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Abstract

This paper studies three-parameter unfoldings of resonant orbit
flip and inclination flip homoclinic orbits. First all known results on
codimension-two unfoldings of homoclinic flip bifurcations are pre-
sented. Then we show that the orbit flip and inclination flip both fea-
ture the creation and destruction of a cusp horseshoe. Furthermore,
we show near which resonant flip bifurcations a homoclinic-doubling
cascade occurs.

This allows us to glue the respective codimension-two unfoldings
of homoclinic flip bifurcations together on a sphere around the cen-
tral singularity. The so obtained three-parameter unfoldings are still
conjectural in part, but constitute the simplest, consistent glueings.

Keywords: homoclinic bifurcation, inclination flip, orbit flip, homoclinic-
doubling cascade, cusp horseshoe
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1 Introduction

Consider a smooth family of vector fields { X, } on R*, where u = (u1, po, p3) €
R?. By changing coordinates if necessary, we arrange that the origin of the
phase space is an equilibrium, independently of u. We restrict our attention
to the situation that DX, (0) has three distinct real eigenvalues, and without
loss of generality we assume that the stable manifold W?**#(0) is two dimen-
sional. Let Ay, Ag and A, be the eigenvalues of DX, (0), which we define by
Ass < Ay < 0 < A,. (For notational convenience we often do not indicate
dependence on p.) For later reference, we define the ratios @« = —Az /A, and
B = —As/Ay of the eigenvalues, which will turn out to be important param-
eters. (In fact one can scale {X,} to achieve that A, = 1 independently of
)
Suppose now that I, is a homoclinic orbit of X,,. Then I',, is of codimension-

one if

(G1) Ay + Ay # 0,
(G2) T, ¢ W*(0), and
(G3) W**(0) intersects W***(0) transversally along I',.

Here W*°(0) denotes the one-dimensional strong-stable manifold of 0, and
W*"(0) is a two dimensional center-unstable manifold of 0; see also [Hom96.
Condition (G1) is a non-resonance condition, and (G2) means that I', must
be tangent to the weak stable direction. Condition (G3) requires that the
stable manifold W#**(0), if followed along I, returns along the strong stable
direction W**(0). Consequently, there are two possible cases: the resulting
surface may be a (topological) cylinder or a Mdbius strip, that is, it is either
orientable or twisted.

If (G1) is still satisfied, but (G2) or (G3) are not then (under extra
genericity conditions) I, is a codimension-two homoclinic orbit. If only (G2)
is not satisfied then I, is called an orbit flip homoclinic orbit, meaning that
the homoclinic orbit is formed by the strong stable manifold W*°(0); see
Figure 1. If only (G3) is not satisfied then I',, is called an inclination flip
homoclinic orbit, and the stable manifold W**(0), if followed along I',,
returns along the weak stable direction W*(0) as illustrated in Figure 2.
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Figure 1: The orbit flip.

Recently, much progress has been made in finding the codimension-two
unfoldings of the homoclinic flip bifurcations; see [KK093a, KKO93b, HKK94,
KKO96, Nau96a, Nau96b, Nii96, San93|. (The orientation of W**#(0) changes
in both cases, hence, the name flip bifurcations.) It is an interesting fact
that the orbit flip and the inclination flip lead to much the same unfoldings.
There are essentially three different possibilities: A no extra bifurcations,
B homoclinic-doubling (the appearance of a curve of two-homoclinic orbits
that pass very close to the equilibrium once before closing), and C a very
complicated bifurcation structure that includes n-homoclinic orbits of any
period n, as well as shift-dynamics through the creation and destruction of
a cusp horseshoe; see Section 2 and Figure 5. Which case occurs depends on
the ratios o and (8 as shown in Figure 4.

In this paper we present three-parameter unfoldings of a codimension-
three resonant homoclinic flip orbit I' that exists for 4 = 0 in the smooth
family X, of vector fields. We consider all resonant orbit flip and resonant
inclination flip bifurcations, given by choosing («, ) from one of the
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Figure 2: The two cases of the inclination flip for a < 2/ (top) and a > 23
(bottom).
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boundary curves in Figure 4. (Note that there are other codimension-three
situations which we do not discuss here, for example, the orbit/inclination
flip homoclinic orbit, the weak inclination flip and the weak orbit flip; see
Section 2 and [Nau96al.) Apart from being the next logical step in studying
homoclinic bifurcations, our motivation was the proof of existence of a cas-
cade of homoclinic-doubling bifurcations in [HKN97], where a homoclinic or-
bit undergoes successive homoclinic-doublings. Such a cascade can be found
near resonant homoclinic flip orbits; see Section 3. The following questions
arise: What does the codimension-three unfolding of such resonant homo-
clinic flip bifurcations look like[' What role does the homoclinic-doubling
cascade play in itl’

In our study we adopt the topological point of view of glueing correspond-
ing codimension-two unfoldings to each other. This idea has been very useful
in the analysis of codimension-three unfoldings of degenerate equilibria of vec-
tor fields; examples are [DRS91, KR96]. Imagine a sphere around the origin
in p-space, for which there is a codimension-three homoclinic orbit I'. Sup-
pose that for (uq, u2) = (0,0) and pz # 0 there is a codimension-two homo-
clinic orbit I',,,, whose two codimension-two unfoldings near (y;, p2) = (0, 0)
for p3 > 0 and for pu3 < 0 are known. The task is now to glue these two
codimension-two unfoldings to each other on the surface of the sphere. In
other words, the question is to find the additional bifurcations, away from
(u1, p2) = (0,0) that are necessary to get a consistent bifurcation diagram.
Under the assumption that the bifurcation set, or at least the parts of it that
we are interested in, has conic structure near y = 0, the bifurcations on the
sphere represent the codimension-three unfolding.

We present bifurcation diagrams for the three existing transitions, namely
for

e the transition from A to B,

e the transition from B to C involving a homoclinic-doubling cascade,
and

e the transition from B to C without a homoclinic-doubling cascade, but
with an inclination flip of type C instead.

Figures 9 through 15 show the different unfoldings of codimension-three
homoclinic orbits; see Section 4 for an explanation. Although still conjec-
tural, they constitute the simplest, consistent glueings that take into account
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all known information on codimension-two homoclinic bifurcations and on
the homoclinic-doubling cascade. Resonant homoclinic flip bifurcations were
independently considered by J. Sotomayor, and the case of the transition
from A to B is treated by his student M. Montealegre in [Mon96].

Codimension-two flip bifurcations have been found in several applica-
tions, for example in [K095, ZN98|, and they can be detected and followed
in parameter space with the package AUTO/HomCont [DCFKSW97]. By
monitoring the eigenvalues resonant flip bifurcations can be detected in appli-
cations quite easily. There is also the model system due to Sandstede [San97]
in which resonant flip bifurcations can be studied. However, it is quite dif-
ficult to check numerically that the bifurcation diagrams we presented are
correct, because at present there is no method that allows homoclinic branch
switching from a curve of homoclinic n-orbits to a curve of homoclinic 2n-
orbits. Developing such a method is in progress with the goal of numerically
continueing homoclinic-doubling cascades in the unfoldings presented here.
Furthermore, this will allow one to investigate quantitative features near
resonant flip bifurcations in models from applications.

This paper is organized as follows. In Section 2 we summarize what is
known about the unfoldings of codimension-two homoclinic orbits. We also
give a treatment of the existence and destruction of cusp horseshoes. In order
not to interrupt the main line of the paper, we put much of this material in
Appendix A. The homoclinic-doubling cascade is discussed in Section 3.
The bifurcation diagrams of the codimension-three bifurcations are derived
and presented in Section 4. A second appendix, Appendix B, contains an
exposition of asymptotic expansions for local transition maps, which play a
fundamental role in the computations.

2 Codimension-two unfoldings

In this section we summarize known results on codimension-two homoclinic
bifurcations. Recall from the introduction that bifurcation diagrams of ho-
moclinic flip bifurcations come in three different cases, which we labeled A,
B and C. Case A shows no additional bifurcations, case B is the homoclinic
doubling bifurcation and case C involves n-homoclinic orbits for all integers
n. Which case occurs depends on eigenvalue conditions. For homoclinic flip
bifurcations in case C, only partial bifurcation diagrams were known. We
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Figure 3: The different cases of unfoldings for the resonant homoclinic bifur-
cation. Note that a is the constant in the normal form of the return map.

extend the known results for this case and provide complete bifurcation di-
agrams, as far as homoclinic bifurcations are concerned. In particular, we
prove the existence of cusp horseshoes and analyse their annihilation.

