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On the computation of invariant manifolds of fixed points 

By A. J. Homburg*, H. M. Osinga** and G. Vegter, Dept of Mathematics 
and Computing Science, P.O. Box 800, 9700 AV Groningen, 
The Netherlands (e-mail: gert@cs.rug.nl) 

1. Introduction 

Invariant manifolds play an important role in the qualitative analysis of 
dynamical systems. For classes of simple systems basins of attraction of 
periodic orbits are separated by stable or unstable manifolds. If a system 
depends on parameters it may exhibit non-local bifurcations due to a 
change in the geometric configuration of its invariant manifolds. Further- 
more, certain forms of chaotic dynamics occur if a dynamical system has a 
homoclinic tangle, i.e. an intersection between the stable and unstable 
manifold of a periodic orbit. Detecting this kind of chaos therefore requires 
a rather precise knowledge of the invariant manifolds. 

One of the first proofs of the invariant manifold theorem for hyperbolic 
periodic orbits (see Section 2 for terminology) was given by Perron, see [12], 
using a method related to variation of constants. An even earlier method by 
Hadamard, based on the graph transform, is of a more geometric flavor, see 
[4]. These methods and their generalizations, see e.g. [5, 13, 14, 15], are 
constructive, although usually far from being algorithmic. In these ap- 
proaches an invariant manifold is obtained as a fixed point of an operator 
defined on a suitably defined metric space, whose elements represent (local) 
subspaces of Nd. Hyperbolicity of the orbit guarantees that this operator is 
a contraction. A numerical method based on the graph transform is 
described in [7]. The variation of constants method is implemented in [16]. 
In [8] a shooting method is used to compute invariant manifolds of 
codimension one. 

In this paper we derive a numerical algorithm for the computation of 
invariant manifolds of hyperbolic periodic orbits of diffeomorphisms using 
invariant foliations, a geometric tool for the qualitative study of dynamical 
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systems, see e.g. [5, 9, 10]. This approach has some features in common with 
both the graph transform and the method of  variation of  constants. A simple 
version of  the algorithm, based on linear foliations, is presented in Section 
2. In Section 3 we present a geometric derivation of the algorithm. We also 

show how the class of  foliations can be slightly enlarged in order to make 
the algorithm very efficient. In Section 4 we discuss numerical issues, and we 
also give some examples. In Section 5 we generalize the algorithm, so that 
it also computes strong stable and unstable manifolds of  pseudohyperbolic 
periodic orbits. Section 6 contains the proof  of  the correctness of  our method. 

2. Preliminaries and main result 

First we introduce some terminology and basic properties of  invariant 
manifolds and invariant foliations. For  an in-depth treatment and more 
background material we refer to [9]. 

We mainly study discrete dynamical systems, viz diffeomorphisms, on a 
finite dimensional manifold in the neighborhood of  a fixed point. Our 
method can easily be extended to continuous systems, see Section 4. 

Since our study is local we consider a diffeomorphism f :  Ra__, Nd with 
fixed point 0 e Rd. We say that 0 ~ Nd is a hyperbolic fixed point if no 
eigenvalue of  L , = D f ( O )  has modulus 1. In this case there is a linear 
L-invariant decomposition Nd= ES@ E u, such that the eigenvalues of  L s := 
L I E  s are inside the unit circle in the complex plane and the eigenvalues of 
L" := L ] E ~ are outside the unit circle. The stable and unstable manifold of the 
map f at 0 are the sets W" and W" of points tending to 0 under forward and 
backward iteration, respectively. In other words, x ~ W s iff l im,~ oof f (x )  = O, 
and x e W" iff lim~ ~ ~ f - " ( x )  = 0. We use the equivalent definition of W s and 
W" as the set of  points near 0 whose forward and backward orbits lie near 
0. Note that E s and E u are the stable and unstable manifolds of  L. According 
to the invariant mani fold  theorem for hyperbolic fixed points W ~ and W u are 
immersed submanifolds of  [R d whose tangent spaces at 0 are E s and E ", 
respectively. If the map is C k, 1 < k -< oo, these manifolds are C k as well. 

For  p ~ Nd let d~)~ and Np be the linear manifolds through p, parallel to 
E" and E ~, respectively. A first, very simple, version of  our algorithm takes 
as input a point p near 0, and computes the forward orbit of  the point 
~0(p),=o~ ~ W'. The latter orbit is computed as the fixed point of  a 
contractive operator, defined on the space Zp of bounded sequences of  points 
near 0 e Nd, whose initial point lies on gp. More precisely, this operator T 
maps a sequence {x~}~>_o e Zp onto the sequence {x'}~>_o ~ Y.p, defined by: 

f [ P , f - l ( x ~ +  1)], if n = 0, 
x'~ = <  .([f(x~_l),f_l(X~+l)] ' i f n  > 0 ,  
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Figure 1 
A pair of stable and unstable foliations. 
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Figure 2 
The contraction T. 

where [y, z] denotes the point  N~ ~N~, for y, z near 0 c R d. The initial 
sequence to which T is applied may  be any bounded  sequence {x~ }n _> o, such 
that  gp = E " .  An obvious choice is therefore the sequence defined by 

0 
u s n ' Xo=gp~E, a n d x ~ = L ( x ~ _ l )  (=L (x0 ) ) , l fn  > 1. 

