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Resonant Homoclinic Flip Bifurcations
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This paper studies three-parameter unfoldings of resonant orbit flip and inclina-
tion flip homoclinic orbits. First, all known results on codimension-two
unfoldings of homoclinic flip bifurcations are presented. Then we show that the
orbit flip and inclination flip both feature the creation and destruction of a
cusp horseshoe. Furthermore, we show near which resonant flip bifurcations a
homoclinic-doubling cascade occurs. This allows us to glue the respective
codimension-two unfoldings of homoclinic flip bifurcations together on a sphere
around the central singularity. The so obtained three-parameter unfoldings are
still conjectural in part but constitute the simplest, consistent glueings.

KEY WORDS: Homoclinic bifurcation; inclination flip; orbit flip; homoclinic-
doubling cascade; cusp horseshoe.

1. INTRODUCTION

Homoclinic bifurcations have received a lot of attention because they are
closely linked to transitions to chaotic dynamics; see, for example,
[GAKS93] and further references therein. Many kinds of homoclinic bifur-
caftions have been studied, and probably the best known is the Shil'nikov
case of a homoclinic orbit to a saddle-focus equilibrium.

In this paper we are interested in a different setting, namely, a vector
field in R3 with a saddle point with real eigenvalues. This saddle point can
be taken to be the origin and we consider the case that there is a one-
dimensional unstable manifold and a two-dimensional stable manifold.
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A homoclinic orbit occurs if a branch of the unstable manifold lies in the
stable manifold. Under certain genericity conditions the homoclinic orbit is
of codimension-one where one parameter is needed to obtain an unfolding;
see the next section for the technical details. There are two cases of different
geometry: when the stable manifold is followed along the homoclinic orbit,
it generically forms either a cylinder or a Mo� bius strip. In the unfolding
of this homoclinic bifurcation a periodic orbit is created, but there is no
complicated dynamics.

When a second parameter is varied, it is possible to change the orien-
tation of the stable manifold from a cylinder to a Mo� bius strip, or vice
versa. This codimension-two bifurcation is called a homoclinic flip bifurca-
tion. It can be brought about in two ways, called an orbit flip and an
inclination flip bifurcation as explained in detail in Section 3. Recently,
much progress has been made in finding the codimension-two unfoldings of
the homoclinic flip bifurcations; see [KKO93a, KKO93b, HKK94, KKO96,
Nau96a, Nau96b, Nii96, San93]. There are essentially three possibilities:
no extra bifurcations occur, there appears a curve of two-homoclinic orbits
that pass very close to the equilibrium once before closing, and a very com-
plicated bifurcation structure that includes n-homoclinic orbits of any
period n, as well as shift-dynamics through the creation and destruction of
a cusp horseshoe (Section 3). Which case occurs depends on the eigen-
values at the saddle point, which need to satisfy certain genericity or non-
resonance conditions. We provide a complete overview of the results in the
literature in a common notation. In the Appendix we also prove the exist-
ence of strong stable foliations and exponential expansions that allow us to
reduce the analysis of the codimension-two unfoldings to the study of
suitable one-dimensional maps.

After this preparatory work, we come to the main question of what
happens when one of the eigenvalue conditions separating the different
codimension-two cases is not satisfied. We call this a resonant homoclinic
flip bifurcation. Apart from being the next logical step in studying homo-
clinic bifurcations, our motivation was the proof of existence of a cascade
of homoclinic-doubling bifurcations in [HKN97], where a homoclinic
orbit undergoes successive homoclinic-doublings; see also [OKC00]. Such
a cascade was found near a particular resonant homoclinic flip orbit
[HKN97]. The following questions arise: What does the codimension-
three unfolding of such resonant homoclinic flip bifurcations look like?
What role does the homoclinic-doubling cascade play in it?

In Section 4 we establish near which cases of a resonant homoclinic
flip bifurcation a homoclinic-doubling cascade occurs. What role it plays in
the unfoldings of resonant homoclinic flip bifurcations is shown in Sec-
tion 5, where we present in Figs. 9 through 15 three-parameter unfoldings
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of all possible cases. To this end, we adopt the topological point of view
that has been very useful in the analysis of codimension-three unfoldings of
degenerate equilibria of vector fields; examples are [DRS91, KR96]. The
idea is to ``glue'' corresponding codimension-two unfoldings to each other.
Imagine a sphere around the origin in parameter space, where the third
parameter unfolds the resonance condition. (For convenience it is assumed
that the resonant homoclinic flip bifurcation occurs when all three unfold-
ing parameters are zero.) At the ``north pole'' of the sphere one finds a
particular (and known) unfolding of a codimension-two homoclinic flip
bifurcation, and since the eigenvalues of the saddle point are different in the
``southern hemisphere,'' at the ``south pole'' one finds a different unfolding
of such a homoclinic flip bifurcation. The task is now to glue these two
codimension-two unfoldings to each other on the surface of the sphere. In
other words, the question is to find the additional bifurcations, away from
the poles that are necessary to get a consistent bifurcation diagram. Under
the assumption that the bifurcation set, or at least the parts of it that we
are interested in, has cone structure, the bifurcations on the sphere repre-
sent the codimension-three unfolding. Although still conjectural, the bifur-
cation diagrams presented here constitute the simplest, consistent glueings
that take into account all known information. Furthermore, we prove that
these unfoldings must contain certain ingredients, for example, homoclinic-
doubling cascades.

Codimension-two flip bifurcations have been found in several applica-
tions, for example, in [Ko95, ZN98], and they can be detected and followed
in parameter space with the package AUTO�HomCont [DCFKSW97].
There is also the model system due to Sandstede [San97] in which reso-
nant flip bifurcations can be studied. By monitoring the eigenvalues, reso-
nant flip bifurcations can be detected in applications. We remark that it is
much harder to find the unfolding, that is, the complicated structure of
other bifurcations near the central singularity. In recent careful numerical
studies of Sandstede's model in [OKC00, OKC00b], the results in Section 5
have been confirmed. In particular, the homoclinic-doubling cascade was
found and computed for the first time in a smooth vector field in [OKC00].
The studies in [OKC00] also brought out interesting quantitative features
and scaling laws, confirming the outcome of an analysis of scaling laws for
model families of interval maps in [HY99].

2. NOTATION AND BACKGROUND

We now introduce some notation and recall the case of a generic
codimension-one homoclinic orbit. Consider a smooth family of vector
fields [X+] on R3, where +=(+1 , +2 , +3) # R3. By changing coordinates if
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necessary, we arrange that the origin of the phase space is a saddle point,
independently of +. We restrict our attention to the situation that DX+(0)
has three distinct real eigenvalues, and without loss of generality we assume
that the stable manifold W ss, s(0) is two dimensional. Let *ss , *s , and *u be
the eigenvalues of DX+(0), which we define by *ss<*s<0<*u . (For nota-
tional convenience we often do not indicate dependence on +.) For later
reference, we define the ratios :=&*ss�*u and ;=&*s�*u of the eigen-
values, which will turn out to be important parameters. (In fact one can
scale [X+] to achieve that *u=1 independently of +.)

Suppose + is a homoclinic bifurcation value of the family [X+], meaning
that X+ has a homoclinic orbit. Let 1+ denote the homoclinic orbit of X+ .
Then 1+ is of codimension-one if

(G1) *s+*u{0,

(G2) 1+ /3 W ss(0), and

(G3) W s, u(0) intersects W ss, s(0) transversally along 1+ .

Here W ss(0) denotes the one-dimensional strong-stable manifold of 0 and
W s, u(0) is a two-dimensional center-unstable manifold of 0; see also
[Hom96]. [The local versions of invariant manifolds are denoted ``loc'' in
subscript: W ss, s

loc (0), etc.] Condition (G1) is a nonresonance condition, and
(G2) means that 1+ must be tangent to the weak stable direction. Condition
(G3) requires that the stable manifold W ss, s(0), if followed along 1+ ,
returns along the strong stable direction W ss(0). Consequently, there are
two possible cases: the resulting surface may be a (topological) cylinder or
a Mo� bius strip, that is, it is either orientable or twisted. In the unfolding
a periodic orbit is created, whose linearization of the Poincare� map has two
positive or two negative eigenvalues, respectively.

In the bifurcation diagrams in this paper we introduce some notation
that allows us to indicate not only the bifurcation curves, but also what
periodic orbits bifurcate. This is important to see that the bifurcation
diagrams are consistent. Bifurcation curves are labeled to indicate the type
of bifurcation as follows. H n

x stands for a codimension-one n-homoclinic
orbit (passing n&1 times near the origin before closing), where the sub-
script indicates whether the homoclinic orbit is orientable (x=o) or
twisted (x=t). Furthermore, PDn denotes a period-doubling bifurcation
and SNn a saddle-node bifurcation of an n-periodic orbit. We indicate
stability of periodic orbits in the figures through the coding ns for a stable
n-orbit (passing n times near the origin) and nu for an unstable n-orbit (of
saddle-type). The limit cycles of type ns can be found by integration or in
an experiment, but those of type nu require more advanced techniques to
be detected in a given system.
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3. CODIMENSION-TWO UNFOLDINGS

If (G2) and (G3) are satisfied, but not (G1) then one has a codimen-
sion-two resonant homoclinic orbit. There are two unfoldings depending
on whether the homoclinic orbit is orientable or twisted; see Section 3.1. If
(G1) is still satisfied, but (G2) or (G3) are not, then (under extra genericity
conditions) 1+ is a codimension-two homoclinic orbit, called a flip homo-
clinic orbit. If only (G2) is not satisfied, then 1+ is called an orbit flip homo-
clinic orbit, meaning that the homoclinic orbit is formed by the strong
stable manifold W ss(0) (see Fig. 1). If only (G3) is not satisfied, then 1+ is
called an inclination flip homoclinic orbit, and the stable manifold W ss, s(0),
if followed along 1+ , returns along the weak stable direction W s(0) as
illustrated in Fig. 2.

