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Abstract

Cascades of period-doubling bifurcations have attracted much in-
terest from researchers of dynamical systems in the past two decades
as it is one of the routes to onset of chaos. In this paper we consider
routes to onset of chaos involving homoclinic-doubling bifurcations.
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We show the existence of cascades of homoclinic-doubling bifurca-
tions, persistently in two-parameter families of vector fields on R

3.
The cascades are found in an unfolding of a codimension-three homo-
clinic bifurcation; an orbit-flip at resonant eigenvalues. We develop a
continuation theory for homoclinic orbits in order to follow homoclinic
orbits through infinitely many homoclinic-doubling bifurcations.

1 Introduction

It is known that, under certain conditions, an orbit homoclinic to a hyper-
bolic singularity can undergo a homoclinic-doubling bifurcation. This creates
a homoclinic orbit, referred to as a doubled or 2-homoclinic orbit, that cir-
culates twice in a tubular neighborhood of the original homoclinic orbit. It
has been made plausible by H. Kokubu, M. Komuro and H. Oka [23] that
a cascade of successive homoclinic-doubling bifurcations can occur. It is the
goal of this paper to rigorously establish the following result:

Main Theorem In the space of two-parameter families of smooth vector
fields on R

3 there is an open set consisting of families that possess a cascade
of homoclinic-doubling bifurcations.

A precise statement will be made in Section 2, see Theorem 2.4, once the
necessary notation has been introduced. The picture to have in mind for the
homoclinic-doubling bifurcation is the following: in the parameter plane of a
two-parameter family of vector fields that generically unfolds such a homocli-
nic bifurcation there is a curve of 2-homoclinic orbits that branches from the
curve of primary homoclinic orbits, at the codimension-two point. The bifur-
cation diagram of such a homoclinic-doubling bifurcation is depicted in Fig-
ure 1. Note that such a scenario only makes sense for two-parameter families
of vector fields; homoclinic-doubling does not occur in generic one-parameter
families. A cascade of successive homoclinic-doubling bifurcations arises if,
as a curve of doubled homoclinic orbits is followed, a further homoclinic-
doubling occurs. The homoclinic orbit, existing after n homoclinic-doubling
bifurcations, forms a curve which gets arbitrarily long as n→ ∞.

It is clear that we are dealing with a situation that is global both in
parameter and in phase space. Our idea to handle this problem is to con-
sider a codimension-three homoclinic bifurcation and to show that there are
cascades of homoclinic-doubling bifurcations in its unfolding. Thereby we
localize the problem in the parameter space and restrict the phase space to a
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Figure 1: This figure shows the bifurcation diagram of a homoclinic-doubling
bifurcation, as studied in this paper. Besides the curve of primary homoclinic
orbits and the branch of doubled homoclinic orbits, there is a branch SN
of periodic saddle node bifurcations and a branch PD of period-doubling
bifurcations.

small tubular neighborhood of the codimension-three homoclinic orbit. The
codimension-three homoclinic bifurcation we consider is an orbit-flip bifur-
cation at resonant eigenvalues. To be more precise, let X be a smooth vector
field with a hyperbolic singularity p at which DX(p) has two real stable eigen-
values −α,−β with −α < −β < 0 and one unstable eigenvalue, which we
may assume to be equal to 1, after a time reparametrization. Assume that
X has a homoclinic orbit contained in the strong stable manifold W ss(p)
of p. Such a homoclinic orbit is called an orbit-flip homoclinic orbit [36].
We assume the resonance condition on the eigenvalues α = 1 and further
the eigenvalue condition 1

2
< β < 1. Finally, we assume that an associated

number, which we call the weak eigenvalue along the homoclinic orbit, is suffi-
ciently large. In any unfolding in a three-parameter family of vector fields, of
a vector field with such an orbit-flip homoclinic orbit at resonant eigenvalues,
we show the existence of cascades of homoclinic-doubling bifurcations. Ac-
tually, the homoclinic-doubling bifurcations themselves are codimension-two
homoclinic bifurcations known as inclination-flips. Building on the results of
this paper, the occurrence of homoclinic-doubling cascades in the unfolding
of other codimension-three homoclinic bifurcations is discussed in [19]. The
paper [24] discusses codimension-three homoclinic bifurcations as well, and
establishes the existence of inclination-flip bifurcations of n-homoclinic or-
bits, for any n, in the unfolding of a particular codimension-three homoclinic
bifurcation.
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There exists a striking similarity of homoclinic-doubling cascades with
period-doubling cascades. Indeed, in our constructed example, we can find
period-doubling cascades arbitrarily near a homoclinic-doubling cascade. The
existence proofs show more similarities. Period-doubling cascades for diffeo-
morphisms unfolding a Smale horseshoe are shown to exist using continuation
results for periodic orbits [45]. Analogous results then hold for vector fields
obtained from diffeomorphisms by a suspension construction. We proceed
by similar techniques; in a properly defined geometric situation we apply a
continuation result for homoclinic orbits. Since an appropriate continuation
theory for homoclinic orbits was not available, we had to develop such a the-
ory. The resulting theory is inspired by a continuation theory for periodic
orbits by K.T. Alligood, J. Mallet-Paret and J.A. Yorke [3], [2] and a contin-
uation theory for homoclinic orbits that applies to generic families and was
developed by B. Fiedler [11].

In addition, by considering the unfolding of a codimension-three homo-
clinic orbit and using singularly rescaled coordinates, we obtain a Poincaré
return map that is close to an interval map. This interval map is unimodal,
but not smooth since it has infinite slope at one point. The reduction to
(essentially) one dimensional dynamics brings a study of universal scaling
properties into scope. For smooth unimodal maps, universal scaling prop-
erties of a period-doubling cascade were discovered independently by M.
Feigenbaum [10] and by P. Coullet and C. Tresser [7]. They found that
the period-doubling bifurcations in the cascade scale asymptotically accord-
ing to a geometric law, with a convergence rate independent of the family.
This universal scaling is explained by renormalization theory. As just men-
tioned, in our constructions we obtain a Poincaré return map that is close to
an interval map. Renormalization theory and its interpretation for universal
scalings in the bifurcation diagrams have been studied for a class of such
interval maps in [20].

In [23], numerical evidence for the existence of a homoclinic-doubling
cascade in a family of piecewise affine vector fields is provided. Our re-
sult showing that homoclinic-doubling cascades occur in the unfolding of a
specific codimension-three homoclinic orbit, enables the construction of an
example of a family of polynomial vector fields with a homoclinic-doubling
cascade. Indeed, in [37] a recipe is given to construct polynomial vector
fields with specific homoclinic orbits. Following his construction one can
write down a family of vector fields unfolding a codimension-three orbit-flip
homoclinic orbit at resonant eigenvalues. A numerical investigation of such
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vector fields is contained in [30] by B.E. Oldeman, B. Krauskopf and A.R.
Champneys, where they numerically detect a cascade of homoclinic-doubling
bifurcations and study scalings in the bifurcation diagram. See also [31].
Furthermore, there is some evidence that in the Shimizu-Morioka model for
studying the dynamics of Lorenz-like systems at high Rayleigh numbers,
homoclinic-doubling cascades can occur, see [39].

This paper is organized as follows. In Section 2 we give a definition
of the degenerate homoclinic orbit called the orbit-flip at resonant eigen-
values. This is the core object of our study, and its unfolding exhibits the
homoclinic-doubling cascades. We do not intend to study the complete bifur-
cation diagram of this codimension-three homoclinic orbit, but rather restrict
our study to a region in parameter space where one expects the cascade. For
these parameters, we study a Poincaré return map. We give an asymptotic
expression of a rescaled form of this Poincaré return map. The crucial obser-
vation is that the rescaled Poincaré return map can be viewed as a singular
perturbation of an interval map. This rescaled Poincaré return map plays a
central role in the analysis that follows.

In Section 3 we consider the family of one dimensional maps that result
from the singular rescaling. We indicate the relation between its dynamics
and bifurcations with that of the original family of vector fields. In Section 4
we extend the study in Section 3 to that of the two dimensional rescaled
return map and prove some facts needed later. In particular we show the
existence of an invariant strong stable foliation for the rescaled return map,
on a subset of the parameter space. This allows for a rigorous reduction to
one dimensional dynamics, for these parameter values.

Section 5 is devoted to the construction of a continuation theory for ho-
moclinic orbits. This is inspired by a similar theory for the continuation of
periodic orbits, developed in a series of papers by K.T. Alligood, J.A. Yorke
and J. Mallet-Paret [25], [3], [2]. An obvious difference between continuing
periodic and homoclinic orbits is that periodic orbits are continued in one-
parameter families of vector fields, whereas homoclinic orbits are continued
in two-parameter families of vector fields.

In Section 6 we gather all information to prove the main theorem. Ap-
plying the continuation theory to our situation it will follow that, when con-
tinuing a particular homoclinic orbit, one encounters homoclinic orbits that
form curves of arbitrarily large length. Information derived from the fact that
we are unfolding a particular codimension-three homoclinic orbit allows us to
conclude that this can only happen through a cascade of homoclinic-doubling
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bifurcations.
In Appendix A we complete the proof that the bifurcation set of gener-

ically unfolded inclination-flips, with eigenvalue conditions with which they
occur in the homoclinic-doubling cascade, is as indicated in Figure 1. This
was previously unknown; the bifurcations were known to be complete as far as
bifurcations of n-periodic and n-homoclinic orbits for n = 1, 2 are concerned.

In Appendix B we construct a normal form for vector fields near the
singularity and prove validity of certain exponential expansions for a local
transition map. The results of this appendix are used to study the Poincaré
return map in Section 2.

Acknowledgements The authors acknowledge fruitful conversations with
Patrick Bonckaert, Bernold Fiedler and other colleagues at the Free Univer-
sity in Berlin, Sergey Gonchenko, Bernd Krauskopf, Björn Sandstede, Misha
Shashkov, Andrey Shil’nikov and Leonid Shil’nikov. AJH acknowledges the
kind hospitality of l’Université de Bourgogne in Dijon for a visit and of Kyoto
University for a two months stay.

2 Orbit-flip at resonant eigenvalues

In this section, we introduce a homoclinic orbit of codimension-three called
orbit-flip at resonant eigenvalues. Homoclinic-doubling cascades will be found
in its unfolding. After giving some definitions, we provide a precise state-
ment of our main result in Theorem 2.4 below. This section is further devoted
to the study of a Poincaré return map on a cross-section transverse to the
codimension-three orbit-flip homoclinic orbit.

Let X be a smooth vector field on R
3 with a hyperbolic singularity q. We

assume that DX(q) has two distinct real stable eigenvalues and one unsta-
ble eigenvalue. By a time reparametrization, we may assume the unstable
eigenvalue to be equal to 1. Write −α,−β with α > β > 0 for the two sta-
ble eigenvalues. Because the two stable eigenvalues are distinct, the vector
field X has, contained in the stable manifold W ss,s(q) of q, a one dimen-
sional strong stable manifold W ss(q). Its tangent space at q is the eigenspace
associated to −α. There further exists a two dimensional center unstable
manifold W s,u(q) with tangent space at q spanned by the eigenspaces associ-
ated to the eigenvalues −β and 1. This last invariant manifold is not unique
and in general it is only C1 [16]. The tangent bundle of (any) W s,u(q) along
the unstable manifold, however, is a uniquely determined smooth bundle, see
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e.g. [18] for a proof of this fact. All these invariant manifolds persist under
perturbation of the vector field. We write W ss,s

X (q),W s,u
X (q), etc., if we wish

to stress the dependence of these manifolds on the vector field X.

Definition 2.1 Suppose Γ is a homoclinic orbit of X, that is, a nontrivial
intersection of W ss,s(q) with W u(q). Γ is called an inclination-flip homoclinic
orbit, if W ss,s(q) is tangent to one (and hence any) center unstable manifold
W s,u(q) along Γ. Γ is called an orbit-flip homoclinic orbit, if Γ ⊂W ss(q).

Inclination-flips and orbit-flips are examples of homoclinic bifurcations of
(at least) codimension-two. We will not make precise the notion of codimen-
sion. What is heuristically meant with a bifurcation being of codimension-n,
is that it is given by a collection of conditions, naturally occuring in its study,
that make up a manifold of codimension-n in the space of vector fields. Com-
pare also Subsection 5.1.

Definition 2.2 Let {Xγ}, γ ∈ R
d, be a smooth unfolding of X = X0 pos-

sessing a homoclinic orbit Γ at γ = 0. Let S be a cross-section intersecting
Γ transversally at a single point. We say that Γ creates a homoclinic orbit of
order N or an N-homoclinic orbit in the family {Xγ}, if for any neighborhood
V ⊂ R

d of 0 and for any tubular neighborhood T of the closure of Γ, there
exists γ ∈ V such that Xγ possesses a homoclinic orbit in T intersecting
S ∩ T in N points.

The next proposition serves to introduce the notion of weak eigenvalue
along an orbit-flip homoclinic orbit. This is defined only if there is the
resonance α = 1 among the eigenvalues of DX(q). A related notion, that of
weak direction, was considered in [28].

Proposition 2.3 Suppose that Γ is an orbit-flip homoclinic orbit of a vector
field X as above. Suppose that α = 1. Let S be a cross-section transverse to
Γ and let Φ : S → S be the Poincaré return map on S. Let C = {C(t) | t ∈
(−1, 1)} be a C1 curve in S, transverse to W ss,s(q) at C(0) = W ss(q) ∩ S,
with C(t) in the domain of Φ for t > 0. Then the limit

lim
t↓0

DΦ(C(t))

exists as a 2 × 2 matrix which has two eigenvalues A and 0. The eigenvalue
A depends neither on the choice of the cross-section S nor on the curve C.
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Proof. By a theorem of G.R. Belitskii [4], there is a C1 local coordinate
change that makes the vector field X, near the singularity q, linear. In such
coordinates one has an explicit expression of a local transition map. The
proof is now given by a straightforward computation, which we leave to the
reader. �

It should be noted that the Poincaré return map Φ is defined only on a
subset of the section S. Here and throughout the paper we find it convenient
to speak of the Poincaré return map on a cross section, even though its
domain is actually a subset of the cross section. We call the eigenvalue A
the weak eigenvalue along Γ.

Consider a smooth three-parameter family of vector fields {Xγ}, γ ∈ R
3,

on R
3 satisfying the following conditions:

(BH: Basic hypothesis) The vector field Xγ has a hyperbolic singularity
qγ at which the linearization DXγ(qγ) possesses two negative eigenval-
ues −α(γ) < −β(γ) and one positive eigenvalue 1.

(OF: Orbit-flip) The vector field X0 possesses, at the parameter γ = 0, an
orbit-flip homoclinic orbit Γ. The stable manifold W ss,s

X0
(q0) intersects

any center unstable manifold W s,u
X0

(q0) transversally along Γ.

(SR: Strong resonance) The eigenvalues of the linearization DX0(q0) sat-
isfy

α(0) = 1 and
1

2
< β(0) < 1.

(WE: Weak eigenvalue) The weak eigenvalue A along Γ satisfies

A >
1

1 − β(0)

(

1

β(0)

)

β(0)
1−β(0)

.

(GU: Generic unfolding)
⋃

γ

(W ss
Xγ

(qγ), α(γ), γ) and
⋃

γ

(W u
Xγ

(qγ), α(γ), γ)

intersect transversally along Γ × {1} × {0} in R
3 × R × R

3.

Let S be a cross-section transverse to Γ. Take coordinates (x, y) on S
so that W ss

Xγ
(qγ) intersects S in (0, 0) and W ss,s

Xγ
(qγ) intersects S in {x = 0}.