The geometric background  is illustrated in Fig. 2, for a more  general 
situation. (If  we replace the symbols Y with g the figure also applies to the 
case we just  described.) 
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In case f i s  linear, i.e. f =  L, the iterates produced by the algorithm can 
be described explicitly. In this trivial case one can easily verify that the 
successive iterates converge to the orbit of the point ~0(p) on E ~ ( =  WS). 

It is easy to check that the orbit of ~0(p) is a fixed point of the operator 
T. To show that this fixed point is unique, we endow Zp with the sup-norm, 
and prove that T is a contraction. In other words: 

Main result (special case). The operator T: Ep ~ Zp is a contraction. Its 
fixed point is the orbit of q~(p) = gp m Wq 

The contractive factor of T can be determined explicitly, see Theorem 3, 
the general version of the main result. It turns out that convergence of the 
algorithm does not require 8p and gp to be exactly parallel to the spaces E ~ 
and E". Exploiting this fact leads to a slightly different contraction, and 
hence to a slightly different version of the algorithm, that is computationally 
more flexible. In the next section we make these ideas more precise. 

3. Geometric derivation of an algorithm 

We state the algorithm in terms of a pair of invariant foliations 
(~,~s, ~,~u), defined on a neighborhood of the fixed point. The invariant 
manifolds W s and W u are special leaves of  ff~ and ~-", respectively. 
Invariance of o ~ s  boils down to f ( ~ ) =  ~ p ) ,  locally near 0. Here ~ s  
denotes the leaf of ff~ through p, see Fig. 1. These foliations are not unique, 
but any pair (ffs, o~-) off- invariant  foliations is near the pair of L-invari- 
ant linear foliations (gs, ~ ) .  Furthermore each leaf of o ~  and o~" is as 
smooth as f,  but in general the foliations themselves are only continuous. 
We refer to [10], appendix 1, for an overview of these, and related, 
properties of invariant foliations. 

For a point p" near 0 the algorithm computes the point q~(p), the point 
of intersection of ~ u  and IV '=  o%'. If we run the algorithm for sufficiently 
many points near 0, e.g. some large subset of E ~, we obtain an approxima- 
tion of the stable manifold. A similar method can be used to compute an 
approximation of the unstable invariant manifold. 

A first version of  the algorithm is obtained by replacing the foliations g~ 
and g"  by ~ and ~ "  in the definition of the operator T, introduced in 
Section 2. However, there is a catch here: invariant foliations are hard to 
use computationally; leaves near the invariant manifolds are as complex as 
the invariant manifolds themselves. Even the representation of a single leaf 
in general will require complex data structures, leading to an unacceptable 
amount  of storage and long computing times. Therefore this version of the 
algorithm, although simple in theory, is totally impractical. Fortunately, the 
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constraint  on the foliations to be f - invar iant  can be relaxed. It is sufficient 
to use a pair of foliations that  is near an f - invar iant  pair of foliations, like 
the pair of  L-invariant  foliations (d ~ g"), or any other pair that  is compu-  
tationally very convenient.  This idea leads to the final version of  the 
algorithm, presented in Section 3.2. 

3.1. A first version of  the algorithm 

As we have seen in Section 2, we consider the space ~2p of  sequences of  
points near 0, starting on ~p". To turn this space into a complete metric 
space we introduce a no rm []. ]1 on ~ ,  such that  2~..=]]L']] < 1 and 
2 2 '  .'= ]](L u) 111 < 1. The metric d on Rd is defined by 

d(x, y)..= max( l i f t s (x) -  rc,(y)H , liszt(x)- rc,(y) II), 

where rc~ and re, are the canonical  projections R d ~  E ~ and R d ~  E u, respec- 
tively. Note  that  both  the norm ]]-][ and the metric d depend on the 
operator  L, a l though our nota t ion  does not  make  this explicit. Zp is a 
complete metric space with respect to the metric a, defined by a(x, y) = 
sup,>od(x,,yn), for x = {xn}~_>0, y =  {y~},>_0 e 2p. 