Different cases of codimension-two unfoldings of the homoclinic flip
bifurcations have been studied [KKO93a, KKO93b, HKK94, KKO96,
Nau96a, Nau96b, Nii96, San93] and a complete picture has emerged.
[Recall that the orientation of W ss, s(0) changes in both cases, hence, the
name flip bifurcations.] It is an interesting fact that the orbit flip and the
inclination flip lead to much the same unfoldings. There are essentially
three possibilities: A no extra bifurcations, B homoclinic-doubling (the
appearance of a curve of two-homoclinic orbits that pass very close to the
equilibrium once before closing), and C a very complicated bifurcation
structure that includes n-homoclinic orbits of any period n and shift-
dynamics. Which case occurs depends on the ratios : and ;; see Section 3.2.

We now specialize and consider a smooth two-parameter family [X+],
+=(+1 , +2) # R2, of vector fields on R3 possessing a hyperbolic singularity
in the origin 0, such that DX+(0) has three distinct real eigenvalues *ss , *s ,

Fig. 1. An orbit flip homoclinic orbit.
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Fig. 2. The two cases of an inclination flip homoclinic orbit for :<2; (top) and :>2;
(bottom).

and *+ with *ss<*s<0<*u . At +=0, X+ possesses a homoclinic orbit 1.
Take coordinates (xss , xs , xu) so that

DX+(0)=*ssxss
�

�xss
+*sxs

�
�xs

+*uxu
�

�xu
(1)

and recall that :=&*ss�*u and ;=&*s�*u .

3.1. Homoclinic Orbit at Resonance

Suppose the homoclinic orbit 1 of X0 is a homoclinic orbit at
resonance, that is, (G1) is not satisfied. This bifurcation was treated in
[CDF90]; see also [KKO93a, San93]. Natural parameters to study an
unfolding of the homoclinic orbit at resonance are +1=;&1 and +2 , being
the signed distance between stable and unstable manifolds, in a cross sec-
tion. That is, for some small $ and in local coordinates in which the local
stable manifold is given by [xu=0], we define +2 by W u(0) & [xs=$]=
(V , $, +2). Observe that the primary homoclinic orbit exists for +2=0.
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Fig. 3. The different cases of unfoldings for the resonant homoclinic bifurcation. Note that
a is the constant in the normal form of the return map.

Assuming an additional nondegeneracy condition [CDF90], there are two
bifurcation diagrams, depending on whether the homoclinic orbit at
(+1 , +2)=(0, 0) is orientable or twisted. The bifurcation diagrams are given
in Fig. 3.

3.2. Flip Homoclinic Orbit

We now summarize the known results on codimension-two homoclinic
bifurcations for the cases A, B, and C. For homoclinic flip bifurcations
in case C, only partial bifurcation diagrams were known. We extend the
known results for this case and, in particular, prove the existence of cusp
horseshoes and analyze their annihilation.

Suppose 1 is a flip homoclinic orbit. Then in the unfolding the
primary homoclinic orbit switches from orientable to twisted. Different
bifurcation diagrams exist, depending on the values of : and ; as depicted
in Fig. 4. All cases of codimension-two bifurcation diagrams near +=
(+1 , +2)=(0, 0) can be found in Fig. 5.

Case A (orbit or inclination flip: :>;>1). This case is easily
studied using the fact that the Poincare� return map on a cross section is a

Fig. 4. The regions in the (:, ;)-plane of different unfoldings A, B, and C for the orbit flip
(right) and the inclination flip (left). The shaded and the unshaded regions of C (left) differ
by the topology of W ss, s(0) at the inclination flip as shown in Fig. 2.
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Fig. 5. The different cases of unfoldings for the inclination flip and the orbit flip. In A no
extra bifurcations occur, and B is the homoclinic-doubling. The most complicated case, C,
comes in the two variations Cin and Cout , depending on how the horseshoe is formed. Stable
and unstable periodic orbits of different periods are shown.

contraction. Indeed, it is immediate from this fact that at most one 1-peri-
odic orbit can exist.

Case B (orbit flip, :>1, ;<1; inclination flip, :>1, 1�2<;<1). This
bifurcation is called a homoclinic-doubling bifurcation. The existence of the
depicted bifurcation curves was established for the orbit flip in [San93]
and for the inclination flip in [KKO93a, KKO93b, HKN97].

Case C (orbit flip, ;<:<1; inclination flip, :<1 or ;<1�2). There
are two cases, Cin and Cout . Partial bifurcation diagrams have been
obtained in [San93] for the orbit flip and in [Nau96a] for the inclination
flip in the region defined by :<1 or ;< 1

2. In particular, these references
give the existence of curves of n-homoclinic orbits, for each integer n, in the
unfolding. In [HKK94] partial bifurcation diagrams have been obtained in
the region :>2; and ;< 1

2 , under the additional assumption that the vec-
tor field near 0 is smoothly linearizable. As far as homoclinic bifurcations
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are concerned, the bifurcation diagrams in [HKK94] are complete. We
remark that He� non-type strange attractors can be expected to occur in the
unfolding; see [Nau96b, Nau98].

We now discuss the orbit flip and the inclination flip separately for
(:, ;) from region C. We introduce natural parameters and study the exist-
ence and bifurcations of cusp horseshoes. Certain nondegeneracy condi-
tions must be assumed in the bifurcation study, as we will make clear. Our
arguments will show that two cases exist, an inward twist case and an out-
ward twist case. This corresponds to the two bifurcation diagrams Cin and
Cout in Fig. 5. In order to augment the following arguments and provide a
complete bifurcation analysis, one needs to address some technical points
(like differentiability of strong stable foliations; see Appendix A), which will
not be pursued here.

3.3. Unfolding of type C of an Orbit Flip

For some small $, let 7in, 7out be the cross sections

7in=[xss=$, |xs |, |xu |� |$|]

7out=[xu=$, |xss |, |xs |� |$|]

We may assume that they both intersect the homoclinic orbit 1 of X0 . By
a linear rescaling we may assume that $=1. Take coordinates (xs , xu) on
7in and (xss , xs) on 7out obtained by restriction of the coordinates (xss , xs , xu)
near the origin. Let 8loc : 7in [ 7out be the local transition map and let
8far : 7out � 7in be the global transition map. The Poincare� return map 8
on 7in is the composition 8=8far b 8 loc . Observe that 8 far is a local diffeo-
morphism. In Appendix B, asymptotic expansions for 8loc are given, valid
after a smooth change of coordinates; see Proposition B.5. Using these
expansions, we can write

8(xs , xu)=\+1+Ax:
u+Bxsx;

u+O(x:+|
u +x2

s x;
u+|xs | x;+|

u )
+2+Cx:

u+Dxsx;
u+O(x:+|

u +x2
s x;

u+|xs | x;+|
u )+ (2)

for some |>0. This also identifies the two parameters +1 and +2 : (+1 , +2)
=8(0, 0) are the coordinates of the first intersection of W u(0) with 7in.

We assume that C{0; the case C=0 corresponds to an inclination
flip. We also assume D{0. The degenerate case D=0 is called a weak
orbit flip [Nau96a]. Let us give an equivalent formulation of this last
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nondegeneracy condition. At the bifurcation point (+1 , +2)=(0, 0), the
image 8&1

far (W ss, s
loc (0) & 7in)/W ss, s(0) & 7out is the graph of a map

t [ (at+O(t2), t)

Then a{0 precisely if D{0.
We now show that 8 possesses horseshoes for parameter values

(+1 , +2) from a wedge, indicated in Fig. 5 as a shaded region. The size of
these horseshoes shrinks to 0 as +1 � 0. A suitable rescaling brings these
horseshoes to unit size, which fascilitates a study of their properties and
bifurcations. We will now give the proper rescaling and indicate how this
enables a study of the horseshoes. Let rescaled coordinates (x� s , x� u) be
given by

xs=+1+|+1| & x� s

xu=|+1| _ x� u

where _=1�(:&;) and &=:�(:&;). A computation yields the following
result.

Proposition /I}I Let 8� be the Poincare� return map in the rescaled
coordinates (x� s , x� u). Write s=+2 |+1| &:�(:&;). Then, for some |>0,

8� (x� s , x� u)=\ Ax� :
u+Bx� ;

u+O( |+1|| x� ;
u)

|+1| (:&1)�(:&;) (s+Cx� :
u+D sign(+1) x� ;

u+O( |+1|| x� ;
u))+

This proposition shows that the rescaled Poincare� return map 8� is
close to a one-dimensional map, if we take (+1 , +2) near 0 from a region
in which s=+2 |+1| &:�(:&;) is bounded. As +1 � 0, taking (x� s , x� u) from
some compact box [&l, l]_[0, k], 8� converges to the one-dimensional
map

x� u [ \ Ax� :
u+Bx� ;

u

|+1| (:&1)�(:&;) g(x� u)+ (3)

where

g(x� u)=s+Cx� :
u+D sign(+1) x� ;

u

If +1D and C have opposite sign, then x� u [ |+1| (:&1)�(:&;) g(x� u) is
unimodal and has a graph as depicted in Fig. 8. If the one-dimensional
map (3) possesses a horseshoe (when an interval is mapped twice over
itself ), then also 8 does for +1 small enough and of the correct sign. This
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follows from the existence of strong stable foliations; see Appendix A.
Straightforward computations yield the existence of an interval of values
of s, such that x� u [ |+1| (:&1)�(:&;) g(x� u) maps two disjoint subintervals of
[0, k] onto [0, k], with slope larger than 1 (for suitable large enough k
and l ). For such values of s and +1 (corresponding to a wedge shaped
region in the (+1 , +2) parameter plane), the one-dimensional map (3) has
a hyperbolic horseshoe.

