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Abstract

An overview of homoclinic and heteroclinic bifurcation theory for autonomous vector fields is given.

Specifically, homoclinic and heteroclinic bifurcations of codimension one and two in generic, equivariant,

reversible, and conservative systems are reviewed, and results pertaining to the existence of multi-round

homoclinic and periodic orbits and of complicated dynamics such as suspended horseshoes and attractors

are stated. Bifurcations of homoclinic orbits from equilibria in local bifurcations are also considered. The

main analytic and geometric techniques such as Lin’s method, Shil’nikov variables and homoclinic center

manifolds for analyzing these bifurcations are discussed. Finally, a few related topics, such as topological

moduli, numerical algorithms, variational methods, and extensions to singularly perturbed and infinite-

dimensional systems, are reviewed briefly.
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1 Introduction

Our goal in this paper is to review the existing literature on homoclinic and heteroclinic bifurcation theory

for flows. More specifically, we shall focus on bifurcations from homoclinic and heteroclinic orbits between

equilibria in autonomous ordinary differential equations (ODEs)

du

dt
= f(u, µ), (u, µ) ∈ Rn × Rm, t ∈ R. (1.1)

Throughout the entire survey, we shall assume that the nonlinearity f is sufficiently smooth for the results

to hold (the precise requirements can be found in the cited references). We write X (Rn) for the space of

ODEs on Rn endowed with the C∞ Whitney topology.

Equilibria p of (1.1) are time-independent solutions that therefore satisfy f(p, µ) = 0. We say that a solution

h(t) of (1.1) is a heteroclinic orbit if h(t)→ p± as t→ ±∞ for equilibria p± ∈ Rn. If p− = p+, we say that

h(t) is a homoclinic orbit (assuming tacitly that h(t) is not the equilibrium solution itself). We will also

consider heteroclinic cycles which, by definition, consist of several heteroclinic orbits hj(t) labelled by the

index j = 1, . . . , ` so that

lim
t→∞

hj(t) = pj+1 = lim
t→−∞

hj+1(t), j = 1 . . . , `

with the understanding that h`+1 := h1 and p`+1 = p1. Illustrations of homoclinic and heteroclinic orbits

can be found in Figure 1.1.

Homoclinic and heteroclinic orbits play an important role in applications. For instance, we may be interested

in modelling action potentials in nerve axons by an ODE of the form (1.1): in this case, we can think of u

as representing the electric potential and certain ion concentrations in the nerve axon, with t being physical

time. The rest state of the axon determines a natural equilibrium of (1.1), and action potentials in the axon

correspond then to homoclinic orbits to this equilibrium. Heteroclinic orbits typically arise when a system

can cycle through several different states. For instance, in certain Rayleigh–Bénard convection experiments,

roll patterns may arise that can orient themselves at angles of 0, 120 or 240 degrees: as time progresses,

the roll pattern cycles through this set of angles, but stays at each angle for a long time, followed by a fast

transition to the next angle. Thus, in an appropriate ODE model with three equilibria corresponding to

the rolls oriented at angles of 0, 120 and 240 degrees, heteroclinic orbits correspond to transitions from one

equilibrium to another.

In the above examples, the independent variable t corresponds to physical time, whence we refer to such

applications as describing temporal dynamics. Another class of applications, referred to as spatial dynamics,

are problems where t represents a spatial direction. An important example in this respect are travelling-

wave solutions of partial differential equations (PDEs) on unbounded domains. Consider, for instance, the

reaction-diffusion system

Ut = DUxx + F (u), U ∈ RN , x ∈ R, (1.2)

where t and x represent physical time and space, respectively. A travelling wave of (1.2) is a solution of the

form U(x, t) = U∗(x− ct) corresponding to a fixed profile U∗ that travels to the right (for c > 0) or the left

(for c < 0) as a function of time t. Upon substituting the ansatz U(x, t) = U∗(x − ct) into (1.1) and using

ξ = x− ct as the new independent variable, we find that (U, V ) = (U∗, ∂ξU∗) must satisfy the ODE

d

dξ

(
U

V

)
=

(
V

−D−1(cV + F (U))

)
(1.3)

Figure 1.1: The panels contain a homoclinic orbit, which connects an equilibrium to itself [left], a heteroclinic

orbit that connects two different equilibria [center], and a heteroclinic cycle with two connecting orbits [right].

4



which is of the form (1.1) with µ representing the wave speed c. Any solution of (1.3) gives a travelling wave

with speed c of the PDE (1.2). In particular, homoclinic orbits of (1.3) correspond to pulses, i.e. to travelling

waves that are localized in space, while heteroclinic orbits correspond to fronts which are waves that become

constant as x→ ±∞. Pulses and fronts are of particular importance in applications. We remark that, once

their existence is established, it is of interest to determine whether these structures are stable with respect

to the PDE dynamics associated with (1.2): we refer the reader to [344] for a survey of this topic.

