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Abstract

We study one parameter families of vector fields that are defined on three dimen-
sional manifolds and whose nonwandering sets are structurally stable. As families,
these families may not be structurally stable; heteroclinic bifurcations that give rise
to moduli can occur. Some but not all moduli are related to the geometry of sta-
ble and unstable manifolds. We study a notion of stability, weaker then structural
stability, in which geometry and dynamics on stable and unstable manifolds are
reflected. We classify the families from the above mentioned class of families that
are stable in this sence.



1 Introduction

In this paper we are concerned with stability of families of vector fields. If for a family of
vector fields the structure of the nonwandering set and how this varies with a parameter is
the subject of interest, the notion of stability to be considered would be -stability. This
notion is too weak if one is also interested in, say, the geometry of basins of attraction.
From simple examples it is clear that structural stability is too strong an equivalence rela-
tion for such a purpose; even an elementary bifurcation as a heteroclinic tangency between
stable and unstable manifolds of two periodic orbits gives rise to invariants of structural
stability (‘moduli’). The geometry of stable and unstable manifolds may however not be
affected, but behave similar for all nearby families. For this reason we introduce a notion
of stability suited for studying the geometry and dynamics on stable and unstable sets.
Then, for a class of one parameter families consisting of {)-stable vector fields on a three
dimensional compact manifold, we classify the stable ones with respect to this notion of
stability.

Below we give precise definitions and a discussion. The paper is further organised as
follows. In chapter 2 we prove a well known structural stability theorem (theorem 2.6) for
single vector fields using methods which will prove usetul in studying stability theorems
for families. This then is pursued in chapter 3, where our main theorem (theorem 3.1) is
stated and proved.

I acknowledge useful discussions with Sebastian van Strien.

1.1 Preliminaries

Let M be a compact connected 3 dimensional manifold and let X be the class of smooth
vector fields on M, equipped with the Whitney topology.

We recall a number of notions. For X € X and « € M, the stable set W*(x) of x is
defined by

We(x) ={y € M, Xi(y) — Xi(2),t — oo},
where X; is the flow of X. For an orbit O(z),

W2(0(x)) = (J W*(Xu(x)).
teR
Observe that W*(O(x)) is laminated by the stable sets W*(y), y € O(x). Similarly, the
unstable sets W*(x) and W*(O(x)) are defined, replacing X; in the above definitions by
X_4.
The nonwandering set () of X is the union of points x € M so that, for every neigh-
bourhood U of x, there are arbitrarily large 7' > 0 with X7 (U )NU # (). The nonwandering



set is a compact invariant set. A compact invariant set A is hyperbolic, if there is a DX,
invariant splitting TM = FE* & (X) & E* along A, where (X) denotes the line bundle
spanned by X and where further, for some C,, C, >0, v* <0, v* > 0,

HDXt|ESH S CseySt, t > 0, (1)
|DX:|ga|] < Cue”™, t<0. (2)

A vector field X is said to obey axiom A, if  is hyperbolic and the critical elements
(singularities and periodic orbits) are dense in 2. The relevance of this definition is

explained by the spectral decomposition theorem:

Theorem 1.1 [Sma,1967], [PuSh,1970] If X obeys axiom A, then the nonwandering

set Q of X is a finite union Q0 U...UQyN of components, each containing a dense orbit.

Component has its usual meaning as relatively open and closed subset. These com-
ponents are called basic sets. A basic set can be either a singularity, a periodic orbit, or
a nontrivial basic set equal to the closure of a countable number of periodic orbits (and
without singularities). Further, the stable sets of points and orbits in a basic set §; are
injectively immersed manifolds with T"W?(x) and T"W?*(O(z)) depending continuously
on x € ; for all r. Analogously for unstable sets.

There are a number of concepts expressing stability, that is robustness of certain
aspects of the dynamics under perturbation of the vector field. We recall the notions of
Q-stability and structural stability. A vector field X is called structurally stable, if, for
sufficiently small perturbations X of X, there exists a near identity homeomorphism A
on M, mapping orbits of X to orbits of X. Such a homeomorphism is called a topological
equivalence. Observe that a topological equivalence maps stable and unstable sets of
orbits to the stable and unstable sets of the corresponding orbits, but may not map stable
and unstable sets of points to the stable and unstable sets of the corresponding points
(as a conjugacy ho X; = X,0h would). If a topological equivalence exists restricted
to the nonwandering set of X, for all sufficiently small perturbations of X, we call X
Q-stable. We recall two stability theorems, providing sufficient conditions for 2-stability
and structural stability. Let X be a vector field obeying axiom A. A cycle is a sequence
Qs i, Qs = ) of basic sets so that

(W (82,) = Qi) O (WP ( Qi) — Qi) # 0

i1 in>s

We say X satisfies the no-cycle condition, if there are no cycles. The vector field X is said
to satisfy the strong transversality condition, if all intersections of stable and unstable

manifolds of orbits in §) are transversal.

Theorem 1.2 [PuSh,1970] If X obeys axiom A and the no-cycle condition, then X is
Q-stable.



Theorem 1.3 [Rob,1974], [Rob,1975] If X obeys axiom A and the strong transver-

sality condition, then X is structurally stable.

The proof of theorem 1.3 in [Rob,1974], [Rob,1975] is by analytical methods; the
desired topological equivalence between X and a sufficiently small perturbation of X is
written as the solution of an equation which is then solved using the implicit mapping
theorem. In section 2 we give a proof of theorem 1.3 for vector fields on three dimensional
manifolds by geometric methods using ‘compatible systems of invariant foliations’. Such
a method was introduced by Palis [Pal,1969] to study structural stability of Morse-Smale
systems, see also [PaSm,1970]. After finishing this paper we found the paper [Ver,1996]
by J. Vera in which theorem 1.3 is proved, also by making use of compatible systems
of invariant foliations. In [Me,1973], invariant foliations were used to show structural
stability of two dimensional diffeomorphisms obeying axiom A and strong transversality.

The advantage of such a geometric proof is its possible extension to study stability of

families, see chapter 3.

1.2 Families

For an interval I, let C*°(I, X) denote the set of smooth one parameter families, equipped
with the uniform topology. Let {X,} € C*([,X). A parameter value g is called a bifur-
cation value of X, if X} is not stable (depending on the type of stability considered). To
compare different families undergoing bifurcations, one introduces notions of stability for
families, corresponding to those for individual vector fields. A family { X} is called struc-
turally stable if, for any sufficiently nearby family {)N( .}, there exists a homeomorphism

H:MxIT— M x I of the form

H(z,p) = (hu(x),n(p)),

where h, is a topological equivalence between X, and )N(n(u) and where 7 is order pre-
serving. One may instead demand H to be merely a bijection and 5 and x +— h,(x)
to be continuous, see [NPT,1983]. Similarly one defines Q-stability, restricting A, to the
nonwandering set.

We recall two results on structural stability of families of vector fields, as they hold on
three dimensional manifolds. The cited papers actually contain results on n dimensional

vector fields and also consider bifurcations where critical elements loose hyperbolicity.

Theorem 1.4 [PT,1983] Generic one parameter families of gradient vector fields on

compact three dimensional manifolds are structurally stable.



Theorem 1.5 [LaP1,1993] A generic one parameter family {X,} of vector fields on a
compact three dimensional manifold whose nonwandering set consists of a finite number

of hyperbolic critical elements and has no cycles is structurally stable, provided
o Stable and unstable manifolds of periodic orbits intersect transversally,

o Ifpis a singularity with one dimensional unstable manifold and complex conjugate
stable eigenvalues, then W (p) is contained in the stable manifold of an attracting
critical element.