We may further assume that the domain of the Poincaré return map on S
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is contained in {x > 0}. Write (ε(γ), ω(γ)) for the coordinates of the first
intersection of W u

Xγ
(qγ) with S. Define µ(γ) = α(γ) − 1. By the generic

unfolding condition (GU), one may, by reparametrizing the parameter space,
assume that γ = (ε, ω, µ).

The next theorem gives the class of vector fields for which we prove the
existence of homoclinic-doubling cascades.

Theorem 2.4 Let {Xγ}, γ = (ε, ω, µ) ∈ R
3, be a smooth three-parameter

family of vector fields as above. For each ε sufficiently small and positive, the
two-parameter family {Yω,µ} given by Yω,µ = Xε,ω,µ, possesses a connected set
of homoclinic bifurcation values in the (ω, µ)-parameter plane, containing a
cascade (ωn, µn) of homoclinic-doubling bifurcations in which a 2n-homoclinic
orbit is created. Moreover, each such homoclinic-doubling bifurcation is an
inclination-flip and each µn as well as limn→∞ µn is positive.

The main result, as formulated in the introduction, is a consequence of
this theorem. The geometry of the flow of the vector fields occurring in the
above theorem is discussed in Section 2.1 below (and illustrated in Figure 2),
by considering first return maps on a cross section. Theorem 2.4 holds for
any family satisfying the conditions (BH) to (GU) and so holds for an open
set of three-parameter families of vector fields.

Note that the eigenvalues of DXγ(qγ) at γ = (ε, ωn, µn), satisfy α(γ) > 1
and 1

2
< β(γ) < 1. We refer to the appendix for a precise statement on

the unfolding of inclination-flips with these eigenvalue conditions. These
eigenvalue conditions are relevant since for other conditions an unfolding of
an inclination-flip has a different bifurcation diagram [21], [17], [28]. Observe
also that higher order homoclinic orbits can only occur for ε > 0, when
W u(qγ) intersects S in the domain of the Poincaré return map on S.

2.1 Return maps

Let {Xγ} be a smooth three-parameter family of vector fields, satisfying the
conditions (BH) to (GU) above. Without loss of generality we may assume
that the singularity qγ is the origin O. Take coordinates (xss, xs, xu) ∈ R

3 so
that Xγ is given by a set of ordinary differential equations;

˙xss = −α(γ)xss +Hss(xss, xs, xu; γ),

ẋs = −β(γ)xs +Hs(xss, xs, xu; γ), (2.1)

ẋu = xu +Hu(xss, xs, xu; γ),

9



where DiHss(O; γ), DiHs(O; γ), DiHu(O; γ) = 0 for i = 0, 1.
For suitably small δ let

S = {xss = δ, |xs|, |xu| ≤ δ},

so that S is a cross-section transverse to Γ. The following proposition, giving
information on the Poincaré return map on S, is the main result of Section 2.
Its proof will occupy the rest of the section.

Proposition 2.5 Let {Xγ} be as above and let Φγ : S → S be the Poincaré
return map associated to Xγ. Let A be the weak eigenvalue along the homo-
clinic orbit Γ. For all compact intervals I, J ⊂ (0,∞) and all positive real
numbers Ax, Ay, there exist ε0 > 0, a diffeomorphism

σp : (0, ε0] × I × J → R
3,

and a smooth family of diffeomorphisms

σv
ε,p,r : (0, Ax] × [−Ay, Ay] → S

depending on parameters (ε, p, r) ∈ (0, ε0] × I × J, so that the map Ψε,p,r :
(0, Ax] × [−Ay, Ay] → R

2, given by

Ψε,p,r = (σv
ε,p,r)

−1 ◦ Φσp(ε,p,r) ◦ σ
v
ε,p,r,

has the following expression:

Ψε,p,r(x, y) =

(

f(x; ε, p, r) + h1(x, y; ε, p, r)
h2(x, y; ε, p, r)

)

,

where

f(x; ε, p, r) = p+
r

1 − β

(

βxα − xβ
)

and hi, i = 1, 2, satisfies

|hi(x, y; ε, p, r)|,

∣

∣

∣

∣

x
∂hi

∂x
(x, y; ε, p, r)

∣

∣

∣

∣

,

∣

∣

∣

∣

∂hi

∂y
(x, y; ε, p, r)

∣

∣

∣

∣

≤ Cε|x|
β,

for some Cε > 0 with Cε → 0 as ε → 0.
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Remark 2.6 For ε = 0, Ψ0,p,r(x, y) = (fp,r(x), 0) with

fp,r(x) = p−
1

1 − β(0)
rxβ(0) +

β(0)

1 − β(0)
rx.

Remark 2.7 It will follow from the expression for σp that, at ε = 0, µ is
positive for r < A1−β(0)

β(0)
. By condition (WE) on the weak eigenvalue along

Γ, this is the case if r < 1
β(0)

1/(1−β(0))
. This particular value will play a role

later.

T

Φ(T )

Φloc

Φfar

Φloc(T )

S

Σ

Figure 2: This figure illustrates the presence of close to unimodal maps in first
return maps for a vector field Xγ, γ = (ε, ω, µ), as stated in Proposition 2.5.
The strip T = σv

ε,p,r(∆) is mapped to a cusp shaped region by the first return
map Φ = Φfar ◦ Φloc (the local and global transition maps Φloc : S → Σ and
Φfar : Σ → S are studied in Section 2.2). The correct scale is given by the
map σv

ε,p,r and given explicitely in Section 2.3.

It should be noted that the rescaling in the above proposition, applies
only in a subregion of the combined phase-parameter space S × R

3. Indeed,
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it applies only to values from S×R
3 that lie in the image of (σv

ε,p,r, σ
p). The

importance of the rescaling lies in the fact that the rescaled Poincaré return
map is close to a one-dimensional map. Singular rescalings have been applied
in the study of homoclinic bifurcations in [28], [29], [24].

2.2 Transition maps

The remainder of Section 2 is an exposition of the proof of Proposition 2.5.
The proof is divided into two steps. The first step, in this subsection, involves
computing an asymptotic expression for a local transition map. The proof
of the main result of this subsection, Proposition 2.9, is postponed to Ap-
pendix B. The second step, in the next subsection, is then the introduction
of rescaled coordinates and the computation of the rescaled Poincaré return
map, in these rescaled coordinates.

Starting from the differential equations (2.1) we will perform a number
of local coordinate changes that bring the differential equations, near the
origin, in a better manageable form. By a smooth coordinate change we may
straighten the local strong stable, the local stable and the local unstable
manifold of q;

W ss
loc(q) ⊂ {xs, xu = 0}, (2.2)

W ss,s
loc (q) ⊂ {xu = 0}, (2.3)

W u
loc ⊂ {xss, xs = 0}, (2.4)

By (2.3), the function Hu in (2.1) is of O(xu). We can therefore multiply
the vector field Xγ near the origin by the smooth positive function (xu +
Hu(xss, xs, xu; γ))/xu. Note that this is equivalent to performing a state
dependent rescaling of time. Denoting the obtained vector field still by Xγ ,
Xγ is given by a set of ordinary differential equations

˙xss = −α(γ)xss + Fss(xss, xs, xu; γ),

ẋs = −β(γ)xs + Fs(xss, xs, xu; γ), (2.5)

ẋu = xu.

The next lemma is proved in Appendix B.

Lemma 2.8 There are smooth local coordinates in which

Fss(xss, xs, xu; γ) = O(‖(xss, xs)‖
2),

Fs(xss, xs, xu; γ) = O(‖(xss, xs)‖
2).
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For some small positive δ, define cross-sections

S = {xss = δ, |xs|, |xu| = δ}, (2.6)

Σ = {xu = δ, |xss|, |xs| = δ}. (2.7)

We may assume that S and Σ intersect the homoclinic orbit Γ transversally.
By a linear rescaling we may assume that δ = 1. On S we use (xs, xu)
as coordinates. Likewise, on Σ we use (xss, xs) as coordinates. The proof
of the following proposition is contained in Appendix B. Essential for the
expansions is the eigenvalue condition (SR).

Proposition 2.9 The local transition map Φloc : S → Σ, for the vector field
(2.5), has the following expression for its components Φloc = (Φss

loc,Φ
s
loc):

Φss
loc(xs, xu; γ) = xα

u (ψss(xs; γ) +Rss(xs, xu; γ)) ,
Φs

loc(xs, xu; γ) = xβ
u (xsψ

s(xs; γ) +Rs(xs, xu; γ)) .
(2.8)

Here ψss, ψs are smooth nonzero functions. Furthermore, Rss and Rs are
smooth for xu > 0; for each 0 < σss < 2β − α and 0 < σs < β, there exist
constants Ck+l > 0 so that

∣

∣

∣

∣

∂k+l

∂xk
u∂(xs, γ)l

Rss(xs, xu; γ)

∣

∣

∣

∣

≤ Ck+lx
σss−k
u ,

∣

∣

∣

∣

∂k+l

∂xk
u∂(xs, γ)l

Rs(xs, xu; γ)

∣

∣

∣

∣

≤ Ck+lx
σs−k
u ,

for nonnegative integers k, l. �

The components (Φs
far,Φ

u
far) of the global transition map Φfar : Σ → S

can be written as

Φs
far(xss, xs; γ) = ω(γ) + Axss +Bxs +Q1(xss, xs; γ), (2.9)

Φu
far(xss, xs; γ) = ε(γ) + Cxss +Dxs +Q2(xss, xs; γ), (2.10)

where ε and ω vanish for γ = 0, and Q1 and Q2 are quadratic and higher
order terms. Also A,B,C,D depend on γ, we suppress this dependence from
the notation. The Poincaré return map Φ : S → S for the vector field Xγ

is the composition of the local and global transition maps, Φ = Φfar ◦ Φloc.
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Write Φ = (Φs,Φu). From (2.9), (2.10) and Proposition 2.9 we obtain that
for some σ > 0,

Φs(xs, xu; γ) =

ω(γ) + Ãxα
u + B̃xsx

β
u + O(xα+σ

u + xsx
α
u + x2

sx
β
u), (2.11)

Φu(xs, xu; γ) =

ε(γ) + C̃xα
u + D̃xsx

β
u + O(xα+σ

u + xsx
α
u + x2

sx
β
u), (2.12)

where Ã = Aψss(0; γ), B̃ = Bψs(0; γ), C̃ = Cψss(0; γ) and D̃ = Dψs(0; γ).

2.3 Singular rescalings

Using the asymptotic expression of the Poincaré return map Φ : S → S in
the normal form coordinates, obtained in the previous subsection, we com-
plete the proof of Proposition 2.5.

Proof of Proposition 2.5. Define

µ(γ) = α(γ) − 1. (2.13)

Let ε(γ) and ω(γ) be as in (2.9), (2.10). By the generic unfolding condition
(GU), the map γ 7→ (ε(γ), ω(γ), µ(γ)) is a local diffeomorphism. We may
and therefore do assume that for small values of γ, γ = (ε, ω, µ).

Let A be the weak eigenvalue along Γ. A straightforward computation
shows that A equals the value of C̃ at γ = 0.

The Poincaré return map Φ = (Φs,Φu) on S has the expression given
by (2.11), (2.12). Let I, J be compact intervals in (0,∞) and let Ax, Ay be
positive real numbers. We define the maps

σp : (0, ε0] × I × J → R
3, (ε, p, r) 7→ (ε, µ, ω)

and
σv

ε,p,r : (0, Ax] × [−Ay, Ay] → S, (x, y) 7→ (xs, xu)
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implicitly by the following identities.

r =

(

ε

p

)µ
1 − β

β
C̃, (2.14)

pα−β = −
εα−β

ω

C̃

βD̃
, (2.15)

xu = ε
x

p
, (2.16)

xs = εβy − εα−β C̃

pα−ββD̃
. (2.17)

Note that D̃ 6= 0, since Γ is not an inclination-flip homoclinic orbit. From
(2.14) we obtain

µ =
ln
(

βr

C̃(1−β)

)

ln
(

ε
p

) . (2.18)

This makes clear that, for ε0 sufficiently close to 0, σp and σv
ε,p,r are well

defined.
A direct computation using (2.11), (2.12) gives the expression of Ψε,p,r.

Remark 2.6 follows since µ, ω → 0 as ε → 0. Remark 2.7 follows easily from
(2.18). �

3 Dynamics of the interval maps

In the previous section, we derived the rescaled Poincaré map Ψε,p,r, which
is a singular perturbation of the map

(x, y) 7→ (fp,r(x), 0), (3.1)

with the one dimensional map fp,r given by

fp,r(x) = p−
1

1 − β
rxβ +

β

1 − β
rx, (3.2)

where we have written β for β(0) (recall that 1
2
< β < 1). In this section, we

shall study the dynamics and the bifurcation structure of the family {fp,r}.
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Figure 3: For each p, r, fp,r given by (3.2) is a unimodal map with its critical
point at x = 1. Note that f(1) = p− r and f(0) = p. If p− r < 0, p > 0 and
r > (1 − β)/β, fp,r has two fixed points.

We consider fp,r defined on [0,∞). Observe that {fp,r} is a family of
unimodal maps, with a critical point at x = 1, which are not differentiable
at x = 0. The role of the parameters p, r is indicated in Figure 3.

Homoclinic bifurcations and bifurcations of periodic orbits for the vector
fields we study, naturally correspond to bifurcations of the reduced one di-
mensional maps {fp,r}. For homoclinic bifurcations, the correspondence is
as follows.

Homoclinic orbit of order n: Since the unstable manifold of the vector
field is the orbit of the origin of the cross section Σ (see the previ-
ous section), an n-periodic orbit of fp,r through 0 is interpreted as an
n-homoclinic orbit of the vector field. We therefore refer to such a pe-
riodic orbit as a homoclinic orbit of fp,r. The bifurcation set Hn for
n-homoclinic orbits of {fp,r} is thus given by

fn
p,r(0) = 0. (3.3)

Inclination-flip homoclinic orbit of order n: An n-periodic orbit of fp,r

that goes through 0 and the critical point 1 in successive iterates, is

16



interpreted as an inclination-flip homoclinic orbit of order n. The cor-
responding bifurcation set IFn is given by

fn
p,r(0) = 0 and

∂fp,r

∂x
(fn−1

p,r (0)) = 0,

which is equivalent to

fn
p,r(0) = 0 and fn−1

p,r (0) = 1. (3.4)

In particular, IFn occurs only on the diagonal line p = r.

3.1 Homoclinic-doubling cascades for the interval maps

For parameter values on the diagonal p = r in the parameter plane, the
one-parameter family {f̃p}, given by

f̃p(x) = fp,p(x) = p

(

1 −
1

1 − β
xβ +

β

1 − β
x

)

,

satisfies f̃p(1) = 0. That is, the critical value of f̃ is 0. Since inclination-
flips correspond to periodic orbits containing both 0 and 1, see (3.4), IFn

is contained in the diagonal p = r. To find a cascade of parameter values
pn ∈ IF2n , it thus suffices to consider the one-parameter family {f̃p}. Such a
cascade is the analogue, in the context of the one dimensional maps {fp,r},
of the sought-for homoclinic-doubling cascade.

Observe that, at p = 1, the critical point 1 is on a 2-periodic orbit of

f̃1. At p = ρ = β− 1
1−β , f̃ρ is a unimodal map, mapping [0, ρ] onto itself. We

want to conclude from these facts that {f̃p}, p ∈ [1, ρ], is a full family, and
so contains maps with any kneading sequence, compare [26]. Because {f̃p}
is not a family of C1 maps, this can not be concluded directly. However,
applying the coordinate change σ(x) = x1/β , we get a family of maps {f̂p},

given by f̂p = σ−1 ◦ f̃p ◦ σ, that are continuously differentiable. This is a

consequence of the facts that |f̂p(x)| = O(|x − 1|2β) for x near the critical
point 1, and 2β > 1. It follows that {f̃p} with p ∈ [1, ρ], is a full family. In
particular the family {f̃p} contains a cascade of parameter values pn in IF2n .
See [23] for an alternative argument.