With these motivating examples in mind, we now turn to a discussion of the relevant issues and questions that

surround homoclinic and heteroclinic orbits. One such issue is, of course, to establish the existence of these

orbits in the first place, for instance by analytical or numerical techniques. The topic we shall focus on in

this survey paper, however, is the dynamics of (1.1) near given homoclinic or heteroclinic orbits, particularly

under changes of a systems parameter µ. This includes the persistence of homoclinic and heteroclinic orbits

under parameter variations but also, more importantly, the characterization of all recurrent orbits, that is, of

all solutions that stay in a fixed tubular neighborhood of a given homoclinic orbit or heteroclinic cycle for all

times. Particularly interesting recurrent orbits are N -homoclinic and N -periodic orbits: these are solutions

that follow the original homoclinic orbit or heteroclinic cycle N -times before closing up. In other words,

these solutions have winding number N when considered as loops inside a tubular cylindrical neighborhood

of a homoclinic orbit or a heteroclinic cycle.

In the spirit of local bifurcation theory, we are then interested in identifying bifurcation scenarios at which

the recurrent dynamics near a set of connecting orbits changes qualitatively. At such bifurcation points,

N -homoclinic orbits may spin off or complicated dynamics set in. An important characteristic feature of

bifurcation points is their codimension which determines how many parameters we need to adjust before

being able to observe a given bifurcation scenario. The codimension typically depends strongly on whether

the underlying ODE has any additional structure such as respecting a group of symmetries or being time-

reversible.

These are roughly the questions and topics that we wish to review and discuss in this survey paper. In

§2, we shall review geometric properties of homoclinic orbits and introduce various hypotheses that will be

used throughout the remainder of the paper. Section 3 contains a discussion of the analytical and geometric

techniques that have been developed to investigate connecting orbits. Several common phenomena that arise

in many different bifurcation scenarios are summarized in §4. The core of this paper is §5 where we give a

catalogue of homoclinic and heteroclinic bifurcations for vector fields. We conclude with a brief discussion

of related topics in §6.

References to original publications as well as books and review papers relevant to the topics of this article

will be included in the sections below. Here, among recent books devoted to global bifurcation theory, we

single out [374, 375] by LP Shil’nikov, AL Shil’nikov, Turaev and Chua and [202] by Il’yashenko and Li.

Further recent books containing sections on global bifurcation theory include [5, 242] and, for equivariant

systems, [87].

2 Homoclinic and heteroclinic orbits, and their geometry

This section serves as an introduction to homoclinic and heteroclinic orbits and to set up many of the

hypotheses and assumptions that we shall refer to later when discussing homoclinic and heteroclinic bifurca-

tions. Specifically, we will use this section to illustrate various geometric notions and how they are encoded

and reflected analytically. To set the scene, consider again the ODE

u̇ = f(u, µ), (2.1)

where u ∈ Rn and µ = (µ1, . . . , µd) ∈ Rd.

5



2.1 Homoclinic orbits to hyperbolic equilibria

Assume that h(t) is a given homoclinic orbit of (2.1), say for µ = 0, which converges to the equilibrium p as

t→ ±∞. One key assumption that we will often impose is that the equilibrium p itself does not undergo a

local bifurcation at µ = 0. A sufficient condition is hyperbolicity of p which, by definition, means that the

matrix fu(p, 0), which is obtained by linearizing the right-hand side of (2.1) with respect to u at u = p for

µ = 0, has no eigenvalues on the imaginary axis. We summarize this assumption as follows:

Hypothesis 2.1 (Hyperbolicity). The equilibrium p is hyperbolic at µ = 0, that is, the linearization fu(p, 0)

has no eigenvalues on the imaginary axis.

For the remainder of this section, we assume that p is a hyperbolic equilibrium of (2.1) and refer the reader

to §2.2 for material on the geometry of the flow near homoclinic orbits to nonhyperbolic equilibria. The

stable and unstable manifolds of a hyperbolic equilibrium p are defined by

W s(p, 0) = {u(0); u(t) satisfies (2.1) and u(t)→ p as t→∞}

W u(p, 0) = {u(0); u(t) satisfies (2.1) and u(t)→ p as t→ −∞};

see [394]. These sets turn out to be smooth immersed manifolds that are invariant under the flow, and the

convergence towards p is, in fact, exponential in t.

If h(t) is a homoclinic orbit to p for µ = 0, then its entire orbit must lie in the intersection of stable and

unstable manifolds of p so that h(t) ∈ W s(p, 0) ∩W u(p, 0) for all t. In particular, the tangent spaces of

stable and unstable manifolds evaluated at u = h(t) intersect in an at least one-dimensional subspace that

contains ḣ(t). The analytical interpretation of the tangent spaces of stable and unstable manifolds is as

follows. Consider the variational equation

v̇ = fu(h(t), 0)v (2.2)

obtained by linearizing (2.1) about h(t). We then have

Th(t)W
s(p, 0) = {v(t); v(·) satisfies (2.2) and v(s)→ 0 as s→∞}

Th(t)W
u(p, 0) = {v(t); v(·) satisfies (2.2) and v(s)→ 0 as s→ −∞}.

In addition, we may consider the adjoint variational equation defined by

ẇ = −fu(h(t), 0)∗w (2.3)

where A∗ denotes the transpose of a matrix A. If Φ(t, s) denotes the evolution of (2.2), then Φ(s, t)∗ is the

solution operator of (2.3) (just differentiate the equation Φ(t, s)Φ(s, t) = id). Using the identity

d

dt
〈v(t), w(t)〉 = 0

which holds for any solutions v(t) of (2.2) and w(t) of (2.3), we conclude that[
Th(t)W

s(p, 0)
]⊥

= {w(t); w(·) satisfies (2.3) and w(s)→ 0 as s→∞}[
Th(t)W

u(p, 0)
]⊥

= {w(t); w(·) satisfies (2.3) and w(s)→ 0 as s→ −∞}.

