
Piecewise smooth interval maps withnonvanishing derivativeAle Jan HomburgInstitut f�ur Mathematik IFreie Universit�at BerlinArnimallee 2-614195 BerlinGermanyalejan@math.fu-berlin.deAbstractWe consider the dynamics of piecewise smooth interval maps f with nowherevanishing derivative. We show that if f is not in�nitely renormalizable, then allits periodic orbits of su�ciently high period are hyperbolic repelling. If in additionall periodic orbits of f are hyperbolic, then f has at most �nitely many periodicattractors and there is a hyperbolic expansion outside the basins of these periodicattractors. In particular, if f is not in�nitely renormalizable and all its periodicorbits are hyperbolic repelling, then some iterate of f is expanding. In this case, fadmits an absolutely continuous invariant probability measure.1 IntroductionThere is an extensive theory on the dynamics of one dimensional maps. Especially smoothmaps have attracted much attention; the most detailed statements have been obtain-erd for quadratic maps or for unimodal maps with negative Schwarzian derivative. See[MelStr,1993] for an account of the theory. The existence of critical points plays a domi-nant role in the dynamics of smooth maps. A natural question occurs what can be saidon the dynamics of piecewise smooth maps for which the derivative nowhere vanishes.Studying the dynamics of such maps is the goal of this paper.We study the dynamics of maps f : I ! I on a compact interval I with a �nitenumber of turning points. A turning point is a local extremum in the interior of I. A1



continuous map f is called multimodal if it possesses a �nite number of turning points.Let E be the class of multimodal maps f : I ! I, so that f is strictly monotone outsidethe set of turning points T and ln jDf j is Lipschitz continuous.We show that from a metric point of view, the possible dynamics of a map f 2 Eis limited. We show that if f is not in�nitely renormalizable then there exists M > 0so that all periodic orbits of period larger than M are hyperbolic repelling. To excludepathological dynamics one can further assume that all periodic orbits are hyperbolic.Then there is at most a �nite number of periodic attractors. We prove that in thissituation there is an exponential expansion outside the basin of attraction of the periodicattractors.Let us state our main result.Theorem 1.1 Let f 2 E be at most �nitely often renormalizable. Then there are numbersKn with Kn !1 as n!1, so thatjDfn(pn)j � Kn (1)for each periodic point pn with minimal period n.If moreover all periodic orbits are hyperbolic, then there is only a �nite number ofperiodic attractors and there exist C > 0; � > 1 so that for all x 2 I with fn(x) not in theimmediate basin of attraction of an attracting periodic orbit,jDfn(x)j � C�n:In particular, if f only has periodic repellers, there exists N > 0 withjDfN j > 1:In section 5 we give variants of this theorem, for classes of maps with less smoothnessrequirements, but with additional restrictions on the dynamics.Together with the results of Alsed�a, L�opez and Snoha [AlsLopSno,1995], classifyingin�nitely renormalizable piecewise smooth maps, this result provides a good understand-ing, from a metric point of view, of the dynamics of piecewise smooth multimodal mapswith nowhere vanishing derivative.As a corollary of the above theorem the following statement is obtained. A necessaryand su�cient condition for f 2 E to be eventually expanding (jDfnj > 1 for some n 2 N)is that f is at most �nitely often renormalizable and all its periodic orbits are hyperbolicrepelling. It is well known that eventually expanding maps admit an absolutely continuousinvariant probability measure (in short, an a.c.i.p.) [LasYor,1973], [MelStr,1993]. Sothe result in this paper shows that any piecewise smooth multimodal map with nowhere2



vanishing derivative admits an a.c.i.p. if all its periodic orbits are hyperbolic repelling andit is at most �nitely often renormalizable. The property that some iterate of an intervalmap is expanding is persistent under smooth perturbations. Therefore, these a.c.i.p.'soccur persistently. This is in marked contrast with the situation for smooth maps, wherea.c.i.p.'s do not occur persistently. We should remark though that in one parameterfamilies of smooth multimodal maps satisfying some natural conditions, a.c.i.p.'s occurat a set of parameter values of positive measure [Jak,1981], [BenCar,1985], [MelStr,1993],[MarNow,1996], [Lyu,1996].In the course of proving theorem 1.1 we present a simple proof of Ma~n�e's theorem,giving an exponential expansion along orbits which stay outside a neighborhood of the setof turning points and do not converge to periodic attractors (see theorem 3.1). Actually,our proof of Ma~n�e's theorem holds for a somewhat larger class of maps than the proofsof Ma~n�e [Man,1985] and van Strien [Str,1990], [MelStr,1993] (compare also [Nus,1988]).Let C be the class of maps on the interval I de�ned as follows. A map f is in C if fis C1 except possibly at a �nite set, there exists C � 1 so that 1=C � jDf j � C, andln jDf j has bounded variation. We prove Ma~n�e's theorem for maps from C. This includespiecewise a�ne maps which have attracted some attention recently, see [GalMarTre,1994],[MarTre,1994], [LopSno,1995]. It is shown in [MarTre,1994], [LopSno,1995], that piecewisea�ne maps are not in�nitely renormalizable. It was conjectured in [GalMarTre,1994] thatpiecewise a�ne maps with only hyperbolic repelling periodic orbits would be eventuallyexpanding. Although some intermediate results in this paper, like Ma~n�e's theorem, areproved for a class of maps including piecewise a�ne maps, our main result is proved for aclass of maps that includes only simple piecewise a�ne maps. However, the statement ofthe main theorem also holds for maps f 2 C for which the limit sets of the turning pointsare not minimal Cantor sets, see section 5.Let us say a few words on the proofs in this paper. A basic lemma we prove provides,for a map f 2 C, a hyperbolic expansion outside the basin of the periodic attractorsunder the conditions that all periodic orbits are hyperbolic and there is a strong expansionalong periodic orbits of high period. This lemma enables an easy proof of Ma~n�e's theoremmentioned above. Indeed, it is readily seen that periodic orbits of high period stayingoutside a �xed neighborhood of the turning points have a strong expansion along them.Ma~n�e's theorem follows from an application of the just described lemma.From the above it is clear that a keyrole is played by the periodic orbits. Our strategyfor proving theorem 1.1 is by demonstrating a strong expansion along periodic orbitsof high period. It su�ces to show this for periodic orbits that stay in the vicinity ofthe !-limit set of a turning point. Demonstrating this is fairly direct if the turningpoint is periodic or not recurrent. More work will be involved in establishing a strongexpansion along periodic orbits of high period near the !-limit set of a nonperiodic but3



recurrent turning point. Dynamics near !-limit sets of recurrent turning points that arenot minimal, is treated by direct arguments similar to the ones used in the previoussections. For periodic orbits near minimal !-limit sets we proceed as follows. If !(c) is aCantor set we prove, by adapting the existing proofs for C2 maps, that it has zero Lebesguemeasure. Using this we show that if !(c) is a minimal Cantor set, it is a hyperbolicrepelling set. It is then immediate that a strong expansion exists along periodic orbits ofhigh period that stay near !(c).The organization of this paper is as follows. The next section contains some notationand tools that are used throughout the paper. In section 3 we prove the above mentionedtheorem by Ma~n�e. In section 4 we assume theorem 1.1 holds for orbits that stay nearthe !-limit sets of the turning points and show how to extend to all orbits. With thelemmas proved in section 4 one can easily treat multimodal maps for which turning pointsare not recurrent, or periodic, or have a hyperbolic repelling !-limit set. In section 5 weprove theorem 1.1 making use of the material in the previous sections, as well as resultson the Lebesgue measure of !-limit sets. These results are collected in section 6. Weshow that the !-limit set of a turning point has zero Lebesgue measure if it containsno intervals. This result is basically due to [BloLyu,1990], [Var,1996], who treated C2multimodal maps.Discussions I had with Henk Bruin, Gerhard Keller, Matthias St. Pierre, DuncanSands (especially him) and Sebastian van Strien have been very enlightening. The book[MelStr,1993] by Welington de Melo and Sebastian van Strien was a valuable source ofinformation. I thank the referee for his or her comments.2 PrerequisitesThis section collects some, mostly well known, properties of interval maps that we needin the sequel. We �rst de�ne the three classes of maps occuring in this paper. Let I be acompact interval.Let E be the class of multimodal maps f : I ! I, so that f is strictly monotoneoutside the set of turning points T and ln jDf j is Lipschitz continuous.Let D be the class of multimodal maps f : I ! I, so that f is strictly monotoneoutside the set of turning points T and ln jDf j restricted to each interval in InT can beextended to a Lipschitz continuous map on a compact interval.Let C be the class of maps f : I ! I, so that f is C1 except possibly at a �nite set,there exists C � 1 so that 1=C � jDf j � C, and ln jDf j has bounded variation.Note that E � D � C. In particular, for all maps f in E, D or C, jDf j is boundedand bounded away from zero. For f from C or D, it is allowed that at a turning point c,limx#c jDf(x)j and limx"c jDf(x)j di�er. This is not allowed for maps f 2 E.4