The same argument also works for parameter values satisfying p > r,
where fp,r(1) = p − r is positive. In fact, under the condition that p > r,
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fp,r(p− r) = 1 implies that fp,r has a super-stable 2-periodic point, whereas
f 2

p,r(p− r) = fp,r(p− r) implies that fp,r is a unimodal map from the interval
[p− r, f(p− r)] onto itself. Therefore along any path in the region {(p, r) ∈
R

2; p > r} in the parameter plane connecting these two curves, the family
{fp,r} forms a full family. One can conclude that {fp,r} along such a curve
admits a cascade of period-doubling bifurcations.

3.2 Combinatorics of homoclinic orbits

It is clear that homoclinic bifurcations for {fp,r} can only occur if 0 ≤ p ≤ r,
when the critical value of fp,r is negative. The following renormalization ar-
gument shows that, along lines in the parameter plane where p − r has a
constant negative value, there are cascades of homoclinic bifurcations. Re-
strict fp,r to M = {x, 0 ≤ fp,r(x) ≤ p}, which is a union of two intervals.
One can define a renormalization of {fp,r} as follows. Renormalization is
defined if 0 ≤ f 2

p,r(0) ≤ Q, where Q is the orientation reversing fixed point of
fp,r. The renormalized map is the first return map on the interval [0, f 2

p,r(0)].
Suppose the parameters p, r are functions of one parameter µ ∈ [µ−, µ+].

Thus we obtain a one-parameter family {fµ}, µ ∈ [µ−, µ+]. Suppose p(µ) <
r(µ) for all µ and f 2

µ−
(0) ≤ 0, f 2

µ+(0) ≥ fµ+(0). For such a family one

can find a subinterval [µ−
1 , µ

+
1 ] of [µ−, µ+] so that fµ is renormalizable for

µ ∈ [µ−
1 , µ

+
1 ]. Writing Rfµ for the renormalized map, we have (Rfµ−

1
)2(0) = 0

and (Rfµ+
1
)2(0) = Rfµ+

1
(0). So the renormalized family satisfies the same

properties as the original family, allowing the conclusion that fµ possesses
infinitely renormalizable maps. This implies the existence of a cascade of
parameter values µn ∈ H2n for {fµ}.

More precise knowledge is obtained from symbolic dynamics, which we
will shortly describe. For each point x ∈ M , an itinerary I(x) is defined as
a finite or infinite sequence Ij(x), j ≥ 0, of symbols L and R, according to
the following rule.

Ij(x) =

{

L, if f j
µ(x) < 1,

R, if f j
µ(x) > 1.

If f j
µ(x) is outside of M , that is, if f j

µ(x) < 0 or if f j
µ(x) > ρ, then Ik(x) is

not defined for k ≥ j + 1.
One defines an ordering on itineraries as follows. Let I, J be two

itineraries. Then I < J if for the first integer j with Ij 6= Jj, the following
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holds: either Ij = L and Jj = R and the number of L’s in Ii, 0 ≤ i < j is
odd, or Ij = R and Jj = L and the number of L’s in Ii, 0 ≤ i < j is even.

Note that f j
µ(x) is decreasing at x (and thus changes the order of points

close to x), precisely if the number of L’s in Ii(x), 0 ≤ i ≤ j is odd. From
this one deduces that I(x) < I(y) implies x < y, so that itineraries of points
reflect the position on the interval. This observation immediately gives a
result on the order of homoclinic bifurcations. First note that if one lets µ
increase, a horseshoe is created (an interval map is said to have a horseshoe
if the interval is mapped twice over itself). From the above considerations
one concludes that for each I < J , there are parameter values µ1 < µ2, so
that 0 is a periodic point both for fµ1 and for fµ2 , and such that I(0) = I
for µ = µ1 and I(0) = J for µ = µ2.

If one further has a monotonicity property of the homoclinic bifurca-
tions, saying that the value of µ for which 0 is periodic with some prescribed
itinerary, is unique, then this fully describes the order of homoclinic bifurca-
tions.

Considering the change in itinerary under the action of the renormaliza-
tion operator, see [18], one sees that the first homoclinic bifurcations are of
periodic points with itineraries

(L)∞, (LR)∞, (LRLL)∞, (LRLLLRLR)∞,

in this order. Observe that the periods are powers of two. For each itinerary,
the following itinerary is obtained by taking the block of symbols which is
periodically repeated, putting two of these blocks behind each other, chang-
ing the last symbol of the new obtained block and then repeating this block
periodically. The ordering is the same as found in symbolic dynamics for
smooth unimodal maps [27].

There are various such sequences of homoclinic bifurcations. Indeed, if
U is a block of symbols containing an even number of L’s, then there is a
sequence of subsequent homoclinic bifurcations with the following itineraries:

(UR)∞, (UL)∞, (ULUR)∞, (ULURULUL)∞,

and so on using the same rule as above. The resulting periods are powers of
two times the number of symbols in UR. A similar sequence of subsequent
homoclinic bifurcations exists for blocks of symbols U containing an odd
number of L’s. Here the order is

(UL)∞, (UR)∞, (URUL)∞, (URULURUR)∞,
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and so on.

3.3 The bifurcation set

The bifurcation set of the family {fp,r} in the (p, r)-parameter plane, near a
point in IFn, is expected to be the same as for homoclinic-doubling bifurca-
tions, see Figure 1 in the introduction. It seems to be hard, though, to prove
that these bifurcations in IFn unfold generically in the family {fp,r}. In this
direction, we have the following information on the homoclinic bifurcation
values near points in IFn.

Lemma 3.1 Let (p, r) = (pn, pn) ∈ IFn. Then Hn in a small neighborhood
of (pn, pn) is a smooth curve, tangent to the diagonal at (pn, pn).

Proof. We use the implicit function theorem. Let ϕ(p, r) = fn
p,r(0).

Observe that ϕ vanishes on Hn, see (3.3). Clearly we have ϕ(pn, pn) = 0.
Note that ϕ(p, r) is a smooth function for (p, r) near (pn, pn), since f i

pn,pn
(0) 6=

0, 1 ≤ i ≤ n− 1. We compute the partial derivatives of ϕ.

∂ϕ

∂p
(p, r) =

∂fp,r

∂x
(fn−1

p,r (0)) ·
∂

∂p

{

fn−1
p,r (0))

}

+
∂fp,r

∂p
(fn−1

p,r (0)).

Since fn−1
pn,pn

(0) = 1, ∂fpn,pn

∂x
(1) = 0, and ∂fp,r

∂p
(x) = 1, we have

∂ϕ

∂p
(p, r) = 1.

Similarly, since ∂fp,r

∂r
(1) = −1, we have

∂ϕ

∂r
(p, r) = −1.

Therefore, the gradient of ϕ at (pn, pn) is (1,−1) which is non-zero and is
perpendicular to the diagonal. The assertion follows. �

Under the assumption that bifurcations unfold generically, the simplest
consistent way to connect bifurcation curves in a cascade of inclination-flips
in IF2n , seems to be as depicted in Figure 4. Such a bifurcation picture is
also indicated by numerics done in [23].
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Saddle-node bifurcations of periodic orbits

Period-doubling bifurcations of periodic orbits

Homoclinic bifurcations

r

p

Figure 4: This figure gives an impression of the expected bifurcation set
of {fp,r} in the parameter plane. The thick dots indicate three subsequent
inclination-flip bifurcations. Inclination-flips occur on the diagonal p = r in
the parameter plane. Along lines p − r = d with d > 0, there are cascades
of period-doubling bifurcations. Along lines p− r = d with d < 0, one finds
cascades of homoclinic bifurcations.
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4 Dynamics of the rescaled return map

In this section we collect two results on the dynamics of the rescaled Poincaré
return map Ψε,p,r, which we derived in Section 2. Both results will be used
in the proof of the our main theorem, Theorem 2.4.

Let {Xγ} be as in the statement of Theorem 2.4; for other notation see
Proposition 2.5.

Lemma 4.1 Let (ε, p, r) ∈ (0, ε0] × I × J. Then, with γ = σp(ε, p, r), the
vector field Xγ has no orbit-flip homoclinic orbit.

Proof. Since p belongs to a compact interval, (2.15) yields that, for some
k1 > 0,

|ω| ≥ k1ε
α−β. (4.1)

Putting xu = εx/p from (2.16) in (2.11), one obtains

|Φs(xs, εx/p; γ) − ω)| < O(εβ), (4.2)

as ε → 0, uniformly in xs from a compact interval. From (4.1) and (4.2) we
get

|Φs(xs, εx/p; γ)| > k1ε
α−β − O(εβ),

as ε→ 0. Since for small values of γ, β(γ) > α(γ)−β(γ), it follows that for ε
small enough, |Φs(xs, εx/p; γ)| > 0. This implies that the unstable manifold
of the singularity cannot be contained in the strong stable manifold, which
means that orbit-flip homoclinic orbits do not occur in this region of the
parameter space. �

4.1 Existence of invariant foliations

Recall that the rescaled return map Ψε,p,r is considered on a bounded domain
∆ of the form

∆ = {(x, y); 0 < x ≤ Ax, |y| ≤ Ay},

for parameter values (ε, p, r) from (0, ε0] × I × J. An invariant strong stable
foliation of Ψε,p,r on ∆ is a foliation F of ∆ with one dimensional leaves
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satisfying Ψε,p,r(Fq) ⊂ FΨε,p,r(q) and ‖Ψε,p,r(q1) − Ψε,p,r(q2)‖ ≤ λ‖q1 − q2‖ if
q2 ∈ Fq1

, for some λ < 1. The existence of an invariant strong stable foliation
enables a reduction to a one dimensional map, by identifying points on the
same leaf of the foliation. The range of ε-values for which this holds however,
is not proved to be uniform in p, r; the value of ε̄(p, r) in the formulation of
the lemma below goes to 0 if we let p−r go to 0. Invariant foliations have been
constructed at various places, for constructions comparable to the following,
see e.g. [33], [18].

Lemma 4.2 There is a continuous positive function ε̄(p, r), defined for p < r
and with ε̄(p, r) → 0 as r−p→ 0, so that Ψε,p,r possesses an invariant strong
stable foliation on ∆ for p < r and ε < ε̄(p, r).

Proof. For convenience we suppress the dependence of the rescaled return
map on ε, p, r from the notation and write Ψ for the rescaled return map.
From Proposition 2.5, Ψ is of the form

Ψ(x, y) = (f(x), 0) + (h1(x, y), h2(x, y)),

where

f(x) = p+
r

1 − β

(

βxα − xβ
)

(4.3)

and, for i = 1, 2, hi satisfies

|hi(x, y)|,

∣

∣

∣

∣

x
∂hi

∂x
(x, y)

∣

∣

∣

∣

,

∣

∣

∣

∣

∂hi

∂y
(x, y)

∣

∣

∣

∣

≤ Cε|x|
β, (4.4)

for some Cε > 0 with Cε → 0 as ε → 0. Note that Ψ(x, y) is not defined if
x = 0.

We will construct a strong stable foliation on ∆. We may assume that
Ax is large enough so that both Ax > p and f(Ax) > Ax, for all p ∈ I. Let
us describe the idea of the construction of the strong stable foliation. Let
τ = ∆ ∩ Ψ−1({0} × [−Ay, Ay]) and ρ = ∆ ∩ Ψ−1({Ax} × [−Ay, Ay]); we will
see that τ bounds a strip T and ρ together with (0, Ax] × {Ay} bounds a
strip R in ∆, as indicated in Figure 5. The image Ψ−1(∆) intersects T ∪ R
only in the boundary curves τ ∪ ρ. Take a trial foliation F on the closure
of ∆, containing {0} × [−Ay, Ay], {Ax} × [−Ay, Ay], τ and ρ as leaves. We
claim that, for a suitable choice of F, a strong stable foliation of Ψ on ∆ is
obtained as the limit of

⋃

0≤n≤m Ψ−n(F| T∪R ) ∪ Ψ−m(F) as m→ ∞.
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T R
Ψ−1

Ψ−1

∆ ∆

y

x

Figure 5: In the left picture the domain of Ψ−1 is indicated, as a subset of
∆ = (0, Ax] × [−Ay, Ay]. The right picture depicts the image ψ−1(∆).

Observe that limx→0 Ψ(x, y) is a point whose coordinates do not depend
on y; it is in fact the first intersection of the unstable manifold of the singu-
larity of the vector field with ∆. Denote this point by P . Observe that Ψ−1

is not defined at P . Let

Cs(x, y) = {(u, v) ∈ T(x,y)∆; |u| ≤ s|v|},

where (u, v) are the natural coordinates on T(x,y)∆. Below we show that, for
ε small, a function s(x, y) exists with 0 < s(x, y) ≤ 1 and s(x, y) → 0 as
x→ 0, so that

DΨ−1(Ψ(x, y))C1(Ψ(x, y)) ⊂ Cs(x,y)(x, y). (4.5)

This means that the cone field {Cs(x,y)} is invariant under DΨ−1. For the
moment, we assume that (4.5) holds. If ε = 0, because f(Ax) > 0, the
equation f(x) = 0 has two solutions, both in (0, Ax). From this and (4.5) it
follows that, for ε small enough, τ consists of two curves intersecting ∂∆ in
(0, Ax] × {−Ay} and (0, Ax] × {Ay}. Note that T(x,y)τ ⊂ C1(x, y). Similarly,
using f(Ax) > Ax > p, if ε = 0, the equation f(x) = Ax has one solution,
which is contained in (0, Ax). From this and (4.5), for ε small, ρ is a curve
intersecting ∂∆ in (0, Ax] × {−Ay} and (0, Ax] × {Ay}. Note that T(x,y)ρ ⊂
C1(x, y). The strips T and R are therefore well defined. We have that
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Ψ−1(∆) ∩ T = τ and Ψ−1(∆) ∩ R = ρ. Choose a trial foliation F on the
closure of ∆ as above, so containing {0} × [−Ay, Ay], {Ax} × [−Ay, Ay], τ
and ρ as leaves, satisfying in addition T(x,y)F(x,y) ⊂ C1(x, y). From (4.5) we
conclude that the foliation Fm given by

Fm =
⋃

0≤n≤m

Ψ−n(F| R∪T ) ∪ Ψ−m(F),

is a continuous foliation on ∆, satisfying

T(x,y)F
m
(x,y) ⊂ Cs(x,y)(x, y). (4.6)

In order to show that Fm converges to a continuous foliation as m→ ∞,
it suffices to show that for each (x, y) ∈ ∆, (x, y) 7→ T(x,y)F

m
(x,y) converges to

a continuous line bundle over ∆. Let (x, y, σ) 7→ (Ψ−1(x, y),Σ(x, y, σ)) be
the induced map on ∆ × L(R,R). That is, Σ(x, y, σ) = ν where graph ν =
DΨ−1(x, y)graph σ. This yields

Σ(x, y, σ) =
a(x, y)σ + b(x, y)

c(x, y)σ + d(x, y)
, (4.7)

where

DΨ−1(x, y) =

(

a(x, y) b(x, y)
c(x, y) d(x, y)

)

.

Below we will show that Σ contracts distances in the fibers: there is k < 1
so that for all (x, y) ∈ ∆,

|Σ(x, y, σ1) − Σ(x, y, σ2)| ≤ k|σ1 − σ2|. (4.8)

It is standard to derive Lemma 4.2 from (4.8), using (4.6) to assure that the
limit foliation is continuous at {x = 0}, compare [16], [18].