If p is a singularity with one dimensional stable manifold and complex conjugate
unstable eigenvalues, then W?(p) is contained in the unstable manifold of a repelling

critical element.

Let {X,} be a one parameter family of vector fields on M and let v be an orbit of X,.
The family {X,} is said to be structurally stable at (v, u) if for all small perturbations
{Y,} of {X,}, there exists a topological equivalence between {X,} and {Y,} defined on
a neighbourhood of (7, i) in M x R. The cases where 7 is a heteroclinic orbit have been
studied in [Str,1982], see also [Bel,1986]. In [Ver,1996] a sufficient condition is supplied
for a family { X, } to be structurally stable, for parameter values near a specific parameter
value g, if it is known that X, possesses one heteroclinic orbit v and {X,} is structurally
stable at (v, p).

What strikes from these results is that the set of structurally stable families appears to
be rather small; even an elementary bifurcation such as a tangency between the stable and
unstable manifolds of two periodic orbits does not occur in a structurally stable family.
So, if one is interested in the geometry of and dynamics on stable and unstable sets near
bifurcations, structural stability is too strong an equivalence relation, whereas )-stability
is too weak. We thus think it makes sense to consider other equivalence relations in
studying families of vector fields. Specifically, we will study a notion of stability, which
we call W-stability, in which we only incorporate the geometry and dynamics on stable and
unstable manifolds. This will be pursued in the following section. We would at this point
like to comment that seeing the gap between W-stability and structural stability (compare
theorem 3.1 and the corollary following it with theorem 1.5 and results in [MeSt,1987],
[NPT,1983], [Ver,1996]) also provides a better understanding of structural stability.

1.3 W-stability

We start again with single vector fields before treating families. To study the geometry
of stable and unstable sets and the dynamics restricted to these sets, we propose the
following equivalence relation. A vector field X € X is W-stable, if a neighbourhood U of
X exists so that for all X € 2, there is a bijection h : M — M, mapping orbits of X to



orbits of X, with A near the identity and with the additional property that % restricted
to the stable set W?*(~) and to the unstable set W*(~v), for all orbits ~, is continuous.

For an orbit v, the geometry of W*(~) is preserved under h in the sense that if x, €
W#(~) converges to x € W?*(v), then h(xz,) € W*(h(y)) converges to h(z) € W*(h(y)).
Similarly for W*(v) and for intersections W*(~v) N\ W?(n), where n is a second orbit of X.
The map h is not required to be continuous on the closure of stable and unstable sets.

Let I be an interval in R and write C>°(1,%) for the set of smooth one parameter
families of vector fields on M, equipped with the uniform topology. A family {X,} €
C*>(1,%) is W-stable if, for each family {)N(M}, sufficiently near {X,}, there exists a
bijection H : M x I — M x I of the form

H(w, p) = (hu(e), n(p)), (3)

with 5 an order preserving homeomorphism and where £, gives, as above, an equivalence
between X, and )N(n(u).

For Q-stable families we could demand a continuous dependence of h, on pu, by re-
quiring (z, ) — hy(x) to be continuous restricted to U, (W?*(v,), 1) and U, (W*" (7). p),
where 7, is the continuation of an orbit in the nonwandering set of X,,.

We remark that in [PoTa,1993], for two nearby two dimensional diffeomorphisms pos-
sessing a homoclinic tangency (between stable and unstable manifolds of a hyperbolic
fixed point), the existence of a conjugacy restricted to the unstable manifold of the fixed
point is investigated. Compare further the definition of future stability in [Sma,1970] and
the definition of weak-C°-stability in [Tak,1974].



2 Stable vector fields

This section treats vector fields on M which satisfy axiom A and the strong transversality

condition. Write
X ={X € X, X satisfies axiom A + strong transversality}.

We construct stable and unstable foliations for vector fields in X, and then we use these
to provide a proof of theorem 1.3 for three dimensional vector fields.

Let X € X4,. The spectral decomposition theorem [Sma,1967], [PuSh,1970] gives that
the nonwandering set €} of X is a finite union y U ... U Qy of isolated critical elements
and nontrivial basic sets. Let €; be a nontrivial basic set. Define 0,(); as the set of points
x € Q; so that WpE.(x) N Q; accumulates only from one side on x. Similarly, 9,8, is

defined. The following lemma follows from [NePa,1973], see also [PT,1993].

Lemma 2.1 Let €; be a nontrivial basic set. Then there is a finite number of periodic

orbits 7,1 < j < ng, and v}, 1 < j < ny, so that

2,0 = on )W),

7=1
2,0, = N U Wu(’}/;)
7=1
|

The sets 9,9; and 9,); can still be empty. For example, if Q& = M, then both 9,0; = ()
and 9,9, = . If Q; is a strange attractor, then 9,; = 0 and 9,9Q; = Uiz, WH ().
Similarly, if €; is a strange repeller, then 0,0; = 0. If both 9,Q; # 0 and 9,Q; # 0, we
call Q; a (nontrivial) basic set of saddle type.

Suppose £2; is a nontrivial basic set. A Markov partition of size a > 0 consists of a finite
collection of cross sections 7T; containing boxes B;, i.e. diffeomorphic images ¢;([—1,1]?)

of the square [—1,1]?, with the following properties. Write

9B = ¢i({(x.y),lyl=1}),
0.B; = ¢i({(x7y)7|x|:1})'

Then
o diam 7; < a,
° FZ C 1,

o T,NT, =0,i+#j.



o (. C U Xt(UB2)7

0<t<a %
o 0,B; C W*(),  9,B; C WH(),

o BN U Xt(asB]‘) C 65Bk, By N U Xt(aqu) C 0,B4.

>0 <0

Lemma 2.2 [Bow,1973] Let Q; be a nontrivial basic set. Let a > 0.
Then a Markov partition of size « for §); exists. [ ]

We remark that such Markov partitions can be constructed analogously as Markov
partitions for basic sets of two dimensional diffeomorphisms [PT,1993]. Then, in case
0,8 # 0, we can take 0,B; C Ui<j<n. WS(V;). Similarly, if 9,9; # 0 we can take
0.B; C Ulgjgnu Wu(’y;b)

By a continuous foliation § (with leaves of dimension k) of an open subset V of M,
we mean a disjoint decomposition of V into k£ dimensional embedded submanifolds such
that V is covered by C° charts

6:DF x D"F Sy

and qb(Dk x {x}) C §., where §, is the leaf of § through x. The foliation is of class C*
if the charts ¢ can be chosen of class C'*. Sufficient for a foliation to be C* is that the
correspondence z — 1,F, is C*. A C* lamination § is a continuous foliation with C*
leaves, such that  — T'§, is continuous, 0 < i < k. An unstable foliation (lamination)
$“(9;) for X near a basic set €; is a X; invariant foliation (lamination) with §.(£;) =
Wt(x), if @ € Q. Stable foliations (laminations) are defined similarly.