An interval T � I is called a homterval if f ij T is monotone for all i 2 N. T is calleda wandering interval if in addition f i(T ) \ f j(T ) = ; for all 0 � i < j. See [MelStr,1993]for the following lemma.Lemma 2.1 (`Contraction principle') Let f : I ! I be a continuous multimodal mapwithout wandering intervals. For any � > 0 there is a ~� > 0 so that for any interval J � Iwith jJ j � � and for which fn(J) does not converge to some periodic orbit as n!1, wehave jfn(J)j � ~�.That we can apply the contraction principle follows from the following result from[MarMelStr,1992].Theorem 2.2 A map f 2 C has no wandering intervals.The derivative Df might not exist in a point x. To avoid cumbersome notation, wewill write e.g. jDfn(x)j � C for lim infy!x jDfn(y)j � C. The distortion of fn on an intervalJ � I is de�ned as supx;y2J jDfn(x)j = jDfn(y)j :A collection I = fI1; : : : ; ILg of subintervals of I is said to have intersection multiplicityS if the maximum over x 2 I of the number of intervals from I containing x is S.Lemma 2.3 Let f 2 C. For each S > 0 there is D > 1 so that for each interval J � Iwith the collection fJ; f(J); : : : ; fn�1(J)g having intersection multiplicity at most S, thedistortion of fn on J is bounded by D.Proof. Denote by K = Var(ln jDf j) the variation of ln jDf j. Let L be the set of pointswhere jDf j is discontinuous, let L denote its cardinality. WriteM = supx2L ����limy#x ln jDf(y)j � limy"x ln jDf(y)j���� :For x; y 2 J , jln jDfn(x)j � ln jDfn(y)jj (2)= �����n�1Xk=0 ln jDf(fk(x))j � ln jDf(fk(y))j������ S(K + LM):The distortion of fn on J is thus bounded by eS(K+LM).5



Maps from D have somewhat better distortion properties than maps from C. TheLipschitz constant of f 2 D is de�ned as the supremum of the Lipschitz constants of frestricted to an interval of InT.The proof of the following lemma goes just as the proof of lemma 2.3.Lemma 2.4 Let f 2 D. Denote the Lipschitz constant of ln jDf j by K. Suppose Jn isan interval on which jDfnj is continuous. Then the distortion of fn on Jn is bounded byeKPn�1i=0 jf i(Jn)j.Observe that the distortion of fn on Jn with Jn as in the above lemma, is close to 1if Pn�1i=0 jf i(Jn)j is small. The following lemma tells how much we can extend an intervalJn on which fn has bounded distortion, and still have bounded distortion on the largerinterval.Lemma 2.5 Let f 2 D. There is a constant K so that the following holds. Let Jn = (a; b)and Tn = (a; d) � Jn be intervals on which jDfnj is continuous. Let � = Pn�1i=0 jf i(Jn)jand let � > � be such that Pn�1i=0 jf i(Tn)j = � . ThenjTnnJnjjJnj � e�K� ��� � 1� :Proof. Denote � = jTnnJnj=jJnj. By lemma 2.4, the distortion of fn on Tn is boundedby eK� for some constant K. So, for 0 � m < n and some z 2 TnnJn,jfm(Tn)j = jfm(Jn)j+ jDfm(z)jjTnnJnj� jfm(Jn)j+ eK� jfm(Jn)jjJnj jTnnJnj� jfm(Jn)j+ eK� jfm(Jn)jjJnj �jJnj:Hence n�1Xi=0 jf i(Tn)j � n�1Xi=0 jf i(Jn)j �1 + eK��� :So � satis�es �=� � 1 + eK��, i.e. � � e�K� � �� � 1�.A closed forward invariant subset X � I of f 2 C is called hyperbolic repelling if thereexists C > 0; � > 1 with jDfn(x)j � C�n (3)for all x 2 X. A periodic point p with minimal period n is called hyperbolic if bothlimy"p jDfn(y)j and limy#p jDfn(y)j are either smaller or larger than one.6



Lemma 2.6 Let f 2 C. Let X be a closed invariant set with the property that there exists� > 1 so that for all x 2 X, there exists nx with jDfnx (x)j � �.Then X is hyperbolic repelling.Proof. Let, for some ~�, 1 < ~� < �, Bx 3 x denote the ball with jDfnx jBxj > ~�.Because X is a closed set, it can be covered by a �nite number of balls Bx1; : : : ; BxL.Write N = maxfnx1; : : : ; nxLg. This implies that for x 2 L, n 2 N there are positiveintegers 0 = n0 < n1 < : : : < nM � n with nj � nj�1; n� nM � N andjDfn(x)j = 0@ MYj=1Dfnj�nj�1 (fn1+:::+nj�1 (x))1ADfn�nM (fn1+:::+nM (x));~� � jDfnj�nj�1 (fn1+:::+nj�1 (x))j:With N = maxfnx1; : : : ; nxLg and m = minx2I jDf(x)j we thus havejDfn(x)j � ~�Mmn�nM � ~�(n=N)mN :Therefore there exists N 2 N so that for each x 2 L, jDfN (x)j � �. On a smallneighborhood V of L, ���DfN jV ��� � ~�. The lemma now easily follows.3 Ma~n�e's theoremFor a subset U of I, write�n(U) = fx 2 I; x; f(x); : : : ; fn(x) 2 InUg: (4)In the case of C2 maps, the following theorem is due to Ma~n�e [Man,1985], see also[MelStr,1993]. The argument given here seems a more direct one.Theorem 3.1 Let f 2 C. Let U be a neighborhood of the set of turning points T of f .Then there are numbers Kn with Kn !1 as n!1, so thatjDfn(pn)j � Kn (5)for each periodic point pn with minimal period n and O(pn) � InU .If all periodic orbits in InU are hyperbolic, then there are C > 0, � > 1, so that foreach n 2 N and x 2 �n(U [ B0), jDfn(x)j � C�n: (6)Here B0 denotes the union of the immediate basins of the periodic attractors.7



Proof. Let pn be a periodic point of f with minimal period n and O(pn) � InU . If nis large enough, pn will not be a periodic attractor with a turning point in its basin ofattraction. Since Dfn is the same at each point of O(pn), we may replace pn by the pointin O(pn) closest to U . We keep writing pn for this point. Let Jn 3 pn be the maximalinterval with fnj Jn monotone and fn(Jn)\O(pn) = fpng. One easily sees that each pointx 2 I is contained in at most two of the intervals f j(Jn), 0 � j < n. By lemma 2.3, thereexists D > 0 so that for all n, the distortion of fn on Jn is bounded by D. Let � be theminimal length of components of U . If @(f i(Jn)) \ T = ; for all i < n, fn(Jn) contains acomponent of U and so jfn(Jn)j � �. If @(f i(Jn)) \ T 6= ; for some i < n with i chosenthe minimal number for which this holds, then jf i(Jn)j � �. By the contraction principle,which we can apply since no turning point is in the basin of attraction of O(pn), thereexists a positive number ~� < � so that jfn(Jn)j � ~�. It follows thatjDfn(pn)j � 1D jfn(Jn)jjJnj � 1D ~�jJnj (7)By theorem 2.2 f has no wandering intervals. We can therefore apply lemma 3.2 belowto get jJnj ! 0 as n!1; this proves (5).By extending f to a larger interval and altering f in U , we may assume that theturning points are in the basin of attraction of an attracting �xed point in @I. Then (5)holds, perhaps with di�erent numbers Kn, for all periodic orbits. Assume now that allperiodic orbits in InU are hyperbolic. From an application of lemma 3.3 below we obtain(6).Lemma 3.2 Let f : I ! I be a continuous l-modal map. Suppose f has no wanderingintervals. For each S > 0, there exists �n > 0 with �n ! 0 as n ! 1 so that for allintervals Jn with fnj Jn monotone, fn(Jn) � Jn and fJn; : : : ; fn(Jn)g having intersectionmultiplicity bounded by S, we have jJnj � �n.Proof. Assume, by contradiction, there exists C > 0 and a sequence Ji with jJij �C, f ij Ji is monotone, f i(Ji) � Ji and fJi; : : : ; f i(Ji)g having intersection multiplicitybounded by S. Let J be an interval contained in in�nitely many Ji's. So J is a homter-val. Since wandering intervals do not exist, f l(J) \ fk(J) 6= ; for some l < k 2 N. Wemay choose l; k minimal with this property. It is not hard to see that l and k are boundedby integers l0; k0 depending only on jJ j. The interval Ss2Nf l+s(k�l)(J) is a homterval, soany point in J is attracted by a periodic point of minimal period k � l or 2(k � l). Ob-serve that f l(Ji) contains a periodic point qi of period at least i=S. If v 2 f l(J), because2(k � l) < i=S for i large enough, there is w 2 (v; qi), 0 � s < i with f s(W ) 2 T . This8