It remains to show (4.5) and (4.8). Note that

D(f, 0) =

(

− rβ
1−β

xβ−1 + rβα
1−β

xα−1 0

0 0

)

. (4.9)

From DΨ = D(f, 0) +D(h1, h2), using (4.4) and 2β > 1, it follows that the
determinant of DΨ(x, y) goes to 0 as ε goes to 0, uniformly in (x, y). (In
fact, one can show that the determinant of DΨ(x, y) is small of order εβ,
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uniformly in (x, y).) Furthermore, for each p, r, there is a constant c > 0 so
that for ε small enough and for all (x, y), the trace of DΨ(x, y) is larger than
c. For c one can take e.g. one half times the minimum of |f ′(x)| over those x
for which f(x) ≥ 0. From these estimates on the determinant and the trace
of DΨ(x, y), one obtains that DΨ(x, y) has eigenvalues λi(x, y), i = 1, 2, with
λ2(x, y) → 0 as ε→ 0 and |λ1(x, y)| ≥ c for some constant c > 0, if ε is small
enough. Furthermore, λ1(x, y) → ∞ as x → 0, since the trace of DΨ(x, y)
goes to ∞ as x→ 0.

Using (4.9) and (4.4), one obtains that for each δ > 0, there exists ε̂ > 0
so that for all ε with 0 < ε < ε̂, a unit eigenvector vi(x, y) corresponding to
λi(x, y), is within δ distance of (1, 0) for i = 1 and of (0, 1) for i = 2. Also,
v2(x, y) → (0, 1) as x→ 0, for all small ε.

Note that DΨ−1(x, y) has eigenvalues 1/λi(Ψ
−1(x, y)), i = 1, 2. From the

above it follows that 1/λ2(Ψ
−1(x, y)) → ∞ as ε → 0 and 1/λ1(Ψ

−1(x, y)) ≤
1/c for sufficiently small values of ε. The eigenvectors of DΨ−1(x, y) equal
those of DΨ(Ψ−1(x, y)). With Q = (v1(Ψ

−1(x, y)) v2(Ψ
−1(x, y))), we have

DΨ−1(x, y) = Q

(

1
λ1(x,y)

0

0 1
λ2(x,y)

)

Q−1. (4.10)

Using that Q and Q−1 are close to the identity matrix, an easy estimate on
(4.7) yields (4.8).

We have seen that λ1(x, y) → ∞ as x→ 0, for all small ε. So 1/λ1(x, y) →
0 as (x, y) → P within the domain of Ψ−1. Now (4.5) follows from this and
the fact that v2(x, y) → (0, 1) as x→ 0, for all small ε.

Finally, observe that since the bound c must be chosen smaller than the
infimum of |f ′(x)| over x > 0 with f(x) ≥ 0, c will be small for parameter
values (p, r) with p − r close to 0. Therefore, ε̄ from the formulation of the
lemma will go to 0 as p− r → 0. �

Let Pε,p,r = limd↓0 Ψε,p,r(d, y). Note that Pε,p,r does not depend on y;
Pε,p,r is in fact the first intersection of the unstable manifold W u(O) with the
cross section S, in rescaled coordinates. An n-homoclinic orbit of Xσp(ε,p,r)

occurs if Ψn−1
ε,p,r(Pε,p,r) is contained in {(x, y); x = 0}. The following lemma

shows that homoclinic orbits of Xσp(ε,p,r) are confined to a small tubular
neighborhood of the orbit-flip homoclinic orbit at resonance.
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Lemma 4.3 For Ax large enough and for all (ε, p, r) ∈ (0, ε0] × I × J, there
is a constant 0 < By < Ay and a function τ : [−Ay, Ay] → (0, Ax) so
that, if Ψn−1

ε,p,r(Pε,p,r) ∈ {(x, y); x = 0}, then Ψi
ε,p,r(Pε,p,r) is contained in

{(x, y); |y| ≤ By, 0 < x < τ(y)} for all i, 0 ≤ i < n− 1.

Proof. Let qp,r denote the fixed point of fp,r with Dfp,r(qp,r) > 1. For
ε small enough Ψε,p,r has a hyperbolic saddle fixed point Qε,p,r that is the
continuation of qp,r. As in the proof of Lemma 4.2, one shows that the stable
manifold of Qε,p,r is the graph of a function τ : [−Ay, Ay] → (0, Ax) (if Ax

is large enough). Write Zτ,C = {(x, y); |y| ≤ C, 0 < x < τ(y)}. Clearly,
if Pε,p,r is not contained in Zτ,Ay

, then Ψi(Pε,p,r) 6∈ Zτ,Ay
, for all positive

integers i. If Pε,p,r ∈ Zτ,Ay
we have Ψε,p,r(Zτ,By

) ⊂ Zτ,By
for some By < Ay.

This proves the lemma. �

5 Continuation of homoclinic bifurcations

In the introduction we mentioned the central role a continuation theory for
homoclinic orbits plays in the demonstration of our main result. We do not
develop such a theory in its fullest generality, but develop it as appropriate for
our needs. Our continuation theory for homoclinic orbits is reminiscent of the
continuation theory for periodic orbits as constructed in [3], [2]. The notion of
virtual length of a homoclinic orbit and the definition of being continuable are
inspired by the corresponding notions for continuing periodic orbits in these
works. For generic families, where homoclinic bifurcations unfold generically,
a pathfollowing result for homoclinic orbits was obtained by B. Fiedler in [11].
Following this paper, we consider an index of periodic orbits created in the
homoclinic bifurcations and use it to continue homoclinic orbits.

We discuss generic families in the next subsection, in this first subsection
we present the statements of our continuation theory for homoclinic orbits.

Let X be the set of smooth vector fields on R
3, equipped with the weak

Whitney topology. Consider the set X2 of smooth two parameter families of
smooth vector fields on R

3. Let {Xλ} be a two-parameter family of vector
fields from X2, depending on a parameter λ ∈ R

2.
Let P be the set of bounded closed subsets of R

3, equipped with the
Hausdorff metric. Let

G =

{

(µ, h) ∈ R
2 × P;

h is the union of a singularity and
a homoclinic orbit of Xµ

}

. (5.1)
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For (µ, h) ∈ G, let l(µ, h) denote the length of h (length here means
arclength). For simplicity we assume l(µ, h) is finite, which is guaranteed,
for instance, if one considers orbits homoclinic to a hyperbolic singularity.

Definition 5.1 Let (µ, h) ∈ G be as above. We say that k is a virtual
length of (µ, h), if there exists a sequence of perturbations {Y i

λ} of {Xλ} with
{Y i

λ} → {Xλ} as i → ∞ so that {Y i
λ} possesses a homoclinic orbit hi at

parameter values µi with µi → µ, hi → h in the Hausdorff topology and
l(µi, hi) → k as i→ ∞.

We write τ(µ, h) for the set of virtual lengths of (µ, h). In Section 5.1 we
calculate the virtual lenghts of different codimension-one and codimension-
two homoclinic orbits.

Let (µ, h) ∈ G so that h is the union of a homoclinic orbit and a hyperbolic
singularity. Write Γ for the connected component of G containing (µ, h). We
call (µ, h) globally continuable if either

• Γ\{(µ, h)} is connected

or each component C of Γ\{(µ, h)} satisfies at least one of the following
conditions:

• C is unbounded

• there exists a sequence (νi, gi) ∈ C so that supi τ(νi, gi) = ∞.

• there exists a sequence (νi, gi) ∈ C so that, as i → ∞, νi → ν and gi

converges in the Hausdorff topology to a closed invariant set containing
either a nonhyperbolic singularity, or more than two orbits.

Note that the closure of a homoclinic orbit consists of two orbits. By a
closed invariant set containing more than two orbits, one can think of a set
containing two homoclinic orbits or a heteroclinic cycle.

Suppose that (µ, h) ∈ G is a generically unfolding codimension-one ho-
moclinic orbit with τ(µ, h) = {l(µ, h)}. In the next subsection we explain
what is meant by generically unfolding and codimension-one, here we use the
following property (µ, h) as above satisfies: there is a sequence µi of param-
eter values converging to µ and a periodic orbit hi of Xµi

converging to h in
the Hausdorff topology as i → ∞. For all sufficiently large i, hi is unique
and its unstable manifold W u(hi) is either orientable or nonorientable. Note
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that an unstable manifold which is either one or three dimensional is always
orientable. Define

φ(µ, h) =

{

0, if W u(hi) is nonorientable for large i,
1, if W u(hi) is orientable for large i.

(5.2)

If W u(hi) is two dimensional, there exists a two dimensional center manifold
W s,u(h) of h [38], [18]. Then φ(µ, h) = 0, 1 if W s,u(h) is nonorientable,
orientable respectively. It is thus possible to define φ using Xµ alone.

For any (µ, h) ∈ G, we let φ(µ, h) = 1 if the virtual lengths of (µ, h) are
bounded and there exists a sequence of families {Y i

λ} ∈ X2 with {Y i
λ} → {Xλ}

as i → ∞ and {Y i
λ} possesses a generically unfolding homoclinic orbit hi of

codimension-one at parameter values µi with µi → µ, hi → h in the Hausdorff
topology as i→ ∞, φ(µi, τi) = 1. For all other (µ, h) ∈ G, we let φ(µ, h) = 0.
Denote

G1 = {(µ, h) ∈ G; φ(µ, h) = 1}. (5.3)

The notion of continuability of homoclinic orbits (µ, h) in G1 is as follows.
Let (µ, h) ∈ G1 so that h is the union of a homoclinic orbit and a hyperbolic
singularity. Write Γ1 for the connected component of G1 containing (µ, h).
We call (µ, h) globally I-continuable if either

• Γ1\{(µ, h)} is connected

or each component C1 of Γ1\{(µ, h)} satisfies at least one of the following
conditions:

• C1 is unbounded

• there exists a sequence (νi, gi) ∈ C1 so that supi τ(νi, gi) = ∞ or so
that (νi, gi) → (ν, g) ∈ G as i → ∞ with (ν, g) possessing unbounded
virtual lengths.

• there exists a sequence (νi, gi) ∈ C1 so that, as i → ∞, νi → ν and gi

converges in the Hausdorff topology to a closed invariant set containing
either a nonhyperbolic singularity, or more than two orbits.

The following continuation theorem will be proved in Section 5.2.

Theorem 5.2 Let (κ, γ) ∈ G1 be a generically unfolding codimension-one
homoclinic orbit of {Xλ}. Then (κ, γ) is globally I-continuable.
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5.1 Generic families

We start with a brief discussion of the possible codimension-one and codimen-
sion-two homoclinic orbits. We give the virtual lenghts of these homoclinic
orbits. Let {Xλ} ∈ X2 and let G,G1 be as defined in (5.1) respectively (5.3).
(µ, h) ∈ G is called a codimension-one homoclinic orbit if h is homoclinic
to a hyperbolic singularity p(µ, h) and the following conditions are fulfilled.
Denote by −α,−β, γ the eigenvalues of DXµ(p(µ, h)). By changing the time
parametrization of solutions, we may assume that γ = 1 and Re α ≥ Re β >
0. (µ, h) ∈ G is called a homoclinic orbit of codimension-one if the following
conditions are satisfied.

(1) α 6= β,

(2) if α, β ∈ C\R, then Re β 6= 1,

(3) if α, β ∈ R, then

(a) β 6= 1,

(b) h 6⊂W ss(p(µ, h)),

(c) W s,u(p(µ, h)) intersects W ss,s(p(µ, h)) transversally along h.

Here W ss(p(µ, h)) denotes the one dimensional strong stable manifold of
p(µ, h), well defined if α, β ∈ R and α 6= β. Furthermore, W ss,s(p(µ, h))
is the two dimensional stable manifold of p(µ, h) and W s,u(p(µ, h)) is a two
dimensional center unstable manifold of p(µ, h), see also [18]. We denote by
W u(p(µ, h)) the one dimensional unstable manifold of p(µ, h).

For λ near µ, let p(λ, h) denote the hyperbolic singularity near p(µ, h). All
invariant manifolds defined above, exist for λ near µ. We say that a homocli-
nic orbit (µ, h) of codimension-one unfolds generically if

⋃

λ(λ,W
u(p(λ, h)))

intersects
⋃

λ(λ,W
ss,s(p(λ, h))) transversally in R

2 × R
3 along (µ, h).

If (µ, h) ∈ G is a homoclinic orbit of codimension-one, then τ(µ, h) =
{l(µ, h)} with one exception: if α = β̄ and Re β < 1, then (µ, h) has un-
bounded virtual lengths [40], [13], [14]. Near a generically unfolding homo-
clinic orbit (µ, h) of codimension-one with τ(µ, h) = {l(µ, h)}, G is a curve
embedded in R

2 ×P.
Next we discuss to some extent codimension-two homoclinic orbits. We

discuss only homoclinic orbits that are homoclinic to a hyperbolic singular-
ity. In particular a list is obtained of codimension-two homoclinic orbits,
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homoclinic to a hyperbolic singularity, with bounded virtual lengths. For a
precise definition of generic unfolding for codimension-two homoclinic orbits
we refer to the corresponding literature. (µ, h) ∈ G is a homoclinic orbit of
codimension-two if precisely one of the conditions for being of codimension-
one does not apply (in some cases additional nondegeneracy conditions should
hold). This yields the following list.

• (1) does not hold: α = β. (µ, h) has unbounded virtual lengths if
β < 1 since an arbitrarily small perturbation of Xµ yields a vector field
so that the linearization at the singularity has two complex conjugate
eigenvalues. If β > 1, τ(µ, h) = {l(µ, h)}. In fact, if (µ, h) is gener-
ically unfolding, G is near µ a curve on which φ = 1. This is easily
deduced from the fact that a Poincaré return map on a cross section is
a contraction, compare [12].

• (2) does not hold: α, β ∈ C\R and Re β = 1. (µ, h) has unbounded
virtual lengths since an arbitrarily small perturbation would make
Re β < 1.

• (3a) does not hold: β = 1. The virtual lengths of (µ, h) are bounded
by 2l(µ, h). Assuming an additional nondegeneracy condition holds,
there are two possible bifurcation diagrams [6], see also [21], [36]. In
one case, τ(µ, h) = {l(µ, h)}. Here, if (µ, h) is generically unfolding,
then near (µ, h), G is a curve along which φ = 1. In the other case
τ(µ, h) = {l(µ, h), 2l(µ, h)}. Near (µ, h), if (µ, h) is generically unfold-
ing, G consists of three curves branching at (µ, h). One curve consists
of doubled homoclinic orbits with approximately twice the length of
(µ, h). Inspection of the bifurcation diagram reveals that near (µ, h),
G1 is a curve containing the curve of doubled homoclinic orbits and
one of the other curves branching at (µ, h), as in Figure 6.

• (3b) does not hold: h is an orbit-flip homoclinic orbit. We refer to
[36] for a treatment of this bifurcation problem. If β < 1 and α ≤ 1
the virtual lengths of (µ, h) are unbounded. If β > 1 and α > 1, then
τ(µ, h) = {l(µ, h)}. If in this case (µ, h) is generically unfolding, then
near (µ, h) G is a curve along which φ = 1. Finally, if α > 1 and β < 1,
then τ(µ, h) = {l(µ, h), 2l(µ, h)}. Near (µ, h), if (µ, h) is generically
unfolding, G consists of three curves branching at (µ, h). One curve
consists of doubled homoclinic orbits. By considering the bifurcation
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diagram one sees that near (µ, h), G1 is a curve containing the curve
of doubled homoclinic orbits and one of the other curves branching at
(µ, h). See Figure 6.