The reason for the appearance of two cases, an inward twist case
and an outward twist case, follows from a geometric observation. A box
[0<x� u�k, |x� s |�l ] in the rescaled coordinates corresponds to a small
box D+1

in the original coordinates, adjacent to the local stable manifold
in 7in. The image 8&1

far (D+1
) is on one side of the intersection of W ss, s(0)

with 7out (more precisely, of 8&1
far (W ss, s

loc (0) & 7in)), which yields the two
cases. In Fig. 6 one case is indicated, where the horseshoe exists if +2=0
(note that the horseshoe is depicted in 7out). This case we call the inward
twist case Cin . It is clear that 8, restricted to D+1

, does not possess a horse-
shoe if the image 8&1

far (D+1
) lies on the other side of W ss, s(0) & 7out, at

+2=0. However, by varying the value of +2 , a horseshoe will be created.
This case is called the outward twist case Cout . Which case occurs can be
read off from the sign of C in (2): C>0 corresponds to the outward twist
case, whereas C<0 corresponds to the inward twist case. The inward and
outward twist cases lead to different one-dimensional maps: for the inward
twist case, the one-dimensional map g is unimodal with a maximum, whereas
for the outward twist case it is unimodal with a minimum; see Fig. 8.

Fig. 6. The shape of the cusp horseshoe as it occurs in the unfolding of an orbit flip, lying
in the cross section 7out. A small subdomain E+1

of the domain E of the return map Q on 7out

is mapped by Q into a horseshoe shape over itself.
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Analysis of the rescaled return map 8� enables a characterization of the
sequence of homoclinic bifurcations in which the horseshoe annihilates.
Varying s, one encounters interval maps as in Fig. 8 that do not possess a
full horseshoe, since there are no two subintervals that are mapped onto
the whole interval. An analysis of such interval maps explains the sequences
of bifurcations in which the horseshoe is destructed; see [HKK94,
Hom96]. The rescaled return map 8� has the same bifurcation structure as
the one-dimensional map (3) as far as the homoclinic bifurcations are con-
cerned. Appendix A contains information on this annihilation process of
the horseshoe and the ensuing combinatorics of periodic orbits.

3.4. Unfoldings of Type C of an Inclination Flip

For the inclination flip, we follow the same program as for the orbit
flip. We will be briefer than in the previous subsection and pay attention
mainly to reductions to one-dimensional maps. The rest of the arguments
can be filled in by following the reasoning for the orbit flip.

For some small $, let 7in, 7out be the cross sections

7in=[xs=$, |xss |, |xu |� |$|]

7out=[xu=$, |xss |, |xs |� |$|]

intersecting the homoclinic orbit 1 of X0 . By a linear rescaling we may
assume that $=1. Take coordinates (xss , xs) on 7out and (xss , xu) on 7in

obtained by restriction of the coordinates (xss , xs , xu) near the origin. Let
8loc : 7in [ 7out be the local transition map. Let 8far : 7out [ 7in be the
global transition map, which is a local diffeomorphism. The Poincare�
return map 8 on 7in is again the composition 8=8far b 8loc .

The case :=2; is degenerate, and we assume that :&2;{0. The two
cases with different sign of :&2; are treated separately; see also Fig. 2.

The Case :>2;, ;<1�2. Proposition B2 in Appendix B provides
asymptotic expansions for the local transition map 8loc . Because 8far is a
local diffeomorphism, one can write the following expression for 8=
8far b 8loc :

8(xss , xu)=\ p+Bx;
u+O(x;+|

u )
+2++1x;

u+Dx2;
u +O( |+1| x;+|

u +x2;+|
u )+ (4)

for some |>0. This also identifies the parameters (+1 , +2). For generic
families the constant D is nonzero at (+1 , +2)=(0, 0), which we assume to
be the case.
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As above, we will use a rescaling to study the existence of hyperbolic
horseshoes. Consider rescaled coordinates (x� ss , x� u) given by

xu=|+1|_ x� u

xss& p=|+1| x� ss

where _=1�;.

Proposition /I"I Let 8� be the Poincare� return map in the rescaled
coordinates (x� x , x� u). Write s=+2 |+1|&2. Then, for some |>0,

8� (x� ss , x� u)=\ Bx� ;
u +O( |+1| | x� ;

u)
|+1|2&1�; (s+sign(+1) x� ;

u+Dx� 2;
u +O( |+1| | x� ;

u))+
As +1 � 0, restricting x� u to a compact interval and parameters (+1 , +2)

to a region in which s is bounded, 8� converges to the one-dimensional map

x� u [ \ Bx� ;
u

|+1|2&1�; (s+sign(+1) x� ;
u+Dx� 2;

u )+
This map is analyzed as before. The return map 8 has a horseshoe if the
one-dimensional map does, by the existence of strong stable foliations; see
Appendix A. Figure 7 (top) gives an idea of the geometry of the horseshoe.
Note that the horseshoe is drawn in 7out. The inward case is depicted,
where the horseshoe exists if +2=0.

The Case :<2;, :<1. Applying Proposition B2 from Appendix B,
we can write

8(xss , xu)=\ p+Axssx:
u+Bx;

u+O(x:+|
u )

+2+Cxssx:
u++1 x;

u+O(x:+|
u )+ (5)

for some |>0. We assume p{0; the case p=0 is called a weak inclination
flip [Nau96a].

Consider rescaled coordinates (x� ss , x� u) given by

xu=|+1|_ x� u

xss& p=|+1| x� ss

where _=1�(:&;).
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Fig. 7. Cusp horseshoe in the unfolding of the inclination flip. The top picture is for :>2;
and 0<;< 1

2 and shows the inward twist Cin . The bottom picture is for :<2; and :<1 and
shows the outward twist Cout . In both cases a small subdomain E+1

of the domain E of the
return map Q on 7out is mapped by Q into a horseshoe shape over itself.

Proposition /I/I Let 8� be the Poincare� return map in the rescaled
coordinates (x� s , x� u). Write s=+2 |+1| &:�(:&;). Then, for some |>0,

8� (x� ss, x� u)=\ O(|+1|| x� ;
u)

|+1| (:&1)�(:&;) (s+C( p+|+1| x� ss) x� :
u+sign(+1) x� ;

u+O( |+1|| x� ;
u))+

As +1 � 0, the map 8� converges to the one-dimensional map

x� u [ \ 0
|+1| (:&1)�:&;) (s+Cpx� :

u+sign(+1) x� ;
u)+

A similar analysis as before yields the existence of hyperbolic horseshoes.
Figure 7 (bottom) gives an idea of the geometry of the horseshoe. Note
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Fig. 8. The one-dimensional maps occurring in reductions of homoclinic flip bifurcations for
(:, ;) from region C are unimodal. They possess either a minimum for the outward twist case
Cout (left) or a maximum for the inward twist case Cin (right). Note the infinite derivative at
the left end of the graphs.

that the horseshoe is drawn in 7out. The outward case is depicted, where
the horseshoe does not exist if +2=0.

4. THE HOMOCLINIC-DOUBLING CASCADE

As mentioned in the Introduction, one of the motivations for writing
this paper was the result in [HKN97] that near a particular orbit flip
homoclinic orbit of codimension-three, cascades of homoclinic-doubling
bifurcations occur. Here, a homoclinic-doubling bifurcation is a codimen-
sion-two homoclinic bifurcation with a bifurcation diagram as in case B
in Fig. 5. Pathfollow a curve of homoclinic bifurcations in the parameter
plane. At a homoclinic-doubling bifurcation, continue pathfollowing the
curve of doubled homoclinic orbits. A cascade of homoclinic-doubling
bifurcations is present if one encounters homoclinic-doubling bifurcations
+n in which a 2n homoclinic orbit is created, for all positive integers n.

In [HKN97] it was established that such homoclinic-doubling
cascades can occur persistently in two-parameter families of vector fields.
In fact, an open set of two-parameter families of vector fields that contain
cascades of homoclinic-doubling bifurcations is constructed. The members
of the families from this open set are near a vector field with a particular
resonant orbit flip homoclinic orbit.

Theorem �I} oOHKN ��PpI Let [X+], +=(+1 , +2 , +3), be a three-
parameter family of vector fields unfolding an orbit flip at resonance :=1
with 1

2<;<1. Suppose the number C in (2) is large enough. Let +1 , +2 be
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defined as in Section 3.3 and let +3=:&1. For each +2 sufficiently small and
positive, the two-parameter family [Y+1 , +3

], given by Y+1 , +3
=X+1 , +2 , +3

, pos-
sesses a connected set of homoclinic bifurcation values in the (+1 , +3)-param-
eter plane, containing a cascade (+n

1 , +n
3) of homoclinic-doubling bifurcations

in which a 2n-homoclinic orbit is created. All these homoclinic-doubling bifur-
cations are inclination flips of type B.