contradicts that f ij Ji is monotone.The following lemma gives a `hyperbolic structure' outside the basins of periodic at-tractors if all periodic orbits are hyperbolic and there is a strong expansion along periodicorbits of high period.Lemma 3.3 Let f 2 C. Suppose there are numbers Kn with Kn ! 1 as n ! 1, sothat jDfn(pn)j � Kn for each periodic point pn of minimal period n. If U � I is an openset and all periodic orbits in InU are hyperbolic, then there are C > 0, � > 1, so that foreach n 2 N and x 2 �n(B0 [ U), we have jDfn(x)j � C�n. Here B0 denotes the union ofthe immediate basins of the periodic attractors.Proof. We show that lim supi2N jDf i(x)j = 1 (8)for each point x 2 �1(B0 [ U). Let us �rst �nish the proof assuming (8). It followsfrom (8) that there exists � > 1 so that for each x 2 �1(B0 [ U), there is nx 2 N withjDfnx (x)j > �. By lemma 2.6, there exists C > 0, � > 1 so that jDfn(x)j � C�n forall x 2 �1(B0 [ U). So there are N > 0 and a neighborhood V of �1(B0 [ U) so thatjDfN j V j � �. We claim there exists M 2 N so that (InV) \ �M (B0 [ U) = ;. Indeed,there would otherwise be a sequence of points xi ! x in InV so that f j(xi) 62 B0 [ U for0 � j � i. But then x 2 �1(B0[U), which is impossible. It follows that for some N 2 Nand ~� > 1, jDfN j � ~� on �N (B0 [ U). The lemma easily follows.It remains to establish (8). Since (8) is clear for repelling periodic points, we mayassume that x is not periodic. If f l(x) is a turning point for some l, replace x by f l+1(x).So we may assume O(x) \ fTg = ;. Choose a point y 2 !(x) as follows. If !(x) \ T 6= ;,let y be a turning point in !(x). If !(x) \ T = ;, there exist c 2 T and an interval (y; y0)with y 2 !(x), c 2 (y; y0), f(y) = f(y0) and !(x) \ (y; y0) = ;. We can in fact choose yand y0 so that y0 62 T. Indeed, since !(x) \ T = ;, altering f near T so that the valuesof f at T are slightly perturbed, doesn't change !(x). Alter f so that f(T) \ !(x) = ;and no new transverse intersections of the graph of f with I � fyg are created. Seek aninterval (y; y0) as above for this altered map, this satis�es the required properties.If y is a turning point, de�ne a function � on a small neighborhood W of y by � (y) = yand f(� (x)) = f(x) with � (x) 6= x if x 6= y. If y is not a turning point, let � be a functionde�ned on a small neighborhood W of fyg [ fy0g by f(� (x)) = f(x) and � (x) 6= x. Notethat � (y) = y0.Two cases occur which have to be studied separately. Either there exist in�nitelymany points in O(x)\ (y; � (y)) or there are only �nitely many points in O(x)\ (y; � (y)).9



There are only �nitely many points in O(x) \ (y; � (y)). Note that this case in particularoccurs if y 2 T, since then (y; � (y)) = ;. Let N be the maximal number so that fN (x) 2(y; � (y)). Replace x by fN+1(x).The sets Vk we now de�ne will play an important role in establishing (8). For k 2 Nwrite Vk = fy 2 W; f i(y) 62 (y; � (y)); 0 < i < k; fk(y) 2 (y; � (y))g: (9)We �rst discuss some properties of the sets Vk. Let Tk be a connected component of Vk.We claim that the following two items hold.� A point a 2 @Tk satis�es fk(a) 2 fa; � (a)g,� f i(Tk) \ f j(Tk) = ; for 0 � i < j < k.For the �rst item, observe that a 2 @Tk implies that for some l; 0 < l � k, f l(a) 2fa; � (a)g. Take l to be the minimal number with this property. Either l = k, then weare �nished, or l < k. In the latter case, write k = sl + t with t < l. Then fk(a) =f sl+t(a) = f t(a) or f t(� (a)). So t = 0 by minimality of l and fk(a) 2 fa; � (a)g. Inparticular, for each boundary point a of Tk, either a or � (a) is periodic. For the seconditem, write Tk = (a; b) with b 2 (a; � (a)). If f i(Tk) \ f j(Tk) 6= ; then there is y 2 Tk withfk(y) = fk�j+i(a) or fk(y) = fk�j+i(b). The �rst possibility contradicts the de�nition ofTk, the second possibility implies that either Tk\fk�j+i(Tk) 6= ; or � (Tk)\fk�j+i(Tk) 6= ;.This gives a 2 fk�j+i(Tk) resp. � (a) 2 fk�j+i(Tk). Therefore there exists z 2 (a; b) withfk�j+i(z) = a resp. fk�j+i(z) = � (a). But then fk(z) = f j�i(a), contradicting thede�nition of Tk.Because the intervals f i(Tk), 0 � i < k, are mutually disjoint, the minimal period ofthe periodic point a or � (a) with a 2 @Tk, is k=2 or k.Let fn(i)(x) be a sequence of closest returns to (y; � (y)); n(0) satis�es fn(0)(x) 2 Wand n(i + 1) is the minimal integer so that fn(i+1)(x) 2 (fn(i)(x); � (fn(i)(x))). Observethat n(i + 1) � n(i) ! 1 as i ! 1 and fn(i)(x) 2 Vn(i+1)�n(i). Let Tn(i+1)�n(i) be theconnected component of Vn(i+1)�n(i) that contains fn(i)(x). WriteDfn(i+1)(x) = iYj=0Dfn(j+1)�n(j)(fn(j)(x)): (10)By lemma 2.3, for z 2 Tk, jDfk(z)j � 1DCmin(Kk=2;Kk) (11)where D bounds the distortion of fk on Tk and C = minx2W jDf(x)j=jDf(� (x))j. Usingthis in (10) one gets lim supi2N jDf i(x)j =1.10



There are in�nitely many points in O(x) \ (y; � (y)). Remains the case where y 62 T andan in�nite number of iterates of x is contained in (y; � (y)). The reasoning is similar asabove, but involves a di�erent sequence of closest returns. Note that O(x) \ (y; � (y))accumulates on y or on � (y). By replacing y by � (y) if necessary, we may assume thatO(x) \ (y; � (y)) accumulates on y.De�ne Vk = fz 2 (y; c); f i(z) 62 (y; z); 0 < i < k; fk(y) 2 (y; z)g: (12)We �rst study some properties of Vk. Let Tk be a connected component of Vk. We claimthat� a point a 2 @Tk satis�es fk(a) = a or fk(a) = y,� f i(Tk) \ f j(Tk) = ; for 0 � i < j < k.For the �rst item, let a 2 @Tk. Then for some l; 0 < l � k, either f l(a) = a or f l(a) = y.Let l be the minimal number for which this holds. If f l(a) = a then, writing k = sl + twith t < l, fk(a) = f sl+t(a) = f t(a) shows t = 0 and fk(a) = a. Since O(y)\(y; � (y)) = ;and a 2 (y; � (y)), f l(a) = y and fk(a) 6= y for l < k is not possible. So either fk(a) = aor fk(a) = y. To obtain the second item, suppose by contradiction f i(Tk) \ f j(Tk) 6= ;.Then fk(Tk) \ fk�j+i(Tk) 6= ;. By minimality of k, fk�j+i(Tk) can not be contained infk(Tk). So there exists z 2 Tk with fk�j+i(z) = a, the boundary point of Tk with largestdistance to y. But then fk(z) = f j�i(a) can not lie in Tk, a contradiction.Let fn(i)(x) be a sequence of closest returns to y in (c; y); n(0) satis�es fn(0)(x) 2(y; c)\W and n(i+1) is the minimal integer so that fn(i+1)(x) 2 (y; fn(i)(x)). Note thatfn(i)(x) 2 Vn(i+1)�n(i). Let Tn(i+1)�n(i) be the connected component of Vn(i+1)�n(i) thatcontains fn(i)(x).We claim that there exists a neighborhood V of y so that fn(i+1)�n(i) is monotoneon Tn(i+1)�n(i) for all su�ciently large values of i. If such a neighborhood V would notexist, we could take a sequence of points zi 2 V \ Tn(i+1)�n(i) converging to y so thatf si(zi) = d for some d 2 T, 0 � si � n(i + 1) � n(i). Note jzi � fn(i)(x)j ! 0 andjfn(i+1)�n(i)(zi) � fn(i+1)(x)j ! 0 as i ! 0. Because !(x) \ T = ;, there is � > 0 so thatjf si(zi) � fn(i)+si(x)j = jd � fn(i)+si (x)j � �. This contradicts the contraction principlelemma 2.1, proving the claim. Using this claim it follows that for large i, @Tn(i+1)�n(i)contains a periodic point. As above one concludes lim supi2N jDf i(x)j =1.The use of the above lemma is not restricted to the proof of Ma~n�e's theorem (i.e.to maps with the turning points contained in basins of periodic attractors). Also in thefollowing sections our strategy will be to prove the existence of a strong expansion along11



