
Heteroclinic bifurcations of 
-stable vector �eldson 3-manifolds.Ale Jan HomburgInstitut f�ur Mathematik IFreie Universit�at BerlinArnimallee 2-614195 BerlinGermanyAbstractWe study one parameter families of vector �elds that are de�ned on three dimen-sional manifolds and whose nonwandering sets are structurally stable. As families,these families may not be structurally stable; heteroclinic bifurcations that give riseto moduli can occur. Some but not all moduli are related to the geometry of sta-ble and unstable manifolds. We study a notion of stability, weaker then structuralstability, in which geometry and dynamics on stable and unstable manifolds arere
ected. We classify the families from the above mentioned class of families thatare stable in this sence.
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1 IntroductionIn this paper we are concerned with stability of families of vector �elds. If for a family ofvector �elds the structure of the nonwandering set and how this varies with a parameter isthe subject of interest, the notion of stability to be considered would be 
-stability. Thisnotion is too weak if one is also interested in, say, the geometry of basins of attraction.From simple examples it is clear that structural stability is too strong an equivalence rela-tion for such a purpose; even an elementary bifurcation as a heteroclinic tangency betweenstable and unstable manifolds of two periodic orbits gives rise to invariants of structuralstability (`moduli'). The geometry of stable and unstable manifolds may however not bea�ected, but behave similar for all nearby families. For this reason we introduce a notionof stability suited for studying the geometry and dynamics on stable and unstable sets.Then, for a class of one parameter families consisting of 
-stable vector �elds on a threedimensional compact manifold, we classify the stable ones with respect to this notion ofstability.Below we give precise de�nitions and a discussion. The paper is further organised asfollows. In chapter 2 we prove a well known structural stability theorem (theorem 2.6) forsingle vector �elds using methods which will prove useful in studying stability theoremsfor families. This then is pursued in chapter 3, where our main theorem (theorem 3.1) isstated and proved.I acknowledge useful discussions with Sebastian van Strien.1.1 PreliminariesLet M be a compact connected 3 dimensional manifold and let X be the class of smoothvector �elds on M , equipped with the Whitney topology.We recall a number of notions. For X 2 X and x 2 M , the stable set W s(x) of x isde�ned byW s(x) = fy 2M; Xt(y)! Xt(x); t!1g;where Xt is the 
ow of X. For an orbit O(x),W s(O(x)) = [t2RW s(Xt(x)):Observe that W s(O(x)) is laminated by the stable sets W s(y), y 2 O(x). Similarly, theunstable sets W u(x) and W u(O(x)) are de�ned, replacing Xt in the above de�nitions byX�t.The nonwandering set 
 of X is the union of points x 2 M so that, for every neigh-bourhood U of x, there are arbitrarily large T > 0 withXT (U)\U 6= ;. The nonwandering2



set is a compact invariant set. A compact invariant set � is hyperbolic, if there is a DXtinvariant splitting TM = Es � hXi � Eu along �, where hXi denotes the line bundlespanned by X and where further, for some Cs; Cu > 0, �s < 0, �u > 0,kDXtjEsk � Cse�st; t > 0; (1)kDXtjEuk � Cue�ut; t < 0: (2)A vector �eld X is said to obey axiom A, if 
 is hyperbolic and the critical elements(singularities and periodic orbits) are dense in 
. The relevance of this de�nition isexplained by the spectral decomposition theorem:Theorem 1.1 [Sma,1967], [PuSh,1970] If X obeys axiom A, then the nonwanderingset 
 of X is a �nite union 
1 [ : : : [ 
N of components, each containing a dense orbit.Component has its usual meaning as relatively open and closed subset. These com-ponents are called basic sets. A basic set can be either a singularity, a periodic orbit, ora nontrivial basic set equal to the closure of a countable number of periodic orbits (andwithout singularities). Further, the stable sets of points and orbits in a basic set 
i areinjectively immersed manifolds with T rW s(x) and T rW s(O(x)) depending continuouslyon x 2 
i for all r. Analogously for unstable sets.There are a number of concepts expressing stability, that is robustness of certainaspects of the dynamics under perturbation of the vector �eld. We recall the notions of
-stability and structural stability. A vector �eld X is called structurally stable, if, forsu�ciently small perturbations ~X of X, there exists a near identity homeomorphism hon M , mapping orbits of X to orbits of ~X. Such a homeomorphism is called a topologicalequivalence. Observe that a topological equivalence maps stable and unstable sets oforbits to the stable and unstable sets of the corresponding orbits, but may not map stableand unstable sets of points to the stable and unstable sets of the corresponding points(as a conjugacy h � Xt = ~Xt � h would). If a topological equivalence exists restrictedto the nonwandering set of X, for all su�ciently small perturbations of X, we call X
-stable. We recall two stability theorems, providing su�cient conditions for 
-stabilityand structural stability. Let X be a vector �eld obeying axiom A. A cycle is a sequence
i1 ; : : : ;
in;
in+1 = 
i1 of basic sets so that(W u(
ij )� 
ij) \ (W s(
ij+1)� 
ij+1) 6= ;:We say X satis�es the no-cycle condition, if there are no cycles. The vector �eld X is saidto satisfy the strong transversality condition, if all intersections of stable and unstablemanifolds of orbits in 
 are transversal.Theorem 1.2 [PuSh,1970] If X obeys axiom A and the no-cycle condition, then X is
-stable. 3



Theorem 1.3 [Rob,1974], [Rob,1975] If X obeys axiom A and the strong transver-sality condition, then X is structurally stable.The proof of theorem 1.3 in [Rob,1974], [Rob,1975] is by analytical methods; thedesired topological equivalence between X and a su�ciently small perturbation of X iswritten as the solution of an equation which is then solved using the implicit mappingtheorem. In section 2 we give a proof of theorem 1.3 for vector �elds on three dimensionalmanifolds by geometric methods using `compatible systems of invariant foliations'. Sucha method was introduced by Palis [Pal,1969] to study structural stability of Morse-Smalesystems, see also [PaSm,1970]. After �nishing this paper we found the paper [Ver,1996]by J. Vera in which theorem 1.3 is proved, also by making use of compatible systemsof invariant foliations. In [Me,1973], invariant foliations were used to show structuralstability of two dimensional di�eomorphisms obeying axiom A and strong transversality.The advantage of such a geometric proof is its possible extension to study stability offamilies, see chapter 3.1.2 FamiliesFor an interval I, let C1(I;X) denote the set of smooth one parameter families, equippedwith the uniform topology. Let fX�g 2 C1(I;X). A parameter value �� is called a bifur-cation value of X� if X�� is not stable (depending on the type of stability considered). Tocompare di�erent families undergoing bifurcations, one introduces notions of stability forfamilies, corresponding to those for individual vector �elds. A family fX�g is called struc-turally stable if, for any su�ciently nearby family f ~X�g, there exists a homeomorphismH :M � I !M � I of the formH(x; �) = (h�(x); �(�));where h� is a topological equivalence between X� and ~X�(�) and where � is order pre-serving. One may instead demand H to be merely a bijection and � and x 7! h�(x)to be continuous, see [NPT,1983]. Similarly one de�nes 
-stability, restricting h� to thenonwandering set.We recall two results on structural stability of families of vector �elds, as they hold onthree dimensional manifolds. The cited papers actually contain results on n dimensionalvector �elds and also consider bifurcations where critical elements loose hyperbolicity.Theorem 1.4 [PT,1983] Generic one parameter families of gradient vector �elds oncompact three dimensional manifolds are structurally stable.4