In particular, we obtain

Th(t)W
s(p, 0) ∩ Th(t)W

u(p, 0) = {v(t); v(·) satisfies (2.2) and v(s)→ 0 as |s| → ∞} (2.4)[
Th(t)W

s(p, 0) + Th(t)W
u(p, 0)

]⊥
= {w(t); w(·) satisfies (2.3) and w(s)→ 0 as |s| → ∞}, (2.5)

and both spaces have the same dimension. We shall assume that these spaces are one-dimensional. In

particular, ḣ(t) will span the intersection (2.4) of the stable and unstable tangent spaces, and we choose a

solution ψ(t) of (2.3) that spans the complement (2.5) of their sum.
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Figure 2.1: Varying a parameter µ may result in nonintersecting stable and unstable manifolds, so that

the homoclinic orbit ceases to exist: the distance between the nonintersecting manifolds is measured by the

quantity ∆(µ) defined in (2.6).

Next, we discuss the persistence of the homoclinic orbit h(t) if we change the parameter µ near µ = 0.

Firstly, since we assumed that p is hyperbolic, there will be a unique equilibrium p(µ) near p for all µ near

zero, and p(µ) and its stable and unstable manifolds will depend smoothly on µ. However, W s(p(µ), µ) and

W u(p(µ), µ) may no longer intersect; see Figure 2.1. To measure the distance between stable and unstable

manifolds, we seek solutions near the homoclinic orbit in these manifolds that are closest to each other:

Lemma 2.1. Assume that Hypothesis 2.1 is met and that Th(t)W
s(p, 0) ∩ Th(t)W

u(p, 0) = Rḣ(t). For each

µ close to zero, there are unique orbits hs(·;µ) ∈ W s(p(µ), µ) and hu(·;µ) ∈ W u(p(µ), µ) of (2.1) with

hs(0; 0) = hu(0; 0) = h(0) so that

hu(0;µ)− hs(0;µ) ∈ Rψ(0) ∀µ.

The functions hs(·;µ) and hu(·;µ), considered with values in C0(R+,Rn) and C0(R−,Rn) respectively, are

smooth in µ.

Proof. Let Σ be a small open ball centered at h(0) in the hyperplane h(0)+ḣ(0)⊥. The sets Σ∩[W s(p(µ), µ)⊕
Rψ(0)] and Σ∩ [W u(p(µ), µ)⊕Rψ(0)] are manifolds that intersect transversely along a line for all sufficiently

small µ. This line intersects stable and unstable manifolds in unique points which are the initial conditions

for the desired orbits.

In particular, the stable and unstable manifolds of p(µ) intersect near h(0) for µ ≈ 0 if, and only if,

〈ψ(0), hu(0;µ) − hs(0;µ)〉 = 0. It therefore makes sense to define the distance between stable and unstable

manifolds near h(0) as

∆(µ) := 〈ψ(0), hu(0;µ)− hs(0;µ)〉.

Using the variation-of-constant formula, it can be shown that the distance function ∆(µ) is given by

∆(µ) = 〈ψ(0), hu(0;µ)− hs(0;µ)〉 =

[∫
R
〈ψ(t), fµ(h(t), 0)〉dt

]
µ+ O(|µ|2) =: Mµ+ O(|µ|2). (2.6)

The quantity M is commonly referred to as the Melnikov integral: the homoclinic orbit will not persist if

M 6= 0. In the following hypothesis, we summarize the assumption made in Lemma 2.1 together with the

condition that M 6= 0.

Hypothesis 2.2 (Nondegeneracy). Consider the following nondegeneracy conditions:

(i) Stable and unstable manifolds intersect as transversely as possible:

Th(0)W
s(p, 0) ∩ Th(0)W

u(p, 0) = Rḣ(0).

(ii) Stable and unstable manifolds unfold generically with respect to the parameter µ1:

M :=

∫
R
〈ψ(t), fµ1

(h(t), 0)〉dt 6= 0.
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It turns out that, for most of the bifurcation scenarios that will be discussed below, more detailed information

about the asymptotic behavior of the homoclinic orbit h(t) than mere convergence will be needed. The

asymptotics of h(t) for |t| � 1 are, to a large extent, determined by the linearization v̇ = fu(p, 0)v of (2.1)

about the hyperbolic equilibrium p: in particular, the exponential decay rate of ‖h(t)− p‖ will be given by

the real part of one of the eigenvalues of the Jacobian fu(p, 0). The eigenvalues closest to the imaginary

axis will typically dominate the asymptotics as they give the slowest possible exponential rates: we therefore

call them the leading stable and unstable eigenvalues of fu(p, 0), denoted by νs and νu, respectively. More

precisely, denote the eigenvalues of fu(p, 0) by νj with j = 1, . . . , n, repeated with multiplicity and ordered

by increasing real part so that

Re ν1 ≤ Re ν2 ≤ · · · ≤ Re νk < 0 < Re νk+1 ≤ . . . ≤ Re νn−1 ≤ Re νn. (2.7)

The eigenvalues νj with Re νj = Re νk are the leading stable eigenvalues, while the leading unstable eigenval-

ues νj are those that satisfy Re νj = Re νk+1. We expect that the leading eigenvalues are simple and unique

(up to complex conjugation), which leads to the following assumptions on the leading eigenvalues that are

often imposed:

Hypothesis 2.3 (Leading eigenvalues). Consider the following eigenvalue conditions:

(i) The unique leading unstable eigenvalue νu is real and simple, and we have |Re νs| > νu.