Consider a smooth two parameter family {X,}, u = (1, p2) € R?, of
vector fields on R? possessing a hyperbolic singularity in the origin 0, such
that DX,(0) has three distinct real eigenvalues Ay, A; and A, with A\, <
As <0 < Ay At =0, X, possesses a homoclinic orbit I'. Take coordinates
(x5, Ts, Ty) SO that

0 0 0
DXN(O) = )\551‘5587 +)\5T587+)\u7)u67 (].)

and recall that o = =\ /A, and 3 = =\, /A,

2.1 Homoclinic orbit at resonance

Suppose the homoclinic orbit I' of Xy is a homoclinic orbit at resonance,
that is, that (G1) is not satisfied. This bifurcation was treated in [CDF90];
see also [KKO93a, San93|. Natural parameters to study an unfolding of the
homoclinic orbit at resonance are u; = #—1 and us being the signed distance
between stable and unstable manifolds, in a cross section. That is, for some
small § and in local coordinates in which the local stable manifold is given
by {z, = 0}, we define uy by W*(0) N {zs = §} = (x,d, pa). Observe that
the primary homoclinic orbit exists for gy = 0. Assuming an additional non-
degeneracy condition [CDF90], there are two different bifurcation diagrams,



Resonant homoclinic flip bifurcations 7

Y ¥
A A
1 1.
B
1
2 = C B
C
i o 1 a

Figure 4: The regions in the (o, §)-plane of different unfoldings A, B and C
for the orbit flip (right) and for the inclination flip (left). The shaded and
the unshaded region of C on the left differ by the the topology of W* at the
inclination flip as shown in Figure 2.

depending on whether the homoclinic orbit at (1, uo) = (0,0) is orientable
or twisted. The bifurcation diagrams are given in Figure 3.

2.2 Flip homoclinic orbit

Suppose I' is a flip homoclinic orbit. Then in the unfolding the primary
homoclinic orbit switches from orientable to twisted.

Different bifurcation diagrams exist, depending on the values of o and (8
as depicted in Figure 4. All cases of codimension-two bifurcation diagrams
near p = (pg, po) = (0,0) can be found in Figure 5.

case A (orbit or inclination flip: > 3 > 1):
This case is easily studied using the fact that the Poincaré return map
on a cross section is an expansion. Indeed, it is immediate from this
fact that at most one 1-periodic orbit can exist.

case B (orbit flip:a > 1, § < 1, inclination flip o > 1, 1/2 < § < 1):
This bifurcation is called a homoclinic-doubling bifurcation. The exis-
tence of the depicted bifurcation curves was established for the orbit flip
in [San93] and for the inclination flip in [KKO93a, KKO93b, HKN97].
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Figure 5: The different cases of unfoldings for the inclination flip and the orbit
flip. In A no extra bifurcations occur, and B is the hclinic-doudoubling.
The most complicated case C comes in the two variations C;, and C,,
depending on how the horseshoe is formed. Stable and unstable periodic
orbits of different periods are shown.
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case C (orbit flip: < a < 1, inclination flip o <1 or § < 1/2):
There are two cases C;, and C,,;. Partial bifurcation diagrams have
been obtained in [San93] for the orbit flip, and in [Nau96a] for the
inclination flip in the region defined by a < 1 or § < % In particu-
lar, these references give the existence of curves of n-homoclinic orbits,
for each integer n, in the unfolding. In [HKK94] partial bifurcation
diagrams have been obtained in the region o > 23 and § < %,

der the additional assumption that the vector field near 0 is smoothly

linearizable. As far as homoclinic bifurcations are concerned, the bi-
furcation diagrams in [HKK94| are complete. We remark that Hénon
type strange attractors can be expected to occur in the unfolding, see

[Nau96b, Nau98|.

un-

We now discuss the orbit flip and the inclination flip separately for (o, 3)
from region C. We introduce natural parameters and study the existence
and bifurcations of cusp horseshoes. Certain nondegeneracy conditions must
be assumed in the bifurcation study, as we will make clear. Our arguments
will show that two different cases exist, an inward twist case and an outward
twist case. This corresponds to the two bifurcation diagrams C;, and C,, in
Figure 5. In fact, we provide a complete picture of the homoclinic bifurcations
that occur in the unfolding, both for the orbit flip and the two types of
inclination flips and thus extend the known results. In our analysis we use
no linearizability assumptions.

2.3 Orbit flip

For some small §, let ¥, ¥°“ be the cross-sections

Zm = {xss - 6a |l‘s|a |I‘u‘ < |6‘}’
Zout — {xu :67‘x55|,|xs‘ S |6‘}

We may assume that they both intersect the homoclinic orbit I of X;. By a
linear rescaling we may assume that 6 = 1. Take coordinates (x4, x, ) on 3%
and (x4, 1,) on Y™ obtained by restriction of the coordinates (z,, s, ,)
near the origin. Let @, : X" — X be the local transition map and let
P o XU — ¥ be the global transition map. The Poincaré return map
® on Y™ is the composition ® = &, o ® 4. Observe that @y, is a local
diffeomorphism. In Appendix B, asymptotic expansions for ®,,. are given,
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valid after a smooth change of coordinates; see Proposition B.5. Using these
expansions, we can write ® as

q)(xs: xu) -

p + Azl + Bral + O(x0 + 2228 + |3y |2xlt)
( po + Cx8 + Drgxl + O(x2 + 2228 + |z4|x0te) ) ’ )
for some w > 0. This also identifies the two parameters p; and po: (p1, p2) =
®(0,0) are the coordinates of the first intersection of W*(0) with Y.

We assume that C' # 0; the case C' = 0 corresponds to an inclination
flip. We also assume D # 0. The degenerate case D = 0 is called a weak
orbit flip [Nau96a|. Let us give an equivalent formulation of this last non-
degeneracy condition. At the bifurcation point (1, uo) = (0,0), the image
@, (W*5(0) N X) is the graph of a map

t = (at+ O(t?),1).

Then a # 0 precisely if D # 0.

We now show that ® possesses horseshoes for parameter values (1, p2)
from a wedge, indicated in Figure 5 as a shaded region. The size of these
horseshoes shrinks to 0 as gy — 0. A suitable rescaling brings these horse-
shoes to unit size, which fascilitates a study of their properties and bifurca-
tions. We will now give the proper rescaling and indicate how this enables a
study of the horseshoes. Let rescaled coordinates (4, T,) be given by

Ty = 1+ || T,
Ty = |M1|U-'Eua

where 0 = 1/(a— ) and v = a/(a— ). A computation yields the following
result.

Proposition 2.1 Let ® be the Poincaré return map in the rescaled coordi-
nates (Ty,Ty). Write s = pio|pi|~*/=8) . Then, for some w > 0,

q)(i‘sai‘u) -
Azg + Bl 4+ O(|m|*2))
1[5 (s + O + Dsign(n)# + O(|m |°75))
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This proposition shows that the rescaled Poincaré return map @ is close
to a one-dimensional map, if we take (i1, o) near 0 from a region in which
s = ig|p1|72/®=%) is bounded. As i, — 0, taking (7, #,) from some compact
box [1,1] x [0, k], ® converges to the one-dimensional map

) Az® + Bz
:L‘u — a—1 _ ) (3)
o7 ()

where
g(7.) = 5+ CF+ Dsign(n).

If 111D and C have opposite sign, then z, > |, [(@~D/(@=g(z,) is unimodal
and has a graph as depicted in Figure 8. If the one-dimensional map (3)
possesses a hyperbolic horseshoe, then also ® does for p; small enough and
of the correct sign. An easy analysis yields the existence of an interval of
values of s, such that z,, — |p|@~D/(@=# g(z,) maps two disjoint subintervals
of [0, k| onto [0, k|, with slope larger then 1 (for suitable large enough £ and
[). For such values of s and u; (corresponding to a wedge shaped region in
the (i1, p2) parameter plane), the one-dimensional map (3) has a hyperbolic
horseshoe.

