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1 Introduction

A large proportion of work on the topic of stochastic or random dynamics has fo-
cused on noise that is unbounded and, in particular, normally distributed. With such
noise, the entire phase space is accessible (i.e. from any initial point any neighbor-
hood may be reached with nonzero probability) and it follows that if the system
has a stationary measure then it is unique and its support is the whole phase space.
Typically, the density function for the stationary measure varies continuously with
any parameter of the system. In light of these facts, Zeeman proposed that a bi-
furcation in a stochastic system be defined as a change in character of the density
function as a parameter is varied [42, 43]. Such bifurcations have come to be known
as phenomenological, or P-bifurcations. Arnold in his extensive work on Random
Dynamical Systems (RDS) proposed two more definitions, namely abstract bifurca-
tion when (local) topological conjugacy changes and dynamical bifurcation which
is typically evidenced by a change of sign in one of the Lyapunov exponents of the
dynamical system (see for example [3, 4, 20]). Many studies, starting with the work
of I. Prigogine and his followers (see [28]), have addressed issues of bifurcations
in stochastic systems from these perspectives, referring to one or the other of these
bifurcations, nearly all in systems with unbounded noise (e.g. [34, 40]).
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Being dominated by the study of dynamical systems perturbed by Gaussian or
other unbounded noises, much of the applied and mathematical literature on stochas-
tic bifurcations has focused on the study of Langevin systems:

ẋ = A(x)+B(x)ξt

where the dependence on the noise is linear. Bounded noise in contrast may be much
more general, but is less understood. In recent years the effects of bounded noise
has received increasing attention for dynamical systems generated by both maps
and differential equations. One type of bounded noise that has been of interest is
Dichotomous Markov Noise (see the review article [11]). This type of noise is often
accessible to analysis and arises naturally in various applications (e.g. [21, 37]).

In these pages we review aspects of dynamics and bifurcations in another type of
bounded noise system, namely, random differential equations (RDEs) with bounded
noise. We will consider random differential equations of the form

ẋ = fλ (x,ξt), (1)

depending on both a deterministic parameter λ and noise with realizations ξt that
take values from some bounded ball in Rn. The state x will belong to a compact,
connected, smooth d dimensional manifold M.

A class of examples fitting into our context is constituted by certain degenerate
Markov diffusion systems [6, 30] of the form

dx = X0(x)dt +
m

∑
i=1

fi(η)Xi(x)dt,

dη = Y0(η)dt +
l

∑
j=1

Yj(η)◦dWj,

given by differential equations for the state space variable x, driven by a stochastic
process η defined by a Stratonovich stochastic differential equation on a bounded
manifold, see e.g. [31]. Another example is by random switching between solution
curves of a finite number of ordinary differential equations [9], a generalization
of dichotomous Markov noise. Under some conditions such noise is sufficiently
rich to fit into the framework of this paper. Reference [15] also discusses some
constructions of stochastic processes with bounded noise.

We will discuss the fact that under mild conditions on the noise, the RDEs ad-
mits a finite number of stationary measures with absolutely continuous densities.
The stationary measures provide the eventual distributions of typical trajectories.
Their supports are the regions accessible to typical trajectories in the long run. It is
important to note that in the case of bounded noise, there may exist more than one
stationary measure.

It was observed that under parameter variation, stationary measures of RDEs can
experience dramatic changes, such as a change in the number of stationary measures
or a discontinuous change in one of their supports. The RDEs we consider possess a
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finite number of absolutely continuous stationary measures. The stationary measures
therefore have probability density functions. We distinguish the following changes
in the density functions:

1. the density function of a stationary measure might change discontinuously (in-
cluding the possibility that a stationary measure ceases to exist), or

2. the support of the density function of a stationary measure might change discon-
tinuously.

A discontinuous change in the density function is with respect to the L1 norm topol-
ogy. A discontinuous change of the support of a stationary measure is with respect
to the Hausdorff metric topology. It is appropriate to call such changes “hard” in
reference to hard loss of stability in ordinary differential equations. In [8] a loss of
stability of an invariant set is called hard if it involves a discontinuous change, in
the Hausdorff topology, of the attractor. There is an obvious analogy with discon-
tinuous changes in (supports of) density functions. The examples studied later show
how adding a small amount of noise to a family of ordinary differential equations
unfolding a bifurcation can lead to a hard bifurcation of density functions. We note
that these hard bifurcations may not be captured by Arnold’s notion of dynamical
bifurcation.