A construction we will use several times and therefore introduce here, is that of av-
eraging foliations. Let Uy, Uy be two open sets on which foliations §',  both with one
dimensional leaves are defined, so that for x € Uy N U, Tx&lc and Tx&% are close (say
with an angle less then x/2 in some Riemannian structure). Take unit vector fields Y;
on Uy and Y5 on Uy so that integral curves of Y, Y; are leaves of Sl, . The direction
of Y1, Y3 should be so that for @ € Uy N Uy, the angle between Yi(x) and Yz(x) in T, M
is less then 7 /2. Take a partition of one {¢,1 — ¢} subordinate to U, Us. Replace the
foliations §', §* by the averaged foliation § of ¢; U, whose leaves are integral curves of
oY1 + (1 — ¢)Y;. Observe that §, = . =32 if 3. = 3~

When €; is an invariant set of X and W*();) its stable set, a fundamental domain
D?(Q;) of W?(£);) is a set so that W*(§;) = User X¢(D?(€;)) and each orbit in W?#(;)
intersects D*(€);) only once. A fundamental neighbourhood N*(£2;) of W?*(£;) is a set
so that its saturation for positive time plus the local unstable set W} (£);) provide a

neighbourhood of £2;.



Lemma 2.3 There exists an invariant unstable lamination F“(§;) near each basic set ;.

PRrROOF. If Q; is a repeller, Fu(Q;) = W (x) for x € Q,. Since the unstable manifolds of
points in €, fill a neighbourhood of €Q;, () is a foliation near ;.

If ©; is an attracting critical element, §:(€;) = {«}, x near ;.

If Q; is a singularity of saddle type, take as a fundamental domain D*(£2;) of W?*({,;) a
compact manifold of codimension one in W*(€;), transverse to the flow. Take a foliation
{Fu, 2 € D*(£;)} with leaves contained in a small neighbourhood of D*(2;) and transver-
sally intersecting W*(€2;). The saturation of §* for positive time gives, by the A-lemma,
a continuous unstable lamination near £);.

It Q; is a periodic orbit of saddle type, take a cross section Ty through 2; and a
fundamental domain D*(€;) C W?*(£;) N1y for the Poincaré return map on Ty; D*(€2;) is
an interval in W?*(€;) N Ty which is open on one side and closed on the other side. Take
a lamination §* on a neighbourhood U of D*();) with leaves transverse to W?*(£);). By
averaging we may assume that if X¢(§*), 7' > 0, and §“ both define a foliation on some
open set U, then for y € U,

Take a fundamental neighbourhood N*(€2;) extending D*(£);) and consisting of leaves of
§“. The saturation of §" defined on N*(€;), for positive time, gives, by the A-lemma, a
continuous unstable lamination near ;.

Suppose {); is a nontrivial basic set of saddle type. Take a Markov partition with cross

sections T1,...,T, and boxes B; C T;. We may choose

Ty C Dy, (5)
for some py € ;. Since §); is of saddle type, choosing T;\ B; small enough,

O4NT;, C B (6)

Take a Riemannian metric d on M so that the constant C, in (1) equals 1 [HPPS,1970].
Consider curves R C Ty, disjoint from By and with d(Ry,dsBx) = ¢ for some small
e > 0. Let S, be the collection of curves UjX(07a](Rj) N Ty. By the choice of Riemannian
metric, d(Sk, s By) < e. Let N () be the collection of those connected components of
T\ ( Ry U Sk) that are bounded by Ry U Sy and disjoint from €, N T. It is clear from the
construction that N*(£;) = U, N (£;) is a fundamental neighbourhood of ;. Choose a
foliation §* near Uy Ry, with leaves in U, Ty transverse to W*(;). Integrating § by the
flow of X we obtain a foliation §* near UpSx. Now choose a foliation ! near N*(§))
and average §" near Ug( Ry USy) and g“!. Call the obtained foliation F*. Restrict F* to a
fundamental neighbourhood near N*(£);). By (6), choosing T;\ By small enough, (4) will

9



hold. The saturation for positive time of §* restricted to a fundamental neighbourhood
near N*(€;), defines, by the generalized A-lemma [Me,1973], [HPPS,1970], an unstable
lamination §*(€;).

Finally suppose €, is a strange attractor. Construct a foliation §“ near N*(€);) as
above. Since (6) does not hold, (4) may still not be satisfied. Denote by §“* the foliation
§" near Ni(€);). By averaging X(g(§}) and F%! near NP (&), if X(g,0)(Tk) intersects 1j,
X(o,a](SZ) equals F%! on open sets near 1; where both foliations are defined. Since there
is only a finite number of cross sections Tj, we can ensure (4). As above, the saturation
for positive time of §“ restricted to a fundamental neighbourhood near N*(;), defines

an unstable lamination §"(£;). ]

Observe that the above proof provides an unstable foliation §*(£2;) near W*(€;), not
just near );. Stable foliations for ¢X are unstable foliations for —¢X and are thus
constructed analogously.

For X € X, Q,...,Qn will denote the basic sets of X. Choose an ordering <
of the basic sets Qy,...,Qx so that, if W*(Q;) N W*(Q;) #£ 0, then Q; < ;. Possibly

renumbering the basic sets, we may assume
0 < ... < Q.

We will further write ; < Q;, in case W*(;) N W*(Q,) # 0 and i # j.
A collection of unstable foliations is called a compatible system of unstable foliations,

if
8 () C (L), (7)

for Q; < Q) and x near Q.

Lemma 2.4 For X € X, a compatible system of unstable laminations {F" ()} for X
exists.

PROOF. Notation is as in the proof of lemma 2.1. In particular, N*(€;) and D*(§;) =
N*(;) N W*(£;) denote a fundamental neighbourhood resp. a fundamental domain of
We(Q,).

We construct the collection {F"(€;)} of unstable laminations inductively. We start by
making an unstable lamination near the repellers of X. If €); is a repeller, the leaves of
$“(9;) are the unstable manifolds of points in €;, filling a neighbourhood of ;.

Suppose unstable foliations (1), ..., F“ (1) have been constructed. To construct
$“(9;), we use a second induction on the basic sets ; with ©; < Q,. We first define
a foliation §* near D*(€);). Suppose ©; < €, (observe that €, is not a repeller and €,

10



is not an attractor; we may assume that ); is not an attracting critical element, since
then §“(€2;) consists of points and compatibility with other unstable foliations is obvious).

Consider the following situations.

1. Suppose there is no basic set € with Q; < Qp < Q,. In this case, W*(2;) N D*(£;)

1s compact.

If ©; is a repelling singularity, take a foliation §* near W*(Q;) N D*(Q;) with leaves
transverse to W*(2,).

Suppose ); is a repelling periodic orbit. Since W¥(z),x € €, intersects the orbit
O(«) through x transversally, W*(x) intersects W*();) transversally. We can take a
subfoliation §* of F“(;) near N*(€2;) with leaves transversally intersecting W*(,).

In all other cases, “(£2;) defines a foliation §* near W*(€;) N D*(£2;).

2. Suppose 2; < €, where 1, 1 < g < m are the basic sets with 23, < ;. Over a
neighbourhood 7 in D*(€);) of the compact set U, W*(Q4,) N D*(£;), §* has already
been constructed, compatible with §“(€2;). Over a neighbourhood of the compact
set W*(Q;) N (D*(%) — T), a foliation “' is chosen as in 1. Average *, F“' to
obtain §* near W*(;) N D*(L,).

If Q; C Q — P we average foliations as in the proof of lemma 2.3 to ensure (4). F“(€;)
is obtained by saturation of the leaves ¥ with « from a suitable fundamental neighbour-

hood of W?(€;). [ ]

Such compatible systems of foliations play a fundamental réle in proving structural
stability theorems, compare [Pal,1969], [PaSm,1970], [Me,1973].