The reason for the appearance of two different cases, an inward twist
case and an outward twist case, follows from a geometric observation. A box
{0 < z, < k,|Zs] <1} in the rescaled coordinates, corresponds to a small
box D,, in the original coordinates, adjacent to the local stable manifold in
. The image ®;,,.(D,,) is on one side of the intersection of W***(0) with
¥4 which yields the two different cases. In Figure 6 one case is indicated,
where the horseshoe exists if gy = 0 (note that the horseshoe is depicted
in 3X°“"). This case we call the inward twist case Ci,. It is clear that ®,
restricted to D,,,, does not possess a horseshoe if the image @;;T(Dm) lies on
the other side of W*5(0) N X" at uy = 0. However, by varying the value
of 15, a horseshoe will be created. This case is called the outward twist case
Cout- Which case occurs can be read off from the sign of C' in (2): C' > 0
corresponds to the outward twist case, whereas C' < 0 corresponds to the
inward twist case. The inward and outward twist cases lead to different one-
dimensional maps: for the inward twist case, the one-dimensional map ¢ is
unimodal with a maximum, whereas for the outward twist case it is unimodal
with a minimum, see Figure 8.
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Figure 6: Depicted is the shape of the cusp horseshoe as it occurs in the
unfolding of an orbit flip, lying in the cross section ¥°%*. A small subdomain
E,, of the domain E of the return map @ on ¥°** is mapped by @ into a
horseshoe shape over itself.

Analysis of the rescaled return map ® enables a characterization of the
sequence of homoclinic bifurcations in which the horseshoe annihilates. Vary-
ing s, one encounters interval maps as in Figure 8, that do not possess a full
horseshoe, since there are no two subintervals that are mapped onto the whole
interval. An analysis of such interval maps explains the sequences of bifurca-
tions in which the horseshoe is destructed, see [ HKK94, Hom96]. The rescaled
return map ® has the same bifurcation structure as the one-dimensional map
(3) as far as the homoclinic bifurcations are concerned. Appendix A contains
information on this annihilation process of the horseshoe and the ensueing
combinatorics of periodic orbits.
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2.4 Inclination flip

For the inclination flip, we follow the same program as for the orbit flip. We
will be briefer than in the previous subsection, and mainly pay attention to
reductions to one-dimensional maps. The rest of the arguments can be filled
in by following the reasoning for the orbit flip.

For some small §, let X, ¥°“ be the cross-sections

nn = {fIfs =9, ‘xss|a |I‘u‘ < |6‘}’
Zout — {xu :(57‘.’Ijss|,|xs‘ S |6‘}7

intersecting the homoclinic orbit I' of X,. By a linear rescaling we may
assume that § = 1. Take coordinates (z,,, z,) on £ and (z,,x,) on X
obtained by restriction of the coordinates (24, s, z,) near the origin. Let
Dpe : ™ > L be the local transition map. Let @4, @ 224" — Y™ be the
global transition map, which is a local diffeomorphism. The Poincaré return
map ® on ¥ is again the composition ® = @, 0 D,

The case a = 2[ is degenerate, and we assume that o — 23 # 0. The
two cases with different sign of a—2 are treated separately; see also Figure 2.

The case a > 23, < 1/2.

Proposition B.2 in Appendix B provides asymptotic expansions for the
local transition map ®;,.. Because ®,, is a local diffeomorphism, one can
write the following expression for ® = ®;,. o ®¢,,.

_ p+ Bul + O(™)
%) = (et s e O 4oy )

for some w > 0. This also identifies the parameters (u;, u9). For generic
families the constant D is nonzero at (uq, u2) = (0,0), which we assume to
be the case.

As above we will use a rescaling to study the existence of hyperbolic
horseshoes. Consider rescaled coordinates (s, Z,) given by

Ty = ‘Hl‘gi‘ua
Tss =P = Tsgs,

where 0 = 1/4.
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Figure 7: Cusp horseshoes in the unfolding of the inclination flip. The top
picture is for @ > 2 and 0 < # < 1/2 and shows the inward twist C;,. The
bottom picture is for a < 23 and a < 1 and shows the outward twist C,;.
In both cases a small subdomain E,, of the domain F of the return map @)
on X°% is mapped by Q into a horseshoe shape over itself.
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Proposition 2.2 Let ® be the Poincaré return map in the rescaled coordi-
nates (T, Z,). Write s = po|uy| 2. Then, for some w > 0,

q)(i‘ssa ju) -

1 O(|m]xy)
l” 7 (s + sign(u)zl + Dz2 + O(|lm|“28)) )

As py — 0, restricting z, to a compact interval and parameters (1, s)
to a region in which s is bounded, ® converges to the one-dimensional map

- 0
o ( [ *1P (5 + sign(pu) T, + foiﬁ) ) '

This map is analysed as before. Figure 7 (top) gives an idea of the geometry
of the horseshoe. Note that the inward case is depicted, where the horseshoe
exists if py = 0.

The case a < 20, a < 1.

Applying Proposition B.2 from Appendix B, we can write

p+ Az + Bajf + O(a5+) )

(I)(l‘ssa TU) = ( 2 -+ Cl‘g + Mlxg + O(x3+w) (5)

for some w > 0. We assume p # 0; the case p = 0 is called a weak inclination
flip [Nau96a].
Consider rescaled coordinates (Zs, T,) given by

Ty = ‘Hl‘gi‘ua
Tss =P = g,
where 0 = 1/(a — ).

Proposition 2.3 Let ® be the Poincaré return map in the rescaled coordi-
nates (Ty,Ty). Write s = pio| |~/ Then, for some w > 0,

(I)(i‘ssa Tu) =

§ O(| 1 1°25)
1|27 (5 + C(p + 24075 + sign(pa)z + O m|“z8)) |-
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Figure 8: The one-dimensional maps occcuring in reductions of homoclinic
flip bifurcations for (a, ) from region C are unimodal. They possess either
a minimum for the outward twist case Cgy (left), or a maximum for the
inward twist case Cj, (right).

As p1 — 0, the map ® converges to the one-dimensional map

0
e ( DD (5 4 Cpag + sign(u)zf) )

A similar analysis as before yields the existence of hyperbolic horseshoes.
Figure 7 (bottom) gives an idea of the geometry of the horseshoe. Note that
the outward case is depicted, where the horseshoe does not exist if u, = 0.

3 The homoclinic-doubling cascade

As mentioned in the introduction, one of the motivations for writing this
paper, was the result in [HKN97] that near a particular orbit flip homoclinic
orbit of codimension-three, cascades of homoclinic-doubling bifurcations oc-
cur. Here, a homoclinic-doubling bifurcation is a codimension-two homoclinic
bifurcation with a bifurcation diagram as in case B in Figure 5. Pathfollow
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a curve of homoclinic bifurcations in the parameter plane. At a homoclinic-
doubling bifurcation, continue pathfollowing the curve of doubled homoclinic
orbits. A cascade of homoclinic-doubling bifurcations is present if one en-
counters homoclinic-doubling bifurcations p, in which a 2" homoclinic orbit
is created, for all positive integers n.

In [HKN97] it was established that such homoclinic-doubling cascades
can occur persistently in two parameter families of vector fields. In fact, an
open set of two parameter families of vector fields that contain cascades of
homoclinic-doubling bifurcations is constructed. The members of the families
from this open set are near a vector field with a particular resonant orbit flip
homoclinic orbit:

Theorem 3.1 ([HKN97]) Let {X,}, p = (1, p12, pi3), be a three parameter
family of vector fields unfolding an orbit flip at resonance a = 1 with 1/2 <
B < 1. Suppose the number C in (2) is large enough. Let i1, o be defined as
in Section 2.3 and let us = a—1. For each py sufficiently small and positive,
the two parameter family {Y,, 4} given by Y, us = Xy pous, POSSESSES Q
connected set of homoclinic bifurcation values in the (uy, us)-parameter plane,
containing a cascade (ut, u3) of homoclinic-doubling bifurcations in which a
2"-homoclinic orbit is created. All these homoclinic-doubling bifurcations are
inclination flips of type B.

It is not known whether the homoclinic bifurcations in these families are
unfolding generically, so that the set of homoclinic bifurcation values might be
more complicated then a union of curves. For families from a residual subset
of the constructed open set, homoclinic bifurcations will unfold generically.