periodic orbits of high period and then apply lemma 3.3. We will apply lemma 3.3 with Uequal to the empty set. For clarity, let us formulate the corresponding lemma separately.Lemma 3.4 Let f 2 C. Suppose there are numbers Kn with Kn ! 1 as n ! 1, sothat jDfn(pn)j � Kn for each periodic point pn of minimal period n. If moreover allperiodic orbits are hyperbolic, then there are C > 0, � > 1, so that for each n 2 N andx 2 �n(B0), we have jDfn(x)j � C�n. Here B0 denotes the union of the immediate basinsof the periodic attractors.4 Hyperbolic limit setsMa~n�e's theorem tells that our main theorem holds for orbits which stay outside a neigh-borhood of the turning points. In this section we show how to prove the main theorem ifwe assume it holds for orbits which stay near !-limit sets of turning points. This formsthe contents of the following lemma. After statement and proof of this lemma we apply itto prove the main theorem in some simple situations, making assumptions on the orbitsof the turning points.Lemma 4.1 Let f 2 C and let T denote the set of its turning points. Suppose that foreach c 2 T there are a neighborhood U(!(c)) of !(c) and numbers Ln with Ln ! 1 asn!1, so that jDfn(pn)j � Ln (13)for each periodic point pn with minimal period n and O(pn) � U(!(c)). Then there arenumbers Kn with Kn !1 as n!1, so thatjDfn(pn)j � Kn (14)for each periodic point pn with minimal period n.Proof. Write U for the union over the turning points of the neighborhoods U(!(c)). LetOn be a periodic orbit of minimal period n, containing a point in InU . Since Dfn is thesame at each point of On we may, in order to prove (14) for pn 2 On, replace pn by anypoint in On.We may assume that pn 2 On is contained in InU . Write Jn 3 pn for the maximalinterval with fnj Jn monotone and fn(Jn) \ On = fpng. Since the collection ff i(Jn)g,0 � iN;, has intersection multiplicity at most 2, by lemma 2.3 fn has bounded distortionon Jn with a bound D not depending on n. Write In � Jn for the maximal intervalcontaining pn on which fn is monotone. Since pn 2 InU and @fn(In) � O(T), there is �012



not depending on n so that both components of fn(In)nfpng have length at least �0. Bylemma 3.2, there is a sequence �n ! 0, n!1, with jJnj � �n. So (14) holds in case forsome pn 2 On \ InU , one point of @Jn is contained in O(T), since then jfn(Jn)j � �0.It remains to prove (14) for periodic orbits On of minimal period n so that for eachpn 2 On \ InU , @fn(Jn) � On. Suppose by contradiction that there is a constant C > 0and a sequence of periodic points pn(i) in InU of minimal period n(i), n(i)!1 as i!1,so that jDfn(i)(pn(i))j � C. FromjDfn(i)(pn(i))j � 1D jfn(i)(Jn(i))j=jJn(i)jand lemma 3.2 it follows that jfn(i)(Jn(i))j ! 0 as i!1. Consider the set of limit pointsff j(pn(i)); 0 � j < n(i); i 2 Ng. Because jfn(i)(Jn(i))j ! 0 as i ! 1, this set of limitpoints contains an interval. We can therefore take a periodic point y in InU contained inthe interior of this set of limit points.Denote by k the minimal period of y. If Dfk(y) < 0, let l = 2k. Otherwise, let l = k.Let P1 be a fundamental domain of y; P1 is an interval of the form [b; f l(b)) containedin the maximal interval around y on which f l is monotone. Take b to be an eventuallyperiodic point. Let Pn � (y; b) be such that fn�1(Pn) = P1. By lemma 4.2 below, there isa periodic point qn(i) 2 O(pn(i)), so that jDf j(qn(i))j � C for all j < n(i). Let h(i) be theminimal integer so that fh(i)(qn(i)) � Pn. Let Hn be the maximal interval containing qn(i)so that fh(i) is monotone on Hn and fh(i)(Hn) � Pn. We claim that for n high enough,� fh(i)(Hn) = Pn,� f q(Hn) \ fp(Hn) = ;,for 0 � q < p < h(i). For the �rst item, if fh(i)(Hn) 6= Pn, then f l(z) 2 T for somez 2 Hn and l < h(i). This contradicts O(T) \ Pn = ; for large n. For the second item,if f q(Hn) \ fp(Hn) 6= ; for some 0 � q < p < h(i), then f q+h(i)�p(Hn) \ fh(i)(Hn) 6= ;.This contradicts O(@Pn) \ Pn = ; for n high enough, which is a consequence of choosingb 2 @P1 eventually periodic.From the above it follows that fh(i)+n�1(Hn) = P1 and fh(i)+n�1 has uniformly boundeddistortion on Hn. So, there exists D > 0 so that for all i,jDfh(i)+n�1(qn(i))j � 1D jP1jjHnj: (15)Since jHnj ! 0 as n!1, jDfh(i)+n�1(qn(i))j is large if i is large. This contradicts the de�-nition of qn(i); since h(i)+n�1 is clearly bounded by 2n(i), we have that jDfh(i)+n�1(qn(i))jis bounded by C2. 13



Lemma 4.2 Let f 2 C. If pn is a periodic point of f with jDfn(pn)j � C for someC > 1, then there exists qn 2 O(pn) with jDf j(qn)j � C for all integers j � n.Proof. Suppose by contradiction that there is a constant ~C > C so that for all x 2 O(pn)there exists an integer j(x) < n with jDf j(x)(x)j � ~C. Let x1 = pn and x2 = f j(x1)(x1).Then jDfn�j(x1)(x2)j � Cn ~C. Denote x3 = f j(x2)(x2). Now either j(x1) + j(x2) < nor j(x1) + j(x2) > n. In the �rst case, jDf j(x1)+j(x2)(x1)j � ~C2. In the second case,jDf j(x1)+j(x2)�n(x1)j � ~C2nC. In both cases there is an integer h(x1) < n so thatjDfh(x1)(x1)j � Ĉ for some Ĉ which is at least a factor ~C=C larger then ~C. Contin-uing this reasoning leads to a contradiction.In the following lemma we discuss expansion along periodic orbits near a hyperbolicrepelling invariant set.Lemma 4.3 Let f 2 C and let c be a turning point of f . If !(c) is a hyperbolic repellingset, then there are a neighborhood U of !(c) and numbers Kn with Kn ! 1 as i ! 1,so that for each periodic point pn of minimal period n and with O(pn) � U ,jDfn(pn)j � Kn:Proof. We claim there exists �0 > 0, C > 0 and � > 1 so that for all x 2 I withx; f(x); : : : ; fn(x) contained in a �0 neighborhood of !(c), jDf i(x)j � C�i, 0 � i � n.Take N so large that jDfN j > 3 on !(c). For each x 2 !(c) there is a ball B�(x) so thatjDfN j > 2 on B�(x). Since !(c) is compact, it is covered by a �nite set fB�(x1); : : : ; B�(xs)gof these balls. Let �0 equal the minimumof �(x1); : : : ; �(xs). Write n = kN+l with l < N .Then jDfn(x)j � 2k minx2I jDf(x)jl. The claim and the proof of the lemma follow easily.Using the above lemma's one can easily treat dynamics of multimodal maps in Cfor which the turning points are either periodic, or nonrecurrent, or have hyperbolicrepelling limit set. This includes Misiurewicz maps; maps for which turning points arenot recurrent. The dynamics of C2 Misiurewicz maps was studied in [Str,1990], in thatpaper such maps were shown to admit an absolutely continuous invariant probabilitymeasure.Theorem 4.4 Let f 2 C. Suppose that for each turning point c the following holds.Either c is not recurrent, or c is periodic, or !(c) is a hyperbolic repelling set. Then thereare numbers Kn with Kn !1 as n!1, so thatjDfn(pn)j � Kn (16)14



for each periodic point pn with minimal period n.If moreover all periodic orbits are hyperbolic, there is only a �nite number of periodicattractors and there exist C > 0; � > 1 so that for all x 2 I with fn(x) not in theimmediate basin of attraction of an attracting periodic orbit,jDfn(x)j � C�n: (17)In particular, if f only has periodic repellers, there exists N > 0 withjDfN j > 1: (18)Proof. We show that the assumption of lemma 4.1 is satis�ed. The theorem then followsfrom lemma's 4.1 and 3.4.Let c be a turning point. If !(c) is a hyperbolic repelling set, (13) follows fromlemma 4.3. If !(c) is periodic, periodic orbits which stay in a small neighborhood of ithave the same period as c or twice the period. So the estimate (13) holds for periodicpoints in a small neighborhood of !(c) if c is periodic. If c is not recurrent, (13) holds forperiodic orbits in a small neighborhood of !(c) by Ma~n�e's theorem 3.1.5 Proof of the main theoremWe make use in this section of a result on the measure of !-limit sets that we present inthe next section. This result, an adaptation of work of Blokh and Lyubich [BloLyu,1989],[BloLyu,1990], Martens [Mar,1990], [Mar,1994] and Vargas [Var,1996], states that the !-limit set of any point of a map f 2 D either contains intervals or has zero Lebesguemeasure. Using this result we derive a lemma stating that periodic orbits of high periodnear the !-limit set of a recurrent turning point, for a map f 2 D that is not in�nitelyrenormalizable, are hyperbolic repelling. This is a �rst step in proving that such periodicpoints of high period are in fact strongly repelling.Our main result is the following theorem. In its proof we make use of number oflemma's put after the proof.Theorem 5.1 Let f : I ! I be a map satisfying one of the following presumptions.1. f 2 E is at most �nitely often renormalizable,2. f 2 D is unimodal and at most �nitely often renormalizable,3. f 2 C is such that the !-limit sets of the turning points are not minimal Cantorsets. 15