The following lemma clarifies the structure of a fundamental domain of the stable
manifold of a strange attractor and the foliation on it induced by the stable manifolds of
orbits in it. By a Reeb component we mean a foliation of a cylinder or a Mébius band

such that the boundary consists of leaves and all other leaves are diffeomorphic to R.

Lemma 2.5 For a fundamental domain D*(§);) of the stable manifold of a strange attrac-
tor €);, one can take a compact manifold consisting of at most n, connected components,
which are tori and Klein bottles. The stable manifolds of orbits in §; define a foliation of

D?(Q;) consisting of n, circles and n, Reeb components.

ProoFr. By (2.1), W?*(+}) is an injectively immersed annulus. The unstable manifolds

W*(4}) can be either immersed annuli or immersed Mébius bands (this last possibility

11



can not occur if M is orientable). Write V*(v¥) for a compact manifold of codimension
one in W*(~¥) and transverse to the flow. Consider, for some positive functions #;,
K= {J X(V'(67)-
t<t, (x)

We choose the functions ¢; so that {; > T where T" is a large number. For T large
enough, since unstable manifolds are dense in );, we can further choose ¢; so that for
each component 'y of K, there exists another component C5 contained in U,ec, W, ().
We can then easily perturb the union of K and the local stable manifolds connecting
components of K to obtain a fundamental domain D*(;) of W*(£);). It is clear from
the construction that each component of D?*(€);) is either a torus or a Klein bottle (Klein
bottles can only occur if M is nonorientable).

Stable manifolds of orbits in §; intersect D*(£);) transversally because orbits intersect
D?(9;) transversally. (Stable manifolds of points need not intersect D*(£2;) transversally.)
So stable manifolds of orbits in §2; define a foliation § of D*(€;). Clearly, W*~ (’y}‘)ﬂDS(QZ»)

is a circle. By (2.1), these are the only compact leaves. [ ]

Theorem 2.6 Vector fields from X, are structurally stable.

PrOOF. Order the basic sets of X as in the proof of lemma 2.4. Since X is Q)-stable
[PuSh,1970], for X close to X the nonwandering set Q) of X is a union 4, ..., Qu of basic

sets with €; close to §;, while by strong transversality
0 <L <Oy

Let n be a completely integrable subbundle of T'M defined over a neighbourhood of
) — P and complementary to (X) (take e.g. in a Riemannian structure n equal to (X)7).
Write § for the foliation near Q — P integrating 5. An equivalence ¢ : @ —  exists by
Q-stability. We may take ¢g so that

g(x) € $He (8)
for # € Q — P [HPS,1977].

First we construct a smooth positive function ¢ on M with supp (¢ — 1) contained in
a small neighbourhood of the union of isolated periodic orbits and nontrivial basic sets
of saddle type so that $) is locally (¢.X), invariant near these basic sets. Near a periodic
orbit, the choice of such a function ¢ is fairly standard [PaSm,1970]. Suppose ); is a
nontrivial basic set of saddle type. Let U;B; be a Markov partition with B; C T} as in

lemma 2.2. By lemma 2.1 plus the remark following lemma 2.2,

QZ'QT]‘ C B]‘ (9)
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for T;\ B; sufficiently small. We can further choose the cross sections T} to be contained
in leaves of 9. By (9), we can take smooth positive functions ¢; defined near T; with the
following properties. On an open set ¢; C supp (¢; —1), (¢;X), leaves ) locally invariant,
Q; is contained in U; U}, and supp (¢;—1)Nsupp (¢p—1)Nsupp (¢;—1) # O for j # k # L.
It is easily seen that we can alter ¢; and ¢, near supp (¢; — 1) Nsupp (¢r — 1), so that
¢; = ¢ on U; NUy. Doing so for all pairs 7, k, a function near §2; is obtained which can
easily be extended to get a function ¢ on M as desired. We define a similar function
¢ near ¢ for X, so that § is locally (q;j()t invariant near isolated periodic orbits and
nontrivial basic sets of saddle type. Then ¢ as defined in (8) is a conjugation on isolated
periodic orbits and nontrivial basic sets of saddle type.

We write D*(£);), N*(£;) for fundamental domains and fundamental neighbourhoods
as in the proofs of lemma 2.3 and lemma 2.4; for ; C @ — P we will take connected
components of D*(€;) and N*(£2;) within single leaves of . Fundamental domains DS(QZ')
and fundamental neighbourhoods NS(QZ') for X can be chosen near those of X. For
Q; € Q — P, we can further take each connected component of DS(QZ'), NS(QZ') in the
same leaf of §) as the corresponding component of D*(£2;), N*(€;).

Recall the construction of a compatible system of unstable laminations as in lemma 2.4.
Choose a continuous positive function o with supp (0 — 1) outside a neighbourhood of
0 and smooth within unstable manifolds of orbits, so that, constructing a compatible
system of unstable foliations {F“(£2;)} for 0 X as in the proof of lemma 2.4, this yields

a system of laminations with
o) = F2(%) N H, (10)

x € D*(8;), Q C Q2 — P. Such a function o can be made by induction on €2;, altering o
inductively on compact parts in X(_, )7}, where T} is a cross section through ; (for €);
an isolated periodic orbit) or a cross section from a Markov partition (for ; a nontrivial
basic set). Construct in an analogous manner a function & near o and a nearby system
of compatible laminations {§“(Q:)} for 7¢.X; so
Fu() = F) NN, (11)
x € D), QO C Q) — P,
We construct the required homeomorphism o : W*(Q;) — W?*(€;) by induction on

t. The induction starts by taking an equivalence h = ¢g between repellers of X and

repellers of X. Suppose h is constructed on U;;ll W=(Q;). When defining h on W*(Q,),
we have to arrange that A maps orbits in W*(;) N W?*(£2;) to orbits in W“(Q]) N WS(QZ)

Simultaneously we will alter & near supp (& — 1) so that following the construction of h

below,

WD (P)) = D*(P) (12)
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and
h(z) € 9., (13)

for & € D*(Q—P). When changing &, this will be done so that & will remain smooth within
unstable manifolds; though altering & will alter {S“(QZ)}, this will still be a compatible
system of unstable laminations.

We will first define & on D*(€;). A second induction on the basic sets Q;, Q; < €,
will be performed. Suppose Q; < ;.

1. Suppose there is no k with Q; < Q; < Q,.

First consider the case that €; is a singularity of saddle type. Then W*(;)ND*(§;)
is compact. Denote by 7 : W*(£;) — Q; the projection m(z) = §u(2;) N ;. Take
a near identity homeomorphism h on W*(Q;) N D*(Q;), so that

h(z) C Fhori) (). (14)

This is possible since S“(Q]) is near §“(£2;) and leaves of F"(Q;) intersect W?*(;)

)
transversally. Observe that h maps W*(£2;) N D*(;) near W*(Q;) N D*(;); alter

& near W*(Q;) N D*(£2;) so that h(W*(Q;) N D*(£2;)) = W*(Q,;) N D*(£Y,).
Suppose ), is an attracting singularity. Here leaves of §“(€;) may intersect D*(€2;)

~

nontransversally. Take a near identity homeomorphism h defined on a neighbour-
hood of W*(Q;)N D*(;) in W*(£2;), so that (14) holds. Again this is possible since
S“(Q]) is near §“(§;). Let h be the restriction of h to We(Q;) N D*(9;); by altering

& near W*(;) N D*(£2;), h maps W*(Q;) N D*(Q;) into D*(€;).