Of basic importance in the derivation of Theorem 3.1 is the observa-
tion that a Poincaré return map on a cross section transverse to the homo-
clinic orbit is close to a one-dimensional map for a subset of the parameters
(11, p12, p13). Recall from Section 2.3 the following expression for the rescaled
return map .

O(z4,T,) =
Azg + B 4+ O(|m | x))
/@D (s + C38 + Dsign ()78 + O(|m|°5)) )

for some w > 0. Here s = puy|pq|7*/@=%), Write A = |1, [#*/®=#) and note that
A = 1if ug = 0. Restrict parameter values to a region in which s is bounded
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and ) is bounded and bounded away from 0. Then ® is a perturbation from
the one-dimensional map

) Az, + Bzl
T (s + Czy + Dsign(m)zl) )

(6)

of which only the second coordinate is of importance. Observe that this
reduction actually yields a family of maps, depending on the two parameters
A and s. The rescaled return map ® has p; as a third and small parameter.

By the eigenvalue condition 1/2 < § < 1, an inclination flip occuring for
i3 > 0 is a homoclinic-doubling bifurcation with a bifurcation diagram as
in case B in Figure 5, whereas an inclination flip occuring for pu3 < 0 has
the complicated bifurcation diagram depicted in case C in Figure 5. This
remark is the background for the requirement in Theorem 3.1 that C should
be sufficiently large: for C' large enough all inclination flips occur for us > 0,
that is, for A < 1.

The proof of Theorem 3.1 relies on a study of the above one-dimensional
map, combined with a continuation theory for homoclinic orbits as developed
in [HKN97]. This continuation theory is reminiscent of a similar theory
developed to follow periodic orbits in [YA83], where a continuation theory
for periodic orbits was used to find cascades of period-doublings.

The above reasonings can also be applied to the two different kinds of
resonant inclination flips. Consider the inclination flip at the resonance g =
1/2 with @ > 1. Consider the rescaled return map ® from Proposition 2.2.
The term |, [>~'/# in front of the second coordinate of ® is large for 3 < 1/2

1

and equals 1 if 3 = 1/2. We introduce a third parameter u3 = 3 — 5 and

o 1
restrict to parameters for which A = \ul\Q #3+172 is bounded and bounded
away from zero and s = po|u;|? is bounded. Then ®, for pu; small, is a
perturbation from the one-dimensional map

e (A<s+sign<u?>m+mu>>’ "

which depends on the two parameters A and s.

Applying arguments developed in [HKN97| allows to show the existence
of homoclinic-doubling cascades in the unfolding of this resonant inclination
flip. Indeed, as mentioned above, the proof of Theorem 3.1 relies on a study
of the one-dimensional map obtained from rescaling a Poincaré return map,
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plus an application of a continuation theory for homoclinic orbits. Since the
one-dimensional map for the resonant inclination flip is similar to the one
obtained for the resonant orbit flip, the reasoning in [HKN97] goes through,
and we obtain the following result.

Theorem 3.2 Let {X,}, p = (u1, pio, pi3), be a three parameter family of
vector fields unfolding an inclination flip at resonance 3 = % with a > 1.
Let iy, pio be defined as in Section 2.4 and let us = [ — % Suppose the
number D in (4) is large enough. For each ps sufficiently small and positive,
the two parameter family {Y,, 4} given by Y, us = Xy pous, DOSSESSES Q
connected set of homoclinic bifurcation values in the (uy, ps)-parameter plane,
containing a cascade (ut, p%) of homoclinic-doubling bifurcations in which a
2"-homoclinic orbit is created. All these homoclinic-doubling bifurcations are

inclination flips of type B.

In one respect the homoclinic-doubling cascades in the unfolding of this
resonant inclination flip differ from those occuring in the unfolding of the
resonant orbit flip. Namely, in the limit g; = 0 the rescaled return map
becomes the one-dimensional map (7), which does not possess homoclinic-
doubling cascades. We expect homoclinic-doubling bifurcations in a cascade
to occur very close to eachother if p; is small; compare the discussion in
[HKN97] and in Section 4.4.

The inclination flip at the resonance o = 1 with 1/2 < 3 < 1 can be
treated in the same way. The rescaled return map ®, for p; small, is a
perturbation from the one-dimensional map

Tu ( A (s +Cpzy :)L sign (yu1)25)) ) ! (®)

where \ = |,u1|3_:3 and s = ,u2|,u1|ﬁ.

Theorem 3.3 Let {X,}, p = (1, p2, 13), be a three parameter family of
vector fields unfolding an inclination flip at resonance « = 1 with 1/2 < § <
1. Suppose the number Cp in (5) is large enough. Let py, po be defined as in
Section 2.4 and let us = o — 1. For each ps sufficiently small and positive,
the two parameter family {Y,, ..} given by Y, .. = Xyt uyus, POSSESSES 0
connected set of homoclinic bifurcation values in the (uy, us)-parameter plane,
containing a cascade (ut, us) of homoclinic-doubling bifurcations in which a
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2" -homoclinic orbit is created. All these homoclinic-doubling bifurcations are
inclination flips of type B.

4 Codimension-three unfoldings

In this section we consider the resonant flip bifurcations of codimension-three
that correspond to (a, ) on the lines between the regions A, B, and C in
Figure 4. The central singularity may be an orbit flip or an inclination flip.
There are three different classes of transitions.

e The transition from A to B,

e The transition from B to C involving a homoclinic-doubling cascade.
This occurs for 1/2 < 3 < 1 and « near 1 both if the central singularity
is an orbit flip or an inclination flip. This also occurs for § near 1/2
and a > 1 if the central singularity is an inclination flip.

e The transition from B to C without a homoclinic-doubling cascade, but
with an inclination flip of type C instead. This occurs for 0 < § < 1/2
and « near 1 if the central singularity is an orbit flip.

We take the topological point of view of glueing the respective codimension-
two unfoldings from Section 2 to each other on the surface of a sphere. To
this end we arrange the parameters in such a way that one codimension-
two singularity sits at the north pole, and the other at the south pole. The
problem is now to connect the two in a consistent way on the surface of the
sphere.

In the figures we project this sphere to the plane as follows. The pa-
rameter p, unfolding the twist changes sign along the vertical axis of each
bifurcation diagram. Along the circle, corresponding to the bifurcating one-
homoclinic orbit I, the parameter u, (breaking I') changes sign. Finally,
the parameter p3 unfolding the resonance (crossing between the respective
regions A, B, and C) changes sign along the horizontal axis. By adjoining
the point at infinity the sphere can be retrieved.

The labels of the bifurcation curves indicate the type of bifurcation. H
stands for a codimension-one n-homoclinic orbit, where the subscript indi-
cates whether the homoclinic orbit is orientable (z = o) or twisted (z = ).
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B

Figure 9: The transition from A to B involves the orientable and the nonori-
entable resonant homoclinic bifurcation.

Furthermore, PD" denotes a period-doubling bifurcation and SN™ a saddle-
node bifurcation of an n-periodic orbit. In order to show that the bifurcation
diagrams are consistent we have indicated what limit cyles can be found in
the different regions on each sphere. The coding n® indicates that there is a
stable n-orbit (passing n times near the origin before closing), and n" stands
for an unstable n-orbit (of saddle-type). Consequently, the limit cycles of
type n® can be found by integration or in an experiment, but those of type
n" need more advanced techniques to be detected in a given system.

4.1 Transition from A to B

We introduce the parameter pu3 = 1 — 3, where we fix o > 1. The central
singularity may be both an orbit flip or an inclination flip. The transition
from A to B when pu3 changes sign can be resolved on the sphere if one
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realized that pu; = ps = 0 defines the resonant homoclinic bifurcations from
[CDF90] in Figure 3. There are the two possibilities depending on the sign
of a normal form coefficient; see [CDF90]. However, on the sphere both cases
are topologically as sketched in Figure 9. This case is studied in [Mon96]
with the method of desingularization of families of vector fields [Rou93].