Theorem 1.5 [LaPl,1993] A generic one parameter family fX�g of vector �elds on acompact three dimensional manifold whose nonwandering set consists of a �nite numberof hyperbolic critical elements and has no cycles is structurally stable, provided� Stable and unstable manifolds of periodic orbits intersect transversally,� If p is a singularity with one dimensional unstable manifold and complex conjugatestable eigenvalues, then W u(p) is contained in the stable manifold of an attractingcritical element.If p is a singularity with one dimensional stable manifold and complex conjugateunstable eigenvalues, then W s(p) is contained in the unstable manifold of a repellingcritical element.Let fX�g be a one parameter family of vector �elds on M and let 
 be an orbit of X�.The family fX�g is said to be structurally stable at (
; �) if for all small perturbationsfY�g of fX�g, there exists a topological equivalence between fX�g and fY�g de�ned ona neighbourhood of (
; �) in M �R. The cases where 
 is a heteroclinic orbit have beenstudied in [Str,1982], see also [Bel,1986]. In [Ver,1996] a su�cient condition is suppliedfor a family fX�g to be structurally stable, for parameter values near a speci�c parametervalue �, if it is known that X� possesses one heteroclinic orbit 
 and fX�g is structurallystable at (
; �).What strikes from these results is that the set of structurally stable families appears tobe rather small; even an elementary bifurcation such as a tangency between the stable andunstable manifolds of two periodic orbits does not occur in a structurally stable family.So, if one is interested in the geometry of and dynamics on stable and unstable sets nearbifurcations, structural stability is too strong an equivalence relation, whereas 
-stabilityis too weak. We thus think it makes sense to consider other equivalence relations instudying families of vector �elds. Speci�cally, we will study a notion of stability, whichwe call W-stability, in which we only incorporate the geometry and dynamics on stable andunstable manifolds. This will be pursued in the following section. We would at this pointlike to comment that seeing the gap between W-stability and structural stability (comparetheorem 3.1 and the corollary following it with theorem 1.5 and results in [MeSt,1987],[NPT,1983], [Ver,1996]) also provides a better understanding of structural stability.1.3 W-stabilityWe start again with single vector �elds before treating families. To study the geometryof stable and unstable sets and the dynamics restricted to these sets, we propose thefollowing equivalence relation. A vector �eld X 2 X is W-stable, if a neighbourhood U ofX exists so that for all ~X 2 U , there is a bijection h : M ! M , mapping orbits of X to5



orbits of ~X, with h near the identity and with the additional property that h restrictedto the stable set W s(
) and to the unstable set W u(
), for all orbits 
, is continuous.For an orbit 
, the geometry of W s(
) is preserved under h in the sense that if xn 2W s(
) converges to x 2 W s(
), then h(xn) 2 W s(h(
)) converges to h(x) 2 W s(h(
)).Similarly for W u(
) and for intersections W u(
)\W s(�), where � is a second orbit of X.The map h is not required to be continuous on the closure of stable and unstable sets.Let I be an interval in R and write C1(I;X) for the set of smooth one parameterfamilies of vector �elds on M , equipped with the uniform topology. A family fX�g 2C1(I;X) is W-stable if, for each family f ~X�g, su�ciently near fX�g, there exists abijection H :M � I !M � I of the formH(x; �) = (h�(x); �(�)); (3)with � an order preserving homeomorphism and where h� gives, as above, an equivalencebetween X� and ~X�(�).For 
-stable families we could demand a continuous dependence of h� on �, by re-quiring (x; �) 7! h�(x) to be continuous restricted to S�(W s(
�); �) and S�(W u(
�); �),where 
� is the continuation of an orbit in the nonwandering set of X�.We remark that in [PoTa,1993], for two nearby two dimensional di�eomorphisms pos-sessing a homoclinic tangency (between stable and unstable manifolds of a hyperbolic�xed point), the existence of a conjugacy restricted to the unstable manifold of the �xedpoint is investigated. Compare further the de�nition of future stability in [Sma,1970] andthe de�nition of weak-C0-stability in [Tak,1974].
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2 Stable vector �eldsThis section treats vector �elds onM which satisfy axiom A and the strong transversalitycondition. WriteXstr = fX 2 X; X satis�es axiom A + strong transversalityg:We construct stable and unstable foliations for vector �elds in Xstr and then we use theseto provide a proof of theorem 1.3 for three dimensional vector �elds.Let X 2 Xstr. The spectral decomposition theorem [Sma,1967], [PuSh,1970] gives thatthe nonwandering set 
 of X is a �nite union 
1 [ : : : [ 
N of isolated critical elementsand nontrivial basic sets. Let 
i be a nontrivial basic set. De�ne @s
i as the set of pointsx 2 
i so that W uloc(x) \ 
i accumulates only from one side on x. Similarly, @u
i isde�ned. The following lemma follows from [NePa,1973], see also [PT,1993].Lemma 2.1 Let 
i be a nontrivial basic set. Then there is a �nite number of periodicorbits 
sj ; 1 � j � ns, and 
uj ; 1 � j � nu, so that@s
i = 
i \ ns[j=1W s(
sj );@u
i = 
i \ nu[j=1W u(
uj ):The sets @s
i and @u
i can still be empty. For example, if 
 =M , then both @s
i = ;and @u
i = ;. If 
i is a strange attractor, then @s
i = ; and @u
i = Snuj=1W u(
uj ).Similarly, if 
i is a strange repeller, then @u
i = ;. If both @s
i 6= ; and @u
i 6= ;, wecall 
i a (nontrivial) basic set of saddle type.Suppose 
i is a nontrivial basic set. AMarkov partition of size � > 0 consists of a �nitecollection of cross sections Ti containing boxes Bi, i.e. di�eomorphic images �i([�1; 1]2)of the square [�1; 1]2, with the following properties. Write@sBi = �i(f(x; y); jyj = 1g);@uBi = �i(f(x; y); jxj = 1g):Then� diam Ti � �,� Bi � Ti,� Ti \ Tj = ;, i 6= j. 7



� 
i � [0�t��Xt([i Bi),� @sBi � W s(
i); @uBi �W u(
i),� Bk \ [t�0Xt(@sBj) � @sBk; Bk \ [t�0Xt(@uBj) � @uBk:Lemma 2.2 [Bow,1973] Let 
i be a nontrivial basic set. Let � > 0.Then a Markov partition of size � for 
i exists.We remark that such Markov partitions can be constructed analogously as Markovpartitions for basic sets of two dimensional di�eomorphisms [PT,1993]. Then, in case@s
i 6= ;, we can take @sBi � S1�j�ns W s(
sj ). Similarly, if @u
i 6= ; we can take@uBi � S1�j�nu W u(
uj ).By a continuous foliation F (with leaves of dimension k) of an open subset V of M ,we mean a disjoint decomposition of V into k dimensional embedded submanifolds suchthat V is covered by C0 charts� : Dk �Dn�k ! Vand �(Dk � fxg) � Fx, where Fx is the leaf of F through x. The foliation is of class Ckif the charts � can be chosen of class Ck. Su�cient for a foliation to be Ck is that thecorrespondence x 7! TxFx is Ck. A Ck lamination F is a continuous foliation with Ckleaves, such that x 7! T ixFx is continuous, 0 � i � k. An unstable foliation (lamination)Fu(
i) for X near a basic set 
i is a Xt invariant foliation (lamination) with Fux(
i) =W u(x), if x 2 
i. Stable foliations (laminations) are de�ned similarly.A construction we will use several times and therefore introduce here, is that of av-eraging foliations. Let U1, U2 be two open sets on which foliations F1, F2 both with onedimensional leaves are de�ned, so that for x 2 U1 \ U2, TxF1x and TxF2x are close (saywith an angle less then �=2 in some Riemannian structure). Take unit vector �elds Y1on U1 and Y2 on U2 so that integral curves of Y1, Y2 are leaves of F1, F2. The directionof Y1, Y2 should be so that for x 2 U1 \ U2, the angle between Y1(x) and Y2(x) in TxMis less then �=2. Take a partition of one f�; 1 � �g subordinate to U1, U2. Replace thefoliations F1, F2 by the averaged foliation F of U1 [ U2 whose leaves are integral curves of�Y1 + (1� �)Y2. Observe that Fx = F1x = F2x if F1x = F2x.When 
i is an invariant set of X and W s(
i) its stable set, a fundamental domainDs(
i) of W s(
i) is a set so that W s(
i) = St2RXt(Ds(
i)) and each orbit in W s(
i)intersects Ds(
i) only once. A fundamental neighbourhood N s(
i) of W s(
i) is a setso that its saturation for positive time plus the local unstable set W uloc(
i) provide aneighbourhood of 
i. 8