Hard bifurcations are related to almost or near invariance in random dynamical
systems, and the resulting effect of metastability. This phenomenon found renewed
interest in [13, 14, 39]. In the context of control theory near invariance was studied
in [16, 24] for RDEs and [17] for random diffeomorphisms. One approach, taken in
[17, 44], to study near invariance is through bifurcation theory. It is then important
to describe mechanisms that result in hard bifurcations.

The following sections will contain an overview of the theory of RDEs, in partic-
ular their bifurcations, along the lines of [12, 26, 27]. We do not touch on the similar
theory for iterated random maps. Here are some pointers to the literature developing
the parallel theory for randomly perturbed iterated maps. A description in terms of
finitely many stationary measures can be found in [2, 44]. Aspects of bifurcation
theory are considered in [33, 44, 45], see [25] for an application in climate dynam-
ics. References [17, 23, 38, 44] consider quantitative aspects of bifurcations related
to metastability and escape, we do not address such issues here.

2 Random differential equations

In this section we describe the precise setup of the random differential equations
discussed in this chapter. Let M be a compact, connected, smooth d dimensional
manifold and consider a smooth RDE

ẋ = f (x,ξt) (2)

on M. The time-dependent perturbation ξ that will represent noise may be con-
structed in a number of ways. We consider ξ belonging to the space U =L∞(R,Bn(ε))
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of bounded functions with values in the closure Bn(ε) of the ε ball in Rn. Give U the
weak* topology, which makes it compact and metrizable (see [19, Lemma 4.2.1]).
The flow defined by the shift:

θ : R×U →U , θ
t(ξ (·)) = ξ (·+ t),

is then a continuous dynamical system (see [19, Lemma 4.2.4]). Further, θ t is a
homeomorphism of U and θ t is topologically mixing [19]. We refer to any random
perturbation of this form as noise of level ε .

Since ξ ∈U is measurable, and f is smooth and bounded, the differential equa-
tion (2) has unique, global solutions Φ t(x,ξ ) in the sense of Caratheodory, i.e.:

Φ
t(x,ξ ) = x+

∫ t

0
f (Φ s(x,ξ ),ξs)ds,

for any ξ ∈ U and all initial conditions x in M, and the solutions are absolutely
continuous in t. Furthermore, solutions depend continuously on ξ in the space U .
By the assumptions, Φ t(·,ξ ) : M → M is a diffeomorphism for any ξ , and t ≥ 0.
Further, if ξ is continuous then Φ t is a classical solution. We also consider the
skew-product flow on U ×M given by St ≡ θ t ×Φ t .

We will suppose the following condition on the noise:

(H1) There exist δ1 > 0 and t1 > 0 such that

Φ
t(x,U )⊃ B(Φ t(x,0),δ1) ∀t > t1,x ∈M.

The assumption (H1) can be interpreted as guaranteeing that the perturbations are
sufficiently robust.

We call a set C ⊂M a forward invariant set if

Φ
t(C,U )⊂C (3)

for all t ∈ R+. There is a partial ordering on the collection of forward invariant
sets by inclusion, i.e. C′ �C if C′ ⊂C. We call C a minimal forward invariant set,
abbreviated MFI set, if it is minimal with respect to the partial ordering �.

Theorem 1 ([26]). Let (2) be a random differential equation with ε-level noise
whose flow satisfies (H1) on a compact manifold M. Then there are a finite num-
ber of MFI sets E1, . . . ,Ek on M. Each MFI set is open and connected. The closures
of different MFI sets are disjoint.

We note that the concept of MFI set is the same as the concept of invariant control
sets used in control theory [18, 19]. Up to this point the discussion is topological:
MFI sets can be studied without assumptions about the noise realizations and can
in particular be studied for differential inclusions [1, 33]. In deterministic systems,
forward invariant sets are commonly called trapping regions and attractors are anal-
ogous to MFI sets. We will see later in the case of small noise, this relationship is
more than analogy.
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We continue with a discussion of stationary measures. For this we assume con-
ditions on the distribution of transition probabilities. We suppose that U has a θ t -
invariant probability measure P. Consider the evaluation operator π t : U → Bn(ε)
given by π t(ξ ) = ξt . Also consider the measure

ρ = π
t
∗P

on Bn(ε). Since P is θ t invariant, it follows easily that ρ is independent of t. We call
ρ the distribution of the noise. Let x be a point in M. We define the push-forward
of P from U to M via Φ t as the probability which acts on continuous functions
ψ : M→ R by integration as:

(Φ t(x)∗P)ψ =
∫

U
ψ
(
Φ

t(x,ξ )
)

dP(ξ ).