The definition of  the contractive operator  T arises f rom simple geomet- 
ric observations. Recall that  we want  to compute  an orbit in the stable 
manifold,  which is a special element of the space Ep. Therefore we impose 
the following condit ions on the T-image x ' =  {x~}~0  of a sequence 

1. Leaves on Y~, th rough points of  x ' ,  are closer to W ~ than leaves of 
J ~ ,  th rough points of x. 

2. The family of  leaves ~ 2 ,  n >- 0, is f - invariant .  

Let e > 0 be such that  maX(2s, 2 ,  ~) + e < 1. Defining the distance between 
two leaves of  g "  ( ~ )  to be the distance between their points of intersection 
with W' (W"), we see that  the canonical action o f f  on the space of  leaves 
of  Y "  is a contraction,  with contractive factor 2~ + e, provided we consider 
leaves on a ne ighborhood  of 0 (whose size depends on e). Similarly the 
action o f f -  1 on the space of  leaves of  5 ~ is a contract ion,  with contractive 
factor 22  ~ + e .  Therefore the leaf ~/-l(x~+~) is closer to W ~ = ~ "  than 
~,~+ 1" Hence we take x~, on the leaf ~-Fs_~(~, + ~), thus satisfying condi t ion 1. 
Condi t ion  2 amounts  to x~, e ~ ' ~  ~), for n > 0. This discussion leads to the 
definition T(x) .-= {x;,}, > o, where 

, = ~[p,f-~(x~)], if n = 0, 
x ,  ([ f (x '~_l) , f - l (x ,+~)] ,  i f n  > 0, (T1) 

where [y, z] denotes the point  ~ n  ~s ,  for y, z near 0 e [R d. Also see Fig. 
2. Note  that  we suppress the dependence of T on p and (~,~, ~-u) in our  
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notation.  This way we achieve that  the family of leaves o~ ' ,  n > 0, is 
f - invar iant ,  in the sense that  f(o~"~ = ~ In particular ~ ."  - f -  ~(~*x0)~ = a ~  x/~ i x/~ + 1 " x n  

~'~"(~o, so, after the first i teration, we have ~ '  = ~ " .  It is easy to see that  
the forward orbit  of  the point  ~o(p) = ~p~n W" is a fixed point  of  T. Using 
the fact that  the f -ac t ion  on the space of  leaves of  g ~  and the f -~ -ac t ion  on 
the space of  leaves of  Y~ are contractions,  we see that  T is a contraction, 
with contractive factor ~c..=max(2~, 2~ -~) + e. Hence the forward orbit of  
q)(p) is the unique fixed point  of  T. After n iterations the distance between 
the current  sequence and this fixed poin t is at most  a ~g-fraction of  the 
distance of  the input  sequence and the fixed point.  

3.2. An efficient algorithm 

We now relax the constraint  that  the foliations used in the definition of 
T are f- invariant .  In this way we obtain a contract ion that  is still defined by 
(T~), but  whose implementa t ion  is simpler since we can choose foliations 
that  are computationally more convenient than invariant foliations. This 
larger flexibility is paid for by the technical constraint  that  our  foliations are 
of  class C ~, cf. Section 6. 

Definition 1. For  7 > 0 the unstable cone through a point  x near 0 is the 
subset C~(7) of  a ne ighborhood  of  0 defined by 

y ~ C~(7) iff Nn~(x) - n,(y)tl < 7 IIn,(x) - nu(Y)ll. 

Similarly the stable cone through x is defined by 

y E C~(7) iff Ilnu(X) - nu(y) 1[ -< 7 ]Ins(x) -  s(Y) [I. 

The families of  cones {C~(7)} and {C~(7)}, where x ranges over a 
ne ighborhood  of  0, are called a stable and unstable cone-field, respectively. 
For  7 < 1 the unstable cone-field is f - invar iant  in the sense that  f(C~(7)) c 
C~(x)(7), provided we restrict to some small ne ighborhood of  0, cf. [2], and 
Lemma  9. Similarly the stable cone-field is f - M n v a r i a n t .  

Definition 2. Let ~, > 0 and let U be a ne ighborhood  of the fixed point  
0 in Nd. A pair of  Cl-foliations ( ~ ,  y u )  is called 7-skew on U, if for x ~ U 
we have ~ c ~  U c C~(7) and ~,~xU c~ U c C~(7). 

A computat ional ly  convenient  pair of  7-skew foliations is (N', g"), 
whose representation in a computa t ion  does not  require complex data  
structures, also see Secton 4. In the first version of  the algorithm, viz the 
successive application of  the contract ion T, we can replace the pair of  
f - invar ian t  foliations with a pair of 7-skew foliations. To state the main 
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result we consider a neighborhood U of 0, and a pair (~-', ~-") of v-skew 
foliations. Let 

~c(7, U):=(1 - 7 )  ~((1 + v)(max(2~, 2~ -1) + e) + 27C) < t, (1) 

where ~ : = L i p ( ( f -  L) I U) and C = max(Lip(ft  U), Lip(f-~t  U)). Note 
that ~(V, U) < 1 if the number ~ and the neighborhood U are sufficiently 
small. The main result can now be stated more precisely as follows. 