Lemma 2.3 There exists an invariant unstable lamination Fu(
i) near each basic set 
i.Proof. If 
i is a repeller, Fux(
i) = W u(x) for x 2 
i. Since the unstable manifolds ofpoints in 
i �ll a neighbourhood of 
i, Fu(
i) is a foliation near 
i.If 
i is an attracting critical element, Fux(
i) = fxg, x near 
i.If 
i is a singularity of saddle type, take as a fundamental domain Ds(
i) of W s(
i) acompact manifold of codimension one in W s(
i), transverse to the 
ow. Take a foliationfFux; x 2 Ds(
i)g with leaves contained in a small neighbourhood of Ds(
i) and transver-sally intersecting W s(
i). The saturation of Fu for positive time gives, by the �-lemma,a continuous unstable lamination near 
i.If 
i is a periodic orbit of saddle type, take a cross section T0 through 
i and afundamental domain Ds(
i) � W s(
i)\ T0 for the Poincar�e return map on T0; Ds(
i) isan interval in W s(
i) \ T0 which is open on one side and closed on the other side. Takea lamination Fu on a neighbourhood U of Ds(
i) with leaves transverse to W s(
i). Byaveraging we may assume that if XT (Fu), T > 0, and Fu both de�ne a foliation on someopen set U , then for y 2 U ,XT (FuX�T (y)) \ U = Fuy \ U : (4)Take a fundamental neighbourhood N s(
i) extending Ds(
i) and consisting of leaves ofFu. The saturation of Fu de�ned on N s(
i), for positive time, gives, by the �-lemma, acontinuous unstable lamination near 
i.Suppose 
i is a nontrivial basic set of saddle type. Take a Markov partition with crosssections T1; : : : ; Tn and boxes Bj � Tj. We may chooseTk � Hpk; (5)for some pk 2 
i. Since 
i is of saddle type, choosing TjnBj small enough,
i \ Tj � Bj : (6)Take a Riemannian metric d on M so that the constant Cs in (1) equals 1 [HPPS,1970].Consider curves Rk � Tk, disjoint from Bk and with d(Rk; @sBk) = " for some small" > 0. Let Sk be the collection of curves [jX(0;�](Rj) \ Tk. By the choice of Riemannianmetric, d(Sk; @sBk) < ". Let N sk (
i) be the collection of those connected components ofTkn(Rk [ Sk) that are bounded by Rk [ Sk and disjoint from 
i \ Tk. It is clear from theconstruction that N s(
i) = Sk N sk (
i) is a fundamental neighbourhood of 
i. Choose afoliation Fu near [kRk, with leaves in [kTk transverse to W s(
i). Integrating Fu by the
ow of X we obtain a foliation Fu near [kSk. Now choose a foliation Fu;1 near N s(
i)and average Fu near [k(Rk[Sk) and Fu;1. Call the obtained foliation Fu. Restrict Fu to afundamental neighbourhood near N s(
i). By (6), choosing TknBk small enough, (4) will9



hold. The saturation for positive time of Fu restricted to a fundamental neighbourhoodnear N s(
i), de�nes, by the generalized �-lemma [Me,1973], [HPPS,1970], an unstablelamination Fu(
i).Finally suppose 
i is a strange attractor. Construct a foliation Fu near N s(
i) asabove. Since (6) does not hold, (4) may still not be satis�ed. Denote by Fu;k the foliationFu near N sk(
i). By averaging X(0;�](Fuk) and Fu;l near N sl (
i), if X(0;�](Tk) intersects Tl,X(0;�](Fuk) equals Fu;l on open sets near Tl where both foliations are de�ned. Since thereis only a �nite number of cross sections Tk, we can ensure (4). As above, the saturationfor positive time of Fu restricted to a fundamental neighbourhood near N s(
i), de�nesan unstable lamination Fu(
i).Observe that the above proof provides an unstable foliation Fu(
i) near W u(
i), notjust near 
i. Stable foliations for �X are unstable foliations for ��X and are thusconstructed analogously.For X 2 Xstr, 
1; : : : ;
N will denote the basic sets of X. Choose an ordering �of the basic sets 
1; : : : ;
N so that, if W u(
i) \ W s(
j) 6= ;, then 
i � 
j . Possiblyrenumbering the basic sets, we may assume
1 � : : : � 
N :We will further write 
i � 
j , in case W u(
i) \W s(
j) 6= ; and i 6= j.A collection of unstable foliations is called a compatible system of unstable foliations,if Fux(
k) � Fux(
j); (7)for 
j � 
k and x near 
k.Lemma 2.4 For X 2 Xstr, a compatible system of unstable laminations fFu(
i)g for Xexists.Proof. Notation is as in the proof of lemma 2.1. In particular, N s(
i) and Ds(
i) =N s(
i) \ W s(
i) denote a fundamental neighbourhood resp. a fundamental domain ofW s(
i).We construct the collection fFu(
i)g of unstable laminations inductively. We start bymaking an unstable lamination near the repellers of X. If 
i is a repeller, the leaves ofFu(
i) are the unstable manifolds of points in 
i, �lling a neighbourhood of 
i.Suppose unstable foliations Fu(
1); : : : ;Fu(
i�1) have been constructed. To constructFu(
i), we use a second induction on the basic sets 
j with 
j � 
i. We �rst de�nea foliation Fu near Ds(
i). Suppose 
j � 
i (observe that 
i is not a repeller and 
j10



is not an attractor; we may assume that 
i is not an attracting critical element, sincethen Fu(
i) consists of points and compatibility with other unstable foliations is obvious).Consider the following situations.1. Suppose there is no basic set 
k with 
j � 
k � 
i. In this case, W u(
j)\Ds(
i)is compact.If 
j is a repelling singularity, take a foliation Fu near W u(
j)\Ds(
i) with leavestransverse to W s(
i).Suppose 
j is a repelling periodic orbit. Since W u(x); x 2 
j intersects the orbitO(x) through x transversally,W u(x) intersectsW s(
i) transversally. We can take asubfoliation Fu of Fu(
j) near N s(
i) with leaves transversally intersectingW s(
i).In all other cases, Fu(
j) de�nes a foliation Fu near W u(
j) \Ds(
i).2. Suppose 
j � 
kg , where 
kg , 1 � g � m are the basic sets with 
kg � 
i. Over aneighbourhood T inDs(
i) of the compact set SgW u(
hg )\Ds(
i), Fu has alreadybeen constructed, compatible with Fu(
j). Over a neighbourhood of the compactset W u(
j) \ (Ds(
i) � T ), a foliation Fu;1 is chosen as in 1. Average Fu, Fu;1 toobtain Fu near W u(
j) \Ds(
i).If 
i � 
�P we average foliations as in the proof of lemma 2.3 to ensure (4). Fu(
i)is obtained by saturation of the leaves Fux with x from a suitable fundamental neighbour-hood of W s(
i).Such compatible systems of foliations play a fundamental rôle in proving structuralstability theorems, compare [Pal,1969], [PaSm,1970], [Me,1973].The following lemma clari�es the structure of a fundamental domain of the stablemanifold of a strange attractor and the foliation on it induced by the stable manifolds oforbits in it. By a Reeb component we mean a foliation of a cylinder or a M�obius bandsuch that the boundary consists of leaves and all other leaves are di�eomorphic to R.Lemma 2.5 For a fundamental domain Ds(
i) of the stable manifold of a strange attrac-tor 
i, one can take a compact manifold consisting of at most nu connected components,which are tori and Klein bottles. The stable manifolds of orbits in 
i de�ne a foliation ofDs(
i) consisting of nu circles and nu Reeb components.Proof. By (2.1), W s(
uj ) is an injectively immersed annulus. The unstable manifoldsW u(
uj ) can be either immersed annuli or immersed M�obius bands (this last possibility11