It is not known whether the homoclinic bifurcations in these families
are unfolding generically, so that the set of homoclinic bifurcation values
might be more complicated than a union of curves. For families from a
residual subset of the constructed open set, homoclinic bifurcations will
unfold generically. Of basic importance in the derivation of Theorem 4.1 is
the observation that a Poincare� return map on a cross section transverse
to the homoclinic orbit is close to a one-dimensional map for a subset of
the parameters (+1 , +2 , +3). Recall from Section 3.3 the following expres-
sion for the rescaled return map 8� :

8� (x� s , x� u)=\ Ax� :
u+Bx� ;

u+O( |+1|| x� ;
u)

|+1| +3�(:&;) (s+Cx� :
u+D sign(+1) x� ;

u+O( |+1|| x� ;
u))+

for some |>0. Here s=+2 |+1| &:�(:&;). Write *=|+1|+3�(:&;) and note
that *=1 if +3=0. Restrict parameter values to a region in which s is
bounded and * is bounded and bounded away from 0. Then 8� is a pertur-
bation from the one-dimensional map

x� u [ \ Ax� u+Bx� ;
u

*(s+Cx� u+D sign(+1) x� ;
u)+

of which only the second coordinate is of importance. Observe that this
reduction actually yields a family of maps, depending on the two param-
eters * and s. The rescaled return map 8� has +1 as a third and small
parameter.

By the eigenvalue condition 1
2<;<1, an inclination flip occuring for

+3>0 is a homoclinic-doubling bifurcation with a bifurcation diagram as
in case B in Fig. 5, whereas an inclination flip occuring for +3<0 has the
complicated bifurcation diagram depicted in case C in Fig. 5. This remark
is the background for the requirement in Theorem 4.1 that C should be
sufficiently large: for C large enough all inclination flips occur for +3>0,
that is, for *<1.

The proof of Theorem 4.1 relies on a study of the above one-dimen-
sional map, combined with a continuation theory for homoclinic orbits as
developed in [HKN97]. This continuation theory is reminiscent of a
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similar theory developed to follow periodic orbits in [YA83], where a con-
tinuation theory for periodic orbits was used to find cascades of period-
doublings.

The above reasonings can also be applied to the two kinds of resonant
inclination flips. Consider the inclination flip at the resonance ;= 1

2 with
:>1. Consider the rescaled return map 8� from Proposition 3.2. The term
|+1|2&1�; in front of the second coordinate of 8� is large for ;< 1

2 and equals
1 if ;= 1

2 . We introduce a third parameter, +3=;& 1
2 , and restrict to

parameters for which *=|+1| 2&1�(+3+1�2) is bounded and bounded away
from zero and s=+2 |+1|&2 is bounded. Then 8� , for +1 small, is a pertur-
bation from the one-dimensional map

x� u [ \ B - x� u

*(s+sign(+1) - x� u+Dx� u)+ (7)

which depends on the two parameters * and s.
Applying arguments developed in [HKN97] allows us to show the

existence of homoclinic-doubling cascades in the unfolding of this resonant
inclination flip. Indeed, as mentioned above, the proof of Theorem 4.1
relies on a study of the one-dimensional map obtained from rescaling a
Poincare� return map, plus an application of a continuation theory for
homoclinic orbits. Since the one-dimensional map for the resonant inclina-
tion flip is similar to the one obtained for the resonant orbit flip, the
reasoning in [HKN97] goes through, and we obtain the following result.

Theorem �I"I Let [X+], +=(+1 , +2 , +3), be a three-parameter family
of vector fields unfolding an inclination flip at resonance ;= 1

2 with :>1. Let
+1 , +2 be defined as in Section 3.4 and let +3=;& 1

2 . Suppose the number D
in (4) is large enough. For each +2 sufficiently small and positive, the two-
parameter family [Y+1 , +3

], given by Y+1 , +3
=X+1 , +2 , +3

, possesses a connected
set of homoclinic bifurcation values in the (+1 , +3)-parameter plane, con-
taining a cascade (+n

1 , +n
3) of homoclinic-doubling bifurcations in which a

2n-homoclinic orbit is created. All these homoclinic-doubling bifurcations are
inclination flips of type B.

In one respect the homoclinic-doubling cascades in the unfolding of
this resonant inclination flip differ from those occuring in the unfolding of
the resonant orbit flip. Namely, in the limit +1=0 the rescaled return map
becomes the one-dimensional map (7) which does not possess homoclinic-
doubling cascades. We expect homoclinic-doubling bifurcations in a cas-
cade to occur very close to each other if +1 is small; compare the discussion
in [HKN97] and in Section 5.4.
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The inclination flip at the resonance :=1 with 1
2<;<1 can be treated

in the same way. The rescaled return map 8� , for +1 small, is a perturbation
from the one-dimensional map

x� u [ \ 0
*(s+Cpx� u+sign(+1) x� ;

u)+ (8)

where *=|+1| (:&1)�(:&;) and s=+2 |+1|&:�(:&;).

Theorem �I/I Let [X+], +=(+1 , +2 , +3), be a three-parameter family
of vector fields unfolding an inclination flip at resonance :=1 with 1

2<;<1.
Suppose the number Cp in (5) is large enough. Let +1 , +2 be defined as in
Section 3.4 and let +3=:&1. For each +2 sufficiently small and positive, the
two-parameter family [Y+1 , +3

], given by Y+1 , +3
=X+1 , +2 , +3

, possesses a con-
nected set of homoclinic bifurcation values in the (+1 , +3)-parameter plane,
containing a cascade (+n

1 , +n
3) of homoclinic-doubling bifurcations in which a

2n-homoclinic orbit is created. All these homoclinic-doubling bifurcations are
inclination flips of type B.

The theorems in this section can be summarized by saying that a
homoclinic-doubling cascade can be found near any transition from type B
to type C in Fig. 4 that features inclination flips of type B in its vicinity.
Due to the lack of inclination flips of type B, in the case not covered by
the above theorems of a resonant orbit flip for :=1 and ;< 1

2 there is no
homoclinic-doubling cascade near the transition from B to C; see also the
discussion in the next section.

5. CODIMENSION-THREE UNFOLDINGS

In this section we consider the resonant homoclinic flip bifurcations
of codimension-three that correspond to (:, ;) on the lines between the
regions A, B, and C in Fig. 4. The central singularity may be an orbit flip
or an inclination flip. There are three classes of transitions.

v The transition from A to B.

v The transition from B to C involving a homoclinic-doubling cascade.
This occurs for 1

2<;<1 and : near 1 if the central singularity is an
orbit flip or an inclination flip. This also occurs for ; near 1

2 and
:>1 if the central singularity is an inclination flip.

v The transition from B to C without a homoclinic-doubling cascade,
but with an inclination flip of type C instead. This occurs for
0<;< 1

2 and : near 1 if the central singularity is an orbit flip.
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We take the topological point of view of glueing the respective
codimension-two unfoldings from Section 3 to each other on the surface of
a sphere. To this end we arrange the parameters in such a way that one
codimension-two singularity sits at the north pole, and the other at the
south pole. The problem is now to connect the two in a consistent way on
the surface of the sphere.

In the figures we project this sphere to the plane as follows. The
parameter +1 unfolding the twist changes sign along the vertical axis of
each bifurcation diagram. Along the circle, corresponding to the bifurcating
one-homoclinic orbit 1, the parameter +2 (breaking 1 ) changes sign.
Finally, the parameter +3 unfolding the resonance (crossing between the
respective regions A, B, and C) changes sign along the horizontal axis. By
adjoining the point at infinity the sphere can be retrieved. The labeling of
the bifurcation curves and periodic orbits in the figures is explained in
Section 2.

Let us indicate in general terms to what extent the bifurcation
diagrams are proved or conjectural. When discussing the different cases we
add specific information, where we will be most detailed for the bifurcation
diagrams showing homoclinic-doubling cascades. We have no proof that
bifurcations unfold generically, which would imply that bifurcations of
codimension-one appear as smooth curves on the sphere and bifurcations
of codimension-two appear as points. Related to this is that we do not
show that the bifurcation diagram has cone structure, that is, that bifurca-
tion diagrams on small spheres of differing radius are homotopic. In fact,
one cannot expect cone structure in regions with chaotic dynamics. Hence,
we assume that bifurcations unfold generically and we ignore isolas. The
depicted bifurcation diagrams are consistent, explain the positions of all
bifurcation curves branching from the codimension-two homoclinic bifur-
cations on the poles of the sphere, and are the simplest possible in the sense
that removing bifurcation points or curves would make the bifurcation
diagram inconsistent. We remark that most of the features are backed up
now by numerical studies; see [OKC00, OKC00b].

Drawing the bifurcation diagrams is made possible by the following
observations. First, curves of homoclinic bifurcations cannot intersect;
X+ possesses at most one homoclinic orbit. Since the orbits we consider are
confined to a tubular neighborhood of the resonant homoclinic orbit of
codimension-three, curves of n-homoclinic orbits connect codimension-two
homoclinic bifurcation points. A similar remark holds for codimension-one
bifurcations of n-periodic orbits. Further knowledge on the necessary
occurrence of certain bifurcations is derived by looking at the number and
stability of periodic orbits and by understanding the fate of individual peri-
odic orbits.
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Fig. 9. The transition from A to B involves the orientable and the nonorientable resonant
homoclinic bifurcation.

5.1. Transition from A to B

We introduce the parameter +3=1&;, where we fix :>1. The central
singularity may be both an orbit flip or an inclination flip. The transition
from A to B when +3 changes sign can be resolved on the sphere if one
realized that +1=+2=0 defines the resonant homoclinic bifurcations from
[CDF90] in Fig. 3. There are the two possibilities depending on the sign
of a normal form coefficient; see [CDF90]. However, on the sphere both
cases are topologically as sketched in Fig. 9. This case was independently
studied in [Mon96].