Theorem 3. Let 0 < V < 1, and let U be a neighborhood of the fixed 
point 0, such that to(V, U) < 1. Then for a pair ( g ' ,  ~ ~) of "/-skew foliations 
on U and a point p e U the operator T: Zp -~ 2p, defined by (T 0 above, is 
a contraction with contractive factor ~c(7, U). The unique fixed point of T is 
the orbit of W ' ~ " .  

Using e.g. the pair of linear foliations (gs, g,) ,  we obtain an eff• 
algorithm, that is easy to implement. This will be discussed in the next 
section. A proof of Theorem 3 is given in the appendix. 

4. Implementation and numerical aspects 

Numerical parameters 

To obtain an efficient implementation of the operator T introduced in 
the previous section we use the pair of linear foliations (gs  gu). The 
computation of rc~(p) and ~ (p )  for a point p requires the computation of 
eigenvalues and eigenvectors of the linear part L of f in 0, which can be 
done using standard methods from numerical linear algebra, see e.g. [3, 11]. 

The input to our algorithm is a point p in some small neighborhood of 
the fixed point 0. The initial sequence should consist of a finite number of 
points in some small neighborhood of 0, starting on gp, see also Section 2 
for a suitable choice of this initial sequence. The output consists of the first 
N points of the forward orbit of the projection of p onto the stable 
manifold, along leaves of ~ .  The number N, as well as c~, a positive 
number that is the maximal error between the computed sequence and the 
actual orbit, are also part of the input. 

in view of (T~) the image x'  of a finite sequence x = {Xn}o~<~o of 
length no under the operator T is a finite sequence x ' =  {x~,}o_<~<,0-1 of 
length n o -  1, defined by 

x•= ~[f(x,_O,f_l(xn+l)]  ' i f 0 < n < n 0 - 1 ,  (T2) 
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where [y, z] denotes the point g~ c~ g~ = G(Y) + rG(z), for y, z near 0 e ~d. 
We now determine the minimal number  M of  interations of  T needed to 
guarantee that the error, viz the distance between the computed sequence 
and the fixed point of  T, does not  exceed the a priori error bound 6. A first 
estimate is obtained as follows. If r is the size of  the neighborhood of  0 on 
which the algorithm converges, and ~:0..=max(2s, 221) is taken as an ap- 
proximation of  the contractive factor ~c(7, U) of  the operator T, we see that 
after M iterations the distance of  the current sequence to the fixed point is 
at most ~c~tr. Therefore an estimated upper bound for the number  of  
iterations is 

log(3/r) 
M - - -  (2) 

log Ko 

Hence, if the output sequence is to be of length N, the initial sequence 
should consist of  at least M + N points. Recall that 2s (2u) is the largest 
(smallest) modulus of  the contracting (expanding) eigenvalues of  L. They 
can be computed using standard methods from numerical linear algebra, 
again see [3]. 

We shall see below that this value of  M is a very pessimistic estimate for 
the number  of  iterations that guarantees a certain maximal error bound. A 
better approach is to determine the maximal distance 3o between successive 
sequences in order to achieve the error bound 3. If 4 is the fixed point of  T, 
then 

a(T"x,  4) < ~ ( T  nx, T n+ Ix) + or( Tn+ Ix, 4) 

<- 30 + ~Coe(Tnx, 4). 

Hence 

30 
a ( T  "x, 4) < - -  

- l - K 0 "  

Therefore our iteration may stop as soon as the distance between two 
successive sequences is smaller than fi0-'= (1 -K0)3. This is the approach of  
Example 4 below. The number  of iterations, determined according to the 
latter criterion, turns out to be much smaller than the upper bound M given 
above. The latter number  is used to determine the length of  the initial 
sequence. These observations are applied in the next two examples. 

Pelformance o f  the algorithm 

Example 4. We consider the map f :  ~3 ~ ~3 defined by f = @ o L o �9 1, 
where L is the linear map defined by L(x,  y, z) = (2xx, 2yy, 2zZ), and �9 is 
defined by O(x, y, z) = (x, y, z - ax 2 - by2). We consider various cases in 
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Computed orbit Exact orbit 