The topological support of P may for instance be the continuous functions
C(R,Bn(ε)), the cadlag functions (see [3]), or even as in [29] the closure of the
set of shifts of a specific function ξ . We will assume that θ t is ergodic w.r.t. P.
Rather than U one may consider instead the topological support of P in U .

(H2) There exists t2 > 0 so that Φ t(x)∗P is absolutely continuous w.r.t. a
Riemannian measure m on M for all t > t2 and all x ∈M.

Assumption (H2) requires that the noise not have “spikes”. We remark that (H1)
and (H2) may be replaced by conditions on the vector field and the noise.

A probability µ on M is said to be stationary if P×µ is St invariant, i.e. for any
Borel set A⊂U ×M:

P×µ(St(A)) = P×µ(A) (4)

for all t ∈ R+. We say that a stationary measure µ is ergodic if P×µ is ergodic for
the skew product flow St . Birkhoff’s ergodic theorem then ensures that:

lim
T→∞

1
T

∫ T

0
Ψ(St(x,ξ ))dt =

∫
M×U

Ψ d(P×µ)

for P× µ almost every (ξ ,x) and for every Ψ ∈ C0(U ×M,R). In particular, if
µ is ergodic, setting Ψ = ψ ◦πM for ψ ∈ C0(M,R) and the coordinate projection
πM : M×U →M, we obtain:

lim
T→∞

1
T

∫ T

0
ψ(Φ t(x,ξ ))dt =

∫
U

ψ dµ (5)

for P×µ-a.e. (ξ ,x) ∈U ×M.
We say that a point x∈M is µ-generic if (5) holds for every ψ ∈C0(M,R) and for

P-a.e. ξ ∈U . The set of generic points of a stationary ergodic measure µ is called
the ergodic basin of µ and will be denoted E(µ). An ergodic stationary probability
measure whose basin has positive volume, m(E(µ)) > 0, will be called a physical
measure.



6 Ale Jan Homburg, Todd R. Young and Masoumeh Gharaei

Theorem 2 ([22],[26]). Let (2) be a random differential equation with ε-level noise
whose flow satisfies (H1) and (H2) on a compact manifold M. Then there are a finite
number of physical, absolutely continuous invariant probability measures µ1, . . . ,µk
on M. Each µi is supported on the closure of a minimal forward invariant set Ei.
Further, given any x ∈M and almost any ξ ∈U , there exists t∗ = t∗(x,ξ ), such that
Φ t(x,ξ ) ∈ Ei for some i and all t > t∗.

We end this general introduction with a simple but important example of how
MFI sets may occur. Suppose that the random differential equation (2) is a small
perturbation of a deterministic system. In this case, attractors generally become min-
imal forward invariant sets. Consider a random differential equation:

ẋ = f (x,εξt) (6)

where ε is a small parameter. For ε = 0 the system is deterministic.

Definition 1. A set A is called an attractor for (6) with ε = 0 if it is:

A1 Invariant and compact
A2 There is a neighborhood U of A such that for all x ∈U , Φ t(x,0) ∈U for all t ≥ 0

and Φ t(x,0)→ A as t→ ∞.
A3 (a) There is some x ∈U such that A is the ω limit set of x, or, (b) A contains a

point with a dense orbit, or, (c) A is chain transitive.

If A satisfies A1 and A2 only, it is said to be asymptotically attracting or an attract-
ing set. We call U a trapping region.

Theorem 3. Suppose that (6) satisfies (H1), (H2) and that for ε = 0 it has an attrac-
tor A. Then for ε sufficiently small, (6) has a MFI set that is a small neighborhood
of A. Suppose that U is a trapping region for A, then given ε small enough, this MFI
set is unique in U.