can not occur if M is orientable). Write V u(
uj ) for a compact manifold of codimensionone in W u(
uj ) and transverse to the 
ow. Consider, for some positive functions tj,K = [t�tj(x)Xt(V u(
uj )):We choose the functions tj so that tj � T where T is a large number. For T largeenough, since unstable manifolds are dense in 
i, we can further choose tj so that foreach component C1 of @K, there exists another component C2 contained in Sx2C1W sloc(x).We can then easily perturb the union of K and the local stable manifolds connectingcomponents of @K to obtain a fundamental domain Ds(
i) of W s(
i). It is clear fromthe construction that each component of Ds(
i) is either a torus or a Klein bottle (Kleinbottles can only occur if M is nonorientable).Stable manifolds of orbits in 
i intersect Ds(
i) transversally because orbits intersectDs(
i) transversally. (Stable manifolds of points need not intersectDs(
i) transversally.)So stable manifolds of orbits in 
i de�ne a foliation F ofDs(
i). Clearly,W s;�(
uj )\Ds(
i)is a circle. By (2.1), these are the only compact leaves.Theorem 2.6 Vector �elds from Xstr are structurally stable.Proof. Order the basic sets of X as in the proof of lemma 2.4. Since X is 
-stable[PuSh,1970], for ~X close to X the nonwandering set ~
 of ~X is a union ~
1; : : : ; ~
N of basicsets with ~
i close to 
i, while by strong transversality~
1 � : : : � ~
N :Let � be a completely integrable subbundle of TM de�ned over a neighbourhood of
�P and complementary to hXi (take e.g. in a Riemannian structure � equal to hXi?).Write H for the foliation near 
 � P integrating �. An equivalence g : 
 ! ~
 exists by
-stability. We may take g so thatg(x) 2 Hx (8)for x 2 
� P [HPS,1977].First we construct a smooth positive function � on M with supp (�� 1) contained ina small neighbourhood of the union of isolated periodic orbits and nontrivial basic setsof saddle type so that H is locally (�X)t invariant near these basic sets. Near a periodicorbit, the choice of such a function � is fairly standard [PaSm,1970]. Suppose 
i is anontrivial basic set of saddle type. Let [jBj be a Markov partition with Bj � Tj as inlemma 2.2. By lemma 2.1 plus the remark following lemma 2.2,
i \ Tj � Bj (9)12



for TjnBj su�ciently small. We can further choose the cross sections Tj to be containedin leaves of H. By (9), we can take smooth positive functions �j de�ned near Tj with thefollowing properties. On an open set Uj � supp (�j�1), (�jX)t leaves H locally invariant,
i is contained in Sj Uj , and supp (�j�1)\supp (�k�1)\supp (�l�1) 6= ; for j 6= k 6= l.It is easily seen that we can alter �j and �k near supp (�j � 1) \ supp (�k � 1), so that�j = �k on Uj \ Uk. Doing so for all pairs j; k, a function near 
i is obtained which caneasily be extended to get a function � on M as desired. We de�ne a similar function~� near � for ~X, so that H is locally (~� ~X)t invariant near isolated periodic orbits andnontrivial basic sets of saddle type. Then g as de�ned in (8) is a conjugation on isolatedperiodic orbits and nontrivial basic sets of saddle type.We write Ds(
i), N s(
i) for fundamental domains and fundamental neighbourhoodsas in the proofs of lemma 2.3 and lemma 2.4; for 
i � 
 � P we will take connectedcomponents of Ds(
i) and N s(
i) within single leaves of H. Fundamental domainsDs(~
i)and fundamental neighbourhoods N s(~
i) for ~X can be chosen near those of X. For~
i � ~
 � ~P , we can further take each connected component of Ds(~
i), N s(~
i) in thesame leaf of H as the corresponding component of Ds(
i), N s(
i).Recall the construction of a compatible system of unstable laminations as in lemma 2.4.Choose a continuous positive function � with supp (� � 1) outside a neighbourhood of
 and smooth within unstable manifolds of orbits, so that, constructing a compatiblesystem of unstable foliations fFu(
i)g for ��X as in the proof of lemma 2.4, this yieldsa system of laminations withFux(
i) = Fcux (
i) \ Hx; (10)x 2 Ds(
i), 
i � 
 � P . Such a function � can be made by induction on 
i, altering �inductively on compact parts in X(�1;0)Tj, where Tj is a cross section through 
i (for 
ian isolated periodic orbit) or a cross section from a Markov partition (for 
i a nontrivialbasic set). Construct in an analogous manner a function ~� near � and a nearby systemof compatible laminations fFu(~
i)g for ~� ~� ~X ; soFux(~
i) = Fcux (~
i) \ Hx; (11)x 2 Ds(~
i), ~
i � ~
� ~P .We construct the required homeomorphism h : W s(
i) ! W s(~
i) by induction oni. The induction starts by taking an equivalence h = g between repellers of X andrepellers of ~X . Suppose h is constructed on Si�1j=1W s(
j). When de�ning h on W s(
i),we have to arrange that h maps orbits inW u(
j)\W s(
i) to orbits inW u(~
j)\W s(~
i).Simultaneously we will alter ~� near supp (~� � 1) so that following the construction of hbelow,h(Ds(P )) = Ds( ~P ) (12)13



and h(x) 2 Hx; (13)for x 2 Ds(
�P ). When changing ~�, this will be done so that ~� will remain smooth withinunstable manifolds; though altering ~� will alter fFu(~
i)g, this will still be a compatiblesystem of unstable laminations.We will �rst de�ne h on Ds(
i). A second induction on the basic sets 
j, 
j � 
iwill be performed. Suppose 
j � 
i.1. Suppose there is no k with 
j � 
k � 
i.First consider the case that 
i is a singularity of saddle type. ThenW u(
j)\Ds(
i)is compact. Denote by � : W u(
j) 7! 
j the projection �(x) = Fux(
j) \ 
j . Takea near identity homeomorphism h on W u(
j) \Ds(
i), so thath(x) � Fuh��(x)(~
j): (14)This is possible since Fu(~
j) is near Fu(
j) and leaves of Fu(
j) intersect W s(
i)transversally. Observe that h maps W u(
j) \Ds(
i) near W u(~
j) \Ds(~
i); alter~� near W u(~
j) \Ds(~
i) so that h(W u(
j) \Ds(
i)) = W u(~
j) \Ds(~
i).Suppose 
i is an attracting singularity. Here leaves of Fu(
j) may intersect Ds(
i)nontransversally. Take a near identity homeomorphism ĥ de�ned on a neighbour-hood of W u(
j)\Ds(
i) in W u(
j), so that (14) holds. Again this is possible sinceFu(~
j) is near Fu(
j). Let h be the restriction of ĥ to W u(
j)\Ds(
i); by altering~� near W u(~
j) \Ds(~
i), h maps W u(
j) \Ds(
i) into Ds(~
i).Next suppose that 
i � 
 � P and 
i is not an attracting periodic orbit. Write@Ds(
i) = @intDs(
i)[@extDs(
i), where @intDs(
i) = X(0;1)(@Ds(
i))\@Ds(
i).First de�ne h on Ds(
i) \W u(
j) near @extDs(
i), subject to (14) andh(x) � g(W s(O(x))): (15)This is possible since Fu(~
j) is near Fu(
j) and leaves of Fu(
j) intersect W s(
)transversally. Extending h for positive time by conjugacy, h is de�ned on Ds(
i) \W u(
j) near @intDs(
i). We can then extend h to Ds(
i) \W u(
j) so that (14)and (15) hold [NPT,1983]. Again, h maps W u(
j)\Ds(
i) near W u(~
j)\Ds(~
i).By altering ~� we obtain h(x) 2 Hx for x 2 W u(
j) \Ds(
i).The case that 
i is an attracting periodic orbit can be treated similarly; take ĥ onW u(
j) near @extDs(
i) so that (14) holds, ĥ is de�ned on W u(
j) near @intDs(
i)by conjugation. Extend ĥ to W u(
j) near Ds(
i) subject to (14). Let h be therestriction of ĥ to W u(
j) \Ds(
i) and alter ~� as before.14