5.2. Transition from B to C Involving a Homoclinic-Doubling Cascade

This case was the main motivation for this paper because the
homoclinic-doubling cascade was found in [HKN97] near a resonant orbit
flip for 1

2<;<1. In Section 4 we have seen that the homoclinic-doubling
cascade is also found near a resonant inclination flip with : near 1 and
1
2<;<1, and also near a resonant inclination flip with ; near 1

2 and :>1.
We introduce parameters (+1 , +2 , +3) as in the respective bifurcation
theorems. Recall that the rescalings considered in Section 4 are defined
for parameters (+1 , +2 , +3) from a region for which a function * of the
parameters is bounded and bounded away from 0 and a second function s
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of the parameters is bounded. Recall that for the orbit and inclination flip
near the resonance :=1, * and s are given by

*=|+1| (:&1)�(:&;)

s=+2 |+1| &:�(:&;)

whereas for the inclination flip near the resonance ;= 1
2 , * and s are

defined by

*=|+1|2&(1�;)

s=+2 |+1|&2

These identities define charts on part of the small sphere around the origin
in parameter space. Small neighborhoods of the poles correspond to large
and small values of * and are therefore not covered by the charts. But near
the poles the bifurcation diagram is that of the codimension-two flip bifur-
cations, near the north pole of case C and near the south pole of case B.
It remains to study the bifurcations for parameters from the part of the
sphere corresponding to large values of s. This part of the sphere is not
covered by the rescalings from Section 4, but a different rescaling can be
used. We discuss this for the resonant orbit flip, but similar considerations
apply to the resonant inclination flips.

Let the return map (xs , xu) [ 8(xs , xu) on 7in be as in (2). Let
rescaled coordinates (x̂s , x̂u) be given by

xs=+1+|+2 | x̂s

xu=|+2 | 1�: x̂u

A computation yields the following result.

Proposition <I}I Let 8� be the Poincare� return map in the rescaled
coordinates (x̂s , x̂u). Write t=+1 |+2 | (;&:)�: and &=|+2 | (:&1)�:. Then, for
some |>0,

8� (x̂s , x̂u)=\ Ax̂:
u+Btx̂;

u+O( |+2 || x̂;
u)

&(sign(+2)+Cx̂:
u+Dtx̂;

u+O( |+2 || x̂;
u))+

Take parameter values for which t is bounded (note that small values
of t correspond to large values of s) and for which & is bounded and bounded
away from zero (small or large values of & occur near the poles on the sphere).
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Then for (x̂s , x̂u) from a box of the form [&l, l]_(0, k], the rescaled
return map 8� is a perturbation from the one-dimensional map

x̂u [ \ Ax̂u+Btx̂;
u

&(sign(+2)+Cx̂u+Dtx̂;
u)+

This result, combined with the earlier discussions in Sections 3 and 4,
shows that there is a covering of the sphere by charts on which different
rescalings to perturbations from one-dimensional maps exist. This enables
a bifurcation study for all parameter values on the sphere. Note, however,
that the rescalings are applied to (xs , xu) from a small box in 7in, whose
size goes to 0 as + � 0. Bifurcations of orbits outside this box are not cap-
tured by an analysis of the rescaled return map; compare the discussion of
the codimension-two inclination flip in the appendix of [HKN97].

From a knowledge of the bifurcation structures near the poles and a
study of bifurcations of the rescaled return maps from Propositions 3.1
and 5.1, one can draw a consistent bifurcation diagram on the sphere.
Recall that we assume that the bifurcations unfold generically and that we
ignore isolas of homoclinic or other bifurcations.

The transition from B to C when +3 changes sign is sketched in
Figs. 10 and 11 for the two cases Cout and Cin . These figures certainly need
some interpretation. Near the codimension-two point of type B a period-
two homoclinic orbit is born. As we follow this orbit it undergoes a cascade

Fig. 10. The transition from B to Cout via homoclinic-doubling cascades.
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Fig. 11. The transition from B to Cin via homoclinic-doubling cascades.

of homoclinic-doublings as described in Section 4. Note that it was shown
rigorously that homoclinic-doublings connect to form a complete cascade.
The curves of twisted homoclinic loops all end at the codimension-two
point of type C, as do the curves of period-doublings that are associated
with the homoclinic-doubling cascade. By checking the stability of periodic
orbits one recognizes that following a curve PD2k

from a homoclinic bifur-
cation point of type B to type Cin or type Cout , respectively, the period
doubling bifurcation has to change from subcritical to supercritical. This
implies the existence of a codimension-two point of a degenerate period-
doubling of a 2k-periodic orbit from which a curve SN2k

branches. Another
feature of Fig. 10 is the codimension-two cusp point joining the two
branches of the curve SN1 connecting the points B and Cout . The impor-
tance of the cusp point is explained by noting that B and Cout cannot be
end points of a single curve SN 1. This in turn is seen by continuing the
different 1-periodic orbits that bifurcate from B and Cout . We remark that
the cusp was found numerically in the study in [OKC00, OKC00b].

The bifurcation curves of homoclinic and periodic orbits described so
far account for a part of the bifurcations that occur in the respective
unfoldings of the cusp horseshoe in the cases Cout and Cin . However, they
account only for the bifurcations of 2l-orbits. We conjecture that there are
``k-bubbles.'' configurations of bifurcation curves in which i-homoclinic and
i-periodic orbits are connected, where i is a multiple of k. Figures 12 and 13
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Fig. 12. A k-bubble with a homoclinic-doubling cascade for the two cases Cout (top) and
Cin (bottom).

show different k-bubbles attached to flip bifurcations of type Cin and Cout .
If the respective coefficient in the expansion of the Poincare� return map
occurring in the bifurcation theorems in Section 4 is sufficiently large, we
expect to find complete cascades in these k-bubbles as in Fig. 12. The
k-bubbles would then protrude from C into the lower half-plane where
+3<0: the flip bifurcations in the cascade are inclination flips, which are of
type B only for +3<0. For smaller values of the coefficient in the expansion
of the Poincare� return map, the k-bubbles would be situated in +3>0 and
contain two bifurcations of C type, as indicated in Fig. 13. Combinations
with k-bubbles consisting of a finite number of homoclinic doubling bifur-
cations in +3<0 and an inclination flip of type C in +3>0 are another
possibility. The existence of k-bubbles has been numerically verified in
[OKC00b]. The complete bifurcation diagram is now an infinite puzzle of
k-bubbles that are organized according to the order of bifurcations near
Cout and C in , respectively. This order is determined by the respective one-
dimensional map as explained in Appendix A; see also [HKK94].

830 Homburg and Krauskopf



File: 865J 901725 . By:XX . Date:03:01:50 . Time:01:52 LOP8M. V8.B. Page 01:01
Codes: 1702 Signs: 1206 . Length: 44 pic 2 pts, 186 mm

Fig. 13. A k-bubble without a homoclinic-doubling cascade but with an additional point of
type C instead. Sketched is the case Cout with an additional point of type Cout (top) and the
case C in with an additional point of type Cin (bottom).

5.3. Transition from B to C Without a Homoclinic-Doubling Cascade

This transition occurs if the central singularity is a resonant orbit flip
with 0<;< 1

2. We introduce the parameter +3=1&:. Looking at Fig. 4
(right) it is clear that there cannot be a homoclinic-doubling cascade on
the sphere, because near the central singularity there are no inclination flips
of type B. In other words, we must now make the transition from B to C
with inclination flips of type C. This means that the point ;= 1

2 is a bifurca-
tion point for the codimension-three unfoldings we consider here. We will
come back to this point of view below in Section 5.4.

A transition from B to Cout when +3 changes sign in this setting is
sketched in Fig. 14; a case of a transitions from B to Cin is sketched in
Fig. 15. In both figures we consider the situation that the point of type C
on the curve of 2-homoclinic orbits is of type Cout . The case that this point
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Fig. 14. The transition from B to Cout involving an inclination flip of type Cout .

Fig. 15. The transition from B to Cin involving an inclination flip of type Cout .
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is of type Cin appears to be possible as well, but this not discussed further
here. Transitions from B to Cout via an additional point of Cout appear in
the numerical studies in [OKC00b].

Near the codimension-two point of type B a period-two homoclinic
orbit is born, but now it undergoes an inclination flip bifurcation of type
Cout . The homoclinic loop and period doubling curves all end at the
codimension-two point of type Cout . They account for a part of the bifurca-
tions that occur in the respective unfoldings of the cusp horseshoe. We con-
jecture that there are ``k-bubbles'' as shown in Fig. 13 (top), which also
have an inclination flip of type Cout . They account for the bifurcation cur-
ves that are missing. The complete bifurcation diagram is again an infinite
puzzle of k-bubbles that are organized according to the order of bifurca-
tions near the main codimension-two singularity Cout . This order is the
same as in the previous case and determined by the one-dimensional map
as explained in Appendix A.

5.4. From a Homoclinic-Doubling Cascade to a Point of Type Cout

It is of help to consider the transition of the spheres in Figs. 10 and 11
to those in Figs. 14 and 15 as ; is changed through 1

2 , where the central
singularity is an orbit flip. We picture this bifurcation as follows. Let 1

2<;
and consider decreasing ; toward the bifurcation value 1

2 . Then the suc-
cessive points in each homoclinic-doubling cascade move closer to each
other. (Note that only one parameter should be necessary for this, because
it is a reasonable conjecture that there is a scaling law just like in period-
doubling.) When ;= 1

2 each period doubling cascade has changed to a
single point, which is an inclination flip of type C. In Figs. 14 and 15 these
are inclination flips of type Cout . In order for this to happen, infinitely
many cascades of the right combinatorics must all converge to the same
point to form this inclination flip of type C. We argue now that this order-
ing is already present ``in statu nascendi'' for 1

2<;. Because the sphere is
compact each homoclinic-doubling cascade has an accumulation point.
(We conjecture that there is exactly one such point.) There are clearly
infinitely many accumulation points of homoclinic-doubling cascades. We
conjecture that the accumulation points of homoclinic-doubling cascades
accumulate according to the requirement that they form inclination flips of
type C as ; crosses 1

2 . In fact, one could think of the accumulation points
of accumulation points of homoclinic-doubling cascades as the seeds for
1
2<; of the inclination flips of type C for ;< 1

2 . This creation of inclination
flips of type C might be an explanation for certain computer-generated pic-
tures in [KKO95].
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This infinite puzzle requires an infinite number of inclination flips for
;> 1

2 , which is in accordance with a result in [Nau96a]. Note that these
inclination flips of type C must also accumulate somewhere on the sphere,
making the picture very intricate.