Next suppose that ; C @ — P and (); is not an attracting periodic orbit. Write
8D5(QZ) == 8“”D5(QZ) UaeﬂDs(Qi), where 8“”D5(QZ) == X(07OO)(8DS(QZ)) ﬂ@DS(QZ)
First define & on D*(€;) N W*(£2;) near 0°*D*();), subject to (14) and

h(z) < g(W*(O(x))). (15)
This is possible since S“(Q]) is near §“(£2;) and leaves of F“(§;) intersect W*(~v)
transversally. Extending h for positive time by conjugacy, h is defined on D*(§;) N
W*(§;) near ' D*(£;). We can then extend h to D*(£;) N W*(Q;) so that (14)
and (15) hold [NPT,1983]. Again, h maps W*(Q;) N D*(£2;) near W“(Q]) N DS(QZ').
By altering & we obtain h(x) € $, for @ € W*(Q;) N D*(£2,).

The case that §2; is an attracting periodic orbit can be treated similarly; take h on
W*(8;) near 0" D*();) so that (14) holds, h is defined on W*(§;) near 9" D*(Q;)
by conjugation. Extend h to W (Q;) near D*(£2;) subject to (14). Let h be the
restriction of h to We(Q;) N D*(£2;) and alter & as before.
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2. Suppose §1; < Qp < ... < Q,, where ;,, 1 < g < m are the critical elements
with Qi < Q;. By induction A is constructed on Uj_; W*(2,) N D*(£);). Note that

h is thus already constructed on a compact subset of D*(2;).

h has already been defined on UL, W?*(Q, ). Observe that €, is of saddle type, so
that §“(Q,) has one dimensional leaves. We require o to map §“(Q,) to S“(ng):
let 7y be a projection my(x) = o (Q, ) NV W?(Q,) (there can be more then one point

in this intersection; choose one) and define h near W*(€;) N W*(€);,) as a near

identity map with
h(l’) C SZorg(x)(Q])‘ (16)

By compatibility of {§“(€2;)} we can this way define h on W*(Q;) NV, where V is
a small neighbourhood of Uj_; W* (€, ) N D*(£;) in D*(£;).

As above we define h on the complement W*(Q;) N (D*(£;) — V). Alter & as before.

Having defined h on D*(£);), we now extend h to W?(£);). We define h on W*({;) by

conjugation
ho(o6X), = (66X),0h. (17)

Since h as defined on strange attractors and repellers is an equivalence and in general
not a conjugation, we must alter h near strange attractors and repellers. Suppose €,
is a strange attractor. Let F*(§;) be a fundamental domain as in lemma 2.5 and write
Fo(Q) = Xp(E*(Q;)) for some 3 > 0. Take E*(€;) sufficiently near €; so that it is
contained in the region foliated by $. It follows from the proof of lemma 2.5 that we
may take E*(€;) so that leaves of § intersect £*(€2;), F*(€;) transversally. Multiplying
5¢X by a continuous positive function ¢ with supp (;/N) — 1) contained in X g)(£°(£))
and replacing ¢ X by ©d¢X we obtain h(x) € §, for @ € F*(£;). Then extend h to
Usso Xe(F*(9;)) by letting h act as the identity on leaves of §). Near strange repellers, h
is defined analogously.

Observe that by construction, h(x) € $, for all  near @ — P. Note further that the

equivalence h satisfies
h(E () = §“(),
except near strange attractors and strange repellers. Near a strange attractor or a strange
repeller Q;, h maps §(2;) N H to FU(L;) N H.
Remains to prove continuity of h. By construction, h is continuous when restricted
to stable sets of basic sets. Suppose inductively that A restricted to U, W?*(€2;) is

continuous. We may assume that €2, is not a repelling critical element, for in that case

continuity of h is clear. Let {x,} be a sequence of points converging to @ € W*({;). Since
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h is continuous restricted to W?*(€2;), we may assume that xz,, € Ui_;;; W*(£%;) by taking a

subsequence. Observe h(x,) € U—;;; W?*(€;) and h(x) € W*(Q;). Continuity of & follows
since h maps §, (£;) to SZ(%)(QJ') () N H to SC“(Qj) N $ near a strange attrac-

tor or a strange repeller) and these leaves intersects W#(§;) resp. W?*(£);) transversally. m
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3 Stable families of vector fields

Write
Xo ={X € X, X satisfies axiom A + no cycles}.

Consider, for a compact interval I C R, the set C>°(1,Xq) of smooth one parameter
families of vector fields in Xg. In this section we investigate which of these families are
W-stable. Recall that X, stands for the class of vector fields from Xq that satisfy the
strong transversality condition.

Let {X,} € C™(I,Xq). The nonwandering set of X, depends on g, but we will
suppress this dependence from the notation. An orbit of heteroclinic tangency is an orbit

v in W*(Q,) N W?*(Q,), where Q,, , are basic sets, so that
dim(T,W"(Q,) & T, W?*(Q,)) < 3.
Suppose {X,} has an orbit of heteroclinic tangency at p = po. The orbit of heteroclinic

tangency is said to unfold generically, if
L. dim(T,W*(Q,) & T,W*(Q,)) = 2.
2. The tangency of W*(Q,) and W?*(Q,) along v is quadratic [NPT,1983].

3. U (W(Qy), 1) and U, (W?(8y,), i) intersect transversally along v x {puo} C M x I.

In case Q, is a critical element with one dimensional unstable manifold, or €2, is a critical
element with one dimensional stable manifold, condition 2. is empty.

Suppose €2, is a singularity with dim W#(§,) = 2 and the spectrum spec DX ,(€,) con-
sists of three different real numbers. Let W¢(Q,) denote a two dimensional centre unstable
manifold. Although W¢(£,) is not unique, any two centre unstable manifolds have the
same tangent bundle along W*(£2,). Similarly, for a singularity 2, with dim W*(2,) = 2
and spec DX ,(Q,) C R, we write W¢(£2,) for a two dimensional centre stable manifold.

Theorem 3.1 Let [ be a compact interval in R and let {X,} € C*(1,Xq) be such that
forpedl, X, € Xy,.
Necessary and sufficient conditions for the family {X,} to be W-stable, are

1. Each heteroclinic bifurcation of {X,} unfolds generically.
2. At each parameter value, {X,} has at most one orbit of heteroclinic tangency.

3. Suppose v € W (Q,) N W?*(Q,) is an orbit of heteroclinic tangency, where Q,, Q,

are basic sets.

If Q, is a singularity with dim W*(Q,) = 1, spec DX, (,) C R and further W*(Q,)

is not contained in the stable manifold of an attracting critical element, then
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o spec DX, (Q,) consists of three different real numbers,
o W<e(Q,) intersects W*(Q,) transversally along v for = o,

o Wu(Q,) is contained in the stable manifold of an attracting critical element.

IfQ, is a singularity with dim W*(Q,) =1, spec DX,(Q,) C R, and further W?*(£2,)

is not contained in the unstable manifold of a repelling critical element, then

o spec DX, (Q,) consists of three different real numbers,
o W<e(Q,) intersects W*(Q,) transversally along v for = o,

o W**(Q,) is contained in the unstable manifold of a repelling critical element.

4. If v € W (Q,) N W?*(Q,) is an orbil of heteroclinic tangency, where Q,,Q, are basic

sets, then one of the following two conditions holds:

o (), is a critical element and W*(Q,) is contained in the unstable manifold of a

repelling critical element, or

o O, is a critical element and W*(8),) is contained in the stable manifold of an

attracting critical element.