Proof. Since A is asymptotically stable for ε = 0, there exists a smooth Lyapunov
function in a neighborhood of A, this Lyapunov function is strictly decreasing along
solutions outside of A and these level sets enclose trapping regions [36]. Thus given
any δ > 0 there is a trapping region, which we denote by Uδ whose boundary is the
δ level set of the Lyapunov function. For a fixed δ it follows that for ε small the
Lyapunov function is decreasing along solutions at the boundary of Uδ . Thus Uδ is
a forward invariant set for (2) for any ε sufficiently small. Thus Uδ must contain at
least one minimal forward invariant set. Now consider any point x ∈Uδ . It follows
easily that the set of all possible orbits of x, i.e.

O+(x) = ∪t≥0Φ
t(x,U )⊂Uδ (7)

is forward invariant [26]. Since A is asymptotically stable and x is inside its basin
(for ε = 0) it follows from (H1) that O+(x) intersects A. Since A is an attractor,
any of the conditions A3 (a), (b), or (c) with (H1) implies that A ⊂ O+(x). Since
a forward invariant set must contain the forward orbits of all of its points, every
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forward invariant set in Uδ contains A. Therefore, there is only one MFI set in Uδ

and it contains A.
Now consider a trapping region U ⊃ A. Suppose that δ is small enough that

Uδ ⊂U and ε1 is small enough that the previous conclusion holds for Uδ . Note that
K = U \Uδ is compact and that the Lyapunov function is strictly decreasing on it.
Thus there exists ε2 such the Lyapunov function is also decreasing for the perturbed
flow on K for ε ≤ ε2. Thus there can be no forward invariant set in K for any ε less
than the minimum of ε1 and ε2 and the conclusion holds. ut

Corollary 1. If x0 is an asymptotically stable equilibrium for ε = 0, then for all
sufficiently small ε > 0 the system has a small MFI set that contains x0. If Γ is an
asymptotically stable limit cycle for ε = 0, then for small ε > 0 the system has a
MFI set that is a small tubular neighborhood of Γ .

3 Random differential equations in one dimension

We discuss the simplest case of random differential equations on a circle. Consider
a RDE

ẋ = f (x,ξt) (8)

with x from the circle. In the context of bifurcations it is convenient to assume that
the noise takes values from ∆ = Bn(ε) = [−ε,ε] and the following:

(H3) For each x the map ∆ → TxM given by v 7→ f (x,v) is a diffeomorphism
with a strictly convex image D(x) = f (x,∆).

Definition 2. We say that a MFI set E is isolated or attracting if for any proper
neighborhood U (E ⊂U) there is an open forward invariant set F ⊂U such that E ⊂
F , F contains no other MFI set and Φ t(F,U )⊂F for all t > 0. Such a neighborhood
F is called an isolating neighborhood.

Also note that under (H3) for each x, f (x,∆) is a closed interval with endpoints
f (x,−ε) and f (x,ε). Thus there is an envelope of all possible vector fields which
are bounded below and above by f (·,−ε) and f (·,ε). Denote by f−(·) and f+(·)
the upper and lower vector fields.

Recall that MFI sets are invariant under forward solutions of the RDE, for all
noise realizations and minimal with respect to set inclusion. For RDEs on the circle,
the MFI sets are bounded open intervals or possibly the entire circle.

Proposition 1. If (a,b) is a MFI set then for any x ∈ (a,b),

0 ∈ int( f (x,∆)).

Proof. If not, then there is an x∈ (a,b) such that either f (x,∆)≤ 0 or f (x,∆)≥ 0. In
the first case the forward invariance of (a,b) implies that (a,x) is forward invariant.
In the second case we obtain that (x,b) is forward invariant. Either case contradicts
the minimality of (a,b). ut
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Proposition 2. If (a,b) is a MFI set then

f (a,ξ )≥ 0 and f (b,ξ )≤ 0 (9)

for all ξ ∈ ∆ = [−ε,ε] and that f−(a) = 0 and f+(b) = 0. Further, f ′−(a) ≤ 0 and
f ′+(b)≤ 0.

Proof. The inequalities (9) are necessary for a and b to be boundary points of a MFI
set. The claim that f−(a) = f+(b) = 0 follows from (H1). The final claim f ′−(a)≤ 0
and f ′+(b)≤ 0 then follows from the assumption that f is C1. ut

We can distinguish the following types for endpoints a and b based on the proper-
ties of f ′. We say that a is hyperbolic if f ′−(a) 6= 0 and similarly for b. Otherwise, a
or b is said to be non-hyperbolic. For one dimensional RDEs the following stability
result is straightforward.