2. Suppose 
j � 
k1 � : : : � 
km , where 
kg , 1 � g � m are the critical elementswith 
kg � 
i. By induction h is constructed on Smg=1W u(
kg )\Ds(
i). Note thath is thus already constructed on a compact subset of Ds(
i).h has already been de�ned on Smg=1W s(
kg ). Observe that 
kg is of saddle type, sothat Fu(
kg ) has one dimensional leaves. We require h to map Fu(
kg ) to Fu(~
kg):let �g be a projection �g(x) = Fux(
kg )\W s(
kg ) (there can be more then one pointin this intersection; choose one) and de�ne h near W u(
j) \ W s(
kg ) as a nearidentity map withh(x) � Fuh��g(x)(~
j): (16)By compatibility of fFu(
i)g we can this way de�ne h on W u(
j) \ V, where V isa small neighbourhood of Smg=1W u(
kg ) \Ds(
i) in Ds(
i).As above we de�ne h on the complementW u(
j)\ (Ds(
i)�V). Alter ~� as before.Having de�ned h on Ds(
i), we now extend h to W s(
i). We de�ne h on W s(
i) byconjugationh � (��X)t = (~�~� ~X)t � h: (17)Since h as de�ned on strange attractors and repellers is an equivalence and in generalnot a conjugation, we must alter h near strange attractors and repellers. Suppose 
iis a strange attractor. Let Es(
i) be a fundamental domain as in lemma 2.5 and writeF s(
i) = X�(Es(
i)) for some � > 0. Take Es(
i) su�ciently near 
i so that it iscontained in the region foliated by H. It follows from the proof of lemma 2.5 that wemay take Es(
i) so that leaves of H intersect Es(
i), F s(
i) transversally. Multiplying~� ~� ~X by a continuous positive function ~ with supp ( ~ � 1) contained in X(0;�)(Es(
i))and replacing ~� ~� ~X by ~ ~� ~� ~X we obtain h(x) 2 Hx for x 2 F s(
i). Then extend h toSt>0Xt(F s(
i)) by letting h act as the identity on leaves of H. Near strange repellers, his de�ned analogously.Observe that by construction, h(x) 2 Hx for all x near 
� P . Note further that theequivalence h satis�esh(Fu(
j)) = Fu(~
j);except near strange attractors and strange repellers. Near a strange attractor or a strangerepeller 
j, h maps Fcu(
j) \ H to Fcu(~
j) \ H.Remains to prove continuity of h. By construction, h is continuous when restrictedto stable sets of basic sets. Suppose inductively that h restricted to Sni=j+1W s(
i) iscontinuous. We may assume that 
j is not a repelling critical element, for in that casecontinuity of h is clear. Let fxng be a sequence of points converging to x 2 W s(
j). Since15



h is continuous restricted toW s(
j), we may assume that xn 2 Sni=j+1W s(
i) by taking asubsequence. Observe h(xn) 2 Sni=j+1W s(~
i) and h(x) 2 W s(~
j). Continuity of h followssince h maps Fuxn(
j) to Fuh(xn)(~
j) (Fcu(
j) \ H to Fcu(~
j) \ H near a strange attrac-tor or a strange repeller) and these leaves intersectsW s(
j) resp. W s(~
j) transversally.

16



3 Stable families of vector �eldsWriteX
 = fX 2 X; X satis�es axiom A + no cyclesg:Consider, for a compact interval I � R, the set C1(I;X
) of smooth one parameterfamilies of vector �elds in X
. In this section we investigate which of these families areW -stable. Recall that Xstr stands for the class of vector �elds from X
 that satisfy thestrong transversality condition.Let fX�g 2 C1(I;X
). The nonwandering set of X� depends on �, but we willsuppress this dependence from the notation. An orbit of heteroclinic tangency is an orbit
 in W u(
p) \W s(
q), where 
p, 
q are basic sets, so thatdim(T
W u(
p)� T
W s(
q)) < 3:Suppose fX�g has an orbit of heteroclinic tangency at � = �0. The orbit of heteroclinictangency is said to unfold generically, if1. dim(T
W u(
p)� T
W s(
q)) = 2.2. The tangency of W u(
p) and W s(
q) along 
 is quadratic [NPT,1983].3. S�(W u(
p); �) and S�(W s(
q); �) intersect transversally along 
 � f�0g �M � I.In case 
p is a critical element with one dimensional unstable manifold, or 
q is a criticalelement with one dimensional stable manifold, condition 2. is empty.Suppose 
q is a singularity with dim W s(
q) = 2 and the spectrum spec DX�(
q) con-sists of three di�erent real numbers. LetW c(
q) denote a two dimensional centre unstablemanifold. Although W c(
q) is not unique, any two centre unstable manifolds have thesame tangent bundle along W u(
q). Similarly, for a singularity 
p with dim W u(
p) = 2and spec DX�(
q) � R, we write W c(
p) for a two dimensional centre stable manifold.Theorem 3.1 Let I be a compact interval in R and let fX�g 2 C1(I;X
) be such thatfor � 2 @I, X� 2 Xstr.Necessary and su�cient conditions for the family fX�g to be W -stable, are1. Each heteroclinic bifurcation of fX�g unfolds generically.2. At each parameter value, fX�g has at most one orbit of heteroclinic tangency.3. Suppose 
 2 W u(
p) \W s(
q) is an orbit of heteroclinic tangency, where 
p, 
qare basic sets.If 
q is a singularity with dim W s(
q) = 1, spec DX�(
q) � R and further W u(
q)is not contained in the stable manifold of an attracting critical element, then17