• (3c) does not hold: h is an inclination-flip homoclinic orbit. It follows
from [17], [28] that (µ, h) has unbounded virtual lengths if α ≤ 1 or
β ≤ 1

2
. For other eigenvalue conditions, (µ, h) has bounded virtual

lengths. If α > 1 and β > 1, τ(µ, h) = {l(µ, h)}. In this case, if
(µ, h) is generically unfolding, then near (µ, h) G is a curve along which
φ = 1 (this case is easily treated since the Poincaré return map on a
cross section is a contraction). The remaining case α > 1 and 1

2
<

β < 1, was studied in [21], [22], see also Theorem A.1 in Appendix A.
Here, τ(µ, h) = {l(µ, h), 2l(µ, h)}. Near (µ, h), if (µ, h) is generically
unfolding, G consists of three curves branching at (µ, h). One curve
consists of doubled homoclinic orbits. By considering the bifurcation
diagram one sees that near (µ, h), G1 is a curve near (µ, h) containing
the curve of doubled homoclinic orbits and one of the other curves
branching at (µ, h). See Figure 6.

Figure 6: In all three possible cases of homoclinic-doubling, the projection
of G to the parameter space R

2 is as depicted. The solid curve represents
homoclinic orbits for which φ = 1, on the dashed curve φ = 0. In particular,
{µ; (µ, h) ∈ G1} is differentiable at each parameter value µ on it.

It follows from the above discussion that near each generically unfolding
homoclinic orbit (µ, h) ∈ G1 of codimension-one or codimension-two and
with bounded virtual lengths, G1 is a curve.
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Before discussing generic families and stating a continuation theorem for
such families, we add a remark on the bifurcation theorem as it is known
for the orbit-flip, if α > 1 and β < 1, when homoclinic-doubling occurs.
The bifurcation theorem in [36] states that for each integer n > 2, there is
a neighborhood in the parameter plane of the orbit-flip bifurcation point,
on which no n-homoclinic orbits exist. The theorem in [36] thus does not
exclude the existence of n-homoclinic orbits for high n, for parameters near
the orbit-flip bifurcation point. Note that this does not effect the statement
that τ(µ, h) = {l(µ, h), 2l(µ, h)}. For the inclination-flip, with eigenvalue
conditions α > 1 and 1

2
< β < 1, a similar statement was proven in [21].

In Appendix A we show that n-homoclinic orbits (and n-periodic orbits) for
n > 2 do not appear in the unfolding of such an inclination-flip.

Recall that a subset of a topological space is called a residual subset if it
contains the intersection of countably many open and dense subsets.

Lemma 5.3 There is a residual subset Y2 of X2 so that all homoclinic bi-
furcations of {Xλ} ∈ Y2 are generically unfolding. �

We omit the proof of this lemma. It can be proved in the same way as
a similar result in [3], dealing with bifurcations of periodic orbits in one-
parameter families of vector fields, is proved. Compare also [34], containing
a prototype result for single vector fields. We call families from Y2 generic
families, Y2 is in particular a dense subset of X2.

For {Xλ} ∈ Y2, along paths of generically unfolding homoclinic orbits
(µ, h) of codimension-one with φ(µ, h) = 1, one has an orientation as defined
in [11] for generic families of vector fields. We do not define an orientation
of paths of homoclinic bifurcation values since we also treat nongeneric fam-
ilies. Note that in our definition of I-continuable homoclinic bifurcations we
do not try to continue paths of homoclinic bifurcations through e.g. hetero-
clinic bifurcations. Continuation through such codimension-two bifurcations
seems feasible, but one would have to discuss the possible local bifurcation
diagrams. Compare the definition of stratified bifurcations in [11].

5.2 Proof of the continuation theorem

In this section we prove Theorem 5.2. We start with a lemma that will be
used frequently in the proof.
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Lemma 5.4 Let {Xn
λ} be a sequence of families of vector fields converging

to {Xλ} as n → ∞. Suppose that (µn, hn) is a homoclinic orbit of Xn
µn

,
homoclinic to a hyperbolic singularity, such that (µn, hn) → (µ̄, h̄) as n→ ∞.
Suppose that sup

n
l(µn, hn) <∞. Then h̄ contains a nonhyperbolic singularity,

or consists of more than 2 orbits, or is a homoclinic orbit of length bounded
by sup

n
l(µn, hn).

Proof. Denote by p1 the supremum over n of l(µn, hn). Suppose that h̄
does not contain a nonhyperbolic singularity and also does not consist of
more than 2 orbits. There is a neighborhood V of (µ̄, h̄) in R

2 ×P so that

• for all (µ, h) ∈ V, there is a hyperbolic singularity p(µ, h) of Xµ, de-
pending continuously on (µ, h) and so that, at µ = µ̄, h̄ is homoclinic
to p(µ̄, h̄).

We may assume that p(µ̄, h̄) has a one dimensional unstable manifold
W u(p(µ̄, h̄)). Let W u,+(p(µ̄, h̄)) be the branch of W u(p(µ̄, h̄)) that forms
the homoclinic orbit h̄ of Xµ̄. Let W u,+

loc (p(µ̄, h̄)) denote the intersection of
W u,+(p(µ̄, h̄)) with a local unstable manifold of p(µ̄, h̄). We have that

• W u,+(p(µ, h)) can be defined for (µ, h) ∈ V so thatW u,+
loc (p(µ, h)) varies

continuously with (µ, h).

For n a positive real number, let W u,+
n (p(µ, h)) be the union of piecewise

smooth curves in the closure of W u,+(p(µ, h)), containing p(µ, h) and of
length bounded by n. The subsetW s

n(p(µ, h)) of the stable manifoldW s(p(µ, h))
is defined similarly.

Fix δ small and positive. For (µ, h) ∈ V, let D(µ, h) be a small cylin-
der transverse to W s(p(µ, h)) along ∂W s

δ (p(µ, h)), varying continuously with
(µ, h). Let D+(µ, h) be the component of D(µ, h)\∂W s

δ (p(µ, h)) that is on
the same side of W s

δ (p(µ, h)) as W u,+(p(µ, h)), let D−(µ, h) be the other
component.

Define V u,+
p1

(p(µ, h)) as the maximal connected compact part, containing
p(µ, h), of W u,+

p1
(p(µ, h)), so that (µ, V u,+

p1
(p(µ, h))) ∈ V. By taking a smaller

neighborhood V of (µ̄, h̄), if necessary, we get that

(a) for (µ, h) ∈ V, p(µ, h) is the only singularity contained in V u,+
p1

(p(µ, h)).
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(b) for (µ, h) ∈ V, V u,+
p1

(p(µ, h)) has nonempty intersection with D(µ, h).
Furthermore, if V u,+

p1
(p(µ, h)) intersects D−(µ, h) in a point x, then

all intersections of V u,+
p1

(p(µ, h)) with D(µ, h) are in the compact con-
nected part of W u,+(p(µ, h)) between p(µ, h) and x.

The first item holds, for V small enough, because h̄ does not contain two
different singularities. The second item is a consequence of this and the fact
that h̄ is not the union of two homoclinic orbits.

Since V u,+
p1

(p(µ, h)) does not depend continuously in the Hausdorff topol-
ogy on (µ, h), we alter it. For (µ, h) ∈ V, define the closed set H(µ, h)
as follows. If V u,+

p1
(p(µ, h)) does not intersect D−(µ, h), then let H(µ, h) =

V u,+
p1

(p(µ, h)). Otherwise, if x is the intersection point of V u,+
p1

(p(µ, h)) with
D−(µ, h) and l is the line between x and p(µ, h), we let H(µ, h) be the union
of the piece of W u,+(p(µ, h)) between p(µ, h) and x and the maximal con-
nected piece of l, containing x, so that the sum of the length of both pieces
together is at most p1. We claim that H(µ, h) varies continuously with (µ, h)
for (µ, h) ∈ V. Indeed, W u,+

loc (p(µ, h)) depends continuously on (µ, h). By the
flow box theorem, compact parts of W u,+

loc (p(µ, h)) that lie outside a neigh-
borhood of p(µ, h), vary continuously with (µ, h). The above derived items
(a) and (b) imply that parts of W u,+

loc (p(µ, h)) near p(µ, h) also depend con-
tinuously on (µ, h). Because H(µ, h) is a curve of length at most p1, the limit
limn→∞H(µn, hn) is a homoclinic orbit of length at most p1. �

We first prove Theorem 5.2 for generic families. We then use this result
plus density of the generic families, to prove Theorem 5.2 for arbitrary fam-
ilies. The following lemma, the continuation result for generic families, can
also be obtained as a corollary of the pathfollowing theory developed in [11].

Lemma 5.5 Let {Xλ} ∈ Y2 and let (κ, γ) ∈ G1 be a generically unfold-
ing codimension-one homoclinic orbit of {Xλ}. Then (κ, γ) is globally I-
continuable.

Proof. We have seen that near generically unfolding codimension-one
and codimension-two homoclinic orbits, G1 is a one dimensional manifold.
The connected component Γ1 of G1 that contains (κ, γ) is therefore home-
omorphic either to a circle or to (−1, 1). Consider the latter case and let
g : (−1, 1) → G1 be a homeomorphism with g(0) = (κ, γ). Suppose that
C = g([0, 1)) is bounded and that τ is bounded over g([0, 1)). For a se-
quence si ↑ 1, let (µi, hi) = g(si). By taking a subsequence we may assume
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that (µi, hi) converges to (µ̄, h̄). By Lemma 5.4, if (µ̄, h̄) has bounded virtual
lengths then h̄ either contains a nonhyperbolic singularity, or consists of more
than two orbits, or is the union of a hyperbolic singularity and a homoclinic
orbit. In the latter case, since {Xλ} is a generic family, (µ̄, h̄) would be I-
continuable, contradicting the definition of G1. The lemma follows. �

As mentioned before, we will prove Theorem 5.2 by approximating the
family {Xλ} by generic families for which Lemma 5.5 can be applied. We
first introduce some notation. Let {Xλ} and (κ, γ) be as in Theorem 5.2 and
let G1 be as in (5.3). Write Γ1 for the connected component of G1 containing
(κ, γ). Let V ⊂ R

2 be a small neighborhood of κ. Now {µ; (µ, h) ∈ Γ1} ∩ V
is a smooth curve. Let M be a curve in V transverse to {µ; (µ, h) ∈ Γ1}. By
Lemma 5.3, we can take a sequence of families {Y i

λ} ∈ Y2 with {Y i
λ} → {Xλ}

as i → ∞. Let Gi
1 be defined as G1, but then for {Y i

λ}. For i high, there is
a unique point (κi, γi) ∈ Gi

1 so that κi ∈ M and (κi, γi) → (κ, γ) as i → ∞.
Furthermore, τ(κi, γi) = {l(κi, γi)} for large i.

Proof of Theorem 5.2. Assume (κ, γ) is not globally I-continuable. Then
Γ1\{(κ, γ)} is not connected. There is a component C1 of Γ1\{(κ, γ)} so that
C1 is bounded and, denoting

p0 = inf
(ν,g)∈C1

l(ν, g), (5.4)

p1 = sup
(ν,g)∈C1

τ(ν, g), (5.5)

we have p0 > 0 (since otherwise there would exist (µ, h) in the closure of C1

with h a nonhyperbolic singularity of Xµ) and p1 < ∞. Also, there is no
homoclinic orbit (µ, h) in the closure of C1 with unbounded virtual lengths.

We claim that C1 is closed. Indeed, let (µi, hi) ∈ C1 be a sequence
converging to a point (µ, h). Then by Lemma 5.4, (µ, h) ∈ G. Since (µ, h)
has bounded virtual lengths, we have in fact (µ, h) ∈ C1.

Recall that M is a small curve transverse to {µ; (µ, h) ∈ G1} at (κ, γ).
Let W be a small neighborhood of γ in P. We claim that for V small enough,
the following properties hold.

• ∂(M ×W) ∩ V = ∅.

• M ×W divides V in two connected components V− and V+ with, say,
C1 ⊂ V+.
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• there exists a neighborhood U1 of {Xλ} so that for any family {Zλ} ∈
U1, there is no (µ, h) ∈ V+ with h an invariant set containing a nonhy-
perbolic singularity or containing more than 2 orbits.

• there exists a neighborhood U2 ⊂ U1 of {Xλ} so that for any family
{Zλ} ∈ U2, there is no (µ, h) ∈ V+, so that h is a homoclinic orbit of
Zµ with l(µ, h) ∈ (0, 9

10
p0] ∪ [11

10
p1, 3p1].

The first two items are clear. To establish the third item, suppose it were
false. Then there would be a decreasing sequence of neighborhoods V+

i of
C1, and families {Z i

λ} with {Z i
λ} → {Xλ}, so that there are (νi, hi) ∈ V+

i

with hi a closed invariant set of Zνi
containing either a nonhyperbolic sin-

gularity or more than two orbits. It is easily seen that an accumulation
point (ν, h) of the sequence (νi, hi) gives a closed invariant set h of Xν ,
which also contains either a nonhyperbolic singularity or more than two or-
bits. Similarly one derives the last item. If it were false, there would be
a decreasing sequence of neighborhoods V+

i of C1, and families {Z i
λ} with

{Z i
λ} → {Xλ}, so that {Z i

λ} possesses a homoclinic orbit (νi, hi) ∈ V+
i with

l(νi, hi) ∈ (0, 9
10
p0]∪ [11

10
p1, 3p1]. By Lemma 5.4, the third item and closedness

of C1, an accumulation point (ν, h) of {(νi, hi)} would lie on C1. Hence, h
would be a homoclinic orbit of Xν with either its length being smaller than
9
10
p0 or with a virtual length in [11

10
p1, 3p1]. This contradicts the definition of

p0 and p1.
Recall that {Y i

λ} is a sequence of families in Y2 converging to {Xλ}. For
i high enough, we have

• l(κi, γi) < 11
10
p1 and φ(κi, γi) = 1,

• {Y i
λ} ∈ U2,

Let Ci
1 be the connected component of Gi

1\{(κ
i, γi)} so that Ci

1, restricted
to a small neighborhood of (κi, γi), is contained in V+. Let Di

1 be the con-
nected component of Ci

1 ∩ V that contains (κi, γi). For all (µ, h) ∈ Di
1 and

i high enough, we have l(µ, h) < 3p1. To see this, assume there would be
(µ, h) ∈ Di

1 with l(µ, h) ≥ 3p1. Because l(κi, γi) < 11
10
p1 and, for generic

families, l either changes continuously or jumps with a factor 2, there would
be (µ̂, ĥ) ∈ Di

1 with l(µ̂, ĥ) ∈ [11
10
p1,

22
10
p1]. This contradicts {Y i

λ} ∈ U2 for i
high enough.

Let D1 be the collection of accumulation points of Di
1 as i → ∞. By

Lemma 5.4, D1 ⊂ G1. Because Di
1 is connected for all i and the sequence
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(κi, γi) ∈ Di
1 converges to (κ, γ) ∈ D1, we have thatD1 is connected. Because

C1 is closed and connected and D1 has at least the point (κ, γ) in common
with C1, we have

D1 ⊂ C1. (5.6)

Note that it follows that Ci
1 ⊂ V+ for i high enough.

Because {Y i
λ} ∈ Y2, (κi, γi) is globally I-continuable. Since Ci

1 ⊂ V+

for large i, Ci
1 is bounded for large i. For the same reason, if Γi

1 denotes
the connected component of Gi

1 containing (κi, γi), Γi
1\{(κ

i, γi)} can not be
connected. Since {Y i

λ} ∈ U1, there must be (µi, hi) ∈ Ci
1 with hi a homoclinic

orbit of Y i
µi

of length at least 3p1. This contradicts {Y i
λ} ∈ U2 and proves

Theorem 5.2. �

6 Homoclinic-doubling cascades

In this section we prove the main theorem of the paper, stating that cascades
of homoclinic-doubling bifurcations exist for an open set of two parameter
families of vector fields.

Let Ψε,p,r(x, y) be the rescaled Poincaré return map as obtained in Sec-
tion 2, see Proposition 2.5. Other notation, in particular the definition of σp,
will be as in this proposition. We recall our main result, Theorem 2.4.