4.2 Transition from B to C involving a homoclinic-
doubling cascade

This case was the main motivation for this paper because the homoclinic-
doubling cascade was found in [HKN97] near a resonant orbit flip for 1/2 <
f < 1. In Section 3 we have seen that the homoclinic-doubling cascade is
also found near a resonant inclination flip with « near 1 and 1/2 < 8 < 1,
and also near a resonant inclination flip with § near 1/2 and o > 1. We
introduce parameters (u1, fi2, pi3) as in the respective bifurcation theorems.
Recall that the rescalings considered in Section 3 are defined for parameters
(1, p2, pi3) from a region for which a function A of the parameters is bounded
and bounded away from 0 and a second function s of the parameters is
bounded. This defines charts on part of the small sphere around the origin
in parameter space. Small neighborhoods of the poles correspond to large
and small values of A\. Near the poles the bifurcation diagram is that of the
codimension-two flip bifurcations, near the northpole of case C and near the
southpole of case B. It remains to study the bifurcations for parameters from
the part of the sphere corresponding to large values of s. This part of the
sphere is not covered by the rescalings from Section 3. A different rescaling
enables a study on this part of the sphere. We discuss this for the resonant
orbit flip, but similar considerations apply to the resonant inclination flips.

Let the return map (z,, z,) — ®(z,,1,) on ¥ be as in (2). Let rescaled
coordinates (I, Z,) be given by

Ts = M1+‘ﬂ2|j‘sa
Ty = |,u2|1/‘1:iu.

A computation yields the following result.

Proposition 4.1 Let ® be the Poincaré return map in the rescaled coordi-
nates (L, 2y). Write t = ||~ and v = |po|( @Y/ Then, for some
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Take parameter values for which ¢ is bounded (note that small values of
t correspond to large values of s) and for which v is bounded and bounded
away from zero (small or large values of v occur near the poles on the sphere).
Then for (Zg,2,) from a box of the form [—1,{] x (0, k], the rescaled return
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T GN2

Figure 11: The transition from B to C;, via homoclinic-doubling cascades.

map P is a perturbation from the one-dimensional map

R Az, + Btz
ey (sign(ug) +C1y + Dt.%g) '

This result plus the earlier discussions in Sections 2 and 3, show that
there is a covering of the sphere by charts on which different rescalings to
perturbations from one-dimensional maps exist. This enables a bifurcation
study for all parameter values on the sphere. Note though that the rescalings
are applied to (z,,7,) from a small box in ¥, whose size goes to 0 as
i — 0. Bifurcations of orbits outside this box are not captured by an analysis
of the rescaled return map, compare the discussion of the codimension-two
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Figure 12: A k-bubble with a homoclinic-doubling cascade.

inclination flip in the appendix of [HKN97].

From a knowledge of the bifurcation structures near the poles and a
study of bifurcations of the rescaled return maps from Propositions 2.1 and
4.1, on different charts of the sphere, one can draw a consistent bifurcation
diagram on the sphere. The transition from B to C when p3 changes sign
is sketched in Figures 10 and 11 for the two cases C,, and C;,. These
figures certainly need some interpretation. Near the codimension-two point
of type B a period-two homoclinic orbit is born. As we follow this orbit it
undergoes a cascade of homoclinic-doublings as described in Section 3. The
curves of twisted homoclinic loops all end at the codimension-two point of
type C, as do the curves of period-doublings that are associated with the
homoclinic-doubling cascade. These bifurcation curves account for a part of
the bifurcations that occur in the respective unfoldings of the cusp horseshoe
in the cases C,,; and C;,. However, they account only for the bifurcations
of 2'-orbits. Therefore there are ‘k-bubbles’ as shown in Figure 12 that
protrude from C into the lower half plane where p3 < 0. (Recall that the flip
bifurcations in the cascade are inclination flips, which are of type B only for
ps < 0.) The fact that there is a complete cascade comes from the assumption
that the respective coefficient in the expansion of the Poincaré return map
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is sufficiently large; see Section 3. The complete bifurcation diagram is now
an infinite puzzle of k-bubbles that are organized according to the order of
bifurcations near C,,; and C;,, respectively. This order is determined by
the respective one-dimensional map as is explained in Appendix A; see also
[HKK94].

4.3 Transition from B to C without a homoclinic-doubling
cascade

This transition occurs if the central singularity is a resonant orbit flip with
0 < # < 1/2. We introduce the parameter pu3 = 1 — a. By looking at
Figure 9 (right) it is immediately clear that there cannot be a homoclinic-
doubling cascade on the sphere, because near the central singularity there
are no inclination flips of type B. In other words, we must now make the
transition from B to C with inclination flips of type C. This means that the
point = 1/2 is a bifurcation point for the codimension-three unfoldings we
consider here. We will come back to this point of view below in Section 4.4.

The transition from B to C when p3 changes sign in this setting is
sketched in Figures 13 and 14 for the two cases C,, and Cj,. Near the
codimension-two point of type B a period-two homoclinic orbit is born, but
now it undergoes an inclination flip bifurcation of type C;,. The homoclinic
loop and period doubling curves all end at the codimension-two point of type
C. They account for a part of the bifurcations that occur in the respective
unfoldings of the cusp horseshoe in the cases C,, and Cj,. There are ‘k-
bubbles’ as shown in Figure 15, which also have an inclination flip of type
Ci.. They account for the bifurcation curves that are missing. The complete
bifurcation diagram is again an infinite puzzle of k-bubbles that are orga-
nized according to the order of bifurcations near the main codimension-two
singularities C,,; and Cj,, respectively. This order is the same as in the
previous case and determined by the one-dimensional map as explained in
Appendix A.
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Figure 13: The transition from B to C,,; via inclination flips of type Cj,.

4.4 From a homoclinic-doubling cascade to a point of
type Ci,

It is of help to consider the transition of the spheres in Figures 10 and 11 to
those in Figures 13 and 14 as [ is changed through 1/2, where the central
singularity is an orbit flip. We picture this bifurcation as follows. Let 1/2 <
f and consider decreasing ( toward the bifurcation value 1/2. Then the
successive points in each homoclinic-doubling cascade move closer to each
other. (Note that only one parameter should be necessary for this, because
it is a reasonable conjecture that there is a scaling law just like in period-
doubling.)
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Figure 14:

The transition from B to Cj, via inclination flips of type Ci,.
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Figure 15: A k-bubble with an inclination flip of type C;i,.

When = 1/2 each period doubling cascade has changed to a single point,
which is an inclination flip of type Cj,. (An inclination flip of type C,y is
not consistent with the number and stability of periodic orbits.) In order
for this to happen, infinitely many cascades of the right combinatorics must
all converge to the same point to form this inclination flip of type C;,. We
argue now that this ordering is already present ‘in statu nascendi’ for 1/2 <
(. Because the sphere is compact each homoclinic-doubling cascade has an
accumulation point. (We conjecture that there is exactly one such point.)
There are clearly infinitely many accumulation points of homoclinic-doubling
cascades. We conjecture that the accumulation points of homoclinic-doubling
cascades accumulate according to the requirement that they form inclination
flips of type C;i, as (3 crosses 1/2. In fact, one could think of the accumulation
points of accumulation points of homoclinic-doubling cascades as the seeds
for 1/2 < (3 of the inclination flips of type C;, for 3 < 1/2. This creation
of inclination flips of type C;, might be an explanation for certain computer
generated pictures in [KKO95].
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The infinite puzzle requires an infinite number of inclination flips for
( < 1/2, which is in accordance with a result in [Nau96a]. Note that these
inclination flips of type C;, must also accumulate somewhere on the sphere,
making the picture very intricate.
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A Annihilation of horseshoes

In [HKK94| the destruction of horseshoes through sequences of homoclinic
bifurcations in the unfolding of an inclination flip with the eigenvalue condi-
tions o/ > 2 and # < 1/2, was studied. This was done under a local lin-
earizability assumption. In this appendix we wish to indicate, first, that the
results in [HKK94] hold without the local linearizability assumption and, sec-
ond, that similar bifurcation pictures exist both for the inclination flip with
eigenvalue conditions o/ < 2, @ < 1 and for the orbit flip with § < a < 1.
For the convenience of the reader we include a characterization of the order
of the homoclinic bifurcations in which horseshoes are annihilated, where we
follow [HKK94, Hom96].

A.1 Combinatorics of homoclinic orbits

Let us start with some considerations on the one-dimensional maps that ap-
pear as singular limits after a rescaling; see Section 2. The obtained interval
maps, for the different flip homoclinic orbits, are all unimodal with a graph
as depicted in Figure 8. Homoclinic bifurcations of X, correspond to peri-
odic orbits of the interval map that contain 0. This follows from the fact
that the local stable manifold of 0 becomes the point 0 in the reduction to
the interval map. Note that an n-periodic orbit of the interval map that goes
through 0 corresponds to an n-homoclinic orbit of X,. Kneading theory is
the tool to obtain information on the set of periodic orbits, and hence, on
the set of homoclinic bifurcations, when parameters are varied.