Proposition 3. Given any f satisfying (H1), (H2), (H3) suppose that (a,b) is a
MFI set with both a and b hyperbolic. Then (a,b) is isolated with some isolating
neighborhood W. If f̂ is sufficiently close to f in the C1 topology, then f̄ has a
unique MFI set (â, b̂) inside W. Further, â and b̂ are close to a and b respectively
and are each hyperbolic.

Proof. If a is hyperbolic it follows that f (x,ξt)> 0 for all x in some neighborhood
(c,a) and all ξ ∈ ∆ . Similarly, there is a neighborhood (b,d) on which f (x,ξt)< 0.
It follows that W = (c,d) is an isolating neighborhood for (a,b).

Now let δ > 0 be sufficiently small so that f ′−(x)> f ′−(a)/2 for all x∈ [a−δ ,a+
δ ]. If f̂ is within f ′−(a)/2 of f in the C1 topology then the conclusion holds. ut

We continue with families of RDEs and consider equations

ẋ = fλ (x,ξt), (10)

depending on both a deterministic parameter λ ∈ R and noise of level ε . For back-
ground on bifurcation theory in families of differential equations we recommend
[32].

Definition 3. We say that a one-parameter family of vector fields gλ (x) generically
unfolds a quadratic saddle-node point at x∗, if g(x∗) = 0, g′(x∗) = 0, g′′(x∗) 6= 0 and
∂gλ (x∗)/∂λ 6= 0.

A one-dimensional RDE (10) generically unfolds a quadratic saddle-node at
x∗ = a or b of a MFI set (a,b), if one of the extremal vector fields fλ (·,±ε) generi-
cally unfolds a quadratic saddle-node at x∗.

Theorem 4 ([27]). In a generic one-parameter family of one-dimensional bounded
noise random differential equations (10) the only codimension one bifurcation of a
MFI set is the generic unfolding of a quadratic saddle-node.
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Fig. 1 (a) A stable one dimensional MFI set. Both endpoints of E = (a,b) are hyperbolic. (b) A
random saddle-node in one dimension. E = (b,c) is minimal forward invariant.

Proof. By Proposition 3 a MFI set (a,b) is stable if a and b are both hyperbolic.
Thus a bifurcation can occur only if hyperbolicity is violated at one of the end-
points. For codimension one hyperbolicity cannot be violated at both the endpoints
simultaneously.

If the stationary point is odd, a standard argument shows that the bifurcation is
not codimension one. If the stationary point is of even order ≥ 4, then standard
arguments show that the family is not generic. ut

4 Random differential equations on surfaces

We will consider bifurcations in a class of random differential equations

ẋ = fλ (x,ξt) (11)

as the parameter λ ∈ R is varied. Here x will belong to a smooth compact two-
dimensional surface M. We treat such random differential equations with bounded
noise where ξt takes values in a closed disk ∆ ⊂R2. We will assume some regularity
conditions on the way the noise enters the equations. In particular we assume that
the range of vectors fλ (x,∆) is a convex set for each x ∈M.

Let ∆ ⊂R2 be the unit disc. We will assume that fλ (x,v) is a smooth vector field
depending smoothly on parameters λ ∈ R and v ∈ ∆ , i.e. (x,v,λ ) 7→ fλ (x,v) ∈ T M
is a C∞ smooth function. When discussing properties of single vector fields, we
suppress dependence of the RDE on λ from the notation.

Definition 4. We will denote by R∞ the space of bounded noise vector fields f sat-
isfying (H1), (H2), (H3). We will take as a norm on R∞ the C∞ norm on the vector
fields f : M×∆ → T M.

Definition 5. We will say that a MFI set E for f is stable if there is a neighborhood
U ⊃ E such that if f̃ is sufficiently close to f in R∞ then f̃ has exactly one MFI set
Ẽ ⊂U and Ẽ is close to E in the Hausdorff metric. We will say that f ∈ R∞ is stable
if all of its MFI sets {Ei} are stable.