(ii) The leading stable and unstable eigenvalues are unique, real and simple.

(iii) The leading unstable eigenvalues is unique, real and simple. There are precisely two leading stable

eigenvalues νs and νs, and these are complex1 and simple.

(iv) The leading stable and unstable eigenvalues are unique (up to complex conjugation) and simple.

The quotient −νs/νu is often referred to as the saddle quantity. For future use, we shall also define real

numbers λss and λuu that separate the real parts of leading eigenvalues from those of the remaining strong

eigenvalues so that

Re ν1 ≤ · · · ≤ Re νk−nls
< λss < Re νk−nls+1 = · · · = Re νk < 0 (2.8)

and analogously for the unstable eigenvalues.

Having defined the leading stable and unstable eigenvalues, we return to the asymptotic behavior of the

homoclinic orbit and assume from now on that Hypothesis 2.3(iv) is met. Using the solutions hs(t;µ) and

hu(t;µ) from Lemma 2.1, we define2

vs(µ) := lim
t→∞

e−ν
s(µ)t[hs(t;µ)− p(µ)] (2.9)

vu(µ) := lim
t→−∞

e−ν
u(µ)t[hu(t;µ)− p(µ)],

where νs(µ) and νu(µ) denote the leading eigenvalues of fu(p(µ), µ). It can be shown that these limits exist

and are smooth in µ. Furthermore, vj(µ) is a multiple of the eigenvector of fu(p(µ), µ) associated with νj(µ)

for j = s,u. In addition, there is a constant ε > 0 so that

hs(t;µ) = p(µ) + eν
s(µ)tvs(µ) + O

(
e(Re νs(µ)−ε)t

)
, t→∞

and analogously for hu(t;µ). Thus, we can think of vs(0) and vu(0) as determining the effective dynamical

components of h(t) in the leading eigendirections. In particular, we see that vs(0) = 0 if, and only if, h(t)

lies in the strong stable manifold W ss(p; 0) of the equilibrium p, which consists, by definition, of all solutions

u(t) to (2.1) that satisfy ‖u(t)− p‖ = O(eλ
sst); see [394].

1Throughout the entire paper, we say that eigenvalues are complex if they are not real
2If the eigenvalues are not real, then consider the limits in (2.9) using complex coordinates
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Figure 2.2: Following the unstable manifold backwards along the homoclinic orbit, we expect that this manifold

tends towards the strong unstable directions. This property is violated when the unstable manifold is in an

inclination-flip configuration.

Another important geometric property associated with a homoclinic orbit h(t) are inclination properties of

the stable and unstable manifolds when they are transported along the homoclinic orbit. As illustrated in

Figure 2.2, we expect that the tangent space Th(t)W
u(p, 0) converges as t → ∞ to the sum of TpW

uu(p, 0)

and the eigendirection associated with the leading stable eigenvalue3: in this case, we say that the unstable

manifold is not in an inclination-flip configuration. The asymptotic behavior as t → ∞ of the unstable

manifold along the homoclinic orbit can be encoded similarly to the way we encoded in vu(0) the property

that h(t) should not lie in the strong unstable manifold of p: indeed, define

vs
∗ := lim

t→−∞
eν

stψ(t), vu
∗ := lim

t→∞
eν

utψ(t),

then vs
∗ and vu

∗ are multiples of the leading stable and unstable eigenvectors of the adjoint Jacobian fu(p, 0)∗.

Furthermore, as desired, vu
∗ 6= 0 if, and only if, the unstable manifold is not in an inclination-flip configuration.

Generic homoclinic orbits do not lie in the strong stable or unstable manifolds, and the stable and unstable

manifolds are not in inclination-flip configurations:

Hypothesis 2.4 (Inclination and orbit properties). The following conditions exclude inclination-flip and

orbit-flip configurations:

(i) The stable manifold along the homoclinic orbit is not in an inclination-flip configuration, that is, vs
∗ 6= 0.

(ii) The homoclinic orbit is not in an orbit-flip configuration within the stable manifold, that is, it does not

lie in the strong-stable manifold W ss(p, 0): vs 6= 0.

(iii) The unstable manifold along the homoclinic orbit is not in an inclination-flip configuration, that is,

vu
∗ 6= 0.

(iv) The homoclinic orbit is not in an orbit-flip configuration within the unstable manifold, that is, vu 6= 0.