� spec DX�(
q) consists of three di�erent real numbers,� W c(
q) intersects W s(
p) transversally along 
 for � = �0,� W uu(
q) is contained in the stable manifold of an attracting critical element.If 
p is a singularity with dim W u(
p) = 1, spec DX�(
p) � R, and furtherW s(
p)is not contained in the unstable manifold of a repelling critical element, then� spec DX�(
p) consists of three di�erent real numbers,� W c(
p) intersects W u(
q) transversally along 
 for � = �0,� W ss(
p) is contained in the unstable manifold of a repelling critical element.4. If 
 2 W u(
p)\W s(
q) is an orbit of heteroclinic tangency, where 
p;
q are basicsets, then one of the following two conditions holds:� 
q is a critical element and W s(
p) is contained in the unstable manifold of arepelling critical element, or� 
p is a critical element and W u(
q) is contained in the stable manifold of anattracting critical element.We remark that the equivalence h� we will construct when the conditions in the state-ment of the theorem are satis�ed, is such that (x; �) 7! h�(x) is continuous restricted toS�(W s(��); �) and S�(W u(��); �), for any orbit �� � 
.Given a two dimensional manifold N , let A
 be the set of di�eomorphisms on N thatsatisfy axiom A and the no-cycle condition. Let Astr be the set of di�eomorphisms fromA
 that satisfy the strong transversality condition. Applying theorem 3.1 to the suspen-sion of di�eomorphisms on N yields the following corollary, compare [MeSt,1987].Corollary Let I be a compact interval in R and let f� 2 C1(I;A
) be such that, for� 2 @I, f� 2 Astr. Necessary and su�cient conditions for the family f� to be W -stable,are items 1, 2, 4 in the statement of theorem 3.1.Proof of sufficiency. By f ~X�g we denote a small perturbation of fX�g. We wishto construct a map (h�; �) : M � I ! M � I, where � is a homeomorphism and h� is ahomeomorphismwhen restricted to stable and unstable manifolds, providing a topologicalequivalence along stable and unstable manifolds.We start with the observation that it su�ces to provide the proof for � near a bifur-cation value �0 [NPT,1983]; this follows by proving the theorem for familiesN(�)X� + (1 �N(�)) ~X�; M(�)X� + (1 �M(�)) ~X�;18



for smooth functions N;M : I ! [0; 1], requiring (h�; �)(x; �) = (x; �) if N(�) =M(�).Because critical elements of X� are dense in 
, it further su�ces to restrict to valuesof � near a bifurcation value �0 where the stable and unstable manifolds of two criticalelements have a tangency. Write 
 2 W u(
p) \ W s(
q) for the orbit of tangency at� = �0. Taking into account the above considerations and up to reversing the directionof time we must study the following cases (P � 
 is the set of singularities).1. 
p;
q � 
� P .2. 
p � P , 
q � 
� P .3. 
p;
q � P .Section 3.1 contains the proof ofW -stability for case 1, where at � = �0 the stable andunstable manifold of two periodic orbits are tangent. Such a family is not structurallystable [Pal,1978], [NPT,1983]. Section 3.2 then contains the proof of theorem 3.1 in case 2where in addition DX�(
p) possesses two complex conjugate stable eigenvalues and onereal unstable eigenvalue. Also such a family is not structurally stable [Bel,1986]. Theremaining cases give in fact structurally stable families and can be treated similarly, seealso [LaPl,1993].Proof of necessity. It is clear that W -stable families have at most one orbit ofheteroclinic tangency at each parameter value and have generically unfolding bifurcations.Also necessity of item 3 is easily recognised.We prove that W -stable families satisfy item 4 in the statement of the theorem. Wemay assume that the tangency is between stable and unstable manifolds of critical ele-ments, since these lie dense in the nonwandering set. We only consider the case where thestable and unstable manifold of two periodic orbits are tangent, the other possibilities aretreated similarly. The proof is a simple counting argument, counting intersections of sta-ble and unstable manifolds, and is simpler then the proof that families with a heteroclinictangency are not structurally stable [Pal,1978], [NPT,1983], [MeSt,1987].Write �; � for the periodic orbits in 
p resp. 
q with the orbit of heteroclinic tangency
 2 W u(�) \W s(�) at � = �0. Let � denote the positive characteristic multiplier of theperiodic orbit � (� = limt!1 1t lnkD(X�)t(x)vkkvk ; x 2 �; v 2 TxW u(x)) and let � denote thenegative characteristic multiplier of �. If item 4 does not hold, there exist orbits �, � in
 withW u(�) \W s(
p) 6= ;;W s(�) \W u(
q) 6= ;: 19



These intersections are transverse and therefore, by the �-lemma,W u(�) accumulates onW u(
p) and W s(�) accumulates on W s(
q). If W s(�) is an immersed M�obius band, letT� denote twice the period of �, otherwise let T� denote the period of �. Similarly, ifW u(�) is an immersed M�obius band, let T� denote twice the period of �, otherwise let T�denote the period of �. Let � be a cross section transverse to 
. Take coordinates (x; y)on � withW s(�) \ � = fy = 0g:We may assume that � is part of a cross section S transverse to �. By a small perturbationof fX�g, we may assume that the time T� map (X�)T� maps S into itself (actually into alarger section extending S) and is linear in suitable smooth coordinates (compare �gure 2).It is now easily seen that components Bn of W s(�) \� exist so that, in a metric d on �,d(Bn;W s(�) \ �) � e�nT��; (18)where � means equal up to a positive factor that may depend on n; � but is bounded andbounded away from zero uniformly in n and �. By the de�nition of T�, the eigenvalues of(X�)T� restricted to S are positive. Therefore, the components Bn are all on one side ofW s(�) \ �. Similarly, components An of W u(�) \ � exist so thatd(An;W u(�) \ �) � enT��: (19)By the choice of T�, all components An are on one side ofW u(�)\�. Write �n for the topsof the parabolas An (viewing An as the graph f(x; yn(x))g of a map yn). If one of W s(�),W u(�) is an immersedM�obius band, we can choose components An; Bn so that �n and Bnare contained in one connected component of fy 6= 0g. We may assume this componentto be fy > 0g, then. If both W s(�), W u(�) are immersed annuli, it may happen that thepoints �n are in the other component of fy 6= 0g then the curves Bn.Consider �rst the case where both Bn; �n � fy > 0g. For each i 2 N, let n(i) be thesmallest integer so that Bn(i) is below �i, see �gure 1. TheneiT�� � e�n(i)T��:So, choosing two components Ai, Aj, i < j, the number n(j) � n(i) of components Bnintersecting Ai but not Aj satis�ese(j�i)T�� � e�(n(j)�n(i))T��Taking logarithms and letting j � i!1, this yieldsn(j)� n(i)j � i ! �T��T�� : (20)20



Since an equivalence h� (at � = �0) has to preserve the quotient (n(j) � n(i))=(j � i),it follows that �T��=T�� is an invariant (`modulus') of W-stability. Observe that theoccurence of this modulus is directly related to the geometry of intersections of stableand unstable manifolds, at the bifurcation value � = �0.AiAjW u(�)Bn(i)Bn(j)W s(�) Bn(i)AiW u(�)W s(�)Figure 1: Stable and unstable manifolds intersecting �. In both pictures, Bn � fy > 0g.In the left picture, the tops of the parabolas An are contained in fy > 0g when � = �0.In the right picture, where � = �i, the tops of the parabolas An are, for � = �0, containedin fy < 0g.Now suppose the tops of the parabolas An and the curves Bn are, for � = �0, indi�erent connected components of fy 6= 0g, for de�niteness, say Bn � fy > 0g and�n � fy < 0g. Here we will �nd a modulus of W -stability by varying �. Let �i be thebifurcation value where Ai is tangent to W s(�). Let n(i) be the smallest integer so thatBn(i) is below �0 at � = �i, see �gure 1. Then, at � = �i,eiT�� � e�n(i)T��:Letting i!1,n(i)i ! �T��T�� : (21)Again it follows that �T��=T�� is an invariant of W-stability.3.1 Heteroclinic orbits between periodic orbitsHere we prove W -stability of families fX�g satisfying the conditions of theorem 3.1, for �near a bifurcation value �0 where the stable and unstable manifolds of two periodic orbitsin basic sets 
p, 
q have a tangency. By reversing the direction of time if necessary, wemay assume that 
q is an isolated periodic orbit and W u(
q) �W s(
r) for an attracting21