Definition 6. A one-parameter family of RDEs in R∞ is a mapping from an interval
(0,1) given by λ 7→ fλ that is smooth in λ in R∞.
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From (H3), the vectors fλ (x,ξ ) range over a strictly convex set Dλ (x)≡ fλ (x,∆)
that is diffeomorphic to a closed disk and has a smooth boundary, varying smoothly
with x and λ . Define Kλ (x) as the cone of positive multiples of vectors in Dλ (x).
Again, whenever we are concerned with single RDEs, we suppress dependence on
the parameter λ .

Definition 7. A point x ∈ M will be called stationary if 0 ∈ D(x), i.e. there is a
possible vector field for which x is fixed.

If 0 ∈ intD(x), then K(x) = R2. Outside the closed set R = {x ∈M | 0 ∈ D(x)},
the cones K(x) depend smoothly on x. By (H3) if 0 ∈ ∂D(x), then K(x) is an open
half-plane. Consider the direction fields Ei, i = 1,2, defined by the extremal half
lines in the cones K(x) over the open set P = M \R. By standard results we can
integrate these two direction fields, obtaining two sets of smooth solution curves γi,
i = 1,2 in P. Note that these two sets of curves each make a smooth foliation of
P. We remark that the direction fields Ei are defined on the closure of P, but may
give rise to nonunique solution curves at points in the boundary of P. Further, by the
assumptions, the angle between the direction fields at any point is bounded below.
However, at points on the boundary, the angle may be π , in which case the solution
curves are tangent or coincide (but flow in opposite directions).

Definition 8. For each x ∈ P denote by γi(x), i = 1,2, the two local solution curves
to the extremal direction fields. Denote by γ

±
i the forward and backward portions of

these curves.

We will build up a description of the possible boundary components of a MFI set.
To begin, for a point on the boundary either (1) K(x) is less than a half plane, or, (2)
K(x) is an open half plane, in which case x must a stationary point, i.e. f (x,ξ ) = 0
for some ξ ∈ ∆ . We begin by classifying points of type (1).

Lemma 1. If x ∈ ∂E for a MFI set E and K(x) is less than a half plane, then either:

• One of the local solution curves γi(x) coincides locally with ∂E, or,
• Both backward solution curves γ

−
i (x) belong to the boundary ∂E.

Definition 9. We call a boundary point, x, of a MFI set, E, regular if one of γi(x)
coincides locally with ∂E. We call a segment of the boundary of E a solution arc if
it consists of regular points. If both γ

−
i belong to ∂E locally, then we call x a wedge

point.

The following theorem describes the geometry of MFI sets for typical RDEs on
compact surfaces. Figure 2 depicts parts of the boundary and extremal flow lines
near stationary and wedge points.

Theorem 5 ([27]). There is an open and dense set V ⊂ R∞ so that for any random
differential equation in V , a MFI set E has piecewise smooth boundary consisting
of regular curves, a finite number of wedge points, and a finite number of hyperbolic
points that belong to disks of stationary points inside E. Further, if a component γ

is a periodic cycle, it has Floquet multiplier less than one. Any RDE in V is stable.
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Fig. 2 Extremal flow lines near a stationary point (left picture) or wedge point (right picture) on
the boundary of a MFI set.

Codimension one bifurcations in families of RDEs on compact surfaces are de-
scribed in the following result.

Theorem 6 ([27]). There exists an open dense set O of one-parameter families of
RDEs in R∞ such that the only bifurcations that occur are one of the following:

1. Two sets of stationary points collide at a stationary point on the boundary ∂E
which undergoes a saddle-node bifurcation.

2. A MFI E collides with a set of stationary points outside E at a saddle-point p.
3. The Floquet multiplier of a non-isolated periodic cycle becomes one and then

the cycle disappears.

5 Random Hopf bifurcation

We will consider Hopf bifurcations in a class of random differential equations on
the plane, as a case study of bifurcations in two dimensional RDEs.

Consider a smooth family of planar random differential equations

(ẋ, ẏ) = fλ (x,y)+ ε(u,v) (12)

where λ ∈R is a parameter and u,v are noise terms from ∆ = {u2 +v2 ≤ 1}, repre-
senting radially symmetric noise. We consider noise such that hypotheses (H1) and
(H3) are fulfilled. We assume that without the noise terms, i.e. for ε = 0, the family
of differential equations unfolds a supercritical Hopf bifurcation at λ = 0 [32].