In order to explain this we consider a unimodal map f, with a minimum
as in the left part of Figure 8. Similar considerations hold for unimodal maps
with a maximum. As indicated in the figure, there is an interval M = [0, m,,|
that is mapped into itself by f,; the point m, is the rightmost fixed point of
fu. Denote by ¢, the critical point of f,. For each point z, an itinerary Z(x)
is defined as a finite or infinite sequence Z;(x), j > 0, of symbols L and R,
according to the following rule.

(z) = {L, if fi(x) < ¢y,

1 R, if fl(x) > c,.

J

If f7(x) is outside of M, i.e. if fi(x) < 0 orif fI(x) > m,, then Z:(x) is not
defined for k > 5 + 1.
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One defines an ordering on itineraries as follows. Let Z, J be two
itineraries. Then Z < J if for the first integer j with Z; # J;, the following
holds: either Z; = L and J; = R and the number of L’s in Z;, 0 < i < j is
odd, or Z; = R and J; = L and the number of L’s in Z;, 0 <7 < j is even.

Note that fJ(z) is decreasing at x (and thus changes the order of points
close to x), precisely if the number of L’s in Z;(x), 0 < ¢ < j is odd. From
this one deduces that Z(z) < Z(y) implies = < y, so that itineraries of points
reflect the position on the interval. This observation immediately gives a
result on the order of homoclinic bifurcations. First note that if for u; a
fixed small number, one lets uo increase, a horseshoe is created. Indeed,
for y10 = 0 we have f,(0) = 0 and therefore the invariant set of f, consists
of a fixed point in 0 (corresponding to a homoclinic orbit for X,) and a
fixed point in m,, (a periodic orbit for X ), whereas for some positive value
of y15 one has f,(0) = m, and so f, possesses a horseshoe. From the above
considerations one concludes that for each Z < J, there are parameter values
py < pa (recall that uy is small and fixed), so that 0 is a periodic point both
for fi, 1y and for fy, .2y, and such that Z(0) = Z for u = (uu1, up) and
Z(0) = J for p = (1, p3). If one further has a monotonicity property of the
homoclinic bifurcations, saying that the value of uy (for fixed py) for which 0
is periodic with some prescribed itinerary, is unique, then this fully describes
the order of homoclinic bifurcations.

We now show that f,, has such a monotonicity property; see also [HKK94].
By the chain rule,

o 1 g )
alals = gd—

J(:E) a—mfﬂ

T @)

. d . . . .
Since for p small, |Efu| .| is large, the above expression is nonzero and its

sign equals the sign of the dominant term %fﬁ’l Applying this

0
futa) Bz 1l 2
to z = 0 at a homoclinic bifurcation value, shows the required monotonicity.
Following [Hom96], one sees that the first homoclinic bifurcations are of

periodic points with itineraries

(L)*, (LR)®, (LRLL)®, (LRLLLRLR)*

in this order. For each itinerary, the following itinerary is obtained by taking
the block of symbols which is periodically repeated, putting two of these
blocks behind eachother, changing the last symbol of the new obtained block
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and then repeat this block periodically. There are various of such sequences
of homoclinic bifurcations. Indeed, if U is a block of symbols containing
an even number of L’s, then there is a sequence of subsequent homoclinic
bifurcations with the following itineraries:

(UR)>*, (UL)*, (ULUR)*>*, (ULURULUL)™,

and so on using the same rule as above. A similar sequence of subsequent
homoclinic bifurcations exists for blocks of symbols U containing an odd
number of L’s. Here the order is

(UL)*, (UR)*, (URUL)*, (URULURUR)*,

and so on.

A.2 Strong stable foliations

Recall that f, is the singular limit of a rescaled return map ® as p; — 0.
The above results on the one-dimensional map can be extended to ®, by
constructing a strong stable foliation. Identifying points on the same leaf of
such a foliation, results in a one-dimensional map, close to f, for p small.
To extend the combinatorial part of the above description to @, it suffices
to construct a continuous strong stable foliation: kneading theory applies
to continuous unimodal maps. To extend statements on monotonicity and
genericity of the unfolding of the bifurcations, a continuously differentiable
strong stable foliation is required.

We now prove for the case of the orbit flip that a continuously differen-
tiable strong stable foliation for ® does exist. Similar proofs can be given for
the two types of inclination flips. Recall from Section 2 that, for p; small,
the rescaled return map (z,, z,) — ®(z,, T,) is a singular perturbation from
the one-dimensional map

) ( Aze + B8 )
Ty a—1 B s
‘Ml‘aiﬁg(xu)

where ¢(z,) = s + Cz2 + Dsign(u,)z5.

In order to state the result we consider (z,,7,) on a bounded region
[—1,1] x (0, k], for some £k, large enough. Related or comparable results can
be found in [Rob89, Rob92, Ryc90, HKK94, Hom96].
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Proposition A.1 For some A\ > 0, and Dy, of the opposite sign as C,
let W be the set of parameter values so that g’| ,‘ > A, where I = {z, €

(0, k]; \ul\%g(fu) € (0,k]}. For (py,pu2) € W, ® possesses a C1 strong
stable foliation on [—1,1] x [0,k]. This foliation depends C'-smoothly on s
and continuously on fiy.

PROOF. Instead of studying the Poincaré return map ® on D,, C ¥ (where
D,, is the box that rescales to [/, [] x (0, k]), we consider the Poincaré return
map ¥ on the parameter dependent cross section

S = {.TS = 1, |~TSS|’ |Tu| < 1}'

This makes the construction similar to corresponding constructions near in-
clination flip homoclinic orbits. Note that for gy = 0 the homoclinic orbit
intersects S™ in (1, u1,0). For definiteness we assume that C and D are such
that py is positive. Let

Em = {0 < @y < kpf, |xss - 1‘ < lﬂlf}a

o=1/(a—f), v =a/(a— ), be a small box in §". The existence of a
strong stable foliation for ® on D, follows from the existence of a strong
stable foliation for ¥ on £, .

A strong stable foliation is obtained by integrating a line field that is in-
variant under DV and has the property that DW strongly contracts vectors
in the direction of the line field. Such a line field is constructed using an
appropriate graph transform. We first prove the proposition for fixed param-
eter values, and after that indicate how parameter dependence is treated.
Take rescaled coordinates (T, Z,) € [—(,1] x (0,k] on E,, given by

_ V=

Tes —1 = pyZgs,
_ T 5

Ty - Mlx’ua

and let W denote the Poincaré return map in these rescaled coordinates.
Write T'([—1,1] x (0,k]) = [=1,1] x (0,k] x E** x E*. Let "' be the map
induced by W~ on [—1,1] x (0, k] x L(E*, E*);

O Ty, 7, 0) = (U Ty, Tu), @),
with

graph w = DV '(z,,,1,)graph o.
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Let I' be the corresponding graph transform on C°([—1,1]x (0, k], L(E**, EY)),
that is, I' is defined by

(Zgs, T, D(0)(Tgs, Ty)) = O (U(Zys, Toy), 00 VU (T, Toy))

for (%, Z,) such that ¥ (Z,,, 7,) € [-1,1] x (0,k]. For other (Z,,,7,) we let
L(0)(Zss, Tu) = 0o(Tss, Ty) for a fixed section vy; see [HKK94, Hom96] for
details.

We claim the existence of a positive function ¢ on [—,1] x [0, k] with
d(Zss,0) = 0, so that

e [ maps Lips([—/, 1] x (0, k], L(E**, E")) into itself.
e I' is a contraction on Lips([—(, 1] x (0, k], L(E**, E*)) in the supnorm.

Here Lips; stands for Lipschitz continuous sections with Lipschitz constant
§(x) at the point . Because VU is only defined for 7, > 0 (and at z, = 0
by continuous extension), we consider Lipschitz functions with a Lipschitz
constant that depends on the point and is small for small z,. The fact that
[" is a contraction on Lips([—/, ] x (0, k], L(E**, E")), with the properties of
0, implies the existence of a continuous strong stable foliation.