Inclination and orbit flips have the following geometric interpretation. Assume again that the leading

eigenvalues are real and simple. If Hypothesis 2.4 is met, then

O := sign [〈vs
∗, v

s(0)〉〈vu
∗ , v

u(0)〉] (2.10)

satisfies O = ±1; in other words, Hypothesis 2.4 fails precisely when O = 0. Geometrically, O is an

orientation index that encodes the orientability of the two-dimensional homoclinic center manifold W c
hom(µ)

that we shall discuss in §3.4; see Figure 3.3 for an illustration. In particular, generically, the two-dimensional

homoclinic center manifold changes at an inclination or orbit flip from orientable to nonorientable, or vice

versa. We say that a homoclinic orbit is orientable if O = 1 and call it nonorientable when O = −1.

3We assume here that Hypothesis 2.3(iii) is met so that the leading eigenvalues are real and simple
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Alternatively, inclination-flip conditions, Hypotheses 2.4(i) and 2.4(iii), can also be stated in the following

slightly different geometric terms. First, invariant manifold theory provides invariant manifolds W ls,u(p)

near p whose tangent space at p consists of the generalized unstable eigenspace of fu(p, 0) plus the leading

stable eigendirections; similarly, there is an invariant manifold W s,lu(p) whose tangent space consists of the

generalized stable eigenspace plus the leading stable eigendirections. The smoothness of these manifolds

depends on spectral gap conditions: in general, they are only continuously differentiable. Furthermore, even

though their tangent space at p is unique, the manifolds themselves are not uniquely defined. The tangent

bundle of W s,lu(p) along the stable manifold is a smooth and uniquely defined vector bundle. Similarly, the

tangent bundle of W ls,u(p) along the unstable manifold is a smooth and uniquely defined vector bundle. We

now have the following characterization:

Lemma 2.2. The stable manifold along the homoclinic orbit is not in an inclination-flip configuration

precisely if W ls,u(p) t W s(p) along the homoclinic orbit. The unstable manifold along the homoclinic orbit

is not in an inclination-flip configuration precisely if W s,lu(p) tW u(p) along the homoclinic orbit.

If vs
∗ or vu

∗ vanish, then we would like to characterize how the degenerate inclination of stable or unstable

manifolds is unfolded as µ varies near zero. To this end, we need the following lemma whose proof is similar

to that of Lemma 2.1.

Lemma 2.3. Assume that Hypotheses 2.1 and 2.2(i) are met. For j = s,u, there are unique solutions

ψj(·;µ) of

ẇ = −fu(hj(t;µ), µ)∗w, j = s,u

with ‖ψj(0;µ)‖ = 1 and ψj(t;µ) ⊥ Thj(t;µ)W
j(p(µ), µ) so that ψu(0;µ) − ψs(0;µ) ∈ Rḣ(0). The functions

ψs(·;µ) and ψu(0;µ), considered with values in C0(R+,Rn) and C0(R−,Rn) respectively, are smooth in µ.

We then define

vs
∗(µ) := lim

t→−∞
eν

s(µ)tψs(t;µ), vu
∗ (µ) := lim

t→∞
eν

u(µ)tψu(t;µ), (2.11)

and it can again be shown that these limits exist and are smooth in µ. We may now impose that derivatives

of vj∗(µ) are nonzero at µ = 0 whenever vj∗(0) = 0 for j = s or j = u.

2.2 Homoclinic orbits to nonhyperbolic equilibria

Like hyperbolic equilibria, nonhyperbolic equilibria may admit homoclinic solutions to it. In systems with

additional structure, such as reversibility or a Hamiltonian structure, this may be typical or at least of low

codimension. We now discuss various geometric notions that we shall use later when we review bifurcations

of homoclinic orbits that converge to nonhyperbolic equilibria.

From now on, let p be a nonhyperbolic equilibrium of u̇ = f(u, 0), so that fu(p, 0) has at least one eigenvalue

on the imaginary axis. Center manifolds and normal forms can then be used to study the local bifurcations

near the equilibrium p, and we refer the reader to [394, 412] for their properties and various examples.

First, consider the case where p is a saddle-node equilibrium: its linearization fu(p, 0) has a simple real

eigenvalue ν = 0 and no further eigenvalues on the imaginary axis. In generic systems, homoclinic orbits to

a saddle-node equilibrium occur as a codimension-one phenomenon. Define vc and wc to be the right and

left eigenvectors of the eigenvalue 0 of fu(p, 0).

Hypothesis 2.5 (Codimension-one saddle-node bifurcation). The following conditions define a generic

saddle-node bifurcation:

(i) The saddle-node equilibrium is not degenerate: 〈wc, fuu(p, 0)[vc, vc]〉 6= 0.

(ii) The unfolding is generic: 〈wc, fµ(p, 0)〉 6= 0.
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If this hypothesis is met, then the vector field on the one-dimensional center manifold can be brought into

normal form ẋc = b(µ) + a(µ)(xc)2 + O(|xc|3), where a(0) 6= 0 and bµ(0) 6= 0. Associated with the saddle-

node equilibrium p at µ = 0 is its stable manifold W s(p), which consists of orbits that converge towards

p exponentially in t as t → ∞, and its unstable manifold W u(p), which consists of orbits that converge

towards p exponentially in t as t → −∞. Invariant-manifold theory [394] also gives the existence of a

center-stable manifold W cs(p) and a center-unstable manifold W cu(p) so that a center manifold is obtained

as the transverse intersection W c(p) = W cs(p) tW cu(p). The stable setMs(p) that consists of orbits which

converge (not necessarily exponentially) to p as t → ∞ is a submanifold of W cs(p) with boundary W s(p).