Then there are numbers Kn with Kn !1 as n!1, so thatjDfn(pn)j � Kn (19)for each periodic point pn with minimal period n.If moreover all periodic orbits are hyperbolic, there is only a �nite number of periodicattractors and there exist C > 0; � > 1 so that for all x 2 I with fn(x) not in theimmediate basin of attraction of an attracting periodic orbit,jDfn(x)j � C�n:In particular, if f only has periodic repellers, there exists N > 0 withjDfN j > 1:Proof. It su�ces to prove the theorem for maps that are not renormalizable. We provethat for each turning point c of f there is a neighborhood U of c so thatjDfn(pn)j � Kn (20)for periodic points pn of minimal period n whose orbits are contained in U . The theoremthen follows from lemma 4.1.Let c 2 T. We have already seen that (20) holds if c is not recurrent or periodic,compare theorem 4.4. Assume now that c is recurrent and not periodic. The case where!(c) is a minimal Cantor set is treated separately.!(c) is a minimal Cantor set. We prove thatlim supn2N jDfn(x)j = 1 (21)for all x 2 !(c). Since !(c) is minimal, for each x 2 !(c) we have c 2 !(x).Let � be a function on a neighborhood V of c, de�ned by � (c) = c and f(� (y)) = f(y)with � (y) 6= y if y 6= c. For x 2 !(c), let fn(i)(x) be a sequence of closest returns to c;n(0) is such that fn(0)(x) 2 V and n(i + 1) is the smallest integer larger then n(i) withfn(i+1(x) 2 (fn(i)(x); � (fn(i)(x))).Write jDfn(i+1)(x)j = iYj=0Dfn(j+1)�n(j)(fn(j)(x)): (22)Let Vk be de�ned as in (9);Vk = fy 2 V; f i(y) 62 (y; � (y)); 0 < i < k; fk(y) 2 (y; � (y))g:16



Here � is a function on a neighborhood V of c, de�ned by � (c) = c and f(� (y)) = f(y)with � (y) 6= y if y 6= c. Let Tn(i+1)�n(i) be the component of Vn(i+1)�n(i) containing fn(i)(x).It was shown in the proof of lemma 3.4 that� f i(Tn(i+1)�n(i)) \ f j(Tn(i+1)�n(i)) = ; for 0 � i < j < n(i+ 1)� n(i).By the contraction principle (lemma 2.1),sup0�j�n(i+1)�n(i) jf j(Tn(i+1)�n(i))j ! 0 (23)as i!1.By theorem 6.1, the Lebesgue measure of !(c) is 0. Hence, the Lebesgue measure jU�jof the �-neighborhood U� of !(c) satis�eslim�!0 jU�j = 0: (24)Because the intervals f l(Tn(i+1)�n(i)) are mutually disjoint for 0 � l < n(i + 1) � n(i)we conclude from (24) and (23) that Pn(i+1)�n(i)l=0 jf l(Tn(i+1)�n(i))j ! 0 as i ! 1. Thisimplies that the distortion of fn(i+1)�n(i) on monotone branches of Tn(i+1)�n(i) goes to 1as i!1.If f is a multimodal map from D, either @Tn(i+1)�n(i) or � (@Tn(i+1)�n(i)) contains aperiodic point. From lemma 5.2, using continuity of jDf j, it follows that the terms inthe product (22) are strictly larger than 1 for j large; (21) follows. If f is a unimodalmap from E, fn(i+1)�n(i) is monotone on Tn(i+1)�n(i) and therefore @Tn(i+1)�n(i) contains aperiodic point. Hence (21) follows from lemma 5.2.By lemma 2.6, !(c) is a hyperbolic set. An application of lemma 4.3 yields (20).c is recurrent, nonperiodic, and !(c) is not a minimal set. The following reasoning appliesto f 2 C.Let c1; : : : ; cs with cs = c be the turning points in !(c) with !(ci) � !(ci+1), 1 � i < s.Note that there can still be other turning points d 2 !(c) with !(d) strictly contained in!(c).Assume, by contradiction, the existence of C > 0 and a sequence of periodic orbitsOn(i) with minimal period n(i) and with the maximal distance between On(i) and !(c)converging to 0 as i!1, so that jDfn(i)(pn(i))j � C for pn(i) 2 On(i). By lemma 4.2, foreach i there exists a point qn(i) � On(i) so that jDf j (qn(i))j � C for all integers j � n(i).Let neighborhoods Sn(ch) of ch be as in lemma 5.3. Employing an induction argumentwe may assume that (20) holds for periodic orbits near !-limit sets of turning points thatare strictly contained in !(c1). From this and Ma~n�e's theorem 3.1, the minimal distancebetween On(i) and fc1; : : : ; csg goes to 0 as i ! 1. So for any n and for any ch there17



exists i with On(i) \ Sn(ch) 6= ;. Let h(i) be the minimal integer so that for some j,fh(i)(qn(i)) 2 Sn(cj). Let Hn be the maximal interval containing qn(i) on which fh(i) ismonotone and with fh(i)(Hn) � Sn(cj). We claim that� fh(i)(Hn) = Sn(cj),� fk(Hn) \ f l(Hn) = ; for 0 � k < l < h(i).Suppose the �rst item were false. Then f j(Hn) would intersect T for some j < h(i). Bythe contraction principle, f j(Hn) would then in fact hit a turning point ck; the orbitsof other turning points do not come near any Sn(cj). Since f j(qn(i)) 62 Sn(ck), there isz 2 Hn with f j(z) 2 @Sn(ck). This contradicts that f l(@Sn(ck)) \ Sn(cj) = ; unlessf l(@Sn(ck)) � Sn(cj), for all positive integers l. To establish the second item, supposefk(Hn) \ f l(Hn) 6= ; for some 0 � k < l < h(i). Then fh(i)�l+k(Hn) \ Sn(ck) 6= ;. Byminimality of h(i), fh(i)�l+k(Hn) can not be contained in Sn(ck), so that some z 2 Hn ismapped into @Sn(ck) by fh(i)�l+k. A contradiction is derived as above.By lemma 2.3, fh(i) has uniformly bounded distortion onHn. From this and lemma 5.3,there is a constant D > 0 so that for all i,jDfh(i)+sj (n)(qn(i))j � 1D jf sj(n)(Sn(cj))jjHnj � 1D �jHnj: (25)Since there are no homtervals, jQnj ! 0 as n!1. Hence, jDfh(i)+sj (n)(qn(i))j is large ifn is large. From lemma 5.3 we obtain that the orbit piece fqn(i); : : : ; fh(i)+sj(n)(qn(i))g hitsthe interval Sn(cj) only once. Therefore h(i) + sj(n) � 2n(i), from which it follows thatjDfh(i)+sj (n)(qn(i))j is bounded by C2, contradiction.Lemma 5.2 Let f 2 D be at most �nitely often renormalizable. Suppose c is a turningpoint of f so that !(c) is a Cantor set. Then there exist � > 1, " > 0 and N 2 N so thatfor all periodic points pn of minimal period n > N with O(pn) � U", where U" is the "neighborhood of !(c), jDfn(pn)j � �: (26)Proof. We may assume that f is not renormalizable.Suppose a sequence of periodic points pn(i) of minimal period n(i) accumulating on!(c) exists so that jDfn(i)(pn(i))j = �i (27)with �i ! 1 as i ! 1. By Ma~n�e's theorem 3.1 the minimal distance between O(pn(i))and the set of turning points T goes to 0 as i ! 1. By taking a subsequence, we may18



assume that pn(i) converges to a turning point ~c 2 !(c). Let � be a function de�ned on asmall neighborhood U of ~c so that � (~c) = ~c and f(� (y)) = f(y) with � (y) 6= y if y 6= ~c.We may assume that pn(i) is such that (pn(i); � (pn(i))) \ O(pn(i)) = ;. Let m(i) = n(i) ifDfn(i)(pn(i)) > 0 and m(i) = 2n(i) if Dfn(i)(pn(i)) < 0. So Dfm(i)(pn(i)) > 0.Write Sm(i) for the maximal interval in (pn(i); � (pn(i))) bounded by pn(i) with fm(i)(Sm(i)) �(pn(i); � (pn(i))). We claim that� f l(Sm(i)) \ fk(Sm(i)) = ; for 0 � l < k < m(i).Indeed, if f l(Sm(i)) \ fk(Sm(i)) 6= ; for some 0 � l < k < m(i), then fm(i)�k+l(Sm(i)) \fm(i)(Sm(i)) 6= ;. Since O(pn(i))\ (pn(i); � (pn(i))) = ; there is a 2 Sm(i) with fm(i)�k+l(a) 2fpn(i); � (pn(i))g. But then fm(i)(a) can not lie in Sm(i).Write Hm(i) for the maximal interval in Sm(i) bounded by pn(i) on which fm(i) ismonotone. Observe that fm(i)(Hm(i)) = fm(i)(Sm(i)): (28)By theorem 6.1, the Lebesgue measure of !(c) is 0. Hence, the Lebesgue measure jU�jof the �-neighborhood U� of !(c) satis�eslim�!0 jU�j = 0: (29)By the contraction principle (lemma 2.1),sup0�j�m(i) jf j(Sm(i))j ! 0 (30)as i ! 1. Because the intervals f l(Sm(i)) are mutually disjoint for 0 � l < m(i) weconclude from (29) and (30) that Pm(i)�1l=0 jf l(Sm(i))j ! 0 as i!1. This implies that thedistortion of fm(i) on Hm(i) goes to 1 as i!1, see lemma 2.4. Because Dfm(i)(pn(i))! 1as i ! 1, it follows that jDfm(i)j ! 1 uniformly on Hm(i) as i ! 1. It is easily seenfrom this and (28) that f is renormalizable.Lemma 5.3 Let f 2 C and let c1 be a nonperiodic but recurrent turning point of f so that!(c1) is not a minimal set. Let c1; : : : ; cs be the turning points with !(c1) = : : : = !(cs).Then there exist � > 0 so that for each turning point ci, there are decreasing neighborhoodsSn(ci) of ci and integers si(n) such thatjf si(n)(Sn(ci))j � � (31)and f si(n) has uniformly bounded distortion on Sn(ci).19