Theorem 6.1 For ε fixed and positive, consider the two parameter family of
vector fields (p, r) 7→ Xσp(ε,p,r). If ε is small enough, there is a connected set
in the (p, r) parameter plane consisting of homoclinic bifurcation values of
{Xσp(ε,p,r)}, containing a converging sequence of inclination-flip homoclinic
bifurcations at which a 2n+1-homoclinic orbit branches.

Proof. Recall that Ψ0,p,r(x, y) = (f(x; p, r), 0), where

f(x; p, r) = p+
r

1 − β

(

βx− xβ
)

. (6.1)

Here we have written β for β(0). The function f is defined on some interval

(0, Ax], for parameters (p, r) ∈ I×J. We may assume that Ax >
1
β

1/(1−β)
and

further that [1, 1
β

1/(1−β)
] is contained in both I and J. A computation shows
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that f 2(0; p, r) = 0 for parameter values on the curve

H2 =

{

(p, r); p =

(

r

1 − β(1 − r)

)1/(1−β)
}

, (6.2)

see Figure 7. Observe that H2 is tangent to the diagonal at (p, r) = (1, 1).

Furthermore, along {(p, r); p = 1
β

1/(1−β)
}, the map f satisfies f(p; p, r) = p.

We will restrict the parameters (p, r) to a suitably chosen domain in the
parameter plane, bounded by a curve K. The curve K is as indicated in
Figure 7; K consists of four parts K1, K2, K3, K4, where for some constants
d, P1, P2, R1,

K1 ⊂ {(p, r); p− r = d},

K2 ⊂ {(p, r); p = P2},

K3 ⊂ {(p, r); r = R1},

K4 ⊂ {(p, r); p = P1}.

We take d > 0, P1 < 1 and P2 >
1
β

1/(1−β)
. Take R1 ≥ P2. Note that we can

choose K so that K ⊂ I × J. Also, by Remark 2.7, we can choose K so that
for (p, r) inside the region bounded by K the eigenvalue conditions α > 1
and 1

2
< β < 1 hold.

p

K1

K4

K3

K2

H2

r
κ0

Figure 7: The choice of the curve K.
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We first derive some information on the set of homoclinic bifurcation
values of {Xσp(ε,p,r)} for fixed small positive ε on K. Note that H2 intersects
K4 in a unique point κ0.

Lemma 6.2 For ε small and positive, there is a unique κ ∈ K4 near κ0 for
which Xσp(ε,κ) possesses a 2-homoclinic orbit. This homoclinic bifurcation
unfolds generically. Further, {Xσp(ε,p,r)} has no homoclinic orbits for (p, r) ∈
K1 ∪K2.

Proof. Write Ψε,p,r = (Ψ1
ε,p,r,Ψ

2
ε,p,r). Note that Ψε,p,r(0, 0) = (p, 0). Com-

pute ∂
∂r
f(p; p, r) = (βp−pβ)/(1−β), which is nonzero. Therefore, for ε small

and positive, ∂
∂r

Ψ1
ε,p,r(p, 0) 6= 0. The existence and generic unfolding of the

homoclinic bifurcation at κ follows.
For ε = 0 and (p, r) ∈ K1, f(x; p, r) ≥ d for all x. Therefore, if ε is suffi-

ciently small, {Xσp(ε,p,r)} has no homoclinic orbits for (p, r) ∈ K1. For ε = 0
and (p, r) ∈ K2, f

n(0; p, r) > p for all positive integers n. It follows that if ε
is sufficiently small, {Xσp(ε,p,r)} has no homoclinic orbits for (p, r) ∈ K2. �

We mention that {Xσp(ε,p,r)} has many homoclinic bifurcation values for
(p, r) ∈ K3.

We continue the proof of Theorem 6.1. Let γ denote the closure of the
homoclinic orbit of Xσp(ε,κ). Theorem 6.1 is proved by applying Theorem 5.2
to (κ, γ). We first show how to compute φ, see (5.2) for the definition,
for certain homoclinic orbits of {Xσp(ε,p,r)}. From this, it will follow that
φ(κ, γ) = 1 for small enough ε, so that Theorem 5.2 can be applied to (κ, γ).

By Lemma 4.2, there is a parameter set S of the form

S = {(ε, p, r); p− r < 0, 0 < ε < ε̄(r − p)}, (6.3)

where ε̄ is a positive function on (0,∞) with lims→0 ε̄(s) = 0, so that Ψ
possesses an invariant strong stable foliation for (ε, p, r) ∈ S. Let (ε, ν) ∈ S
be so that Xσp(ε,ν) possesses a homoclinic orbit h. We will indicate how
to compute φ(ν, h). Take continuous coordinates so that the strong stable
foliation of Ψ, for (ε, p, r) ∈ S, has leaves parallel to the z-axis. In these
coordinates,

Ψε,p,r(x, z) = (fε(x; p, r), g(x, z; p, r, ε)), (6.4)

for some functions fε, g. Recall that a homoclinic orbit of Xσp(ε,p,r) cor-
responds to 0 being a periodic orbit of fε(x; p, r). Let m be the minimal
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integer with fm
ε (0; ν) = 0. Now

φ(ν, h) =

{

1, if fm
ε (x;λ) is increasing near 0,

0, if fm
ε (x;λ) is decreasing near 0.

(6.5)

It is clear that for ε small enough (ε, κ) ∈ S. We can therefore use (6.5) to
get φ(κ, γ) = 1.

As already mentioned, we restrict the parameters (p, r) to the domain
Λ bounded by K. In the definitions of I-continuable homoclinic orbits, one
should replace the condition ‘C is unbounded’ by ‘C is unbounded or the
closure of C intersects K × P outside (κ, γ)’.

Let C1 be the connected component of G1 containing (κ, γ) in its closure.
By Lemma 4.3, all homoclinic orbits of {Xσp(ε,λ)} in C1 are contained in a
small tubular neighborhood of the codimension three orbit-flip homoclinic
orbit at resonant eigenvalues. From this and the fact that we restrict the
parameters (p, r) to the bounded domain Λ, it follows that C1 is bounded.
Furthermore, l| C1

is bounded away from 0. In this tubular neighborhood, qγ
is the only singularity. The different possibilities given by Theorem 5.2, can
therefore be precised to the following list.

• either the closure of C1 intersects K ×P outside (κ, γ),

• or τ is unbounded over C1,

• or there is a homoclinic orbit in the closure of C1 with unbounded
virtual lengths.

We claim that τ is unbounded over C1. After establishing this claim, we
show that τ can only become unbounded through a cascade of homoclinic
doubling bifurcations.

We first show that there is no homoclinic orbit in the closure of C1 with
unbounded virtual lengths. By the eigenvalue conditions α > 1 and 1

2
<

β < 1, the only possibly occurring homoclinic orbits of codimension two or
more are orbit-flips and inclination-flips (or combined orbit-inclination-flips),
see the overview in Subsection 5.1. By Lemma 4.1, orbit-flips do not occur.
From inclination-flip homoclinic orbits with the eigenvalue conditions α > 1
and 1

2
< β < 1, by Theorem A.1 in the appendix, the only possible virtual

lengths are one and two times the length of the inclination-flip homoclinic
orbit.
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To show that τ is unbounded over C1, let {Y i
λ} ∈ Y2 be a sequence of

generic families converging to {Xσp(ε,λ)} as i→ ∞. Let Gi, Gi
1 be defined as

G,G1 (see (5.1), (5.3)), but then for {Y i
λ}. For i high, {Y i

λ} has a unique
homoclinic orbit (κi, γi) ∈ K × Gi

1 near (κ, γ). Let Ci
1 be the connected

component of Gi
1 that contains (κi, γi) in its closure. By the same reasoning

as above for C1, one shows that for large i there is no homoclinic orbit
(µ, h) in the closure of Ci

1 with unbounded virtual lengths. By Lemma 6.3,
{µ; (µ, h) ∈ Ci

1} is contained in Λ, its closure intersects K only in κi.

Therefore, by Lemma 5.5, τ
∣

∣

∣ Ci
1

is unbounded. From arguments used in the

proof of Theorem 5.2 it is now clear that τ restricted to the closure of C1 is
unbounded.

It remains to show that τ | C1
being unbounded implies the existence of a

cascade of homoclinic-doubling bifurcations in C1. Recall that all homoclinic
orbits of {Xσp(ε,λ)} in C1 are contained in a small tubular neighborhood of the
codimension three orbit-flip homoclinic orbit. There are therefore constants
k1, k2 close to 1 and l0 > 0 so that

l(µ, h) ∈ [Nk1l0, Nk2l0], (6.6)

if (µ, h) ∈ C1 is an N -homoclinic orbit. In fact, l0 is the length of the orbit-
flip homoclinic orbit at resonant eigenvalues. It follows that τ | C1

can only
become unbounded if C1 contains N -homoclinic orbits for arbitrarily large
N . We have seen above that for each (µ, h) ∈ C1, either τ(µ, h) = {l(µ, h)}
or τ(µ, h) = {l(µ, h), 2l(µ, h)}. Therefore C1 can only contain N -homoclinic
orbits for arbitrarily large N if there is a cascade of inclination-flip homocli-
nic orbits on C1. �

Lemma 6.3 Let {Y i
λ}, κ

i, Ci
1 and K be as in the proof of Theorem 6.1.

Then the closure of {µ; (µ, h) ∈ Ci
1} intersects K only in κi.

Proof. Denote

sn = {µ; (µ, h) ∈ Gi, h is an n-homoclinic orbit of Y i
µ}. (6.7)

Because {Y i
λ} is a generic family, sn consists of a finite set of piecewise smooth

curves. Write ηn = ∂sn, η1
n = ηn ∩ {µ; (µ, h) ∈ Gi

1} and η0
n = ηn\η

1
n.

Homoclinic bifurcation values of Y i
λ on K are contained in K3 ∪K4. In

fact, K4 contains just one homoclinic bifurcation value, κi ∈ η1
2, with κi → κ
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as i → ∞. All other homoclinic bifurcation values on K are contained in
K3. Let σ : K 7→ [0, 1) be a coordinate traversing K counterclockwise, with
σ−1(0) ∈ K1 ∪ K2. We first prove the lemma under the assumption that,
as σ increases, periodic orbits are created and not annihilated in homoclinic
bifurcations.

Following Section 3.2, which summarizes results from Section 4.3 in [18],
homoclinic bifurcation values on K satisfy the following properties. For
Q a positive integer, we will describe K ∩ (η2 ∪ η4 ∪ . . . ∪ η2Q). Note that
(

η1
2 ∪ η

1
4 ∪ . . . ∪ η

1
2Q

)

∩K is a finite set, say

(

η1
2 ∪ η

1
4 ∪ . . . ∪ η

1
2Q

)

∩K = {ν1, . . . , νN}, (6.8)

with ν1 = κi and σ(ν1) < . . . < σ(νN). For j with 1 ≤ j ≤ N , let I(j) be
defined by

νj ∈ η1
2I(j) . (6.9)

By Section 3.2, for 1 ≤ j < N , the finite bifurcation set on the piece of K
between νj and νj+1, is as follows:

(

η0
2 ∪ η

0
4 ∪ . . . ∪ η

0
2Q

)

∩ {λ ∈ K; σ(λ) ∈ (σ(νj), σ(νj+1))} =

{ζj,1, . . . , ζj,Q+1−I(j)}, (6.10)

where σ(ζj,1) < . . . < σ(ζj,Q+1−I(j)) and

ζj,h ∈ η0
2I(j)+h−1 , (6.11)

1 ≤ h ≤ Q+ 1− I(j). The set η1
2 ∩K consists of a unique bifurcation value;

η1
2 ∩K = ν1. (6.12)

If g is a curve in s2j , where s2j is defined in (6.7), then g is homeomorphic
either to a circle or to an open interval. The following information on the
number on points of g in η1

2j+1 respectively in η0
2j+1 will be used frequently in

the sequel. The three items are easy consequences of the fact that {Y i
λ} is a

generic family and of the possible local bifurcation diagrams.

• Suppose g is homeomorphic to a circle. Then card g∩η1
2j+1 is even and

g ∩ η0
2j+1 = ∅.
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• With ∂g = {g1, g2}, suppose both g1, g2 ⊂ η1
2j or both g1, g2 ⊂ η0

2j .
Then card g ∩ η1

2j+1 is even and g ∩ η0
2j+1 = ∅.

• With ∂g = {g1, g2}, suppose g1 ⊂ η1
2j and g2 ⊂ η0

2j (or vice versa).
Then card g ∩ η1

2j+1 is odd and g ∩ η0
2j+1 = ∅.

Write

Σi
1 = {µ; (µ, h) ∈ Ci

1}. (6.13)

Suppose there is an integer Q such that Σi
1 ∩ (s2 ∪ . . .∪ s2Q) intersects K in

two points ν1 and νl. We will derive a contradiction from this assumption,
thus proving the lemma. Figure 8 illustrates the reasoning, consisting of a
counting argument, with an example.

LetH be the connected component of Λ\Σi
1 that contains {λ ∈ K; σ(ν1) ≤

σ(λ) ≤ σ(νl)} in its boundary. We restrict the parameter λ to the open do-
main H , the definitions of sn and ηn are consequently altered;

sn = {µ ∈ H ; (µ, h) ∈ Gi, h is an n-homoclinic orbit of Y i
µ} (6.14)

Write ηn = ∂sn, η1
n = ηn ∩ {µ; (µ, h) ∈ Gi

1} and η0
n = ηn\η

1
n. Let Sn be the

union of the curves in sn that have an endpoint in η0
n.

Observe that for all positive integers j,

η0
2j ⊂ ∂H. (6.15)

Since Σi
1 ⊂ {µ; (µ, h) ∈ Gi

1}, curves in s1
2j can not end at Σi

1, so that

η1
2j ∩ Σi

1 = ∅, (6.16)

for all positive integers j. We now first list some properties concerning the
number of points in η0

2j and η1
2j for positive integers j. For a finite set S,

write |S| for the cardinality of S. From the description of the bifurcation set
on curves in sn, we have that for all positive integers j,

∣

∣η1
2j+1 ∩ S2j

∣

∣ =
∣

∣η0
2j

∣

∣ mod 2, (6.17)
∣

∣η1
2j+1 ∩ (s2j\S2j )

∣

∣ = 0 mod 2, (6.18)

Since the total number of points in η2j must be even, for all positive integers
j,

∣

∣η0
2j

∣

∣ =
∣

∣η1
2j

∣

∣ mod 2. (6.19)
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2

4

4 4

8

2

2

4
8

4

8

2

K4

K3

κi

Figure 8: This example illustrates how a contradiction is derived from the
assumption that Σi

1 intersects K in two points. Curves of homoclinic orbits in
the parameter plane are drawn, solid curves correspond to homoclinic orbits
on which φ = 1 and dotted curves correspond to homoclinic orbits on which
φ = 0. The order of the homoclinic orbits is indicated. In the region H
enclosed by Σi

1 and part of K, the number of curves in s8 does not match
the number of endpoints in η8.
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Let q be a positive integer. From the description of the bifurcation set on K
it follows that

∣

∣η0
2q+1 ∩K ∩ ∂H

∣

∣−
∣

∣η1
2q+1 ∩K ∩ ∂H

∣

∣ =
∣

∣η0
2q ∩K ∩ ∂H

∣

∣ . (6.20)

Compute (on top of each equality sign we indicate the equations used, these
equations are used either with j = q or with j = q + 1):

0
(6.19)
=

∣

∣η1
2q+1

∣

∣−
∣

∣η0
2q+1

∣

∣ mod 2

(6.15),(6.16)
=

∣

∣η1
2q+1 ∩ S2q

∣

∣+
∣

∣η1
2q+1 ∩ (s2q\S2q)

∣

∣ +
∣

∣η1
2q+1 ∩K ∩ ∂H

∣

∣

−
∣

∣η0
2q+1 ∩K ∩ ∂H

∣

∣−
∣

∣η0
2q+1 ∩ Σi

1

∣

∣ mod 2

(6.18)
=

∣

∣η1
2q+1 ∩ S2q

∣

∣+
∣

∣η1
2q+1 ∩K ∩ ∂H

∣

∣

−
∣

∣η0
2q+1 ∩K ∩ ∂H

∣

∣−
∣

∣η0
2q+1 ∩ Σi

1

∣

∣ mod 2

(6.17),(6.20)
=

∣

∣η0
2q

∣

∣−
∣

∣η0
2q ∩K ∩ ∂H

∣

∣−
∣

∣η0
2q+1 ∩ Σi

1

∣

∣ mod 2

(6.15)
=

∣

∣η0
2q ∩ Σi

1

∣

∣−
∣

∣η0
2q+1 ∩ Σi

1

∣

∣ mod 2.