Similarly, the unstable set Mu(p) that consists of orbits converging to p for t → −∞ is a manifold with

boundary W u(p) inside W cu(p).

As for hyperbolic equilibria, we can classify the hyperbolic part of the spectrum of fu(p, 0) into different

categories.

Hypothesis 2.6 (Leading hyperbolic eigenvalues). Consider the following conditions on the eigenvalues of

fu(p, 0) with nonzero real part:

(i) The leading stable and unstable eigenvalues are unique, real and simple.

(ii) There are precisely two leading stable eigenvalues νs and νs, and these are complex and simple.

(iii) The leading stable and unstable eigenvalues are unique (up to complex conjugation) and simple.

A homoclinic orbit to p lies in the intersectionMs(p)∩Mu(p), and the following hypothesis excludes orbit-flip

configurations.

Hypothesis 2.7 (Orbit properties). The following conditions exclude orbit-flip configurations:

(i) The homoclinic orbit is not in an orbit-flip configuration within the center-stable manifold, that is, it

does not lie in the stable manifold.

(ii) The homoclinic orbit is not in an orbit-flip configuration within the center-unstable manifold, that is,

it does not lie in the unstable manifold.

Next, we discuss Hopf bifurcations of p, where the linearized vector field about the nonhyperbolic equilibrium

p has complex conjugate eigenvalues on the imaginary axis when µ = 0. Homoclinic orbits to a Hopf

equilibrium occur, in generic systems, as a codimension-two phenomenon. This gives rise to the Shil’nikov–

Hopf bifurcation, which we discuss in §5.1.10. We suppose that all eigenvalues of fu(p, 0) are away from the

imaginary axis except for two simple eigenvalues νc, νc on the imaginary axis. Using the complex coordinate

z on the two-dimensional local center manifold, we can write the vector field on the center manifold as

ż = νc(µ)z + g(z, z̄, µ). Recall that a smooth coordinate change transforms this equation into the normal

form ẇ = νc(µ)w + c1(µ)|w|2w + O(|w|5); see [394, 412].

Hypothesis 2.8 (Codimension-one Hopf bifurcation). The following conditions define a generically unfolded

supercritical Hopf bifurcation:

(i) The Hopf equilibrium is not degenerate: c1(0) 6= 0.

(ii) The unfolding is generic: νc
µ(0) 6= 0.

(iii) The Hopf bifurcation is supercritical: c1(0) < 0 and νc
µ(0) > 0.
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2.3 Heteroclinic cycles with hyperbolic equilibria

A heteroclinic cycle is an invariant set for (2.1) that consists of disjoint equilibria p1, . . . , p` and heteroclinic

orbits h1(t), . . . , h`(t) that connect pi to pi+1 so that

lim
t→−∞

hi(t) = pi, lim
t→∞

hi(t) = pi+1

for i = 1, . . . , `, where p`+1 = p1. A connected invariant set that can be written as a finite union of

heteroclinic cycles (possibly including homoclinic loops) is called a polycycle.

As with homoclinic orbits we start with the key assumption that the equilibria do not undergo bifurcations,

which is again guaranteed by a hyperbolicity condition.

Hypothesis 2.9 (Hyperbolicity). The equilibria pi are hyperbolic at µ = 0 for 1 ≤ i ≤ `.

If the preceding assumption is met, then hi(t) ∈ W u(pi) ∩W s(pi+1) for each i. We now explore different

possible configurations that depend on Morse indices and leading eigenvalues at the equilibria. As the

Morse index ind(pi) := dimW u(pi) of pi may differ from the index ind(pi+1) of pi+1, heteroclinic orbits

can occur robustly (or even in families) or may occur only if a sufficient number of parameters is varied.

If ind(pi) > ind(pi+1), then transverse intersections of W u(pi) and W s(pi+1) form a manifold of dimension

ind(pi)−ind(pi+1). If ind(pi) ≤ ind(pi+1), the codimension of hi typically equal to d = ind(pi+1)−ind(pi)+1:

for a family u̇ = f(u, µ) of vector fields with µ ∈ Rd, transverse intersections of ∪µ(W u(pi(µ), µ), µ) and

∪µ(W s(pi+1(µ), µ), µ) in Rn ×Rd yield isolated heteroclinic orbits at isolated parameter values. Here, pi(µ)

is the continuation of pi, and W u(pi(µ), µ) is the unstable manifold of pi(µ) for u̇ = f(u, µ).

Following §2.1, consider the adjoint variational equation

ẇ = −fu(hi(t), 0)∗w. (2.12)

Suppose Thi(0)W
u(pi, 0)+Thi(0)W

s(pi+1, 0) has codimension d, then there are d linearly independent bounded

solutions ψ1
i (t), . . . , ψdi (t) to (2.12). We can now formulate nondegeneracy conditions akin to Hypothesis 2.2.

Hypothesis 2.10 (Nondegeneracy). Consider the following nondegeneracy conditions on hi(t):

(i) The heteroclinic orbit hi is of codimension di ≥ 0: ind(pi+1) − ind(pi) + 1 = di, and the codimension

of Thi(0)W
u(pi, 0) + Thi(0)W

s(pi+1, 0) is di.