In a supercritical Hopf bifurcation taking place in (12) for ε = 0, a stable limit
cycle appears in the bifurcation for λ > 0. For a fixed negative value of λ , the
differential equations without noise posses a stable equilibrium and the RDE with
small noise has a MFI set which is a disk around the equilibrium. Likewise, at a fixed
positive value of λ for which (12) without noise possesses a stable limit cycle, small
noise will give an annulus as MFI set. A bifurcation of stationary measures takes
place when varying λ . We will prove the following bifurcation scenario for small
ε > 0: the RDE (12) undergoes a hard bifurcation in which a globally attracting MFI
set changes discontinuously, by suddenly developing a “hole”. This hard bifurcation
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takes place at a delayed parameter value λ = O(ε2/3) as described in Theorem 7
below.

For studies of Hopf bifurcations in stochastic differential equations (SDEs) we
refer to [5, 7, 10, 41]. In such systems there is a unique stationary measure, with sup-
port equal to the entire state space. Bifurcations of supports of stationary measures,
as arising in RDEs with bounded noise, do not arise in the context of SDEs.

Theorem 7 ([12]). Consider a family of RDEs (12) depending on one parameter λ ,
that unfolds, when ε = 0, a supercritical Hopf bifurcation at λ = 0.

For small ε > 0 and λ near 0, there is a unique MFI set Eλ . There is a single
hard bifurcation at λbif =O(ε2/3) as ε ↓ 0. At λ = λbif the MFI set Eλ changes from
a set diffeomorphic to a disk for λ < λbif to a set diffeomorphic to an annulus for
λ ≥ λbif. At λbif the inner radius of this annulus is r∗ = O(ε1/3).

Figure 3 shows images taken from [12] of numerically computed invariant den-
sities. For these images the RDEs are taken in normal form as

ẋ = λx− y− x(x2 + y2)+ εu,

ẏ = x+λy− y(x2 + y2)+ εv.
(13)

The noise terms u and v are generated via the stochastic system:

du = dW1,

dv = dW2,
(14)

where dW1 and dW2 are independent (of each other), normalized white noise pro-
cesses. The equations (14) are interpreted in the usual way as Itō integral equations.
In this setting in order to assure boundedness, (u,v) are restricted to the unit disk by
imposing reflective boundary conditions.

The deterministic Hopf bifurcation involves the creation of a limit cycle. In the
remaining part of this section we discuss the occurrence of attracting random cycles.
Random cycles are closed curves that are invariant for the skew-product system and
thus have a time dependent position in state space depending on the noise realiza-
tion. The following material fits into the philosophy advocated by Arnold in [3]
of studying random dynamical systems through a skew product dynamical systems
approach, so as to capture dynamics with varying initial conditions. A comparison
of bifurcations in both contexts of stationary measures and of invariant measures
for the skew product system is contained in [45] in the context of random circle
diffeomorphisms.

Random cycles are defined in analogy with random fixed points [3]. They are
most elegantly treated in a framework of invertible flows, where the noise realiza-
tions ξ and the flow Φ t

λ
(x,ξ ) are given for two sided time t ∈ R. We henceforth

consider the skew product flow

(x,ξ ) 7→
(
Φ

t
λ
(x,ξ ),θ t

ξ
)

with
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Fig. 3 Images of the invariant densities for system (13) with ε = 0.1 and increasing values of λ .
From top left λ = 0.004,0.020,0.041,0.204,0.407,0.448. The bottom middle plot, (λ = 0.407),
is immediately after the hard bifurcation. In all six plots the circle exterior to the visible density is
the outer boundary of the MFI set. In the last two plot the interior circle is the inner boundary of
the MFI set. Figures taken from ref. [12], c©American Institute for Mathematical Sciences 2012.

θ
t
ξs = ξt+s

for t,s ∈ R.
Recall that a random fixed point is a map R : U → R2 that is flow invariant,

Φ
t
λ
(R(ξ ),ξ ) = R(θ t

ξ )

for P almost all ξ . A random cycle is defined as a continuous map S : U ×S1→R2

that gives an embedding of a circle for P almost all ξ ∈U and is flow invariant in
the sense

Φ
t
λ
(S(ξ ,S1),ξ ) = S(θ t

ξ ,S1).

Different regularities of the embeddings S1 7→ S(ξ ,S1), such as Lipschitz continuity
or some degree of differentiability, may be considered.