We remark that the equivalence h, we will construct when the conditions in the state-
ment of the theorem are satisfied, is such that (z, ) — h,(x) is continuous restricted to
U (W?(Cu), ) and U, (W*(Cu), ), for any orbit ¢, C €.

Given a two dimensional manifold N, let 2lg be the set of diffeomorphisms on N that
satisfy axiom A and the no-cycle condition. Let 2, be the set of diffeomorphisms from
U that satisfy the strong transversality condition. Applying theorem 3.1 to the suspen-
sion of diffeomorphisms on N yields the following corollary, compare [MeSt,1987].

Corollary Let I be a compact interval in R and let f, € C*(1,q) be such that, for
p € 0l, f, € Usr. Necessary and sufficient conditions for the family f, to be W-stable,

are items 1, 2, / in the statement of theorem 3.1. ]

PROOF OF SUFFICIENCY. By {X,} we denote a small perturbation of {X,}. We wish
to construct a map (h,,n) : M x [ — M x I, where n is a homeomorphism and h, is a
homeomorphism when restricted to stable and unstable manifolds, providing a topological
equivalence along stable and unstable manifolds.

We start with the observation that it suffices to provide the proof for y near a bifur-
cation value pg [NPT,1983]; this follows by proving the theorem for families

N(p) X, + (1= N(u) X, M(p)X, + (1= M(p)X,,
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for smooth functions N, M : [ — [0, 1], requiring (h,,n)(x, p) = (@, 1) if N(p) = M(p).

Because critical elements of X, are dense in (), it further suffices to restrict to values
of 1 near a bifurcation value pg where the stable and unstable manifolds of two critical
elements have a tangency. Write v € W*(Q,) N W*(Q,) for the orbit of tangency at
i = . Taking into account the above considerations and up to reversing the direction
of time we must study the following cases (P C € is the set of singularities).

1. Q,,Q,CcOQ— P,
2.0,CP,Q,CQ—P.
3. 0,,Q, C P.

Section 3.1 contains the proof of W-stability for case 1, where at y = po the stable and
unstable manifold of two periodic orbits are tangent. Such a family is not structurally
stable [Pal,1978], [NPT,1983]. Section 3.2 then contains the proof of theorem 3.1 in case 2
where in addition DX, (9,) possesses two complex conjugate stable eigenvalues and one
real unstable eigenvalue. Also such a family is not structurally stable [Bel,1986]. The

remaining cases give in fact structurally stable families and can be treated similarly, see

also [LaP1,1993]. n

PROOF OF NECESSITY. It is clear that W-stable families have at most one orbit of
heteroclinic tangency at each parameter value and have generically unfolding bifurcations.
Also necessity of item 3 is easily recognised.

We prove that W-stable families satisfy item 4 in the statement of the theorem. We
may assume that the tangency is between stable and unstable manifolds of critical ele-
ments, since these lie dense in the nonwandering set. We only consider the case where the
stable and unstable manifold of two periodic orbits are tangent, the other possibilities are
treated similarly. The proof is a simple counting argument, counting intersections of sta-
ble and unstable manifolds, and is simpler then the proof that families with a heteroclinic
tangency are not structurally stable [Pal,1978], [NPT,1983], [MeSt,1987].

Write (, ¢ for the periodic orbits in 2, resp. €, with the orbit of heteroclinic tangency
v e W) NW?(&) at g = po. Let v denote the positive characteristic multiplier of the
periodic orbit ¢ (v = lim;_« lw, x € (v € T,W"(x)) and let A denote the

t [l
negative characteristic multiplier of £. If item 4 does not hold, there exist orbits «, 3 in

Q) with
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These intersections are transverse and therefore, by the A-lemma, W*(«) accumulates on
W(Q,) and W*(3) accumulates on W*(Q,). If W*({) is an immersed M6bius band, let
Te denote twice the period of &, otherwise let Ty denote the period of ¢. Similarly, if
W*(() is an immersed Mobius band, let T, denote twice the period of (, otherwise let T
denote the period of (. Let ¥ be a cross section transverse to 4. Take coordinates (x,y)
on X with

WEONE = {y=0}

We may assume that ¥ is part of a cross section S transverse to . By a small perturbation
of {X,}, we may assume that the time Ty map (XM)T‘f maps S into itself (actually into a
larger section extending S') and is linear in suitable smooth coordinates (compare figure 2).

It is now easily seen that components B, of W*(3) N ¥ exist so that, in a metric d on ¥,
d(B,, W E)NY) ~ e "lev, (18)

where ~ means equal up to a positive factor that may depend on n, g but is bounded and
bounded away from zero uniformly in n and p. By the definition of T, the eigenvalues of
(XM)T‘f restricted to S are positive. Therefore, the components B,, are all on one side of
W=(€) N X. Similarly, components A,, of W"(«) N X exist so that

(A, WU NY) ~ erTe, (19)

By the choice of T¢, all components A,, are on one side of W*({)NX. Write a,, for the tops
of the parabolas A, (viewing A, as the graph {(z,y.(z))} of a map y,). If one of W*(¢),
W*(() is an immersed Mobius band, we can choose components A,,, B, so that a,, and B,
are contained in one connected component of {y # 0}. We may assume this component
to be {y > 0}, then. If both W*(¢), W*(() are immersed annuli, it may happen that the
points «,, are in the other component of {y # 0} then the curves B,,.

Consider first the case where both B,,,a, C {y > 0}. For each ¢ € N, let n(¢) be the

smallest integer so that B, is below o, see figure 1. Then

eZT‘fA ~ e—n(i)TcU‘

So, choosing two components A;, A;, ¢ < j, the number n(j) — n(:) of components B,
intersecting A; but not A; satisfies
J—i)TeA ~ e—(n(j)—n(i))Tgl/

e

Taking logarithms and letting j — 2 — oo, this yields

nG)—n(i) T

2
j—i TeA (20)
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Since an equivalence h, (at g = po) has to preserve the quotient (n(j) — n(¢))/(y — ©),
it follows that —T,v/TeX is an invariant (‘modulus’) of W-stability. Observe that the
occurence of this modulus is directly related to the geometry of intersections of stable

and unstable manifolds, at the bifurcation value g = po.

A -
A, (€)
W(() Ai
Bagi) Bugy
Bn ]) s
W (€) we=(¢)

Figure 1: Stable and unstable manifolds intersecting . In both pictures, B, C {y > 0}.
In the left picture, the tops of the parabolas A, are contained in {y > 0} when p = puo.
In the right picture, where u = v;, the tops of the parabolas A, are, for 4 = pg, contained
in {y < 0}.

Now suppose the tops of the parabolas A, and the curves B, are, for g = pg, in
different connected components of {y # 0}, for definiteness, say B, C {y > 0} and
a, C {y < 0}. Here we will find a modulus of W-stability by varying u. Let v; be the
bifurcation value where A; is tangent to W*((). Let n(¢) be the smallest integer so that
By 1s below ag at p = v;, see figure 1. Then, at u = v;,

eZT‘fA ~ e—n(i)TcU‘
Letting ¢ — oo,
n(t) —Tev
— . 21
i T (21)
Again it follows that —T,v/TeA is an invariant of W-stability. |

3.1 Heteroclinic orbits between periodic orbits

Here we prove W-stability of families { X, } satisfying the conditions of theorem 3.1, for u
near a bifurcation value po where the stable and unstable manifolds of two periodic orbits
in basic sets {1, , have a tangency. By reversing the direction of time if necessary, we
may assume that €, is an isolated periodic orbit and W*(Q,) C W*(Q,) for an attracting
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critical element €2,. Write v for the orbit of tangency in W*(Q,) N W?*(Q,) at u = p
The perturbed family {X,} has an orbit 4 of heteroclinic tangency in W*(€,) N W*(Q,)
near v at a parameter value fip near pg.