critical element 
r. Write 
 for the orbit of tangency in W u(
p) \ W s(
q) at � = �0.The perturbed family f ~X�g has an orbit ~
 of heteroclinic tangency in W u(~
p) \W s(~
q)near 
 at a parameter value ~�0 near �0.Choose an ordering � of the basic sets 
1; : : : ;
N of fX�g so that for � = �0, ifW u(
i) \ W s(
j) 6= ;, then 
i � 
j. Possibly renumbering the basic sets, we mayassume
1 � : : : � 
N ;for all values of � 2 I. The perturbed family f ~X�g has nearby basic sets ~
i with ~
1 �: : : � ~
N .Let H be a codimension one foliation near 
�P with leaves transverse to the 
ow, asin the proof of theorem 2.6. Like in that proof, we replace fX�g by f��X�g, where �� isa smooth positive function with supp �� contained in a small neighbourhood of the unionof isolated periodic orbits and nontrivial basic sets of saddle type, so that H is locally(��X�)t invariant near these basic sets. Similarly de�ne a function ~�� near �� so that H islocally (~�� ~X�)t invariant near isolated periodic orbits and nontrivial basic sets of saddletype, with further �� = ~�� if X� = ~X�.We want to construct compatible systems of unstable laminations. For some function�� we construct a compatible system of unstable laminations fFu(
i)gi6=q;r for f����X�g.The function �� will be a positive continuous function, (x; �) 7! ��(x) will be smoothwhen restricted to unstable manifolds S�(W u(��); �), �� an orbit in 
, and supp (��� 1)is outside a neighbourhood of 
. As before we can choose �� and construct fFu(
i)gi6=q;rso that Fux(
i) � Hx, x 2 Ds(
i), for 
i � 
 � P . A foliation F(
q), compatible withfFu(
i)gi6=q;r, is obtained as follows. Choose Q 2 
q. Let Ds(
q) be a fundamentaldomain for the Poincar�e return map on W s(
q) \ HQ. Take Ds(
q) so that 
 \ HQ 6�@Ds(
q), see �gure 2. Near 
 \ Ds(
q) let F1 = Fu(
p). Near Ds(
q) but outside aneighbourhood of 
 \ Ds(
q), a foliation F2 is de�ned as in the proof of lemma 2.4.Average F1;F2 to get a foliation F near Ds(
q). By altering �� we may assume Fx � HQ,x 2 Ds(
q). Again we take �� restricted to unstable manifolds of orbits to be a smoothfunction. Saturate for positive time the leaves of F in HQ to obtain F(
q). Note thatleaves of F(
q) are tangent to W s(
q) along 
 at � = �0. Finally, leaves of the unstablefoliation Fu(
r) are single points, since 
r is an attracting critical element. Observethat the system fFu(
i);F(
q)gi6=q is compatible. A continuous positive function ~��and a compatible system of foliations fFu(~
i);F(~
q)gi6=q for f~�� ~�� ~X�g is constructedanalogously, with ~�� = �� and Fu(~
i) = Fu(
i), F(~
q) = F(
q) if ~X� = X�.Now we de�ne the reparametrization � : I ! I. Let � � HQ be a small neighbourhoodin HQ of 
 \ HQ. Take coordinates (x1; x2) on � in which Ds(
q) = fx2 = 0g and writeFu(
p) = f(x1; f�(x1; x2))g; 22



W s(Q)W u(Q)
qDs(
q)
Figure 2: The foliation F(
q) near the fundamental domain Ds(
q).where for each x2 an � � 
 exists so that graph (x1; �) 7! f�(x1; x2) � S�(W u(�); �) �M � I. We claim that the function f�(x1; x2) can be chosen with the following properties:(x1; �) 7! f�(x1; x2) is smooth; (22)(x1; x2; �) 7!  @@x1!i f�(x1; x2) is continuous for all i; (23)@@x1f�0(0; 0) = 0; (24) @@x1!2 f�0(0; 0) 6= 0; (25)@@�f�0(0; 0) 6= 0: (26)The �rst item follows since Fu(
i) de�nes a smooth foliation of unstable manifoldsS�(W u(��); �), �� an orbit in 
 [HPS,1977]. The second item holds because Fu(
p)is a lamination, while the other items follow from the fact that we have a genericallyunfolding heteroclinic tangency. Let x1 = c�(x2) be the curve at which @@x1f�(x1; x2) = 0,c� is a continuous function by (23), (24), (25). Let ~� � HQ be a small neighbourhood of~
 \Ds(~
q). Take coordinates (~x1; ~x2) on ~� with W s(~
q) \ ~� = f~x2 = 0g and writeF(
q) = f(~x1; ~f�(~x1; ~x2))g;where the function ~f� satis�es similar properties as f�. Let ~x1 = ~c�(~x2) be the continuouscurve at which @@~x1 ~f�(~x1; ~x2) = 0. By (26) we can de�ne a homeomorphism � : I ! Iso that c�(0) � W u(�) for some orbit � � 
 implies ~c�(�)(0) � W u(g(�)) -where g is a23



topological equivalence between 
 and ~
-. We can de�ne � so that �(�) = � if X� = ~X�.Note that if W u(
i) and W s(
q), 
i � 
p, have a tangency for � = �, then W u(~
i) andW s(~
q) have a tangency for � = �(�).Now we construct an equivalence between the families fX�g and ~X�(�). Inductively,we de�ne h� on the stable manifolds W s(
j), j 6= q; r, as in the proof of theorem 2.6. Inthis construction, ~�� is altered so as to geth�(x) 2 Hx; (27)for x 2 Ds(
j) in case 
j � 
� P , orh�(x) � Ds(~
j); (28)for x 2 Ds(
j), if 
j � P . Next we de�ne h� on Ds(
q). By the demand that h� mapsfFu(
j)g to fFu(~
j)g, since h� has already been de�ned on the space W sloc(
p) of leavesFu(
p), h� is de�ned on a small neighbourhood U of 
 \Ds(
q) in Ds(
q). Alter ~�� nearU to get (27) for x 2 U . On Ds(
q) � U , h� is de�ned as in the proof of theorem 2.6.Alter ~�� as before to get (27) for x 2 Ds(
q) and extend h� to W s(
q) by conjugacy.Finally we de�ne h� on W s(
r). Take a homeomorphism i� on N s(
q) {a fundamentalneighbourhood in HQ extending Ds(
q){ that extends h� on Ds(
q), maps Fu(
p) toFu(~
p) and satis�es (27) for x 2 N s(
q). Let h� on a neighbourhood of W u(
q)\Ds(
r)be de�ned by h�((����X�)t(x)) = (~�� ~�� ~X�)t(x), for x 2 N s(
q), (����X�)t(x) 2 Ds(
r).This de�nes h� on a neighbourhood U of W u(
q) \ Ds(
r) in Ds(
r). By altering ~��,(27) resp. (28) holds with j = r, if 
r � 
 � P resp. 
r � P . Extend h� to Ds(
r)� Uas in the proof of theorem 2.6; alter ~�� so that (27) resp. (28) holds. The remainder ofthe construction of h� is again as in the proof of theorem 2.6.By the same argument as before, h� is continuous outside orbits of heteroclinic tan-gency. It is then clear from the construction of h� near an orbit of heteroclinic tangencythat h� is continuous restricted to stable and unstable manifolds.3.2 Spiral-like invariant manifoldsSuppose fX�g has an orbit 
 � W u(
p) \W s(
q) of heteroclinic tangency at � = �0,where 
p is a singularity and 
q is a periodic orbit or a nontrivial basic set. In this sectionwe further assume that dim W u(
p) = 1 and spec DX�(
q) consists of one positive realeigenvalue and two complex conjugate eigenvalues with negative real part. By [Str,1982],[Bel,1986], fX�g is a structurally unstable family. We prove in this section that, providedthe conditions of theorem 3.1 are satis�ed, fX�g is a W -stable family. We consider thecase where W u(
q) � W s(
r) for an attracting critical element 
r. The case whereW s(
p) is in the unstable manifold of a repelling critical element is treated analogously.24