The random cycle is attracting if there is a neighborhood Uλ of the MFI set Eλ ,
so that for all x ∈Uλ , the distance between Φ t

λ
(x,ξ ) and S(θ tξ ,S1) goes to zero as

t→ ∞.
The following result establishes the occurrence of attracting random cycles fol-

lowing the hard bifurcation, for small noise amplitudes.

Theorem 8. Consider a family of RDEs (12) depending on one parameter λ , that
unfolds, when ε = 0, a supercritical Hopf bifurcation at λ = 0.



14 Ale Jan Homburg, Todd R. Young and Masoumeh Gharaei

For values of (λ ,ε) with λ > λbif and ε sufficiently small, the MFI set Eλ is dif-
feomorphic to an annulus and the flow Φ t

λ
admits a Lipschitz continuous attracting

random cycle S : U ×S1→ R2 inside Eλ .

Proof. The proof is an adaptation of the construction of limit cycles in the differen-
tial equations without noise. The boundedness of the noise allows one to replace the
estimates by estimates that are uniform in the noise for small enough noise ampli-
tudes. We indicate the steps in a proof, leaving details to the reader.

First note that we may replace the flow Φ t
λ

by its time one map, which is a diffeo-
morphism on the plane; this diffeomorphism and its derivatives depend continuously
on the noise ξ . So, consider a map z 7→ fλ (z;ξ ) on the complex plane C, unfolding a
supercritical Neimark-Sacker bifurcation in λ , depending on bounded noise ξ ∈U
and on the parameter ε that multiplies the amplitude of the noise. Such maps with-
out noise, i.e. with ε = 0, are known to possess invariant circles for small positive
values of λ . We follow their construction as elaborated in [35]. With a normal form
transformation, applied to the map without noise, a map

Fλ (z) = z(1+λ − f1(λ )|z|2)ei(θ(λ )+ f3(λ )|z|2)+O(|z|5) (15)

on the complex plane C is obtained. The reasoning in [35] continues with the
following steps. Apply a rescaling and change to polar coordinates to write z =√

λ

f1(λ )
eiϕ(1+

√
λu). Expressing Fλ in ϕ,u coordinates gives a map of the form

Fλ (ϕ,u) = (ϕ +θ1(λ )+λ
3/2Kλ (u,ϕ),(1−2λ )u+λ

3/2Hλ (u,ϕ)). (16)

Next a graph transform is defined on a class of Lipschitz continuous graphs
Lip1(S1, [−1,1]), with Lipschitz constant bounded by 1, equipped with the sup-
norm. It is determined by

graph Fλ (w) = Fλ (graph w). (17)

This is shown to be a contraction, leading to a unique fixed point which is the at-
tracting invariant circle.

For ε small enough, this reasoning carries through to the random map as follows.
First a graph transform depending on ξ ∈U is defined. That is, Fλ from (15) (and
(16)) gets replaced by a map Fλ ,ξ and the graph transform likewise by Fλ ,ξ . Iterates
of Fλ ,ξ are obtained as

F n
λ ,ξ = Fλ ,θ n−1ξ ◦ . . .◦Fλ ,θ 1ξ ◦Fλ ,ξ . (18)

The previous contraction argument is replaced by pull-back convergence:

S(ξ ,S1) = lim
n→∞

F n
λ ,θ−nξ

(w), (19)
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for any w ∈ Lip1(S1, [−1,1]). The graph of the limit function is called the pull-back
attractor, its orbit under the flow Φ t

λ
is the random limit cycle. Note that this is the

point where two sided time is needed.
The computations to check convergence in (19) are most easily carried out by

writing εξ = εreiψ for the noise and expanding Fλ ,ξ in ε for small ε: writing Fλ =

Aeiη and ξ = reiψ we get

Fλ ,ξ = (A+O(ε))ei(η+ 1
A O(ε)). (20)

Then following the computations using the rescaling, assuming ε is sufficiently
small for given λ , makes clear that the graph transform remains well defined, i.e.
maps Lip1(S1, [−1,1]) into itself, and a contraction (for each fixed ξ ).

Finally, the contraction properties of the graph transform, uniform in the random
parameter, implies that the random cycle is attracting. ut

We have confined ourselves with a statement on Lipschitz continuous random
cycles, the graph transform techniques however allow establishing more smoothness
[35]. The result does not discuss the dynamics on the random cycle, it is still possible
to find an attracting random fixed point on it, compare [5, 7].
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