It follows that

∣

∣η0
2q ∩ Σi

1

∣

∣ =
∣

∣η0
2q+1 ∩ Σi

1

∣

∣ mod 2. (6.21)

Let N be big enough so that Σi
1∩s2N = ∅. So

∣

∣η0
2N ∩ Σi

1

∣

∣ = 0. Inductively
applying (6.21), starting at q + 1 = N , we get |η0

2 ∩ Σi
1| = 0 mod 2. On the

other hand, using (6.12), we get

|η0
2 ∩ Σi

1| = 1 mod 2. (6.22)

This contradiction proves the lemma in the special case where periodic orbits
are only created in homoclinic bifurcations when traversing K counterclock-
wise.

The general case, when periodic orbits may also be annihilated in ho-
moclinic bifurcations when traversing K counterclockwise, is reduced to the
special case by a homotopy argument. Let f i(x; p, r) be the Poincaré re-
turn map of {Y i

λ}. Let t 7→ H(x; t, p), 0 ≤ t ≤ 1, be a homotopy with
H(x; 0, p) = f i(x; p, R1), P1 ≤ p ≤ P2 and H(x; 1, p) = g(x; p) where g is
such that periodic orbits are only created in homoclinic bifurcations when
increasing p from P1 to P2. Replace f i(x; p, r) by a map f̃ i(x; p, r) with
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f̃ i(x; p, r) = f i(x; p, r) if (p, r) ∈ Λ and f̃ i(x; p, R1 + t) = H(x; t, p) for
P1 ≤ p ≤ P2, 0 ≤ t ≤ 1. By a small perturbation of H we may assume
that homoclinic bifurcations of n-homoclinic orbits, 0 ≤ n ≤ 2p+1, occur
along smooth curves. Together with the remark that (6.12) still holds in the
general case, this reduces to the special case treated above and proves the
lemma. �

A Inclination-flip

This appendix provides an exposition of the derivation of the bifurcation di-
agram of a generically unfolding inclination-flip homoclinic bifurcation, with
eigenvalues so that it undergoes a homoclinic-doubling. We treat only three
dimensional vector fields.

Consider a smooth two-parameter family of vector fields {Yγ}, γ ∈ R
2, on

R
3, satisfying the following conditions (where notation for invariant manifolds

is analogous to the notation used in Section 2):

(BH: Basic hypothesis) The vector field Xγ has a hyperbolic singularity
qγ at which the linearization DXγ(qγ) possesses two negative eigenval-
ues −α(γ) < −β(γ) and one positive eigenvalue 1.

(IF: Inclination-flip) The vector field X0 possesses, at the parameter γ =
0, an inclination-flip homoclinic orbit Γ. The homoclinic orbit Γ is not
contained in the strong stable manifold W ss

Y0
(q0).

(EC: Eigenvalue conditions) The eigenvalues of the linearizationDX0(q0)
satisfy

α(0) > 1 and
1

2
< β(0) < 1.

(GU: Generic unfolding) Denote by F s,u
γ the bundle {TxW

s,u
Xγ

(qγ); x ∈

W u
Xγ

(qγ)}. The condition is then that
⋃

γ

(TW ss,s
Xγ

(qγ), γ) and
⋃

γ

(F s,u
γ , γ)

intersect each other transversally along TΓW
ss,s
X0

(q0)×{0} in TR
3 ×R

2.

Theorem A.1 Let {Yγ} be a two-parameter family of vector fields on R
3

as above. After a reparametrization of the parameter plane, the bifurcation
diagram of {Yγ} for small values of γ, is as depicted below. From the curve
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H1 H1

H2

SN

PD

I
II

IIIIV

V

H1 of primary homoclinic orbits, a curve H2 of doubled homoclinic orbits
branches. Furthermore, a curve SN of periodic saddle-node bifurcations and
a curve PD of period-doubling bifurcations branch.

The following list describes all periodic orbits of {Yγ} in a tubular neigh-
borhood of Γ, for parameters from the different regions I,...,V. In region I,
{Yγ} has no periodic orbits. In region II, {Yγ} has an attracting 1-periodic
orbit and a saddle 1-periodic orbit. In region III, {Yγ} has an attracting
1-periodic orbit. In region IV, {Yγ} has an attracting 1-periodic orbit and a
saddle 2-periodic orbit. In region V, {Yγ} has a saddle 1-periodic orbit and
an attracting 2-periodic orbit.

This bifurcation was studied in [21] and in [22]. The bifurcation curves
were computed in [21]. However, information on the number of n-periodic
orbits for n > 1 and n-homoclinic orbits for n > 2, was not obtained. Most
ingredients for the proof of Theorem A.1 are available in the literature. For
instance, it was established in [22], that in a subregion of the parameter
plane, a Poincaré return map possesses a strong stable foliation on a part
of its domain. This foliation enables a reduction to a one dimensional map
and thus excludes the existence of n-homoclinic orbits and n-periodic orbits
with n > 2, on the domain of the strong stable foliation and for parameter
values from the subregion where the foliation exists. Combining such an
argument with a direct computation for the remaining parameter values and
remaining points from the domain, proves that for all parameter values near
the inclination-flip bifurcation point, no n-homoclinic orbits or n-periodic
orbits exist for n > 2. It will be seen that the parameter region where a
strong stable foliation exists, includes all bifurcation curves.

By collecting the main arguments from [21], [22] and adding the required
additional computations, we provide a proof of Theorem A.1. We will subdi-
vide the proof in different sections, starting with the derivation of bifurcation
equations for periodic and homoclinic orbits.
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A.1 Bifurcation equations

We may assume that the origin O is the singularity of {Yγ} for all small
values of γ. Take coordinates (xss, xs, xu) near O, so that

DYγ(O) = αxss
∂

∂xss
+ βxs

∂

∂xs
+ xu

∂

∂xu
.

Take the local coordinates such that the local stable and unstable manifold
of O are linear:

W ss,s
loc (O) ⊂ {xu = 0}, (A.1)

W u
loc(O) ⊂ {xss = xs = 0}. (A.2)

For small positive numbers δ0 < δ take a cross section

Σ = {xs = δ, |xu|, |xss| ≤ δ0},

transversally intersecting the homoclinic orbit. By applying a linear rescal-
ing, we may assume that δ = 1. By [22], the Poincaré return map Π on Σ
has the following expression:

Π(xss, xu; γ) =

(

p+ rh(xss; γ)x
β
u + k1(xss, xu; γ)x

η
u

ε+ µh(xss; γ)x
β
u + k2(xss, xu; γ)x

η
u

)

, (A.3)

where η > 1, p, µ, ε, r, β depend smoothly on γ, h(xss; γ) is a smooth positive
function with h(0, 0) = 1, and ki(xu, xss; γ), i = 1, 2, are smooth functions
defined on xu > 0 with, for k ≥ 0, l ≥ 0,

lim
xu↓0

∂k+l

∂k(xss, γ)∂lxu
ki(xss, xu; γ)x

l
u

existing and bounded. Compare also Appendix B, in which Proposition 2.9
and the resulting expressions (2.11), (2.12) are proved. The Poincaré return
map Π is restricted to (xss, xu) ∈ [−δ0, δ0]× (0, δ0], for δ0 some small positive
number.

Note that µ and ε vanish at γ = 0 since this expresses the fact that Y0

possesses an inclination-flip homoclinic orbit. The generic unfolding condi-
tion (GU) implies that the derivative D(µ, ε) has full rank at γ = 0. After a
reparametrization we may therefore take γ = (µ, ε). The primary homoclinic
orbit persists along the line {ε = 0}.
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Let (xss,j+1, xu,j+1) = Π(xss,j, xu,j) be an orbit of Ψ. Suppose we are
looking for N -periodic orbits or N -homoclinic orbits for some fixed N . For
an N -periodic orbit, xss,N = xss,0, xu,N = xu,0 and furthermore xu,j > 0 for
all j. For an N -homoclinic orbit, xss,N = xss,0, xu,N = xu,0 = 0 and xu,j > 0
for 0 < j < N . Let

Ψj =

(

xss,j+1

xu,j+1

)

− Π(xss,j, xu,j). (A.4)

We take the indices j in Ψj, xss,j, xu,j modulo N . Write Ψ = (Ψ0, . . . ,ΨN−1).
Write xss = (xss,0, . . . , xss,N−1) and xu = (xu,0, . . . , xu,N−1). Note that Ψ
vanishes on N -periodic and N -homoclinic orbits.

Let P be the orthogonal projection onto the image Im Dxss
Ψ| xu=0

. It is
easily computed that

Dxss
Ψ| xu=0

· (x̂ss,0, x̂u,0, . . . , x̂ss,N−1, x̂u,N−1) =

(x̂ss,0, 0, . . . , x̂ss,N−1, 0). (A.5)

Performing a Lyapounov-Schmidt reduction the equation Ψ = 0 will be
splitted in the equations (I−P)Ψ = 0 and PΨ = 0. This strategy was also
followed in [6], [21]. In this set-up, using (A.5) the following lemma is not
hard to derive.

Lemma A.2 The equation (I − P)Ψ = 0 can be solved for xss as function
of xu. The following estimate holds for k ≥ 0:

‖
∂k+l

∂kγ∂lxu

(xss,j(xu) − xss,j(0)) ‖ ≤ Ck+l‖xu‖
β−l

for some Ck+l > 0. Putting xss(xu) into the equation PΨ = 0, we obtain the
reduced bifurcation equations

xu,j+1 = ε+ µxβ
u,j + Uj(xu; γ), (A.6)

for 0 ≤ j < N . The function Uj is smooth for xu,j > 0, 0 ≤ j < N , and
there exist η > 1, Ck+l > 0 so that

‖
∂k+l

∂kγ∂lxu

Uj(xu; γ)‖ ≤ Ck+l‖xu‖
η−l.

�
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A.2 Computation of the bifurcation curves

Now we use the reduced bifurcation equations from Lemma A.2 to solve for
bifurcations of n-periodic and n-homoclinic orbits, n = 1, 2.

1-periodic orbits.

For a 1-periodic orbit, (A.6) becomes an equation of the form xu =
ε + µxβ

u + U(xu; γ). To compute the parameter values where saddle-node
bifurcations of 1-periodic orbits occur, one has to solve the system

xu = ε+ µxβ
u + U(xu; γ),

1 = βµxβ−1
u + U ′(xu; γ).

Here U(xu; γ) = O(xη
u) and U ′(xu; γ) = O(xη−1

u ). Solving these equations,
one obtains µ > 0 and

ε =
(

β
1

1−β − β
β

1−β

)

µ
1

1−β + o(µ
1

1−β ).

2-homoclinic orbits.

For a two-homoclinic orbit, (A.6) becomes

xu,1 = ε+ µxβ
u,0 + U1(xu,0, xu,1; γ),

xu,0 = ε+ µxβ
u,1 + U0(xu,0, xu,1; γ),

with xu,0 = 0 and xu,1 > 0. Thus we get

xu,1 = ε,

0 = ε+ µxβ
u,1 + U0(0, xu,1; γ).

Solving this one obtains µ < 0 and

ε = (−µ)
1

1−β + o((−µ)
1

1−β ).

2-periodic orbits.

For a 2-periodic orbit, (A.6) becomes

xu,1 = ε+ µxβ
u,0 + U1(xu,0, xu,1; γ),

xu,0 = ε+ µxβ
u,1 + U0(xu,0, xu,1; γ),
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with xu,0 and xu,1 positive. We may assume that xu,0 < xu,1 and write
xu,1 = xu, xu,0 = axu for some 0 < a < 1. The equations to solve are

xu = ε+ µaβxβ
u + U1(axu, xu; γ),

axu = ε+ µxβ
u + U0(axu, xu; γ).

By symmetry, U0(axu, xu; γ) = U1(xu, axu; γ). Subtracting the both equa-
tions and dividing by (1 − a)xβ

u yields

x1−β
u = µ

aβ − 1

1 − a
+
U1(axu, xu; γ) − U1(xu, axu; γ)

(1 − a)xβ
u

. (A.7)

Here U1(axu, xu; γ)−U1(xu, axu; γ) = O((1− a)xη
u) as a→ 1. It follows that

(A.7) has a well defined limit as a→ 1,

x1−β
u = −µβ + Ū(xu; γ).

Here Ū(xu; γ) = O(xη−β
u ). Note that η − β > 0 since η > 1. We thus obtain

period-doubling bifurcations if µ < 0 and

ε =
(

β
1

1−β + β
β

1−β

)

(−µ)
1

1−β + o((−µ)
1

1−β ).

A straightforward computation shows that the period-doubling bifurcation
is supercritical [15].

A.3 Invariant foliations

It remains to show that no n-periodic orbits and n-homoclinic orbits exist,
for n > 2. For this we will construct invariant strong stable foliations for Π.
Also the statements on stability of periodic orbits are a direct consequence
of preceding computations and the existence of a strong stable foliation.

We will cover a neighborhood W of γ = 0 in the parameter plane by two
regions W1 and W2. For a positive constant E, let

W1 = {(ε, µ) ∈ W; |ε| ≤ E|µ|
1

1−β },

W2 = {(ε, µ) ∈ W; |ε| ≥ E|µ|
1

1−β }.

Below, we will need to choose E sufficiently large. For parameters from W1,
a strong stable foliation for Π will be constructed. Dynamics of Π for pa-
rameters from W2 is studied separately.
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Parameters from W2.

We parametrize W2 by parameters (ε, k), where k is given by µ = k|ε|1−β;
k is contained in [−( 1

E
)1−β, ( 1

E
)1−β ]. Consider rescaled coordinates (x̂ss, x̂u)

given by
(

xss

xu

)

=

(

|ε|1−β 0
0 |ε|

)(

x̂ss

x̂u

)

+

(

p
0

)

.

Computing the Poincaré return map (x̂ss, x̂u) 7→ Π̂(x̂ss, x̂u; ε, k) in rescaled
coordinates and with parameters (ε, k), one gets

Π̂(x̂ss, x̂u; ε, k) =

(

x̂β
urh|ε|

2β−1 + x̂η
uk1|ε|

η+β−1

sign(ε) + kx̂β
uh+ x̂η

uk2|ε|
η−1

)

.

Here h is evaluated at (xss; γ) = (|ε|1−βx̂ss + p; k|ε|1−β, ε) and ki, i = 1, 2,
is evaluated at (xss, xu; γ) = (|ε|1−βx̂ss + p, |ε|x̂u; k|ε|

1−β, ε). As ε → 0,
Π̂(x̂ss, x̂u; ε, k) → Π̂0(x̂ss, x̂u; ε, k), given by

Π̂0(x̂ss, x̂u; ε, k) =

(

0
sign(ε) + kx̂β

u

)

.