Moreover, we claim that for some positive constants ¢ < 1 and M that

e I'maps Lips([—1,1]x (0, k], L(E**, E")NCyf ([, 1]x (0, k], L(E**, E*))

into itself.

Here C}/¢ stands for continuously differentiable sections whose derivatives
are e-Holder with Holder constant M. Since the intersection of this space of
C,/ ¢ sections with that of Lips sections is a closed subspace of C°([—1,1] x
(0, k], C(E**, E*)) in the supnorm (see for example [Hom96]) the existence of
a C'*¢ strong stable foliation follows from the claims.

In the remainder, we prove the claims. From Proposition B.5 in Ap-
pendix B (or from very similar reasonings), one has

\p(i‘ssa ju) -

A(585>j3 + B(ESS)Mljg + O(‘Nl‘w55+w)
|pa| o7 (C(ffss)fff + D(&5s) a2l + 0(\#1\%5“’))

(9)

for some w > 0. The higher order terms can be differentiated, as stated in
Proposition B.5. The function A is of the form A(1 + |u["7,,) for a smooth
function A. Similarly for B, C, D.
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Consider the action of the map W' : W([—1,1] x (0,k]) x L(E**, E") —
[—1,1] x (0,k] x L(E**, E*), induced by ¥~'. Write
T ([ = — o a(i‘ssa‘fu) b(i‘ssaju)
DY (@as: ) = ( (Tass Tu) d(Tas, 7))

Observe that W~ (U(z,,, Z,), w) = (T4, Ty, v), where w and v are related by

(e dee ) (V) = #(0)

for some k € R. This shows that v and w are related by
—(Tss, Tu) + a(Tgs, Ty)w
d(Tgs, Ty) — D(Tgs, Ty)w
So, if v € CO(W([1,1] x (0,k]), L(E**, E")) then
—c+avoV¥
d—bioV¥ '
Write O = O(|u[*z ™), 01 = O(|m[*z+7"), Oy = O(|m[*z,**) and
O3 = O(|p1|“z¥). Using (9) one computes

T(0)(Zss, Tu) =
| |55 [ + sign(u) D'zl + O] + (AT + B'zl + 0) vo W
—|p|ar [Cazg + sign(uy) DBTL + O1] + (Aazg + BATL + O1) 0 U
—C'z =P —sign(u) D'z, + Oy + \m\ﬁ (A'j}fa’ﬂ + B'z, + (92) ToWw
~Caat? — sign(u)DP + O3 — || =5 (Aazi ? + BB + O3) 10 ¥

Here A, B,C, D and their derivatives are computed in Z,; and v o W is com-
puted in (T, Ty).

By assumption, —z! %¢'(z,) ~ —Caz® P — sign(u;)DJ (the term ap-
pearing in the denominator of the above expression) is bounded away from
zero. Note further that ['(v)(Zs,0) = 0. From these facts one derives the
existence of a positive function ¢ with d(z,, 0) = 0, so that [' maps Lips sec-
tions to Lips sections. It is also clear that 1" is a contraction on Lips for puy
small. By differentiating the above expression one can show that I' moreover
maps C}/¢ sections to C}¢ sections for suitable ¢, M, compare [HKK94].

Regularity with respect to the parameters follows from similar reasonings
by considering the map (T, Tu, ft1, o) = (V(Zss, Tu), i1, o), see [HKK94].

O

v

['(v)
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B Exponential expansions

In this appendix we provide exponential expansions for the local transition
maps for the vector field X, encountered in Section 2. It is well known
that under the assumption of nonresonance conditions on the eigenvalues of
DX, (0), there exist smooth coordinates near 0 in which X, is linear [Ste58].
For a locally linear vector field, an explicit expression for the local transition
map can be given. Since we consider resonant flip bifurcations, and thus have
rationally dependent eigenvalues, we can not assume the existence of smooth
locally linearizing coordinates. We circumvent this difficulty by computing
asymptotic expansions for the local transition maps. This provides a way
to study homoclinic bifurcations without having to rely on the simplifying
assumption of smooth local linearizability. We start with a normal form
theorem.
Let X, be given by a set of ordinary differential equations

x.ss = —QZg + Fss(xss; Tg, (I?u),
T, = *ﬂms + Fs(xssa Ty, l‘u)a (10)
x.u - xu"’Fu(ajss:xs:xu):

where F*°, F* F" are quadratic and higher order terms.

Lemma B.1 The vector field X, is smoothly equivalent to a vector field of
the same form with

Fss(xs&x&xu) = O(H(ajSSJxS)HQ)?
FS(ISS,.T?S,.TU) = Tuo(|Tss| + ||('Tssax8)||2)’
Fu(xssaxsaxu) = 0.

Moreover, if a > 203, the same is true with
Fss(l‘ssa Ts, Tu) = O(Tgs + |~Tss~7/‘s‘ + Ti)
If o — B < 1, we can take

Fs(l‘ssa Ts, Tu) = O(H(.’I)SS, TS)||2)
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PrROOF. By a smooth coordinate change, the local stable and unstable
manifolds are linear. Then Fy; and Fy are of order O(||zgs, x4]|) and F,
is of order O(|z,|). Multiplying the vector field with the smooth function
Ty /(ty+F,(Tg, x4, x,)), we obtain that X, is smoothly equivalent to a vector
field for which F,, = 0.

First, by some smooth cordinate transformation, we remove terms x4,
from the differential equation for z,, and terms x,x, from the differential
equation for z,. For this, consider a coordinate change (zy, s, x,) —
(Ysss Ys, Yu) Of the form

Yss = Tgst pss(xu)xssa
Ys = Ts+ qs(xu)xsa
Yu = Tu,

for functions p**, p* which vanish at x, = 0. Write the differential equations
in the new coordinates (yss, Ys, yu) as

y.ss = —QYs; + Gss(yssa Ys, yu)yss + Gs(yssa Ys, yu)ysa
Ys = —BYs + H** (Yss, Ys, Yu)Yss + H* (Yss: Ys, Yu) Vs,
yu = Yu-

At y,s, ys = 0, we have

G*(0,0,y,) = p**+ h.ot.,

H*(0,0,y,) = ¢+ h.ot.,
where h.o.t. stands for higher order terms in (p**, ¢°,y,), compare [OS87,
Den89b]. We seek functions p**, ¢* of y, = =z, so that G** and H® vanish

at yss,ys = 0. Considering p*® and ¢° as variables, this yields differential
equations for (p**, ¢*, y,):

p** = h.o.t.,
q¢° = h.ot.,
Yo = Yu-
The eigenvalues of the linearized differential equations, at p*®,¢*,y, = 0,

are 0,0,1. Hence we obtain the desired functions p**, ¢* by constructing the
one-dimensional strong unstable manifold for the above system of differential
equations.
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On the stable manifold, there exists a strong stable foliation with one
dimensional leaves, extending the strong stable manifold. A smooth co-
ordinate change brings this foliation into an affine foliation. The differ-
ential equation for x, restricted to the stable manifold {z, = 0} depends
only on x,. Since one-dimensional vector fields can always be smoothly lin-
earized near a sink, after a smooth coordinate change we get Fy(xgs, x5, x,) =
O(|zy|||(xss, z5)||). Any center unstable manifold W#*(0) has the same tan-
gent bundle along W"(0), see for example [Hom96]. By a smooth coordinate
change TWS’“(O)‘ W) = T{zss = 0}. This removes terms zyz, from the

differential equation for x,. If @ > 23 then any W**(0) is a C? manifold
and has a unique bundle of 2-jets along W"(0). A smooth coordinate change
makes any W*"*(0) second-order tangent to {zs;s = 0} along W*(0). Then
also terms z? and x?z, from the differential equation for z,, are removed.
Also, if & — 8 < 1 then there is a smooth plane bundle along W"(0), extend-
ing ToW**(0) & ToW"(0) = {x, = 0} over the origin; compare for example
[HKN97]. A smooth coordinate change makes this plane bundle constant.
Terms x,4x, are absent from the differential equation for x4 after such a co-
ordinate change. None of the coordinate changes destroys the results of the
earlier coordinate changes, so that the lemma is proved. O

B.1 Exponential expansions for the inclination-flip

Recall that ¥ = {x, = 1} and X% = {z, = 1}. The following proposition
provides asymptotic expansions of the local transition map ®;,, : X" — 30Ut
Its proof relies on an improvement of estimates derived in [OS87, Den89,
Den89b).