APPENDIX A: ANNIHILATION OF HORSESHOES

In [HKK94] the destruction of horseshoes through sequences of
homoclinic bifurcations in the unfolding of an inclination flip with the
eigenvalue conditions :�;>2 and ;< 1

2 is studied. This is done under a
local linearizability assumption. In this appendix we wish to indicate, first,
that the results in [HKK94] hold without the local linearizability assump-
tion and, second, that similar bifurcation pictures exist both for the inclina-
tion flip with eigenvalue conditions :�;<2, :<1, and for the orbit flip
with ;<:<1. For the convenience of the reader we include a characteriza-
tion of the order of the homoclinic bifurcations in which horseshoes are
annihilated, where we follow [HKK94, Hom96].

A1. Combinatorics of Homoclinic Orbits

Let us start with some considerations on the one-dimensional maps
that appear as singular limits after a rescaling; see Section 3. The obtained
interval maps (for the different flip homoclinic orbits) are all unimodal
with a graph as depicted in Fig. 8. Homoclinic bifurcations of X+ corre-
spond to periodic orbits of the interval map that contain 0. This follows
from the fact that the local stable manifold of 0 becomes the point 0 in the
reduction to the interval map. Note that an n-periodic orbit of the interval
map that goes through 0 corresponds to an n-homoclinic orbit of X+ .
Kneading theory is the tool to obtain information on the set of periodic
orbits, and hence, on the set of homoclinic bifurcations, when parameters
are varied.

In order to explain this we consider a unimodal map f+ as given by
(6), (7), or (8) and possessing a minimum as in the left part of Fig. 8.
Similar considerations hold for unimodal maps with a maximum. As
indicated in the figure, there is an interval M=[0, m+] that is mapped into
itself by f+ ; the point m+ is the rightmost fixed point of f+ . Denote by c+

the critical point of f+ . For each point x, an itinerary I(x) is defined as a
finite or infinite sequence Ij (x), j�0, of symbols L and R, according to the
following rule:

Ij (x)={L,
R,

if f j
+(x)<c+

if f j
+(x)>c+
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If f j
+(x) is outside of M, that is, if f j

+(x)<0 or if f j
+(x)>m+ , then Ik(x) is

not defined for k� j+1.
One defines an ordering on itineraries as follows. Let I, J be two

itineraries. Then I<J if, for the first integer j with Ij{Jj , the following
holds: either Ij=L and J=R and the number of L's in Ii , 0�i< j, is
odd, or Ij=R and Jj=L and the number of L's in Ii , 0�i< j, is even.

Note that f j
+(x) is decreasing at x (and thus changes the order of

points close to x), precisely if the number of L's in Ii (x), 0�i� j, is odd.
From this, one deduces that I(x)<I( y) implies x< y, so that itineraries
of points reflect the position on the interval. This observation immediately
gives a result on the order of homoclinic bifurcations. First, note that if for
+1 a fixed small number, one lets +2 increase, a horseshoe is created (an
interval map is said to have a horseshoe if the interval is mapped twice
over itself ). Indeed, for +2=0 we have f+(0)=0 and therefore the invariant
set of f+ consists of a fixed point in 0 (corresponding to a homoclinic orbit
for X+) and a fixed point in m+ (a periodic orbit for X+), whereas for some
positive value of +2 one has f+(0)=m+ and so f+ possesses a horseshoe.
From the above considerations one concludes that for each I<J, there
are parameter values +1

2<+2
2 (recall that +1 is small and fixed), so that 0

is a periodic point both for f(+1 , +1
2) and for f(+1 , +2

2) and such that I(0)=I

for +=(+1 , +1
2) and I(0)=J for +=(+1 , +2

2).
If one further has a monotonicity property of the homoclinic bifurca-

tions, saying that the value of +2 (for fixed +1) for which 0 is periodic with
some prescribed itinerary, is unique, then this fully describes the order of
homoclinic bifurcations. That f+ has such a monotonicity property follows
from

�
�+2

f n
+ |x= :

n&1

j=0

d
dx

f j
+ | f +

n& j(x)

�
�+2

f+ | f +
n& j&1(x)

Indeed, since for + small, |(d�dx) f+ |x is large, the above expression is non-
zero and its sign equals the sign of the dominant term (d�dx) f n&1

+ | f+(x)

(���+2) f+ | x . Applying this to x=0 at a homoclinic bifurcation value
shows the required monotonicity.

Following [Hom96], one sees that the first homoclinic bifurcations
are of periodic points with itineraries

(L)�, (LR)�, (LRLL)�, (LRLLLRLR)�

in this order. For each itinerary, the following itinerary is obtained by taking
the block of symbols which is periodically repeated, putting two of these
blocks behind each other, changing the last symbol of the new obtained
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block, and then repeating this block periodically. There are various such
sequences of homoclinic bifurcations. Indeed, if U is a block of symbols
containing an even number of L's, then there is a sequence of subsequent
homoclinic bifurcations with the following itineraries:

(UR)�, (UL)�, (ULUR)�, (ULURULUL)�

and so on using the same rule as above. A similar sequence of subsequent
homoclinic bifurcations exists for blocks of symbols U containing an odd
number of L's. Here the order is

(UL)�, (UR)�, (URUL)�, (URULURUR)�

and so on.

A2. Strong Stable Foliations

Recall that f+ is the singular limit of a rescaled return map 8� as
+1 � 0. The above results on the one-dimensional map can be extended to
8� by constructing a strong stable foliation. Identifying points on the same
leaf of such a foliation results in a one-dimensional map, close to f+ for +
small. To extend the combinatorial part of the above description to 8� , it
suffices to construct a continuous strong stable foliation: kneading theory
applies to continuous unimodal maps. For statements on monotonicity and
genericity of the unfolding of the bifurcations, a continuously differentiable
strong stable foliation is required. We do not discuss this issue but refer to
[HKK94].

We now prove for the case of the orbit flip that a strong stable folia-
tion for 8� does exist. Similar proofs can be given for the two types of
inclination flips. Recall from Section 3 that, for +1 small, the rescaled return
map (x� s , x� u) [ 8� (x� s , x� u) is a singular perturbation from the one-dimen-
sional map

x� u [ \ Ax� :
u+Bx� ;

u

|+1| (:&1)�(:&;) g(x� u)+
where g(x� u)=s+Cx� :

u+D sign(+1) x� ;
u .

In order to state the result we consider (x� s , x� u) on a bounded region
[&l, l ]_(0, k], for some k, l large enough. We follow [HKK94]; related
or comparable results can further be found in [Rob89, Rob92, Ryc90,
Hom96].
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Proposition A}. For some *>0, and +1D of the opposite sign as C, let
W be the set of parameter values so that | g$| I |�*, where I=[x� u # (0, k];
|+1| (:&1)�(:&;) g(x� u) # (0, k]]. For (+1 , +2) # W, 8� possesses a continuous
strong stable foliation on [&l, l ]_[0, k].

Proof. Instead of studying the Poincare� return map 8 on D+1
/7in

(where D+1
is the box that rescales to [&l, l ]_(0, k]), we consider the

Poincare� return map 9 on the parameter-dependent cross section

S in=[xs=+1 , |xss |, |xu |�1]

This makes the construction similar to corresponding constructions near
inclination flip homoclinic orbits. Note that, for +2=0, the homoclinic
orbit intersects S in in (1, +, 0). For definiteness, we assume that C and D
are such that +1 is positive. Let

E+1
=[0<xu�k+_

1 , |xss&1|�l+&
1]

_=1�(:&;), &=:�(:&;), be a small box in S in. The existence of a strong
stable foliation for 8 on D+1

follows from the existence of a strong stable
foliation for 9 on E+1

.
A strong stable foliation is obtained by integrating a line field that is

invariant under D9 and has the property that D9 strongly contracts
vectors in the direction of the line field. Such a line field is constructed
using an appropriate graph transform. We prove the proposition for fixed
parameter values. Take rescaled coordinates (x� ss , x� u) # [&l, l ]_(0, k] on
E+1

given by

xss&1=+&
1 x� ss

xu=+_
1 x� u

and let 9� denote the Poincare� return map in these rescaled coordinates.
Write T ([&l, l ]_(0, k])=[&l, l ]_(0, k]_E ss_E u. Let 9� &1 be the
map induced by 9� &1 on [&l, l ]_(0, k]_L(E ss, Eu);

9� &1(x� ss , x� u , v� )=(9� &1(x� ss , x� u), w� )

with

graph w� =D9� &1(x� ss , x� u) graph v�
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Let 1 be the corresponding graph transform on C0([&l, l ]_(0, k],
L(E ss, E u)), that is, 1 is defined by

(x� ss , x� u , 1 (v� )(x� ss , x� u))=9� &1(9� (x� ss , x� u), v� b 9� (x� ss , x� u))

for (x� ss , x� u) such that 9� (x� ss , x� u) # [&l, l ]_(0, k]. For other (x� ss , x� u) we
let 1 (v� )(x� ss , x� u)=v� 0(x� ss , x� u) for a fixed section v� 0 ; see [HKK94, Hom96]
for details.