This convergence is uniform on sets of the form [−I, I] × (0, I], where I is
a positive number. It is clear that Π̂0 has a stable fixed point if ε > 0,
attracting all points in its domain. If ε < 0, all points of Π̂0 are eventually
mapped outside the domain of Π̂0. If we consider only small values of k, i.e.
if E is chosen sufficiently large, then for ε small and positive, Π̂ has a stable
fixed point in [−I, I]× (0, I], which attracts all points in [−I, I]× (0, I]. And
if ε is small and negative, all points in [−I, I]× (0, I] are mapped outside the
domain of Π̂.

The range [−δ0, δ0]× (0, δ0] of (xss, xu)-values for which we have to study
Π, corresponds to [− 1

|ε|
δ0,

1
|ε|
δ0] × (0, 1

|ε|
δ0] in the (x̂ss, x̂u)-coordinates. Note

that this region is much larger than [−I, I] × (0, I] if ε is small. Write
Π̂ = (Π̂ss, Π̂u) and Π̂0 = (Π̂ss

0 , Π̂
u
0). For x̂u ∈ (0, 1

|ε|
δ0],

|Π̂u(x̂ss, x̂u) − Π̂u
0(x̂ss, x̂u)|

|x̂u|
=

|x̂η
uk2|ε|

η−1|

|x̂u|
≤ sup |k2|δ

η−1
0 .

Since this is small, if δ0 is small, it follows that every point (xss, xu) ∈
[−δ0, δ0] × (0, δ0] is either eventually mapped into [−I|ε|, I|ε|] × (0, I|ε|] by
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Π, or eventually mapped outside the domain of Π. Hence Π possesses just
a stable attracting fixed point if ε > 0, whereas for ε < 0, all points of
[−δ0, δ0] × (0, δ0] are eventually mapped outside the domain of Π.

Parameters from W1.

Parametrize W1 by (µ, k), where k ∈ [−E,E] is defined by ε = k|µ|
1

1−β .
The value of E will be considered fixed, subject to conditions obtained in
the above treatment of parameter values from W2. Consider the rescaling
defined by

(

xss

xu

)

=

(

|µ| rsign(µ)|µ|
β

1−β

0 |µ|
1

1−β

)

(

x̄ss

x̄u

)

+

(

p
0

)

.

The Poincaré return map (x̄ss, x̄u) 7→ Π̄(x̄ss, x̄u;µ, k) in rescaled coordinates
and with parameters (µ, k), has an expression

Π̄(x̄ss, x̄u;µ, k) =
(

−rksign(µ)|µ|
2β−1
1−β + x̄η

u

[

k1|µ|
η+β−1
1−β − k2rsign(µ)|µ|

2β−2+η
1−β

]

k + sign(µ)x̄β
uh+ x̄η

uk2|µ|
η−1
1−β

)

,

where e.g. h is evaluated at (xss; γ) = (|µ|x̄u + r|µ|
β

1−β x̄ss + p;µ, k|µ|
1

1−β ).
Note that, as µ→ 0, Π̄(x̄ss, x̄u;µ, k) → Π̄0(x̄ss, x̄u;µ, k), where

Π̄0(x̄ss, x̄u;µ, k) =

(

0
k + sign(µ)x̄β

u

)

.

This convergence is uniform for (x̄ss, x̄u) ∈ [−I, I]×(0, I], where I is a positive
constant. Writing Π̄ = Π̄0 + H̄, we have for r, s ∈ N,

∣

∣

∣

∣

∂r+sH̄

∂rx̄ss∂sx̄u

(x̄ss, x̄u;µ, k)

∣

∣

∣

∣

≤ const(r + s)|µ|ζ|x̄u|
η−s,

for some ζ > 0, η > 1 and for (x̄ss, x̄u) ∈ [−I, I] × (0, I], k ∈ [−E,E].
In the above situation, we can apply the following proposition from [35].

Proposition A.3 Let (x̄ss, x̄u, µ, k) 7→ Π̄(x̄ss, x̄u;µ, k) be a map on [−I, I]×
(0, I], depending on parameters (µ, k), that decomposes as Π̄ = Π̄0+H̄, where

Π̄0(x̄ss, x̄u;µ, k) = (k + sign(µ)x̄β
u, 0),
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with β between 0 and 1 depending smoothly on (µ, k), and, for r, s ∈ N, H̄
satisfies

∣

∣

∣

∣

∂r+sH̄

∂rx̄ss∂sx̄u

(x̄ss, x̄u;µ, k)

∣

∣

∣

∣

≤ const(r + s)|µ|ζ|x̄u|
η−s,

for some ζ > 0, η > 1. Then Π̄ possesses a differentiable strong stable
foliation. �

By Proposition A.3, there is a strong stable foliation for Π̄(x̄ss, x̄u;µ, k)
on [−I, I] × (0, I]. Therefore, Π̄ has no n-periodic orbits, or n-homoclinic

orbits, with n > 2. Note that x̄u ∈ (0, I] corresponds to xu ∈ (0, I|µ|
β

1−β ],
an interval much smaller then (0, δ0] if µ is small. As in the treatment of
parameters from W2, one sees that the above conclusion in fact hold for
xu ∈ (0, δ0]. This finishes the proof of Theorem A.1.

B Exponential expansions

In this appendix we prove Lemma 2.8, providing a normal form for Xγ near
the singularity qγ , and Proposition 2.9, yielding exponential expansions of
the local transition map Φloc : S → Σ.

Proof of Lemma 2.8. Given the set of differential equations (2.5), where
F ss and F s are quadratic and higher order terms, consider a coordinate
change (xss, xs, xu) 7→ (yss, ys, yu) of the form

yss = xss + pss(xu; γ)xss + ps(xu; γ)xs,

ys = xs + qss(xu; γ)xss + qs(xu; γ)xs,

yu = xu,

for functions pss, ps, qss, qs which vanish at xu = 0. Write the differential
equations in the new coordinates (yss, ys, yu) as

˙yss = −αyss +Gss(yss, ys, yu; γ)yss +Gs(yss, ys, yu; γ)ys,

ẏs = −βys +Hss(yss, ys, yu; γ)yss +Hs(yss, ys, yu; γ)ys,

ẏu = yu.
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At yss, ys = 0, we have

Gss(0, 0, yu; γ) = ˙pss + h.o.t.,

Gs(0, 0, yu; γ) = ṗs + (α− β)ps + h.o.t.,

Hss(0, 0, yu; γ) = ˙qss + (β − α)qss + h.o.t.,

Hs(0, 0, yu; γ) = q̇s + h.o.t.,

where h.o.t. stands for higher order terms in (pss, ps, qss, qs, yu), compare [32],
[9]. We seek functions pss, ps, qss, qs of yu = xu so that Gss, . . . , Hs vanish
at yss, ys = 0. Considering pss, ps, qss, qs as variables, this demand yields
differential equations for (pss, ps, qss, qs, yu);

˙pss = h.o.t.,

ṗs = (β − α)ps + h.o.t.,

˙qss = (α− β)qss + h.o.t.,

q̇s = h.o.t.,

ẏu = yu.

The eigenvalues of the linearized differential equations, at pss, ps, qss, qs, yu =
0, are β − α, 0, 0, α− β, 1. Note that β − α < 0 < α− β < 1. Hence we ob-
tain the desired functions pss, ps, qss, qs by constructing the one dimensional
strong unstable manifold for the above system of differential equations. �

The proof of Proposition 2.9 relies on a precisement of estimates derived
in [32], [8], [9].

Proof of Proposition 2.9. Instead of determining an orbit piece between
the cross sections S and Σ by its initial coordinates in S, one can determine
it by one stable coordinate in S together with the transition time τ required
to flow to Σ: for τ > 0 and ξs with |ξs| < 1, there is a unique orbit

x(t, τ, ξs; γ) = (xss, xs, xu)(t, τ, ξs; γ)

of Xγ, so

d

dt
x(t, τ, ξs; γ) = Xγ(x(t, τ, ξs; γ)),
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satisfying

xss(0, τ, ξs; γ) = 1,

xs(0, τ, ξs; γ) = ξs,

xu(τ, τ, ξs; γ) = 1.

This statement is deduced from the usual initial value formulation by noting
that xu(0, τ, ξs; γ) = e−τ . However, in the above formulation the asymptotics
for the local transition map become better amenable. The formulation gener-
alizes to more dimensions and goes then under the name Shil’nikov variables,
see [41], [8].

We will first show the following lemma, providing estimates on xss(t, τ, ξs; γ)
and xs(t, τ, ξs; γ). The asymptotics of xs is as in [41], [8]. For xss we can
obtain a more precise expansion because of the eigenvalue conditions we as-
sume. Indeed, from |xs(t, τ, ξs; γ)| ≤ C0e

−βt and 2β(γ) > α(γ) for γ small,
it follows that |x2

s(t, τ, ξs; γ)| ≤ C0e
−2βt is much smaller than e−αt for t large.

As we will show in the next lemma, it follows from this and Lemma 2.8 that
xss(t, τ, ξs; γ) converges at an exponential rate e−αt to 0 as t→ ∞.

Lemma B.1 For k ≥ 0, there are positive constants Ck so that, for 0 ≤ t ≤
τ and γ near 0,

∣

∣

∣

∣

∂k

∂(t, ξs, γ)k
xss(t, τ, ξs; γ)

∣

∣

∣

∣

≤ Cke
−αt,

∣

∣

∣

∣

∂k

∂(t, ξs, γ)k
xs(t, τ, ξs; γ)

∣

∣

∣

∣

≤ Cke
−βt.

Furthermore, for the derivatives with respect to τ ,
∣

∣

∣

∣

∂k

∂(t, τ, ξs, γ)k

∂

∂τ
xss(t, τ, ξs; γ)

∣

∣

∣

∣

≤ Cke
−αt+(t−τ),

∣

∣

∣

∣

∂k

∂(t, τ, ξs, γ)k

∂

∂τ
xs(t, τ, ξs; γ)

∣

∣

∣

∣

≤ Cke
−βt+(t−τ).

Proof. To simplify the notation we write e.g. x(t) for x(t, τ, ξs; γ). Re-
call that δ is the distance of the sections S and Σ to the origin, before
rescaling, see (2.6), (2.7). Because of the applied rescaling (xss, xs, xu) 7→
(xss, xs, xu)/δ, we have

|F ss(xss, xs, xu; γ)| , |F
s(xss, xs, xu; γ)| ≤ Cδ, (B.1)
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for some C > 0, uniformly in (xss, xs, xu, γ). By the variation of constants
formula,

xss(t) = e−αt +

∫ t

0

e−α(t−s)F ss(x(s))ds, (B.2)

xs(t) = e−βtξs +

∫ t

0

e−β(t−s)F s(x(s))ds. (B.3)

For κ, λ > 0 and a finite dimensional vector space E with norm ‖ · ‖, let

Σκ,λ([0, τ ], E) = {y ∈ C0([0, τ ], E); sup
0≤t≤τ

‖y(t)‖eκt+λ(τ−t) <∞}.

Equipped with the norm

‖y‖κ,λ = sup
0≤t≤τ

‖y(t)‖eκt+λ(τ−t),

Σκ,λ([0, τ ], E) is a Banach space.
Let Y = (Yss,Ys) be the map on C0([0, τ ],R2) that maps (xss, xs) to

the right hand side of (B.2), (B.3). Let BR denote the ball of radius R in
Σα,0([0, τ ],R)×Σβ,0([0, τ ],R). We claim that for ‖ξs‖ ≤ 1, there exists R > 0
so that

• Y maps BR inside itself,

• Y is a contraction on BR.

The fixed point of Y, providing the orbit x, therefore satisfies the estimates
in the statement of the lemma.

The claim is obtained using (B.1), Lemma 2.8, and the observation that
2β(γ) > α(γ) for γ small. Since the arguments closely follow those in [8],
we leave performing these estimates to the reader. One treats (higher order)
derivatives by differentiating (B.2), (B.3) and using the obtained identities
to define a map on an appropriate weighted Banach space. Performing esti-
mates as above one shows that this map is a contraction on some ball in the
weighted Banach space. For details we refer to [8]. �

To obtain more precise asymptotics, we study the functions

zss(u, τ, ξs; γ) = eα(τ−u)xss(τ − u, τ, ξs; γ),

zs(u, τ, ξs; γ) = eβ(τ−u)xs(τ − u, τ, ξs; γ).
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Lemma B.2 The limit functions

z∞ss (u, ξs; γ) = lim
τ→∞

zss(u, τ, ξs; γ),

z∞s (u, ξs; γ) = lim
τ→∞

zs(u, τ, ξs; γ)

exist as smooth functions of (u, ξs; γ). For any 0 < σss < 2β(0) − α(0) and
0 < σs < β(0), there are Ck so that, for 0 ≤ u ≤ τ and γ small,

∣

∣

∣

∣

∂k

∂(u, τ, ξs, γ)k
(zss(u, τ, ξs; γ) − z∞ss (u, ξs; γ))

∣

∣

∣

∣

≤ Cke
σss(u−τ),

∣

∣

∣

∣

∂k

∂(u, τ, ξs, γ)k
(zs(u, τ, ξs; γ) − z∞s (u, ξs; γ))

∣

∣

∣

∣

≤ Cke
σs(u−τ).

Proof. We will first show that
∣

∣

∣

∣

∂

∂τ
zss(u, τ, ξs; γ)

∣

∣

∣

∣

≤ Ceσss(u−τ), (B.4)

∣

∣

∣

∣

∂

∂τ
zs(u, τ, ξs; γ)

∣

∣

∣

∣

≤ Ceσs(u−τ), (B.5)

for some C. From this it follows that z∞ss (u, ξs; γ) = limτ→∞ zss(u, τ, ξs; γ)
and z∞s (u, ξs; γ) = limτ→∞ zs(u, τ, ξs; γ) exist and

|zss(u, τ, ξs; γ) − z∞ss (u, ξs; γ)| ≤ Ce−σss(τ−u),

|zs(u, τ, ξs; γ) − z∞s (u, ξs; γ)| ≤ Ce−σs(τ−u).

As in the proof of Lemma B.1, we simplify the notation and write e.g.
zss(t) for zss(t, τ, ξs; γ). We have

zss(u) = 1 +

∫ τ−u

0

eαsF ss(x(s))ds, (B.6)

zs(u) = ξs +

∫ τ−u

0

eβsF s(x(s))ds. (B.7)

Compute

∂

∂τ
zss(u) = eα(τ−u)F ss(x(τ − u)) +

∫ τ−u

0

eαs ∂

∂τ
F ss(x(s))ds, (B.8)

∂

∂τ
zs(u) = eβ(τ−u)F s(x(τ − u)) +

∫ τ−u

0

eβs ∂

∂τ
F s(x(s))ds. (B.9)
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Lemma B.1 yields, for i = ss, s,
∣

∣F i(x(s))
∣

∣ ≤ C0e
−2βs,

∣

∣

∣

∣

∂

∂τ
F i(x(s))

∣

∣

∣

∣

≤ C0e
−2βs+(s−τ).

Direct estimates now prove (B.4) and (B.5), compare [9]. Estimates for
derivatives are obtained similarly, by differentiating (B.6) and (B.7). �

From the above lemmas we obtain expansions

xss(τ, τ, ξs; γ) = e−ατ (ψss(ξs; γ) + T ss(ξs, τ ; γ)) , (B.10)

xs(τ, τ, ξs; γ) = e−βτ (ψs(ξs; γ) + T s(ξs, τ ; γ)) . (B.11)

Here T ss and T s as well as their derivatives are of order O(e−σssτ ) resp.
O(e−σsτ ) as τ → ∞. By (2.2) we have that ψs(0; γ) = 0. It is not hard
to see that ∂

∂ξs
ψs(0; γ) 6= 0. Proposition 2.9 is now easily obtained. Indeed,

from xu(0, τ, ξs; γ) = e−τ = 1 we get τ = − ln xu. Put this in the expansion
formulas (B.10), (B.11) for xss(τ, τ, ξs; γ) and xs(τ, τ, ξs; γ). �
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