- 1.2000 I4 -- 1.200000 
- 0.700011 -- 0.700000 
-0.392929 -0.392920 
-0.206861 -0.206854 

Figure 3 --0.096254 -0.096248 
Comparing a computed orbit in the stable manifold 0.032332 -0.032327 
with the exact orbit. Parameter values: 0.003016 0.003020 
p = ( 2 ,  i , 0 ) ~ E  "~, 2x=0 .8  , )~=0 .9 ,  2~=1.2, a =  0.021135 0.021138 
0.4, b = -0 .4 .  The error bound 6 is equal to 10 -4. 0.029082 0.029084 
Hence M = 87, whereas the actual number of itera- 0.031212 0.031214 
tions turns out to be 26. 

which 0 < 2~, 2y < 1 and 2z > 1, so E" is the (x,y)-plane,  and E ~ is the 
z-axis. Furthermore,  W S = q ~ ( E ' x  {0}) is the graph of  the function 
(x ,  y )  ~ z = a x  2 -  b y  2. Therefore we can compare the numerical results of  
our algorithm with the e x a c t  values. In Fig. 3 we compare the output of  our 
algorithm for the initial point p = ( 2 ,  1,0) with the exact orbit of  
z0 = d~ c~ W ~, viz z0 = (2, 1, - 1.2). In this special example corresponding 
points in the computed and exact sequences have the same x- and y-coordi-  
nates, so we merely need to compare their z-coordinates. The contractive 
factor is approximately 0.9. After 26 iterations the estimated error between 
two successive sequences is less than (1 - 0 . 9 ) 1 0  -4, SO the distance between 
the computed sequence and the fixed point is smaller than 10 -4. The a priori 
upper bound on the number of iterations is M = 87, see (2). As said before, 
the latter value of M is used to determine the length of  the initial sequence 
of points. 

Running the algorithm for several contractive factors reveals that the 
actual number of iterations is much smaller than the theoretical upper 
bound M. For  ~c0 = 0.95 and ~c0 = 0.99 we have M = 180 and M = 916, 
respectively. The actual number of  iterations in these cases is 36 and 57, 
respectively; In Fig. 4 we consider various values of ,~ and )~-1, and 
compare the predicted rate of convergence, viz to0 = max()~,, ),21), and the 
actual rate of  convergence, viz 

a ( T  n+ ~x, rnx)  

ao := cr(Tnx ' Tn _ i x  ), 

for large values of  n. Also in this case our estimate turns out to be too 
pessimistic, especially if contractive factors are small. 

Example 5: A Poincar~ map. The algorithm is applied to study the 
Poincar6, or first-return, map of the parametrically forced 2~-periodic 
system 

x + (~2 + pp(t))V'(x)  = o, 
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Figure 4 
Convergence rate in theory (left column) and practice (right column). 

Ko fro 

0.6 0.1439 
0.7 0.248 
0.8 0.2898 
0.9 0.6753 
0.95 0.7521 

where p(t) = cos t and V(x) = �89 2 + �88 4. This is a slightly generalized ver- 
sion of the parametrically forced pendulum, cf. [1]. We consider the central 
2re-periodic solution x = 2 = 0. To this end we study the Poincar~ map of 
the equivalent first order system 

_ (.2 + [3p(t))V'(x) 
1 

defined on the generalized phase space with coordinates (x, y, t ) e  N x 
R x ~/(2rc7/), where y = 2. The Poincar~ map and its inverse are obtained 
by numerical integration of the system during time 2re and -2re, respec- 
tively. The algorithm computes an approximation of the local invariant 
manifolds of the fixed point x = y = 0, for c~ = 0.5 and/~ - 0.2. For these 
values of  the parameters the solution x = y = 0 is a hyperbolic fixed point 
of P, see e.g. [1]. 

The linearized Poincar6 map is used to obtain the tangent vectors at 
0 e ~2 to the stable and unstable manifolds. The lines parallel to these 
vectors serve as leaves for the skew fotiations d ~' and g~, cf. Section 3. These 
local manifolds are extended to global approximations via iteration of the 
Poincar6-map, see Fig. 5. A rigorous proof  of the existence of transversal 
homoclinic intersections of the global invariant manifolds of the fixed point 
is beyond the scope of this paper, although the numerical results provide 
some evidence for this. 

Numerical issues and optimizations 

Computation of  the inverse map. In many cases using the inverse of f 
causes no computational problems, since either an explicit expression for 
f ~(x, + 1) is known, or this value is easily calculated numerically, as e.g. in 
the case where f is a Poincar6-map, associated with a periodic trajectory of 
a vector field, see Example 5. Note that in the latter case the linear part of 
f can be obtained by numerically solving the variational equation along this 
periodic trajectory. Also f and f ~ are obtained by numerical integration, in 
forward or backward direction, respectively. 

in some applications it may be inetficient to compute f ~, or even 
impossible, as in some infinite dimensional contexts. In these cases it is 
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Figure 5 
The invariant manifolds of the fixed point of the Poincar6 map. 

possible to use an alternative definition of the contraction T. Putting 
A,=xn+] - f(xn),  we see that f - ' ( x , + , )  = x,, + Df l(f(xn))A + o([IAII2). 
Approximating the right hand side of the last equality by x~ + 
L L(x,,+~-f(x,,)), we get a slightly different version of the operator 
T by replacing rc,(f-~(x,+D) in (T2), for n_>0, with rc,(x~)+ 

(LU)-lTt~(x~+l-f(xn)). (In fact the approximation used to compute 
f ~(x,+ ~) is just the first step in a modified Newton's method.) 