We claim the existence of $>0 so that

v 1 maps the set C 0
$([&l, l ]_(0, k], L(E ss, Eu)) of continuous sec-

tions in C0([&l, l ]_(0, k], L(E ss, E u)) with supnorm bounded by
$ into itself.

v 1 is a contraction on C 0
$([&l, l ]_(0, k], L(E ss, E u)) in the sup-

norm.

Note that 9� is defined only for x� u>0 (and at x� u=0 by continuous
extension).

In the remainder, we prove the claim. Combining the proofs of
Proposition B5 in Appendix B (we are using a different cross section, so
that Proposition B5 does not apply directly) and Proposition 3.1, one has

9� (x� ss , x� u)=\ A(x� ss) x� :
u+B(x� ss) x� ;

u+O( |+1|| x� ;+|
u )

|+1| (:&1)�(:&;) (C(x� ss) x� :
u+D(x� ss) sign(+1) x� ;

u+O( |+1|| x� ;+|
u ))+

(9)

for some |>0. The higher-order terms can be differentiated, as stated in
Proposition B5. The function A is of the form A� (1+|+1| & x� ss) for a smooth
function A� , and similarly for B, C, D.

Consider the action of the map 9� &1: 9� ([&l, l ]_(0, k])_L(E ss, E u)
� [&l, l ]_(0, k]_L(E ss, Eu), induced by 9� &1. Write

D9� (x� ss , x� u)=\a(x� ss , x� u)
c(x� ss , x� u)

b(x� ss , x� u)
d(x� ss , x� u)+

Observe that 9� &1(9� (x� ss , x� u), w)=(x� ss , x� u , v), where w and v are related
by

\a(x� ss , x� u)
c(x� ss , x� u)

b(x� ss , x� u)
d(x� ss , x� u)+ \

1
v+=k \1

w+
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for some k # R. This shows that v and w are related by

v=
&c(x� ss , x� u)+a(x� ss , x� u) w
d(x� ss , x� u)&b(x� ss , x� u) w

So, if v� # C 0(9� ([&l, l ]_(0, k]), L(E ss, E u)), then

1 (v� )=
&c+av� b 9�
d&bv� b 9�

Write O=O( |+1|| x� ;+|&1
u ) and O1=O( |+1| | x� |

u ). Use (9) to compute

1 (v� )(x� ss , x� u)=
\O&C$x� :&1

u &sign(+1) D$x� ;&1
u

+|+1| (1&:)�(:&;) (A$x� :&1
u +B$x� ;&1

u +O) v� b 9� +
\O&C:x� :&1

u &sign(+1) D;x� ;&1
u

&|+1| (1&:)�(:&;) (A:x� :&1
u +B;x� ;&1

u +O) v� b 9� +

=
\O1&C$x� :&;

u &sign(+1) D$
+|+1| (1&:)�(:&;) (A$x� :&;

u +B$+O1) v� b 9� +
\O1&C:x� :&;

u &sign(+1) D;
&|+1| (1&:)�(:&;) (A:x� :&1

u +B;+O1) v� b 9� +
Here A, B, C, D and their derivatives are computed in x� ss and v� b 9� is com-
puted in (x� ss , x� u).

By assumption, g$(x� u)t &C:x� :&1
u &sign(+1) D;x� ;&1

u (the term
appearing in the denominator of the above expression) is bounded away
from zero. From these facts one derives the claim; see [HKK94]. g

APPENDIX B: EXPONENTIAL EXPANSIONS

In this appendix we provide exponential expansions for the local
transition maps for the vector field X+ encountered in Section 3. It is well
known that under the assumption of nonresonance conditions on the
eigenvalues of DX+(0), there exist smooth coordinates near 0 in which X+

is linear [Ste58]. For a locally linear vector field an explicit expression for
the local transition map can be given. Since we consider resonant flip bifur-
cations, and thus have rationally dependent eigenvalues, we cannot assume
the existence of smooth locally linearizing coordinates. We circumvent this
difficulty by computing asymptotic expansions for the local transition
maps. This provides a way of studying homoclinic bifurcations without
having to rely on the simplifying assumption of smooth local linearizability.
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We start with a normal form theorem. Let X+ be give by a set of ordinary
differential equations,

x* ss=&:xss+Fss(xss , xs , xu)

x* =&;xs+Fs(xss , xs , xu) (10)

x* u=xu+Fu(xss , xs , xu)

where F ss, F s, F u are quadratic and higher-order terms.

Lemma B}. The vector field X+ is smoothly equivalent to a vector field
of the same form with

Fss(xss , xs , xu)=O(&(xss , xs)&2)

Fs(xss , xs , xu)=xuO( |xss |+&(xss , xs)&2)

Fu(xss , xs , xu)=0

Moreover, if :>2;, the same is true with

Fss(xss , xs , xu)=O(x2
ss+|xssxs |+x3

s ) (11)

If :&;<1, we can take

Fs(xss , xs , xu)=xu O(&(xss , xs)&2) (12)

Proof. By a smooth coordinate change, the local stable and unstable
manifolds are linear. Then Fss and Fs are of order O(&(xss , xs)&) and Fu is
of order O( |xu | ). Multiplying the vector field with the smooth function
xu �(xu+Fu(xss , xs , xu)), we obtain that X+ is smoothly equivalent to a
vector field for which Fu=0.

First, by a smooth coordinate transformation, we remove terms
xssO(xu) from the differential equation for xss and terms xsO(xu) from
the differential equation for xs . For this, consider a coordinate change
(xss , xs , xu) [ ( yss , ys , yu) of the form

yss=xss+ pss(xu) xss

ys=xs+qs(xu) xs

yu=xu
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for functions pss, ps which vanish at xu=0. Write the differential equations
in the new coordinates ( yss , ys , yu) as

y* ss=&:yss+Gss( yss , ys , yu) yss+Gs( yss , ys , yu) ys

y* s=&;ys+H ss( yss , ys , yu) yss+H s( yss , ys , yu) ys

y* u= yu

At yss , ys=0, we have

Gss(0, 0, yu)= p* ss+h.o.t.

H s(0, 0, yu)=q* s+h.o.t.

where h.o.t. stands for higher-order terms in ( pss, qs, yu); compare [OS87,
Den89b]. We seek functions pss, qs of yu=xu so that Gss and H s vanish
at yss , ys=0. Considering pss and qs as variables, this yields differential
equations for ( pss, qs, yu):

p* ss=h.o.t.

q* s=h.o.t.

y* u= yu

The eigenvalues of the linearized differential equations, at pss, qs, yu=0, are
0, 0, 1. Hence we obtain the desired functions pss, qs by constructing the
one-dimensional strong unstable manifold for the above system of differen-
tial equations.

On the stable manifold, there exists a strong stable foliation with one-
dimensional leaves, extending the strong stable manifold. A smooth coor-
dinate change brings this foliation into an affine foliation. The differential
equation for xs restricted to the stable manifold [xu=0] depends only on xs .
Since one-dimensional vector fields can always be smoothly linearized near
a sink, after a smooth coordinate change we get Fs(xss , xs , xu)=
O( |xu | &(xss , xs)&). Any center unstable manifold W s, u(0) has the same
tangent bundle along W u(0); see for example [Hom96]. By a smooth coor-
dinate change TW s, u(0)| Wu(0)=T[xss=0]. This removes terms xsO(xu)
from the differential equation for xss . If :>2;, then any W s, u(0) is a C 2

manifold and has a unique bundle of 2-jets along W u(0). A smooth coor-
dinate change makes any W s, u(0) second-order tangent to [xss=0] along
W u(0). Then also terms x2

s and x2
s O(xu) from the differential equation for

xss are removed. Also, if :&;<1, then there is a smooth plane bundle
along W u(0), extending T0 W ss(0)�T0W u(0)=[xs=0] over the origin;
compare, for example, [HKN97]. A smooth coordinate change makes this
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plane bundle constant. Terms xssO(xu) are absent from the differential
equation for xs after such a coordinate change. None of the coordinate
changes destroys the results of the earlier coordinate changes, so that the
lemma is proved. g

B1. Exponential Expansions for the Inclination Flip

Recall that 7in=[xs=1] and 7out=[xu=1]. The following proposi-
tion provides asymptotic expansions of the local transition map 8loc : 7in

� 7out. Its proof relies on an improvement of estimates derived in [OS87,
Den89, Den89b].

Proposition B". Suppose 2;{:. Then, after a smooth local coordinate
change, 8loc : 7in � 7out has the following expression for its components
8loc=(8 ss

loc , 8s
loc):

8ss
loc(xss , xu)=xmin[:, 2;]

u (�ss(xss)+Rss(xss , xu))

8s
loc(xss , xu)=x;

u(1+Rs(xss , xu))

The functions �ss, �s are smooth, �s{0 and �ss(0)=0, if _<2;.
Furthermore, Rss and Rs are smooth for xu>0; for some _>0, there

exist constants Ck+l>0 so that with i=ss, s

} �k+l

�xk
u �(xss , +) l R i (xss , xu) }�Ck+l x_&k

u

Proof. We give the proof under the assumption that :>2;. The
proof for the case :<2; is similar; compare [HKN97].