Replace fX�g, f ~X�g by f��X�g, f~�� ~X�g as before. Construct a compatible system ofunstable foliations fFu(
i)gi6=q;r for f����X�g, for a continuous positive function �� withsupp (�� � 1) outside a neighbourhood of 
, as in the previous section. Similarly, ~�� ~X�is replaced by ~�� ~�� ~X� and a compatible system of unstable laminations fFu(~
i)gi6=q;r forf~�� ~�� ~X�g is constructed. Let U � Ds(
q) be a small interval containingW u(
p)\Ds(
q)in its interior for � = �0. Through U we de�ne a foliation F(
q) to be equal to Fu(
p).Through Ds(
q) � U , F(
q) is de�ned as before. Observe that leaves of F(
q) are nottransverse to W s(
q) along 
. A foliation F(~
q) is de�ned similarly.

p � 
qW s(
q)W s(
q) \ �Figure 3: The spirals S(
p) in �.Now we de�ne the reparametrization � : I ! I. Let � be a small cross sectionextending U . Consider the foliation L(
p) of a neighbourhood of W u(
p) (excludingW u(
p)) with leavesLx(
p) = [t�0 (X�)tFux(
p); x 2 Ds(
p):This induces a foliation S(
p) of �� (W u(
p) \ �) with spiral-like leavesSx(
p) = Lx \ �; x 2 �;see �gure 3. Take coordinates (x1; x2) on � in which U = fx2 = 0g and 
 \ � = (0; 0).Parametrize the spirals Sx(
p) by (r; t; �) 7! f�(r; t), where for each r an � � 
 exists sothat f(f�(r; t); �); � 2 I; t 2 [0;1)g � S�(W u(�); �) �M � I. We claim that f� can bechosen with the following properties.(t; �) 7! f�(r; t) is smooth; (29)25



(r; t; �) 7!  @@t!i f�(r; t) is continuous for all i; (30)@@t�(f�(r; t)) 6= 0; (31)where �(x) is the angle of the vector x with the positive x1-axis.limt!1 ��(r; t) ! 1; (32)where ��(r; t) is the curvature of Sx(
p) at x = f�(r; t).@@�f0(r; t) 6= 0: (33)The veri�cation of these properties is postponed to lemma 3.2. Let x1 = c�(x2) bethe curve at which @@x1f�(x1; x2) = 0. By (30), (31), (32), c� is a continuous func-tion. For f ~X�g we take a cross section ~� near � and maps ~f� parametrizing the spiralsS(~
p) possessing similar properties as f�. Let ~x1 = ~c�(~x2) be the continuous curve atwhich @@~x1 ~f�(~x1; ~x2) = 0. By (33) we can de�ne a homeomorphism � : I ! I so that ifc�(0) � W u(�) for some orbit � � 
, then ~c�(�)(0) � W u(g(�)) {where g is a topologicalequivalence between 
 and ~
{.Finally an equivalence h� between X� and ~X�(�) must be constructed. Inductively,we de�ne h� on Sj 6=q;rW s(
j) just as in theorem 2.6. The de�nition of h� on Ds(
q)proceeds as in the previous section; near 
 \ Ds(
q) h� is de�ned by the demand thath� maps Fu(
p) to Fu(~
p) (we know h� on the space W sloc(
p) of leaves of Fu(
p)) andDs(
q) into Ds(~
q). Having de�ned h� on Ds(
q), extend h� to W s(
q) by conjugation.To de�ne h� on Ds(
r), we proceed as follows. Extend h� as de�ned on Ds(
q) to a mapi� on a fundamental neighbourhood extending Ds(
q), mapping maps F(
q) to F(~
q)and satisfying (27) with j = q. By conjugacy this de�nes a homeomorphism h� on aneighbourhood U of W u(
q)\Ds(
r) in Ds(
r). The remaining part of the constructionof h� goes as in the previous section.Lemma 3.2 (29),: : : ,(33) above hold.Proof. Properties (29), (30), (33) follow since S is a lamination, unstable manifoldsvary smoothly in �, and the heteroclinic bifurcation at � = �0 unfolds generically. Takea coordinate chart (x; y; z) near 
p so thatfz = 0g � W s(
p); (34)f(x; y) = 0g � W u(
p): (35)Multiplying fX�g with a smooth positive function, we may assume that in cylindriccoordinates (r; �; z),X� = F (r; �; z) @@r + ! @@� +G(r; �; z) @@z : (36)26



This implies (31). Consider the time 2�=! 
ow f = (X�)2�=! of X�. Write � � i! and �for the eigenvalues of DX�(0), so � < 0, � > 0. We haveDf(0) = 0BB@ � 0 00 � 00 0 N 1CCA ;where 0 < � = e�2�=! < 1, N = e�2�=! > 1. A formal computation, which we leave to thereader, shows that we may take smooth coordinates near 0 in R3 so that in factf(x; y; z) = 0BB@ �x+ xs(x; y; z)�y + ys(x; y; z)Nz + t(z) + zr(x; y; z) 1CCA ; (37)with s; r = O(k(x; y; z)k2), t = O(jzj2). Lift f to f (1) on R3 � G2(R3), where G2(R3) isthe Grassmannian manifold of two-planes in R3, byf (1)(x; �) = (f(x);Df(x)�): (38)For any � � T0W u(0),f (1)(0; �) = (0; �): (39)With T�G2(R3) = L(�;�?) �= L(R2;R),Df (1)(0; �)jf0g�L(�;�?)v = (Df(0)j�?) � v � (Df(0)j�)�1= (�) � v �  1=� 00 1=N ! :Thus one sees that, in natural coordinates T(0;�)(R3 �G2(R3)) �= R3 � L(R2;R) �= R5,Df (1)(0; �) = 0BB@ Df(0) 0* 1 00 �=N 1CCAWe claim that Df (1)(0; �) is in fact diagonal (so � = 0). To see this we may take � equalto the x; z-plane. Then, writing V = V1u1 + V2u2, V1; V2 2 R,Df(x; y; z)0BB@ u1Vu2 1CCA = 0BB@ �+ s+ x @s@x x @s@y x @s@zy @s@x � + s+ y @s@y y @s@zz @r@x z @r@y N + r + z @r@z + @t@z 1CCA0BB@ u1Vu2 1CCA :By (37), the o�-diagonal terms of Df(0) are of second order; Df (1)(0; �) is thereforediagonal. 27



Similarly, lift f to the induced map f (2) on the space of 2-jets of two dimensionalmanifolds. In a chart near (x; �) 2 R3 �G2(R3), this is the spaceR3 � L(�;�?)� L2sym(�;�?);where L2sym(�;�?) � L(�;�? �L(�;�?)) is the space of the symmetric quadratic forms.A computation as above shows that we can writeDf (2)(0;0;0) = 0BBBBBBBBBB@ Df (1)(0) 0* �=N2 0 0 00 1=N 0 00 0 1=N 00 0 0 1=� 1CCCCCCCCCCA :Note 0 < �=N2; 1=N < 1 and 1 < 1=�. The following can now easily be deduced (see[DFN,1984]): the principal curvatures of Lx(
p) at a point x near W u(
p) consist ofone large and one small positive number, the principal directions are almost perpendic-ular. The principal direction corresponding to the larger principal curvature is almostperpendicular to the z-axis, the principal direction corresponding to the smaller principalcurvature is almost parallel to the z-axis. (32) follows.
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