Continuous systems. The invariant manifold of a hyperbolic singular 
point p of a vector field, viz a system of autonomous ordinary differential 
equations, coincide with the invariant manifolds of the time- 1 map f of this 
system. In this case f(x) and f-~(x) are obtained by forward and backward 
numerical integration during 1 unit of time, starting at the point x. The 
linear part of this map at p is the image of the linear part of the system at 
p under the exponential map, which can be computed using methods from 
numerical linear algebra, see again [3]. 

Region of convergence, Using the expression for the contractive factor 
~c(y, U), see (1), in many cases we can give an estimate of the size of the 
neighborhood of the fixed point on which our algorithm converges. 
Roughly speaking, for fixed 9/, the size of this region is inversely propor- 
tional to the strength of the nonlinear terms. We have performed some 
numerical experiments that support this observation. In practical situations 
our theoretical estimates again turned out to be rather pessimistic, especially 
if the contraction is strong. 
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Robustness. If  the map  f is per turbed slightly, the pair of  foliations used 
in the computa t ion  is still y-skew for the per turbed map.  Therefore our 
method  is persistent. It can also be used in continuation-l ike methods,  e.g. 
to compute  the invariant manifolds of a map  depending on some continu- 
ously changing external parameter .  Again this is a c o m m o n  approach in 
per turbat ion theory. 

5. Pseudohyperbofic fixed points 

The algori thm can be extended to compute  the strong stable and 
unstable manifolds of  pseudohyperbol ic  fixed points. We say that  the fixed 
point  0 ~ ~d is Q-pseudohyperbolic for some ~ > 0, if no eigenvalue of  
L,=Df(O) has modululs  ~. As in the hyperbolic case there is a linear 
L-invariant  decomposi t ion  ~ d =  E1 @E2, such that  the eigenvalues of  
L1 ,= LIE1 are inside the circle in the complex plane with radius Q, and the 
eigenvalues of  L2.'= L IE2 are outside this circle. Note  that  there is a no rm 
on Na such that  21-'= [[Li[[ < ~ ,  and 221:=  H(L2)-I[[ >Q ' .  

If  r < 1 the strong stable manifold W 'S of  the map  f at 0 is the set of  
points p that  are Q-forward asymptot ic  to 0, i.e. lim,,~ ~ r -"d(f"(p),  O) = O. 
This set is a unique, f - invariant ,  C ~ manifold,  whose tangent  space at the 
fixed point  is El,  see [5], Section 5. I f  r = 1, i.e. if 0 is a hyperbolic fixed 
point,  the strong stable manifold is just  the stable manifold as int roduced in 
Section 2. Also here we use the equivalent definition of  W ~ as the set of  
points p near 0 for which r  is uniformly bounded  (see e.g. [5]). 

If  ~-> 1 we similarly have a uniquely determined, f - invariant ,  C ~ 
manifold W u", consisting of  those points that  are locally c-backward 
asymptot ic  to 0. The tangent space of  this strong unstable manifold at the 
fixed point  is E2. 

Remark 6. If  ~ < 1 there is also an f - invar iant  manifold tangent  to E2 at 
the fixed point. It is not  C ~ in general: it is of  class C ~, where r is an integer 
such t h a t f i s  C" and 2122 j < 1 for 1 -<j < r. Fur thermore ,  it is generally not  
unique. This causes algorithmic problems that  lie outside the scope of this 
paper. We are currently developing algori thms to compute  normally hyper- 
bolic invariant manifolds.  The computa t ion  of  an f - invar iant  manifold 
tangent  to E2 falls naturally within this context. 

Hencefor th  we only deal with the case ~o < 1. Let 7el: Nd--*E1 and 
re2: ~d___, E2 be the canonical  projections corresponding to the L-invariant  
splitting Nd= El @ E2. 

The orbit of  a point  in W "~ belongs to the space of  sequences {x.}.>0 
for which ~ "x, is uniformly bounded.  For  p near 0 we consider the space 
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of sequences whose initial points lie on the leaf through p of some suit- 
ably chosen foliation. However, here we are facing the problem that, in 
general, there is no f-invariant foliation whose leaf through 0 is tangent to 
E2. This is related to the fact that, in general, there is no f-invariant 
cone-field whose axes are parallel to E2 (like the unstable cone-field in the 
hyperbolic case). Therefore, we consider a splitting (not necessarily f-  
invariant) Rd= E'~ �9 E~, such that, for some 7 > 0 and points x, y with 
<(x )  = < ( y ) ,  

-  ,(y)11 ? it. 