Furthermore, for n su�ciently large,f l(Sn(ci)) \ fk(Sn(ci)) = ; (32)for all 0 � l < k < si(n) andf l(@Sn(ci)) \ Sn(cj) = ; or f l(@Sn(ci)) � Sn(cj) (33)for all ci 6= cj , l 2 N.Proof. If !(c1) contains an interval, periodic orbits lie dense in it. If !(c1) is not aminimal Cantor set, it contains a a minimal set. Such a minimal set is a periodic orbitor a minimal Cantor set.(i) !(c1) is a minimal Cantor set that contains a periodic point.Let y be a periodic point in !(c1). Write k for the minimal period of y. If Dfk(y) < 0,let l = 2k, otherwise let l = k. Let z1 be an eventually periodic point so that f l ismonotone on (y; z1). Let p1 2 (y; z1) be such that f l(p1) = z1. Write P1 = [p1; z1) and letPn � (y; z1) be such that f (n�1)l(Pn) = P1. Note that Pn is a fundamental domain for y;f l(int Pn) \ int Pn = ; and f l(@Pn) \ @Pn 6= ;.We �rst construct Sn(ci) for a single turning point ci. For positive integers n, let �(n)be the minimal integer with f�(n)(ci) 2 Pn. Let �n be the maximal interval containing ciso that f�(n)(�n) � Pn. We claim that for n su�ciently large,� f i(�n) \ f j(�n) = ; for 0 � i < j < �(n),Suppose by contradiction that f i(�n) \ f j(�n) 6= ;. Then f�(n)(�n) \ f�(n)�j+i(�n) 6= ;.Because f�(n)(�n) � Pn and f�(n)�j+i(ci) 62 Pn, some z 2 �n is mapped by f�(n)�j+i to apoint in @Pn+1 [ Pn. This contradicts O(z1) \ Pn = ; for n high which follows from thefact that z1 is eventually periodic.We may take z1 so that !(z1) is outside !(c1). Then there is a neighborhood T1 of @P1so that O(c1) \ T1 = ;. Therefore, f�(n)(�n) contains a connected component of T1 \ P1.By choosing sj(n) = �(n) and Sn(cj) = �n, (31) is satis�ed.Note that f l(Sn(ci)) can not contain a boundary point of Sn(cj) for 0 � l < si(n)and i 6= j, since these boundary points are never mapped into Pn. By maximality of theintervals Sn(ci) it follows that, for 0 � l < si(n) and i 6= j, either f l(Sn(ci)) \ Sn(cj) = ;,or f l(Sn(ci)) = Sn(cj); (33) is an easy consequence.(ii) !(c1) is a Cantor set that contains no periodic points.20



The construction is very much the same as the case where !(c1) is a Cantor setcontaining a periodic orbit, only di�erent intervals Pn are chosen. Let y 2 !(c1) be apoint whose !-limit set is minimal. As above we de�ne a sequence of intervals Pn withjPnj ! 0 as n!1, so that fn(Pn) is a �xed interval P1. Choose an interval P1 with thefollowing properties. Let U be a small neighborhood of !(y). Choose P1 so that P1 � U ,P1 \ !(y) = ;, P1 \ !(c1) 6= ; and @P1 consists of eventually periodic points so thatO(@P1)\P1 = ;. It is not hard to see that such an interval P1 can be chosen. For n > 1,let Pn be a maximal interval in f�1(Pn�1) that is contained in U and intersects !(y), sothat fn is monotone on Pn. Because !(y) is a hyperbolic repelling set, the intersectionmultiplicity of the collection of intervals f i(Pn), 0 � i < n� 1, is bounded.It follows from lemma 2.3 that fn has uniformly bounded distortion on Pn. If T1 isa neigborhood of @P1 with T1 \ !(y) = ;, then fn(Pn) contains a connected componentof P1 \ T1. We can conclude from the fact that !(y) is a hyperbolic repelling set, thatjPnj ! 0 as n!1. The rest is as above.(iii) !(c1) contains an interval.If !(c1) contains an interval we have a bit more work to do. Let y be a periodic pointin !(c1). Intervals P1 = [p1; z1) with z1 eventually periodic and Pn with f (n�1)l(Pn) = P1are de�ned as in the case that !(c1) is a Cantor set containing a periodic point. Forpositive integers n, let �(n) be the minimal integer with f�(n)(ci) 2 Pn. Let �n be themaximal interval containing ci so that f�(n)(�n) � Pn+1 [ Pn. As before one shows thatfor n su�ciently large,� f i(�n) \ f j(�n) = ; for 0 � i < j < �(n).Let the integerm1 be so that fm1(z1) = q1 is periodic. Write n1 for the minimal periodof q1. If Dfn1 (q1) < 0, we replace n1 by 2n1, so that always Dfn1 (q1) > 0. Let b 2 P1 beclose enough to z1 so that fn1 ��� (fm1(b);q1) is monotone.Either P2 or (b; z1) is contained in f�(n)+(n�1)l(�n). Let Sn(ci) = �n and si(n) =�(n) + (n� 1)l.f�(n)+(n�1)l(�n) is contained in (b; z1). Note that f�(n)+(n�1)l(ci) 2 (b; z1). Take a fun-damental domain P 01 � fm1(b; z1) for q1. Let P 0m be the interval in fm1(b; z1) so thatf (m�1)n1(P 0m) = P 01. Note that f�(n)+(n�1)l+m1 (ci) is contained in some interval P 0m. Let�0n � �n be the maximal interval with f�(n)+(n�1)l+m1 (�0n) � P 0m+1[P 0m. Let Sn(ci) = �0nand si(n) = �(n) + (n� 1)l +m1 + (m� 1)n1. Note that P 02 � f si(n)(Sn(ci)).Finally, (33) is easily seen to hold from the construction of Sn(ci).21



6 Lebesgue measure of limit setsFor a measurable set X, we denote by jXj its Lebesgue measure. In this section we provethe following theorem.Theorem 6.1 Let f 2 D and let z 2 I. If !(z) contains no intervals, then j!(z)j = 0.Such a theorem was proved for C2 multimodal maps in [Lyu,1991], [Var,1996]. Theproof is subdivided into several propositions, treating di�erent kinds of limit sets. The !-limit set of a recurrent, nonperiodic, turning point is called a solenoid if it is obtained fromin�nitely many renormalizations. So, if In is a sequence of decreasing intervals containinga turning point c satisfying f q(n)(In) � In with qn !1 as n!1 and f i(In)\f j (In) = ;for 0 � i < j < q(n), then !(c) = \n2N[0�j<qnf j(In) is a solenoid.Proposition 6.2 Let f 2 C. Let z 2 I satisfy T \ !(z) = ;, where T denotes the set ofturning points of f . Then j!(z)j = 0.Proof. By extending f to a larger interval and altering f near the set T of turningpoints, we may assume that f(@I) � @I and f(T) � @I. This doesn't alter !(z). Assume!(z) has positive measure. Let x 2 !(z) be a point that is not eventually periodic. Thisexcludes at most countably many points. We may thus take x to be a density point of!(z). Let (y; y0) 2 I and c 2 T be such that y 2 !(x), c 2 (y; y0) and !(x) \ (y; y0) = ;.On a neighborhood U of fyg [ fy0g let a function � be de�ned by f(� (q)) = f(q) and� (q) 6= q. Note that f(y) = y0.First assume that at most �nitely many points in O(x) are contained in (y; � (y)).Replacing x by an iterate, we may assume O(x) \ (y; � (y)) = ;. Now let fn(i)(x) be thesequence of closest returns to (y; � (y)); n(0) is the minimal integer with fn(0)(x) 2 U andn(i+ 1) is the minimal integer with fn(i+1)(x) 2 Ufn(i)(x). De�neVk = fq 2 U ; f i(q) 62 (q; � (q)); 0 < i < k; fk(q) 2 (q; � (q))g; (34)see (9). Let Tn(i+1)�n(i) be the component of Vn(i+1)�n(i) containing fn(i)(x). WriteTn(i+1)�n(i) = (a; b) with b 2 (y; a). Reasoning as in the proof of lemma 3.4 and not-ing that f(T) � @I, we get that either fn(i+1)�n(i)(a) = a and fn(i+1)�n(i)(b) = � (b) orfn(i+1)�n(i)(a) = � (a) and fn(i+1)�n(i)(b) = b. Let Hi = fn(i+1)�n(i)(Tn(i+1)�n(i)). Note that(y; � (y)) � Hi: (35)Let Ji be the maximal interval containing x on which fn(i)(x) is monotone andfn(i)(Ji) � Tn(i+1)�n(i). We claim that 22