Use coordinates and notation as provided by Lemma B1 and (11).
For {>0 and !ss with |!ss |<1, let

x(t, {, !ss)=(xss , xs , xu)(t, {, !ss)

be an orbit of X+ with

xss(0, {, !ss)=!ss

xs(0, {, !ss)=1

xu({, {, !ss)=1

These conditions uniquely define the orbit x(t, {, !ss); see [Shi67, Den89].
We will first show the following lemma, providing estimates on xss(t, {, !ss)
and xs(t, {, !ss).
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Lemma B/. For k�0, there are positive constants Ck so that, for
0�t�{ and + near 0,

} �k

�(t, !ss , +)k xss(t, {, !ss) }�Cke&2;t

} �k

�(t, !ss , +)k xs(t, {, !ss) }�Cke&;t

Furthermore, for the derivatives with respect to {,

} �k

�(t, {, !ss , +)k

�
�{

xss(t, {, !ss) }�Cke&2;t+(t&{)

} �k

�(t, {, !ss , +)k

�
�{

xs(t, {, !ss) }�Cke&;t+(t&{)

Proof of Lemma B3. To simplify the notation we write, for example,
x(t) for x(t, {, !ss). Let $ be the distance of the sections 7in and 7out to the
origin, before rescaling. Because of the applied rescaling (xss , xs , xu) [
(xss , xs , xu)�$, we have

F ss(xss , xs , xu)|, |F s(xss , xs , xu)|�C$ (13)

for some C>0 uniformly in (xss , xs , xu , +). By the variation of constants
formula

xss(t)=e&:t!ss+|
t

0
e&:(t&s)F ss(x(s)) ds (14)

xs(t)=e&;t+|
t

0
e&;(t&s)F s(x(s)) ds (15)

For }, *>0 and a finite-dimensional vector space E with norm & }&, let

7}, *([0, {], E )=[ y # C0([0, {], E ); sup
0�t�{

&y(t)& e}t+*({&t)<�]

Equipped with the norm

&y&}, *= sup
0�t�{

&y(t)& e}t+*({&t)

7}, *([0, {], E ) is a Banach space.
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Let Y=(Yss, Ys) be the map on C0([0, {], R2) that maps (xss , xs) to
the right-hand side of (14), (15). Let BR denote the ball of radius R in
7:, 0([0, {], R)_7;, 0([0, {], R). We claim that for &!s &�1 there exists
R>0 so that

v Y maps BR inside itself,

v Y is a contraction on BR .

The fixed point of Y, providing the orbit x, therefore satisfies the estimates
in the statement of the lemma.

The claim is obtained by using (13) and Lemma B1. Since the argu-
ments closely follow those in [Den89], we do not reproduce the estimates
here. One treats (higher order) derivatives by differentiating (14), (15) and
using the obtained identities to define a map on an appropriate weighted
Banach space. Performing estimates as above, one shows that this map
leaves a ball in the Banach space invariant. Therefore, derivatives satisfy
the bounds given by the norm. For details we refer to [Den89]. g

To obtain more precise asymptotics, we study the functions

zss(u, {, !ss)=e2;({&u)xss({&u, {, !ss)

zs(u, {, !ss)=e;({&u)xs({&u, {, !ss)

for which we have the following.

Lemma B�. The limit functions

z�
ss (u, !ss)= lim

{ � �
zss(u, {, !ss)

z�
s (u, !ss)= lim

{ � �
zs(u, {, !ss)

exist as smooth functions of (u, !ss). For any 0<_ss<:(0)&2;(0) and 0<
_s<min[:(0)&;(0), ;(0)], there are Ck so that for 0�u�{ and + small

} �k

�(u, {, !ss , +)k (zss(u, {, !ss)&z�
ss (u, !ss)) }�Ck e_ ss(u&{)

} �k

�(u, {, !ss , +)k (zs(u, {, !ss)&z�
s (u, !ss)) }�Ck e_ s(u&{)
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Proof of Lemma B4. We first show that

} �
�{

zss(u, {, !ss) }�Ce_ ss(u&{) (16)

} �
�{

zs(u, {, !ss) }�Ce_ s(u&{) (17)

for some C. From this it follows that z�
ss (u, !ss)=lim{ � � zss(u, {, !ss) and

z�
s (u, !ss)=lim{ � � zs(u, {, !ss) exist and that

|zss(u, {, !ss)&z�
ss (u, !ss)|�Ce&_ ss({&u)

|zs(u, {, !ss)&z�
s (u, !ss)|�Ce&_ s({&u)

As in the proof of Lemma B3, we simplify the notation and write, for
example, zss(t) for zss(t, {, !ss). We have

zss(u)=e(2;&:)({&u)!ss+|
{&u

0
e(2;&:)({&u)e:sF ss(x(s)) ds (18)

zs(u)=1+|
{&u

0
e;sF s(x(s)) ds (19)

One computes that

�
�{

zss(u)=(2;&:) e(2;&:)({&u)!ss+e2;({&u)Fss(x({&u))

+|
{&u

0
(2;&:) e(2;&:)({&u)e:sFss(x(s)) ds

+|
{&u

0
e(2;&:)({&u) e:s �

�{
Fss(x(s)) ds (20)

�
�{

zs(u)=e;({&u)F s(x({&u))+|
{&u

0
e;s �

�{
F s(x(s)) ds. (21)

Lemma B1 (with (11)) and Lemma B3 yield

|F ss(x(s))|�C0 e&3;s, } �
�{

F ss(x(s)) }�C0e&3;s+(s&{)

|F s(x(s))|�C0 e&2;s, } �
�{

F s(x(s)) }�C0e&2;s+(s&{)
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Direct estimates now prove (16) and (17); compare [Den89b]. Estimates
for derivatives are obtained similarly, by differentiating (18) and (19). g

The above lemmas yield expansions,

xss({, {, !ss)=e&2;{(�ss(!ss)+T ss(!ss , {)) (22)

xs({, {, !ss)=e&;{(1+T s(!ss , {)) (23)

Here T ss and T s as well as their derivatives are of order O(e&_ ss{) and
O(e&_s{), respectively, as { � �. From xu(0, {, !ss)=e&{=1 we get {=
&ln xu . Putting this in the expansion formulas (22), (23) for xss({, {, !ss)
and xs({, {, !ss) gives the result of Proposition B2. g

B2. Exponential Expansions for the Orbit Flip

Recall that 7in=[xss=1] and 7out=[xu=1]. Asymptotic expansions
for the local transition map 8loc : 7in � 7out are derived using analogous
techniques as in the previous section. In [HKN97] such expansions are given
for the case 1<;< 1

2 .

Proposition B<. Suppose :&;<1. After a smooth local coordinate
change 8loc : 7in � 7out has the following expression for its components
8loc=(8 ss

loc , 8s
loc):

8ss
loc(xs , xu)=x:

u(,ss
loc(xs)+Rss(xs , xu))+xsx;

u U ss(xs , xu)

8s
loc(xs , xu)=xs x;

u(,s(xs)+U s(xs , xu))+x:
uRs(xs , xu)

The functions ,ss, ,s are smooth, �ss, ,s{0.
Furthermore, Rss, Rs, U ss, U s are smooth for xu>0; for some _>0,

there exist constants Ck+l>0 so that, with i=ss, s

} �k+l

�xk
u �(xs , +) l R i(xs , xu) }�Ck+lx_&k

u

} �k+l

�xk
u �(xs , +) l U i (xs , xu) }�Ck+lx_&k

u

Proof. The proof follows the proof of Proposition B2. We indicate
the necessary steps, leaving details to the reader. Take coordinates as in
Lemma B1 and (12). Consider the orbit (xss , xs , xu)(t, {) with xss(0, {)=1,
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xs(0, {)=!s and xu({, {)=1. Using estimates as in Lemmas B3 and B4, one
first shows that, for some |>0,

xss(t, {)=O(e&(;+|) t)

xs(t, {)=e&;t,(!s)+O(e&(;+|) t)

Similar estimates hold for derivatives. Filling in the transition time
{=&ln xu gives

8ss
loc(xs , xu)=O(x;+|

u ) (24)

8s
loc(xs , xu)=x;

u ,(xs)+O(x;+|
u ) (25)

Sharper estimates can be obtained if !s=0. If !s=0 then the variation
of constants formula yields

xss(t, {)=e&:t+|
t

0
e&:(t&s)F ss(x(s)) ds

xs(t, {)=|
t

0
e&;(t&s)F s(x(s)) ds

where we have written x(s)=(xss , xs , xu)(s, {). We claim that for some
|>0,

xss(t, {)=ce&:t+O(e&(:+|) t) (26)

xs(t, {)=O(e&(:+|) t) (27)

for some smooth function c of + with c{0. Copying the proof of
Lemma B3 one first shows that

xss(t, {)=O(e&:t) (28)

xs(t, {)=O(e&(:+|) t) (29)

and

�
�{

xss(t, {)=O(e&:t+(t&{)) (30)

�
�{

xs(t, {)=O(e&(:+|) t+(t&{)) (31)
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with similar estimates for higher-order derivatives. Here one uses Lemma B1
and (12). In order to obtain the expansion (that is, to determine the leading
term) for xss , define

zss(u, {)=e:({&u)xss({&u, {)

One can show that

zss(u, {)=z�
ss (u)+O(e_(u&{)) (32)

for a smooth function z�
ss and some _>0 (with similar estimates for

derivatives). Indeed, following the reasoning in the proof of Lemma B4,
one computes

�
�{

zss(u, {)=|
{&u

0
e:s �

�{
F ss(x(s)) ds+e:({&u)F ss(x({&u))

Using estimates

|F ss(x(s))|�Ce&2:s

} �
�{

F ss(x(s)) }�Ce&2:s+(s&{)

which follow from (28), (29), (30), (31) and Lemma B1, one sees that

} �
�{

zss(u, {) }�Ce_(u&{)

for some C>0, _>0. The remainder of the proof of (32) and, hence, (26)
goes as in the proof of Lemma B4. With {=&ln xu , one gets from (26)

8ss
loc(0, xu)=cx:

u+O(x:+|
u ) (33)

8s
loc(0, xu)=O(x:+|

u ) (34)

Here c is a smooth nonvanishing function of +.
Combining (24), (25), (33) and (34) implies the result. g
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