In this case we say that the foliation ~; .  whose leaves are parallel to E; ,  is 
7-near g2, whose leaves are parallel to Ea. One similarly defines the foliation 
o~{, that is y-near g] .  The pair of foliations (g't, o~;) is completely similar to 
the y-skew foliations, introduced in Section 3. 

For a point p near 0, we introduce the space Zp, consisting of all 
sequences {x,}n ~ 0, whose initial point lies on the same leaf of g ;  as p, such 
that 0--nXn is uniformly bounded. It is not hard to check that s endowed 
with the sup-norm, is a Banach space, cf. Section 3. Let Z~, be the space of 
bounded sequences, whose initial points lie on the same leaf of g~ as p. We 
endow this space with a norm by imposing the condition that the linear map 

/ A:Zp--*Zp, defined by (Ax)~=O ~x,,, for x={xi}i_>0 and n->0, is an 
isometry. Then the operator T': Z; ~ Zp, defined by (T2) in Section 4, is a 
contraction. Equivalently we have: 

Theorem 7. The operator T: Zp ~ Zp, defined by 

T = A o T ' o A  -1, 

is a contraction. Its fixed point is the f-orbit of the point of intersection of 
W s*~ and the leaf of g ;  through p. 

In the appendix, where we prove the main theorem, we also indicate 
how to prove Theorem 7. The algorithm, suggested by Theorem 7, is almost 
identical to the algorithm discussed in Section 4 (also cf. [6] for similar 
ideas). Therefore, we omit further details here. 

6. Appendix: Proof of the main theorem 

We first present some auxiliary results, to be used in the proof of our 
main result. Let (~~, y u )  be a pair of y-skew foliations. Leaves of Y "  are 
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Lemma 8. Let 0 < 7 < 1. Then there is a neighborhood U of  0 such that 
for x, 2, y, 37 e U satisfying ~ "  = ~ " ,  and ~,~" = ~ "  we have 

II~s(~) - ~ X y )  -< 711~+(~) - ~ ( y ) l l  

+ (1 + 7) Iprr~(2) - rc+(37)I I + 27 life.o? ) - rc.(37) I I. 

A similar inequality holds if we interchange u and s. 

Proof. Special case: rc,(x) = ~z,(y) and 7z,(2) = rc,(37). 
Since Y "  is a foliation of  class C ~, its leaves are level sets of  a 

C~-function H: E + x E ' ~  E s. We may assume that H(4, 0) = 4, for ~ e E s, 
provided r is sufficiently near 0. Let (4, 0) and (~-, 0) be the points of  
intersection of  ES• {0} with the leaves ~ "  and ~ " ,  respectively. Then 
H(x) = H(Y) = 4, and H(y)  = H(37) = ~-. Therefore 

-- ( = H(rc,(x), rc,(x)) - HOL ( y), rc,(x)) 

-- DsH(~o, rc~(x))(~c~(x) - ~(y) ) ,  

where the last equality follows from the mean value theorem for some 40 on 
the line segment E + between rc~(x) and rCs(y). Here DsH(~o, rc,(x)) is the 
derivative of  the map H ( . ,  rc~(x)): E ~  Eq Since D+H(~o, 0) is the identity 
map on E +, we have 

1 1 
1 - ~ 7  -< [[DsH(4o, U~(x)) H < 1 + ~ 7 ,  

provided (4o, u~(x)) is near 0. The latter condition holds if x, y, 2 and )7 are 
in some small neighborhood of  0. Under  these conditions we have 

l - ~  _ 

A similar inequality holds if we replace x with Y, and y with f .  Combining 
these inequalities and using the fact that 0 < 7 < 1 we obtain 

II~+(x) - ~Xy)11 -< (1 + 7)I1~+(~) - ~s(2)I1, 

which completes the proof  of  this special case. 
= s  c~ .~-" and + c~ ~ " .  The general case. Let p ~x , .  ~y q = #x Since Y "  is 7-skew 

we have 

tlrc,(P) - ~,~(Y)JJ -< ? PI~.(P) - ~z~(Y) II 

= ~ It-+(x) - ~ . ( y )  II. 
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In view of the first part of  the proof  we have 

H~,(p)- ~s(X)I1 _< (1 + ?)]l~s(q)- ~s(y) [I. 
Using these results we derive: 

II~,(x)- ,~s(y) <-Ll~s(X)- ~s(p)II + II~,(p)- ~,(y) II 
-<(I + y) Ilrc,(q) - zc~(2)I ] + 7 [[~%(x) - ~z~(y)/[ 

<(1 + y) ]Ire,()5) - rcs(2)11 + (1 + 7) ]]~(q) - ~ , ( ; )  1] 

+ ~ II~(x)- ~(y) [I. 

