the influence of
unstable periodic orbits related to multi-loop pulses.

The connection with actual catalysis experiments is even more interesting. In fact, surface catalysis with
only one spatial dimension may sound somewhat far-fetched. However, there exists reports of experimental
setups (for other –less simple– chemical reactions) where the catalysis occurs on a ring-shaped subset of the
catalytic substrate, where the width of the ring is “negligible” as compared to its length [23]. Experiments
suggest the existence of one stable pulse for adequate parameter values. It would be interesting to attempt
to perform the CO oxidation on a ring-shaped catalysator trying to find evidence compatible with the
pulse-structure described by the present manuscript.

Also, it would be interesting to see numerical and theoretical work on the pde-side in order to establish
if different stable pulses (n-loop pulses) may exist/coexist. In such a case, if the pulses would have different
velocities in a 1-dimensional ring-shaped catalytic substrate, the question of “pulse collision” would become
relevant. See [24] and references therein for theoretical work concerning pde stability of pulses.
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