(ii) The heteroclinic orbit hi is of codimension di, and stable and unstable manifolds unfold generically

along hi with respect to the parameter µ = (µ1, . . . , µdi) ∈ Rdi so that the matrix M ∈ Rdi×di with

entries

Mkl =

∫
R
〈ψki (t), fµl(hi(t), 0)〉dt

has full rank.

For i = 1, . . . , `, we define the cross sections Σi via

Σi = hi(0) + Yi, Yi = f(hi(0), 0)⊥. (2.13)

The cross section Σi is a hyperplane that intersects the orbit hi(t) transversally at hi(0). Let

Zi =
(
Thi(0)W

u(pi, 0) + Thi(0)W
s(pi+1, 0)

)⊥
(2.14)

be the subspace of Yi spanned by ψ1
i (0), . . . , ψdii (0) and note that hi(0) + Zi ⊂ Σi. The argument used to

prove Lemma 2.1 also gives the following corresponding lemma for heteroclinic orbits.

Lemma 2.4. Suppose hi is a heteroclinic orbit of codimension one (in particular, dimZi = 1). For each µ

close to 0, there are unique orbits hs
i(·;µ) ∈W s(pi+1(µ), µ) and hu

i (·;µ) ∈W u(pi(µ), µ) such that

hu
i (0;µ)− hs

i(0;µ) ∈ Zi, ∀µ.
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Next, we state conditions on the leading eigenvalues.

Hypothesis 2.11 (Leading eigenvalues). Consider the following eigenvalue conditions:

(i) The unique leading unstable eigenvalue νu
i at pi is real and simple, and we have |Re νs

i | > νu.

(ii) The leading stable and unstable eigenvalues at pi are unique, real and simple.

(iii) The leading stable eigenvalue of fu(pi+1, 0) and unstable eigenvalues of fu(pi, 0) are unique (up to

complex conjugation) and simple.

Assume that Hypotheses 2.11(iii) and 2.10(i) are met with di = 1. As in §2.1, it can be shown that

vs
i (µ) := lim

t→∞
e−ν

s
i+1(µ)t[hs

i(t;µ)− pi+1(µ)] (2.15)

vu
i (µ) := lim

t→−∞
e−ν

u
i (µ)t[hu

i (t;µ)− pi(µ)]

exist and are smooth in µ, where νs
j(µ) and νu

j (µ) denote the leading eigenvalues of fu(pj(µ), µ). Likewise,

we define

vs
i,∗ := lim

t→−∞
eν

s
i (0)tψi(t), vu

i.∗ := lim
t→∞

eν
u
i+1(0)tψi(t), (2.16)

then vs
i,∗ and vu

i,∗ are multiples of the leading stable and unstable eigenvectors of the adjoint linearizations

fu(pi, 0)∗ and fu(pi+1, 0)∗, respectively.

Hypothesis 2.12 (Inclination and orbit properties). The following conditions exclude inclination-flip and

orbit-flip configurations along a codimension-one heteroclinic orbit hi:

(i) The stable manifold W s(pi+1, 0) along hi is not in an inclination-flip configuration, that is, vs
i,∗ 6= 0.

(ii) hi is not in an orbit-flip configuration within the stable manifold so that it does not lie in the strong-

stable manifold W ss(pi+1, 0): vs
i (0) 6= 0.

(iii) The unstable manifold W u(pi, 0) along hi is not in an inclination-flip configuration, that is, vu
i,∗ 6= 0.

(iv) hi is not in an orbit-flip configuration within the unstable manifold, that is, vu
i (0) 6= 0.

There is a geometric description of the inclination-flip property akin to Lemma 2.2. Recall the definition of

the invariant manifolds W ls,u(pi) and W s,lu(pi+1) from §2.1.

Lemma 2.5. The stable manifold W s(pi+1) along hi is not in an inclination-flip configuration precisely if

W ls,u(pi) t W s(pi+1). The unstable manifold W u(pi) along hi is not in an inclination-flip configuration

precisely if W s,lu(pi+1) tW u(pi).

3 Analytical and geometric approaches

The goal of homoclinic bifurcation theory is to investigate the recurrent dynamics near a homoclinic orbit

h(t). In other words, we are interested in finding all orbits that stay in a fixed tubular neighborhood of a

given homoclinic orbit or heteroclinic cycle for all times.

A natural way for approaching this problem is to use Poincaré or first-return maps. Denote by Σ a cross

section placed at h(0) which, by definition, means that Σ is the ball of radius ε > 0 centered at h(0) in the

hyperplane h(0) + ḣ(0)⊥:

Σ = Bε(h(0)) ⊂ h(0) + ḣ(0)⊥, (3.1)

where ε > 0 is chosen to be so small that the flow is transverse to Σ. Starting with an initial condition

u0 in Σ, we then follow u(t) until it hits Σ again, say at time t = T , and define the first-return map

Π via Π(u0) := u(T ) ∈ Σ. The main issue is that a solution that starts near h(0) may not return to a
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Figure 3.1: The domain of the first-return map on a cross section does not contain an open neighborhood

of h(0) (one often has wedge shaped domains as shown here). For computational purposes, it is useful to

consider two cross sections Σin and Σout and write the first-return map Π as a composition of transition

maps between the cross sections.

neighborhood of h(0); see Figure 3.1. Thus, in general, the domain of the Poincaré map Π does not contain

an open neighborhood of h(0) in Σ. Furthermore, any solution that does return will spend a very long time

near the equilibrium, thus spoiling most finite-time error estimates for Π from standard variation-of-constant

formulae.