Choose an ordering < of the basic sets Qq,...,Qn of {X,} so that for p = po, if
W) N We=(Q;) # 0, then Q; < Q;. Possibly renumbering the basic sets, we may

assuime

0, <...<Q,

for all values of ¢ € I. The perturbed family {)N(M} has nearby basic sets €; with € <
L < Q.

Let $ be a codimension one foliation near 2 — P with leaves transverse to the flow, as
in the proof of theorem 2.6. Like in that proof, we replace {X,} by {¢,X,}, where ¢, is
a smooth positive function with supp ¢, contained in a small neighbourhood of the union
of isolated periodic orbits and nontrivial basic sets of saddle type, so that $ is locally
(¢,X,), invariant near these basic sets. Similarly define a function qzu near ¢, so that § is
locally (qzuf(u)t invariant near isolated periodic orbits and nontrivial basic sets of saddle
type, with further ¢, = qzu it X, = )N(M.

We want to construct compatible systems of unstable laminations. For some function
o, we construct a compatible system of unstable laminations {§"(%)},, , for {7.¢,X,.}.
The function o, will be a positive continuous function, (z, ) — o,(x) will be smooth
when restricted to unstable manifolds U, (W"((,.), #), ¢, an orbit in Q, and supp (o, — 1)
is outside a neighbourhood of §). As before we can choose o, and construct {§“({:)},.,,
so that §.(;) C 9., v € D*(Q;), for Q; C Q — P. A foliation §(€,), compatible with
{8“(%)}.z,.,» 15 obtained as follows. Choose ) € Q. Let D*(£,) be a fundamental
domain for the Poincaré return map on W*(Q,) N Hg. Take D*(Q,) so that y N Hy &
OD*(9Q,), see figure 2. Near v N D*(Q,) let ' = F“(Q,). Near D*(,) but outside a
neighbourhood of v N D*(1,), a foliation §* is defined as in the proof of lemma 2.4.
Average % to get a foliation § near D?((),). By altering o, we may assume §, C 9g,
x € D*(Q,). Again we take o, restricted to unstable manifolds of orbits to be a smooth
function. Saturate for positive time the leaves of § in $¢ to obtain F(£2,). Note that
leaves of F(§2,) are tangent to W*(Q,) along v at p = po. Finally, leaves of the unstable
foliation §“(€2,) are single points, since €, is an attracting critical element. Observe
that the system {3“((22»),3((2(1)}#(1 is compatible. A continuous positive function &,
and a compatible system of foliations {3“((22),3((2(1)}2# for {5,6,X,} is constructed
analogously, with &, = o, and S“(QZ) =5"(), S(Qq) =3(Q,) if )N(M =X,.

Now we define the reparametrizationn : I — I. Let ¥ C £ be a small neighbourhood
in Hg of v N Hy. Take coordinates (w1, x2) on ¥ in which D*(Q,) = {x2 = 0} and write

Su(Qp) = {(xlvfu(xhx?))}v
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Figure 2: The foliation §(€,) near the fundamental domain D*(€2,).

where for each z; an n C € exists so that graph (z1,p) — f.(21,22) C U, (W™ (n), 1) C
M x I. We claim that the function f,(x1,x3) can be chosen with the following properties:

(x17IU/) = fu(xhx?) is SmOOthv (22)
(x1, 29, 1) (aixl) fulx1, x2) is continuous for all ¢, (23)
d
a—xlfuo(ovo) = 0, (24)
() su0r # 0 (25)
d
G li(0:0) # 0 (26)

The first item follows since F“(§;) defines a smooth foliation of unstable manifolds
U, (W*(Cu)s ), Cu an orbit in © [HPS,1977]. The second item holds because §“(£2,)
is a lamination, while the other items follow from the fact that we have a generically
unfolding heteroclinic tangency. Let 2y = ¢,(x3) be the curve at which 8871]6#(:1;1, xq) = 0,
¢, is a continuous function by (23), (24), (25). Let ¥ C Hg be a small neighbourhood of
AN DS(Qq). Take coordinates (&1, &) on Y with WS(Qq) Ny = {#; = 0} and write

S(Qq) = {(‘%hfu(‘%h‘%?))}v

where the function fu satisfies similar properties as f,. Let #; = ¢,(&2) be the continuous
curve at which %fu(e’i‘hi‘z) = 0. By (26) we can define a homeomorphism n : [ — [
so that ¢,(0) C W*(() for some orbit ¢ C  implies ¢,(,)(0) C W*(g(()) -where ¢ is a
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topological equivalence between € and €-. We can define 5 so that n(p)=pift X, = )N(M.

Note that if W*(£;) and W*(Q,), 2, < Q,, have a tangency for y = v, then W*(£;) and
W*(Q,) have a tangency for p = 5(v).

Now we construct an equivalence between the families {X,} and )N(n(u). Inductively,
we define h, on the stable manifolds W*(£2;), j # ¢,r, as in the proof of theorem 2.6. In

this construction, &, is altered so as to get

hu(z) € $a, (27)
for @ € D*(Q);) in case Q; CQ — P, or
ha(e) C D*(%y), (28)

for @ € D*(9;), if Q; C P. Next we define h, on D*(9,). By the demand that h, maps
{3“(Q,)} to {§“(€,)}. since h,, has already been defined on the space W;_(€,) of leaves
5“(9,), h, is defined on a small neighbourhood U of yN D*(§,) in D*(§,). Alter &, near
U to get (27) for x € U. On D*(Q,) — U, h, is defined as in the proof of theorem 2.6.
Alter &, as before to get (27) for « € D*(Q,) and extend h, to W?*(Q,) by conjugacy.
Finally we define h, on W*(Q,). Take a homeomorphism ¢, on N*(),) —a fundamental
neighbourhood in §g extending D?*(2,)— that extends h, on D?(£,), maps §“(©,) to
34(Q,) and satisfies (27) for 2 € N*(9Q,). Let h, on a neighbourhood of W*(Q,) N D*(1,)
be defined by A, ((6,0,X,),(x)) = (6,0,X,),(x), for x € N*(Qy), (0,0,X,),(x) € D*(Q,.).
This defines h, on a neighbourhood U of W*(Q,) N D*(Q,) in D*(Q,). By altering &,,
(27) resp. (28) holds with j = r, if Q, C Q — P resp. Q, C P. Extend h, to D*(Q,) - U
as in the proof of theorem 2.6; alter &, so that (27) resp. (28) holds. The remainder of
the construction of A, is again as in the proof of theorem 2.6.