Proposition B.2 Suppose 206 # «. Then, after a smooth local coordinate
change, ®;,. : ¥ — ¥ has the following expression for its components
q)lOC = (q)ss cI)lsoc)"

loc»

o (Tss; Tu) = l,umin{a,Qﬁ} (V**(25s) + R (255, u))
q)lsoc(xssﬂ l‘u) = ffg (ws(‘rSS) + Rs(xss; xu)) .

The functions ¥** 1* are smooth, 1* # 0 and ¢¥**(0) = 0 if a < 20.
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Furthermore, R*® and R® are smooth for x, > 0; for some o > 0, there
exist constants Cyyy > 0 so that with i = ss, s
ak+l

Gy (o] S Contl ™

ProoOF. We give the proof under the assumption that o > 23. The proof
for case a < 203 is similar; compare [HKN97].
For 7 > 0 and & with [&| < 1, let

(t, 7, &ss) = (@osy Ts, ) (, T, Ess)

be an orbit of X, with

JISS(O, T, fss) = gssa
.’I)S(O, T, gss) 1a
l‘u(Ta T, gs) = 1

These conditions uniquely define the orbit z (¢, 7, &); see [Shi67, Den89]. We
will first show the following lemma, providing estimates on x4(t, 7, s5) and

wy(t, T, &)

Lemma B.3 For k > 0, there are positive constants Cy, so that, for 0 <t <
T and pu near 0,

ak

‘m%s(t;ﬂfss) < Ckefmt;
ak

o I

Furthermore, for the derivatives with respect to T,

0" 0 —2Bt+(t—T)
mgwss(tﬂ—: Sss) < Cie )

k
0 0 < Ckefﬂt-l-(t*T)_

At o
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Proor oF LEMMA B.3. To simplify the notation we write for example
x(t) for x(t,7,&). Let & be the distance of the sections Y™ and X to
the origin, before rescaling. Because of the applied rescaling (x4, s, 7,) —
(s, Ts, Ty)/0, we have

|F** (@55, T, W) | [FP (T, T, wa) | < O, (11)

for some C' > 0 uniformly in (2, x4, 7, ¢). By the variation of constants
formula

Telt) = e, + / °(=5) £33 () dis, (12)
o(t) = ﬂt+/ BU=9) B (1(s))ds. (13)
For k, A > 0 and a finite dimensional vector space E with norm || - ||, let

Sen([0,7], E) = {yeC’[0,7],E); sup [[y(t)]le" " < oc}.
0<t<r

Equipped with the norm

[Yllepn = sup [ly(t)]jer 0
0<t<r

Y, A([0,7], E) is a Banach space.

Let Y = (¥*%,¥*) be the map on C°([0, 7], R?) that maps (x,x,) to
the right hand side of (12), (13). Let By denote the ball of radius R in
Ya0([0,7],R) xX50([0, 7], R). We claim that for ||&|| < 1 there exists R > 0
so that

e )Y maps By inside itself,
e )V is a contraction on Bp.

The fixed point of Y, providing the orbit x, therefore satisfies the estimates
in the statement of the lemma.

The claim is obtained using (11) and lemma B.1. Since the arguments
closely follow those in [Den89], we leave performing these estimates to the
reader. One treats (higher order) derivatives by differentiating (12), (13) and
using the obtained identities to define a map on an appropriate weighted Ba-
nach space. Performing estimates as above one shows that this map is a
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contraction on some ball in the weighted Banach space. For details we refer
to [Den89]. O

To obtain more precise asymptotics, we study the functions

Zss (u; T, gss) = 62ﬂ(Tiu)fEss (T - u,T, gss)a

25(u, 7, &) = T (r —u,T &),

for which we have the following.

Lemma B.4 The limit functions

2o (U, &ss) = lim 2g5(u, 7, &),
Z?C(Ujfss) = TIL%ZS(UJTJé-SS)

exist as smooth functions of (u,&s). For any 0 < 0% < «(0) — 26(0) and
0 < o® < min{a(0) — 3(0), 8(0)}, there are Cy so that for 0 < u < 7 and p
small

A oe 0% (u—T1
‘m(m(umiss)—zss(u,gss))‘ < Cpe” ),

£

m (Zs (U; T, Sss) - Z?O (’LL, gss))‘ S Ckegs (uiT)-

PROOF OF LEMMA B.4. We first show that

< Qe (14)

0
‘8_7_255 (U‘a T, Sss)

zs(u, 7, &) < Ceo (v=7) (15)

y
for some C. From this it follows that 229 (u, &) = lim, o 24s(u, 7, &) and

22 (u, Es) = limy 00 24 (u, 7, &) exist, and that

Cefass(Tfu)
Ce "),

|Zss(U;T= 558) (s);)(UJé-SS)‘

— Z
‘Zs (U, T, gss) - Z;DO (UJ 555)‘

3

<
<
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As in the proof of Lemma B.3, we simplify the notation and write for
example zy(t) for zg(t, 7, &s). We have

() = e2OTwe / e s pss ()Y ds,  (16)
zs(u) = 1+/ P F* (x(s))ds. (17)

One computes that

%ZSS (U) = (25 - a)e@ﬁia)(ﬂriwgss + 62ﬂ(ﬂriu)}?ss(x(T - u))
. / " (28 — )@ D, (5(s))ds
)
+/ )eO‘SEFSS(.r(s))ds, (18)
%zs(u) = LTRSS (2(r — ) + / %FS(T(G))CZ‘? (19)

Lemma B.3 yields

|F**(x(s))| < Coe ™, 88 F**((s))| < Coe P07,
T

F*(x(s))] < Coe ™, aa Fo(x(s))| < Cpe 24077,
T

Direct estimates now prove (14) and (15), compare [Den89b]. Estimates for
derivatives are obtained similarly, by differentiating (16) and (17). O

The above lemmas yield expansions

Tes(T, 7 &) = e T (&) + T(6, 7)), (20)
a5(1,7,&) = e T ((&) + T7(&. 7)) (21)

Here 7% and T° as well as their derivatives are of order O(e ?"'7) and
O(e 7"7), respectively, as 7 — o0. 7,(0,7,&) = e 7 = 1 we get 7 =
—Inxz,. Putting this in the expansion formulas (20), (21) for z (7, 7,&)
and x4(7, 7,&;) gives the result of Proposition B.2. O
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B.2 Exponential expansions for the orbit-flip

Recall that X" = {z,, = 1} and 2°** = {z, = 1}. Asymptotic expansions
for the local transition map @, : ¥™ — X are derived using analogous
techniques as in the previous section. In [HKN97| such expansions are given
for the case 1 < < 1/2.

Proposition B.5 After a smooth local coordinate change, ®y. : X" — 30Ut

has the following expression for its components @y = (P55, ;)

Doe(ws,wa) = wy (P (x5) + B (15, 24)) + xsngss(x& Tu),
(s, ma) = TSTS (0% (xs) + U (24, ma)) + 7 (V°(75) + R (35, 70)) -
The functions V%, ¢%%, ¢ are smooth, V%, ¢° # 0.

Furthermore, R**, R®>, U**, U?® are smooth for x, > 0; for some o > 0,
there exist constants Cyyy > 0 so that, with 1 = ss, s

8k+l
0zko(zg, p)t

ak+l
‘3@"53(:65, p)'

Rl(TsaTu) < Ck+lra ka

UZ(TsaTu) < Ck+lra k-

O

PrROOF. We merely indicate the strategy. Performing estimates as before,
one shows that, for some w > 0, &5 = O(zP*) and &), = z¢(z,) +
O(xPtw).

For x; = 0, better expansions can be obtained. Consider the orbit
(s, Ts, Ty) (t, 7) With z4(0) = 1, 24(0) = & and z,(r) = 1. If & =
then the variation of constants formula yields

loc

xss(tﬂ—) — fozt_i_/ at—s Fss ( ))dS,
(1) = / B=5) B3 (1(s))ds,
0
where we have written z(s) = (x4, Zs, %y)(s,7). By performing estimates

as before, one derives from these formulas that for some w > 0, ®j5 =
cxd 4+ O(x2*) and @, = dz& + O(x2™). Here ¢ and d are smooth function
of p with ¢ # 0.

Combining the two estimates for general x; and for z, = 0 implies the
result. O