� fn(i)(Ji) = Tn(i+1)�n(i).� f l(Ji) \ fk(Ji) = ; for 0 � l < k < n(i).The �rst item holds, since otherwise f j(p) = c for some p 2 Ji, j < n(i). Becausef j(x) 62 Ua, f j(Ji) contains either Tn(i+1)�n(i) or � (Tn(i+1)�n(i)). So fn(i)(Ji) containsfn(i)�j(a) where a 2 @Tn(i+1)�n(i). It is however easily seen that O(a) \ Tn(i+1)�n(i) = ;,a contradiction. To see that the intervals f j(Ji), 0 � j < n(i), are pairwise disjoint,suppose f l(Ji) \ fk(Ji) 6= ; for some 0 � l < k < n(i). Then fn(i)(Ji) \ fn(i)�k+l(Ji) =Tn(i+1)�n(i)\fn(i)�k+l(Ji) 6= ;. Since, by minimality of n(i+1), fn(i)�k+l(Ji) can impossiblybe contained in Tn(i+1)�n(i), there exists z 2 Ji with fn(i)�k+l(z) = a 2 @Ji. This againcontradicts O(a) \ Tn(i+1)�n(i) = ;.By lemma 2.3, the distortion of fn(i+1) on Ji is bounded by some constant D > 0.From the forward invariance of !(z) we get fn(i+1)(!(z) \ Ji) � !(z) \ Hi. Hence, forsome qi 2 Ji, j!(z) \HijjHij � jfn(i+1)(!(z) \ Ji)jjfn(i+1)(Ji)j= 1 � jfn(i+1)(Jin(!(z) \ Ji))jjfn(i+1)(Ji)j= 1 � ZJin(!(z)\Ji) jDfn(i+1)(t)jdtjDfn(i+1)(qi)jjJij� 1 �D jJin(Ji \ !(z))jjJij ;which goes to 1 as i ! 1 because x is a density point of !(z) and jJij ! 0, i ! 1.So, because (y; � (y)) � Vi, j!(z) \ (y; � (y))j = j(y; � (y))j. Since !(z) is a closed set, weget (y; � (y)) � !(z), contradiction. The case where in�nitely many iterates f i(x) arecontained in (y; � (y)) is treated similarly, compare the proof of lemma 3.3.Before going on studying the measure of !-limit sets of recurrent turing points, weintroduce some notions and notations. Near a turning point c, one can de�ne a function� by demanding f(c) = c and f(� (y)) = f(y) with � (y) 6= y is y 6= c. Let U� be the unionof the neighborhoods of turning points on which such a function is de�ned. For x 2 U� ,write Ux = (x; � (x)). A point x 2 U� is called nice if O(x) \ Ux = ;. An interval of theform Ux is called symmetric.The following lemma gives the device by which one can prove that the !-limit set ofa recurrent turning point, if it contains no intervals, has zero Lebesgue measure.23



Lemma 6.3 Let f 2 C and let c be a turning point of f . If there exist � > 1 andsymmetric neighborhoods Pn � Qn of c with jQnj ! 0 as n ! 0, @Qn consisting of nicepoints, !(c) \ Qn � Pn, and jQnj=jPnj � �, then j!(c)j = 0.Proof. Let C = fx; c 2 !(x)g. By theorem 6.1, !(c) \ (InC) has zero measure. Takex 2 C \ !(c) and let h(n) be the minimal integer with fh(n)(x) 2 Qn. Let Tn be themaximal interval containing x so that fh(n)(Tn) � Qn. We claim that� f i(Tn) \ f j(Tn) = ; for 0 � i < j < h(n).Indeed, if f i(Tn)\f j(Tn) 6= ; for some 0 � i < j < h(n), then fh(n)(Tn)\fh(n)�j+i(Tn) 6= ;.Because fh(n)�j+i(Tn) � Qn is not possible by minimality of h(n), there exists z 2 Tn withfh(n)�j+i(z) 2 @Qn. But then fh(n)(z) cannot be in Qn since @Qn consists of nice points,contradiction.Let Sn � Tn satisfy fh(n)(Sn) � Pn. Note that!(c) \ Tn � Sn: (36)By lemma 2.3, fh(n) has bounded distortion on Tn with a bound independent of n. There-fore, using @fh(n)(Tn) � @Qn and jQnj=jPnj � �, there exists ~� > 1 so thatjTnj=jSnj � ~� (37)for all n. The contraction principle lemma 2.1 yields jTnj ! 0 as n ! 1. Therefore,(36) and (37) imply that x is not a density point of !(c). So almost no point in !(c) is adensity point of !(c). By the Lebesgue density theorem, !(c) has zero measure.Proposition 6.4 Let f 2 C. Let c be a turning point of f .If !(c) is not minimal and does not contain an interval, then j!(c)j = 0.Proof. Because !(c) is not minimal, there exists y 2 !(c) with c 62 !(y). We mayassume that !(y) is a minimal set.First suppose y is periodic. Write k for the minimal period of y. If Dfk(y) < 0, letl = 2k, otherwise let l = k. Let I1 = (y; y1) be an interval on which f l is monotone, withy1 an eventually periodic point and O(c) accumulates in I1 to y. Let In be the maximalsubinterval of I1 with f (n�1)l(In) = I1. Write Jn = InnIn�1. Note that Jn is a fundamentaldomain; f l(int Jn) \ int Jn = ; and f l(@In) \ @In 6= ;.Let s(n) be the minimal integer with f s(n)(f(c)) � Jn. Since O(c) accumulates in I1on y, s(n) is well de�ned for all n. Let Sn be the maximal interval containing f(c) so thatf s(n)(Sn) � Jn. We claim that for n su�ciently large,24



� f i(Sn) \ f j(Sn) = ; for 0 � i < j � s(n).Indeed, if f i(Sn)\f j(Sn) = ; for some 0 � i < j � s(n), then f s(n)(Sn)\f s(n)�j+i(Sn) 6= ;.Now f s(n)�j+i(Sn) � Jn is impossible by minimality of s(n). So some p 2 Sn is mappedby f s(n)�j+i to z 2 @Jn. This contradicts O(z)\Jn = ; for n high which follows from thefact that y1 is eventually periodic.Applying lemma 2.3 to f s(n)j Sn and f lnj Jn , one sees that f s(n)+ln has uniformlybounded distortion on Sn.By taking y1 with !(y1) \ !(c) = ;, we have @J1 \ !(c) = ;. Let T � J1 be so that!(c) \ J1 � T , let Tn � Sn be so that f s(n)+(n�1)l(Tn) = T . Because f s(n)+(n�1)l hasbounded distortion on Sn and @f s(n)+(n�1)lSn � @J1, there exists � > 0 withjLnj=jTnj; jRnj=jTnj � �; (38)where Ln; Rn are the components of SnnTn. Let Pn; Qn be the maximal intervals contain-ing c with f(Pn) � Tn, f(Qn) � Sn respectively. By (38), jQnj=jPnj � � for some � > 1.An application of lemma 6.3 yields j!(c)j = 0.The case where y is an in�nite minimal set proceeds similarly. We may assume y isa nice point. Let fn(i)(f(y)) be the sequence of closest returns to c; n(0) is the minimalinteger with fn(0)(f(y)) in the connected component of U� that contains c and n(i + 1)is the minimal integer with fn(i+1)(f(y)) 2 Ufn(i)(y). Let Vk be de�ned as in (34) and letTn(i+1)�n(i) be the component of Vn(i+1)�n(i) containing fn(i)(f(y)). Write Tn(i+1)�n(i) =(a; b) with b closer to c. Let Jn be the maximal interval containing f(y) with fn(i)(f(y)) �Tn(i+1)�n(i). From the fact that a boundary point of Tn(i+1)�n(i) or its image under f isperiodic, see the proof of lemma 3.4, it is easily seen thatO(@Tn(i+1)�n(i)) \ Tn(i+1)�n(i) = ;: (39)We claim that� fk(Jn) \ f l(Jn) = ; for 0 � k < l < n(i).Otherwise fn(i)(Jn) \ fn(i)�l+k(Jn) = Tn(i+1)�n(i) \ fn(i)�l+k(Jn) 6= ;. Since, by minimal-ity of n(i + 1) � n(i), fn(i)�l+k(Jn) � Tn(i+1)�n(i) is not possible, there is z 2 Jn withfn(i)�l+k(z) 2 @Tn(i+1)�n(i). Now (39) yields a contradiction. The rest proceeds as above.Proposition 6.5 Let f 2 C. Let c be a turning point of f .If c is a solenoid, then j!(c)j = 0. 25