By the same argument as before, h, is continuous outside orbits of heteroclinic tan-
gency. It is then clear from the construction of h, near an orbit of heteroclinic tangency

that h, is continuous restricted to stable and unstable manifolds. ]

3.2 Spiral-like invariant manifolds

Suppose {X,} has an orbit v C W*(Q,) N W?*(Q,) of heteroclinic tangency at y = po,
where (), is a singularity and €, is a periodic orbit or a nontrivial basic set. In this section
we further assume that dim W*(Q,) = 1 and spec DX, (),) consists of one positive real
eigenvalue and two complex conjugate eigenvalues with negative real part. By [Str,1982],
[Bel, 1986], { X, } is a structurally unstable family. We prove in this section that, provided
the conditions of theorem 3.1 are satisfied, {X,} is a W-stable family. We consider the
case where W*(Q,) C W?*(Q,) for an attracting critical element ,. The case where

W#(Q,) is in the unstable manifold of a repelling critical element is treated analogously.
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Replace {X,}, {X,,} by {¢,X,}, {6,X,} as before. Construct a compatible system of
unstable foliations {§“(:)},,, , for {¢,¢,X,}, for a continuous positive function o, with
supp (o, — 1) outside a neighbourhood of 2, as in the previous section. Similarly, qzuf(u
is replaced by &MQEMXM and a compatible system of unstable laminations {Su(flz)}#qr for
{6,6,X,} is constructed. Let 2 C D*(Q,) be a small interval containing W*(Q,)ND*(Q,)
in its interior for g = po. Through U we define a foliation F(£2,) to be equal to §“(£,).
Through D*(Q,) — U, F(Q,) is defined as before. Observe that leaves of §({,) are not
transverse to W*(€,) along . A foliation F(Q,) is defined similarly.

[y
NZA

|
W@, n

Figure 3: The spirals &(,) in X.

Now we define the reparametrization n : I — [. Let ¥ be a small cross section
extending U. Consider the foliation £(€2,) of a neighbourhood of W*(Q,) (excluding
W(€,)) with leaves

£.(9,) = U (Xu)tgg(ﬂp)v x € D*(8Y,).

>0
This induces a foliation &(€,) of ¥ — (W*(Q,) N X) with spiral-like leaves
S.(Q,) =L, NY, T e,

see figure 3. Take coordinates (x1,23) on ¥ in which &« = {3 = 0} and vy N ¥ = (0,0).
Parametrize the spirals &,(€Q,) by (r,t, ) — f.(r,1), where for each r an n C 2 exists so
that {(fu(r,t),p), pel,t€[0,00)} CU,(W*"n),u) C M xI. Weclaim that f, can be

chosen with the following properties.

(t,p) —  fu(r,t)is smooth, (29)
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(ryt,p) — (%) fu(r,t) is continuous for all ¢, (30)

d
ae(fu(rvt)) 7£ 07 (31)

where () is the angle of the vector @ with the positive -axis.

lim k,(r,t) — oo, (32)

t—o00

where £,(r,t) is the curvature of &,(Q,) at « = f,(r,1).
0

The verification of these properties is postponed to lemma 3.2. Let 1 = ¢,(x2) be
the curve at which %fu(xl,xz) = 0. By (30), (31), (32), ¢, is a continuous func-
tion. For {)N(M} we take a cross section ¥ near ¥ and maps fu parametrizing the spirals
G(Qp) possessing similar properties as f,. Let &1 = ¢,(Z3) be the continuous curve at
which %fu(i‘l,ijz) = 0. By (33) we can define a homeomorphism 5 : [ — [ so that if
c.(0) C WH(¢) for some orbit ¢ C €, then é,(,y(0) C W*(g(¢)) ~where g is a topological
equivalence between € and €.

Finally an equivalence h, between X, and )N(n(u) must be constructed. Inductively,
we define h, on Uz, W*(£;) just as in theorem 2.6. The definition of A, on D*({,)
proceeds as in the previous section; near v N D*(,) h, is defined by the demand that
h, maps §“(Q,) to F(Q,) (we know h, on the space W7 ,(Q,) of leaves of F*(€,)) and
D?*(Q,) into D*(€),). Having defined h, on D*(9,), extend h, to W*(£2,) by conjugation.
To define h, on D*(2,), we proceed as follows. Extend h, as defined on D*(£,) to a map
i, on a fundamental neighbourhood extending D*(f),), mapping maps §(€,) to S(Qq)
and satisfying (27) with j = ¢. By conjugacy this defines a homeomorphism %, on a
neighbourhood U of W*(Q,)N D*(Q,) in D*(Q,). The remaining part of the construction

of h, goes as in the previous section. |

Lemma 3.2 (29),...,(33) above hold.

PROOF. Properties (29), (30), (33) follow since & is a lamination, unstable manifolds
vary smoothly in p, and the heteroclinic bifurcation at g = po unfolds generically. Take

a coordinate chart (z,y,z) near {2, so that
{z=0} C W*(%,), (34)
{(z,y) =0} C WH(£,). (35)

Multiplying {X,} with a smooth positive function, we may assume that in cylindric
coordinates (r,0, z),

d d d
X, :F(T,G,Z)E—I—w%—l—G(r,Q,z)@. (36)
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This implies (31). Consider the time 27 /w flow f = (X, )or/0 of X,,. Write A £4w and v
for the eigenvalues of DX ,(0), so A < 0, v > 0. We have

A
Df(0) =

0 0
0 A 0 |,
00 N

where 0 < A = e*?7/¥ < 1, N = ¢*"/% > 1. A formal computation, which we leave to the

reader, shows that we may take smooth coordinates near 0 in R® so that in fact

Az + as(x,y,2)
fla,y,2) = Ay +ys(z,y,2) , (37)
Nz+t(z)+ zr(z,y, 2)

with s, = O(|[(z,y, 2)||), t = O(|z|*). Lift f to fO) on R® x &y(R?), where &5(R?) is

the Grassmannian manifold of two-planes in R?, by

fW(,0) = (f(x), Df(x)a). (38)
For any a D ToW™(0),

f0,a) = (0,a). (39)
With 7,8, (R*) = L(a,a”) = L(R*, R),

D0, )10y e(aa—yr = (DF(0)]4-)0vo(Df(0)].)"
B /A0
= (A)owo ( 0 1N ) )

Thus one sees that, in natural coordinates T(07a)(R3 x B,(R?)) 2 R® x L(R*,R) = R®

Y

Df(0) 0
DfY(0,0) = * I 0
0 A/N

We claim that D f(1)(0, a) is in fact diagonal (so * = 0). To see this we may take o equal
to the x, z-plane. Then, writing V = Viju; 4+ Vaus, V1, V5 € R,

Js Js Js
Uy A—I—S—I—xax x5 x5 Uy
_ s 9s s
Df(x,y,z) V — yax A—I_S—I_yay yaz 4
dr dr dr at
U Z5- 25y NA+r+z5+ 5 U

By (37), the off-diagonal terms of Df(0) are of second order; Df()(0,«) is therefore

diagonal.
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Similarly, lift f to the induced map f® on the space of 2-jets of two dimensional
manifolds. In a chart near (z,a) € R® x &,(R?), this is the space
R® x L{a,a”) x L2 (a,a7),

sym

where L7, (a,a”) C L(a,a” x L{a,a7)) is the space of the symmetric quadratic forms.

A computation as above shows that we can write

DfM(0) 0

A/N:* 0 0 0
* 0 1IN 0 0
0 0 1/N o0

0 0 0 1/A

Df®(0,0,0) =

Note 0 < A/N? 1/N < 1 and 1 < 1/A. The following can now easily be deduced (see
[DFN,1984]): the principal curvatures of £.(£,) at a point = near W*(2,) consist of
one large and one small positive number, the principal directions are almost perpendic-
ular. The principal direction corresponding to the larger principal curvature is almost
perpendicular to the z-axis, the principal direction corresponding to the smaller principal
curvature is almost parallel to the z-axis. (32) follows. ]
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