Since 0 < 7 < 1 the result follows. [] 

Lemma 9. Let a > 0. There is a neighborhood U of 0 such that for x, 
y e U w e h a v e :  

H~z~f(x) - rcJ(y)I[ < (2.,. + e) d(x, y), 

l[=~f-'(x) - %f-~(Y)] l  -< (2 -  * + ~) d(x, y). 

Proof. We only prove the first inequality. The proof of the second one 
is similar. 

[[rc,f(x) -- rcJ (y)  [1 _< [[~,L(x - y) + ~z~(f - L)x  - zrs(f - L)y[[ 

<- Hn, L( x - Y)11 + Lip( rcs ( f -  L)) d(x, y) 

<- )~, d(x, y) + e d(x, y). [] 

Remark 10. A n  immediate consequence of this lemma is the f-invari- 
ance of the cone-fields {C~(7)} and {C~(7)}, for 0 < 7 < 1 and x ranging 
over some neighborhood Uy of 0, in the sense described in Section 3.2. More 
precisely, the neighborhood U7 should satisfy L ip ( rc~( f -L)  ] Uy) < re. It is 
not difficult to prove that, for x, y e U~, with y ~ C~(7): 

l]TzJ(x) - rcJ(Y) [I <- V(2~ + e)(22 ~ + ~) [Izc~f(x) -- n-f(Y)/I. 

Therefore f ( y )  ~ Cf(~)(7 ). 

Remark 11. If 0 is a ~-pseudohyperbolic fixed point o f f  it is not hard 
to show that, in the notation of Section 5: 

I[ g l f ( ~ O - l x )  - r q f ( o  ~)Y)I[ -< (2~0 i +e )  d(x ,y ) ,  

[Irc2f ~(Ox) -- rcJ-'(Oy)[[ <- (02s ~ + ~) d(x, y). 
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Proof of the main theorem: Let x = {x.}._>o, y = {Yn}n_>O e Xp be two 
sequences, and let x ' =  {x~}n>o, y ' =  {Y~}.->o c Xp be their images under  T. 
We shall prove inductively that  

d(xm, Ym) <-- K(7, U)a(x, y), (3) 

for m = 0, 1 , . . . .  The p roo f  of  the base case, viz m = 0, is a simple version 
of  the p roo f  for the general case. So assume that  (3) has been proven for 
O < m < n - 1 .  

Since ~ '  = ~'x;--1) and ~-~y~' - - ~ ' y ;  1) we have, in view of  Lemma  8: 

Pl~s(X;)- ~s(y;)II-~ (1 + 7)[l~,f(x2_,)- r c j ( y ; _  ,) ]1 

+ 2y [I rcuf(x; _ 1) - :rr,,,,f(y;_ ~)II 

+ 7 rP~.(x;) - ~u(y;)  II. 

Let C1 be the Lipschitz constant  off  I u, then we get, using Lemma 9: 

H~(x;,) - rc.(y;,)II -< (l  + 7)(2. + ~) d(x'~_ 1, Y'.-1) 

+27C1 d(X;_l, y;_ 1) 

+ 7 J[~u(xs - ~.(Y;)  I]. 

Using the induct ion hypothesis  we get: 

]lrrs(x'n) - ~zs(y~,)II < (( 1 + 7)(2, + e) + 27 Ci)a(x, y) 

+ ~ lib.(x;) - ~ ( y ; )  II. (4) 

Arguing similarly we get, using ~'~2 = o~" l(x, + 1) and ~ 2  = ~.sl(y,, + 1): 

lib.(x;) - ~.(y;~ II - ((* + 7)(~= 1 + ~) + 27C2)a(x,Y) 

+ 7 II ~Xx;) - ~.(y;)  II, (5) 

where C2 is the Lipschitz constant  of  f l[ U. Since C = max(C1, C2), we 
conclude that  

d(x;, y'~) <- (l  - 7 ) -  1(( 1 + v)(max(2,, 2/-l) + e) + 27C)a(x, y). 

To see this, we use (4) if I I ~ ( x ; ) -  ~+(y;)ll -< I I~Xx;) -  ~,(y;)II, and (5) 
otherwise. This completes the p roo f  of  our  main  result. [] 
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Abstract 

We present a method for the numerical computation of invariant manifolds of hyperbolic and 
pseudohyperbolic fixed points of diffeomorphisms. The derivation of this algorithm is based on 
well-known properties of (almost) invariant foliations. Numerical results illustrate the performance of 
our method. 
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