Proof. This proposition is proved in [AlsLopSno,1995]. For completeness, we give ashort alternative argument here. The map f restricted to !(c) is injective. Therefore, foreach y 2 U� , j!(c) \ Uyj is smaller than the maximum of j(y; c)j and j(c; � (y))j. Solim supy!c j!(c) \ Uyj=jUyj � � (40)for some � < 1. Take x 2 !(c). If j!(c)j > 0 we may assume x is a density point of !(c).Let c1; : : : ; cs with cs = c denote the turning points in !(c). Since f is in�nitely renormaliz-able, there is a decreasing sequence of neighborhoods Pn(ci) of ci with f qn(Pn(ci)) � Pn(ci)and fk(Pn(ci)) \ f l(Pn(ci)) = ;, 0 � k < l < q(n), for some q(n) ! 1 as n ! 1. Letk(n) > 0 be the minimal number such that fk(n)(x) 2 Pn(ci) for some ci. Let In be themaximal interval so that fk(n) maps In homeomorphically onto Pn(ci). By lemma 2.3,there exists D > 0 so that the distortion of fkn j In is bounded by D. ComputejPn(ci)n(Pn(ci) \ !(c))jjPn(ci)j � jfkn(Inn(In \ !(c)))jjfkn(In)j � D jInn(In \ !(c))jjInj :Since x is a density point of !(c) and jInj ! 0 as n ! 1, jInn(In \ !(c))j=jInj ! 0 asn!1. Thus jPn(ci) \ !(c)j=jPn(ci)j ! 1 as n!1. This contradicts (40).The following proposition is proved in [Var,1996] for C2 multimodal maps. His proofalso works for f 2 D. We present a proof for the smaller class E of multimodal mapsf 2 D for which jDf j is continuous and refer to [Var,1996] for the proof for f 2 D.Proposition 6.6 Let f 2 D and let c be a turning point of f . If !(c) is a minimalCantor set which is not a solenoid, then j!(c)j = 0.A main ingredient of the proof of proposition 6.6 is lemma 6.7 below, for which we�rst introduce some notation.For x 2 U� , let Dx = fy 2 I; 9k > 0 with fk(y) 2 Uxg. The minimal number kwith fk(y) 2 Ux for y 2 Dx is called the transfer time of y. Let Rx : Dx ! Ux be thePoincar�e map; Rx(y) = fk(y) where k is the transfer time of y. If x is a nice point thenthe transfer time is constant on each connected component of Dx: a boundary point of amaximal subinterval of Dx on which the transfer time is constant, is mapped to @Ux forsome iterate and thus is also in @Dx.Let z be some nice point and write Sz for the connected component ofDz that containsf(c). Let x =  (z) be de�ned by Ux = f�1(Sz).Lemma 6.7 Let f 2 E. Suppose f is not renormalizable and c is recurrent. There aresymmetric neighborhoods Uu(n) � Uv(n) of c, where v(n) a nice point and u(n) =  (v(n))as de�ned above, with the following properties.26



1. jUv(n)j ! 0 as n!1.2. f i(u(n)) 62 Uv(n) for i > 0.3. There exists D > 0 so that the distortion of Ru(n) is bounded on each connectedcomponent of Du(n).4. For some � < 1, jUu(n)j=jUv(n)j � �.Proof. Let v(n) be a nice point and let u(n) =  (v(n)). For the second item, �rstnote that fk(u(n)) = v(n), where Ru(n)j Un = fk, so that f i(u(n)) 62 Uv(n) if i � k. Iff i(u(n)) 2 Uv(n) for some 0 < i < k, then since f i(u(n)) 62 Uv(n), there is a 2 Uu(n) withf i(a) 2 fv(n); � (v(n))g. But then fk(a) 2 Uv(n) is impossible since v(n) is nice. Forthe third item, showing bounded distortion of Ru(n) on connected components of Du(n),let J be a connected component of Du(n) and let k denote the transfer time on J . Thenf i(J)\f j(J) = ; for 0 � i < j < k. To see this, note that f i(J)\J 6= ; for some 0 < i < kwould imply the existence of y 2 J with f i(y) = a 2 @J . Then fk(y) = fk�i(a) 62 Uu(n),a contradiction. Lemma 2.3 shows that, for some D > 0, the distortion of Rx on eachconnected component of Du(n) is bounded by D.For the last item, we must further restrict the choice of v(n). Let cq(n) = f q(n)(c) bethe sequence of nearest returns to c. Denote by N the set of nice points; observe that cis an accumulation point of nice points. There thus are in�nitely many integers n with(Ucq(n�1)nUcq(n)) \N 6= ;. For those n, letz(n) = supfy < c; y 2 (Ucq(n�1)nUcq(n)) \Ng;x(n) =  (z(n)):By de�nition of z(n), we have x(n) 2 Ucq(n) and Rx(n)(c) = cq(n) 2 Uz(n)nUx(n).Rx(n) has a �xed point in Ux(n). Let pq(n) 2 Ux(n) be the periodic point of minimal periodq(n) and and Df q(n)(pq(n)) > 0. Since f is not renormalizable, there is r(n) 2 (pq(n); c)with f q(n)(r(n)) = � (pq(n)). Since the distortion of Rz(n) on Ux(n) is uniformly boundedand Rz(n)(c) 2 Uz(n)nUx(n), there exists � > 1 so that if jUz(n)j=jUx(n)j � �, thenjUpq(n)j=jUr(n)j � �. Therefore we can always choose neighborhoods Uu(n) � Uv(n) asin the statement of the lemma.Rx(n) has no �xed point in Ux(n). We claim the existence of � > 1 so that if jUz(n)j=jRx(n)(Ux(n))j ��, then c is in the basin of attraction of a periodic attractor. If jUz(n)j=jRx(n)(Ux(n))j � �,then jDRx(n)��� Ux(n) j � D(� � 1) for some constant D, since Rx(n) has uniformly boundeddistortion on Ux(n). Applying lemma 2.5 one easily obtains the claim.27



So we may assume jUz(n)j=jRx(n)(Ux(n))j � �. Let �� < �. If jUz(n)j=Ux(n)j � �� letv(n) = z(n) and u(n) = x(n). Otherwise let v(n) be so that Uv(n) is the maximal intervalin Ux(n) with f q(n)(Ux(n)nUv(n)) � Uz(n)nUx(n). Let r(n) = 	(q(n)). Because Rx(n) hasuniformly bounded distortion on Ux(n), we have jUq(n)=jUr(n)j � �0 for some �0 > 1.Proof of proposition 6.6 for f 2 E. Take symmetric neighborhoods Uu(n) � Uv(n)as in lemma 6.7. Since !(c) is minimal, !(c) � Du(n). Compactness of !(c) implies that!(c) is contained in a �nite number of connected components of Du(n). Let In be theconnected component with maximal transfer time kn. Denote by Jn � In the maximalinterval with fkn(Jn) � Uv(n). We claim that!(c) \ (JnnIn) = ;: (41)If this were not so, there would be an y 2 JnnIn with f i(y) 2 Uu(n), i < kn (by maximalityof kn). Then f i(In) \ Uu(n) = ; and f i(y) 2 Uu(n) implies that f i(z) 2 fu(n); � (u(n))gfor some z 2 JnnIn. Then fkn(z) = fkn�i(u(n)). By lemma 6.7, f j(u(n)) 62 Uv(n) for allj > 0. So fkn(z) can not be in Uu(n). This contradiction shows (41).Let sn be the minimal integer with f sn(f(c)) 2 In. As shown before there is an intervalSn containing f(c) so that f sn(Sn) � Jn. We claim that� fk(Sn) \ f l(Sn) = ; for 0 � l < k < sn.If fk(Sn) \ f l(Sn) 6= ; for some 0 � l < k < sn, then f sn(Sn) \ f sn�l+k(Sn) 6= ;.Write h = sn � l + k and observe that fh(Sn) can not be contained in Jn = f sn(Sn)by minimality of sn. So there exists z 2 Jn with fh(z) = a 2 @Jn. Then fh+kn (z) 2fv(n); � (v(n))g. So f sn+kn(z) = f sn+kn�h(a) = f sn�j(v(n)) can not be in Uv(n) since v(n)is nice, a contradiction.By lemma 2.3, f sn has bounded distortion on Sn where the bound does not depend onn. By lemma 6.7, jUu(n)j=jUv(n)j � � for some � < 1 not depending on n and the map fknhas bounded distortion on In. Let ~Jn � Jn be the maximal interval with Pkn�1i=0 jf i(~Ln)jandPkn�1i=0 jf i( ~Rn)j bounded byPkn�1i=0 jf i(In)j, where ~Ln; ~Rn are the components of ~JnnIn.By lemma 2.4, fkn has uniformly bounded distortion on ~Jn. For some � > 0, bothfkn(~Ln) and fkn( ~Rn) have size at least �jUu(n)j. Let P 0n � Q0n be intervals containing f(c)with fkn+sn(P 0n) = Uu(n), fkn+sn(Q0n) = Uv(n). Replacing Q0n by the smaller interval ~Qnsatisfying f sn( ~Qn) = ~Jn we can ensure that fkn+sn has bounded distortion on ~Qn andboth components of ~QnnP 0n have size at least �jP 0nj for some � > 0. So alsojL0nj=jP 0nj; jR0nj=jP 0nj � �;where L0n; R0n are the components of Q0nnP 0n. Applying lemma 6.3 with Pn = f�1(P 0n) andQn = f�1(Q0n) (well de�ned since f(c) 2 P 0n) yields j!(c)j = 0.28
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