Several techniques have been developed to overcome these difficulties. We distinguish, to some extent

artificially, two different approaches that treat homoclinic bifurcations from somewhat different viewpoints:

The first approach computes the Poincaré map by writing it as a composition of a local transition map near

the equilibrium with a global transition map; see Figure 3.1. The main difficulty here is to get expansions

of the local transition map. The second approach is to seek orbits that stay near the homoclinic orbit

as solution to some abstract functional-analytic system using Lyapunov–Schmidt reduction. Both of these

methods can be used in conjunction with a geometric reduction to a low-dimensional invariant homoclinic

center manifold that contains all recurrent dynamics. Each of these approaches has its own advantages and

disadvantages that we shall comment on in the following when we discuss them in more detail.

3.1 Normal forms and linearizability

Given two cross sections Σin and Σout that are transverse to, respectively, the local stable and local unstable

manifold of p, the local transition map Πloc is the first-return map

Πloc : Σin −→ Σout. (3.2)

Understanding Πloc requires solving

u̇ = f(u, µ) = fu(p, µ)(u− p) + O(‖u− p‖2) (3.3)

for u close to p. To calculate Πloc, it is often advantageous to simplify the vector field on the right-hand side

of (3.3). Of course, the best possible outcome is that the nonlinear terms can simply be transformed away

which renders the vector field linear.

The Hartman–Grobman theorem states that there is a coordinate change, which is continuous in (u, µ), near

each hyperbolic equilibrium p that transforms (3.3) into the linear system

v̇ = fu(p, µ)v. (3.4)
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Using such coordinates, the return map on a cross section is a homeomorphism but it is not clear how

expansions in u can be derived that are needed for a bifurcation study. Belitskii [30] derived eigenvalue

conditions which ensure the existence of a continuously differentiable coordinate change that linearizes a

fixed flow. This linearization theorem can be applied to obtain statements on stability or the existence of

hyperbolic sets near homoclinic solutions.

Theorem 3.1 ([30]). Consider the equation u̇ = f(u) on Rn near a hyperbolic equilibrium p and assume

that f is of class C2. With the eigenvalue ordering given in (2.7), if

Re νi 6= Re νj1 + Re νj2 (3.5)

for each i and all 1 ≤ j1 ≤ dimW s(p) < j2 ≤ n, then there is a local coordinate transformation of class C1

that transforms the ODE into its linearization v̇ = fu(p)v near u = p.

For the study of bifurcations that involve periodic orbits, parameter-dependent versions and higher degrees

of differentiability are needed. The next theorem, a parameter-dependent version of Sternberg’s linearization

result, gives conditions under which (3.3) can be transformed into (3.4) by an appropriate smooth coordinate

transformation (see also §3.6.3 for a complementary linearization result). More generally, Takens [387]

constructs partial linearizations near equilibria with center directions.

Theorem 3.2 ([352, 384, 387]). Assume that f(u, µ) is C∞ in (u, µ). Fix any ` ≥ 1, then there exist

numbers N = N(`, fu(0, 0)) ≥ 1 and ε > 0 with the following property: if

νi 6=
n∑
j=1

Njνj (3.6)

for each i and all natural numbers Nj with 2 ≤
∑n
j=1Nj ≤ N , then we can C`-linearize (3.3) in Bε(p) for

|µ| < ε, i.e. there is a coordinate transformation of class C` in u ∈ Bε(p) and |µ| < ε that transforms (3.3)

into (3.4).

If the system can be linearized, we can compute Πloc explicitly once the transition time from Σin to Σout

has been computed.

If the non-resonance condition (3.6) is not met, the vector field may still be transformed into normal form

[80], and we refer the reader to [203] for an exposition of results on finitely smooth normal forms for families

of vector fields and to [48] for analytic local normal forms for families of ODEs. Structure preserving normal

forms (e.g. in the class of equivariant, conservative or reversible ODEs) are another important topic: we

will not discuss this here but refer to [31] for Sternberg’s theorem in an equivariant setting and to [47] for a

general approach.

Useful expansions for Πloc may be hard to obtain if the normal form is not linear though problems involving

one-dimensional unstable separatrices are often tractable. Another approach in this situation is to use

Shil’nikov variables which we shall discuss next.

3.2 Shil’nikov variables

Shil’nikov variables were introduced by Shil’nikov in 1968 to compute the local transition map near equilibria

to leading order. Instead of solving an initial-value problem, solutions near the equilibrium are found using

an appropriate boundary-value problem. The analysis of the resulting integral formulae leads to asymptotic

expansions for the solutions. We concentrate on hyperbolic equilibria and refer the reader to [100] for

results in the non-hyperbolic case. We remark that, in the case of a hyperbolic equilibrium with one-

dimensional unstable directions, the approach leads to asymptotic expansions for solutions of an initial-value

problem. Further information on Shil’nikov variables can be found, for instance, in the books [374, 375]

where considerable space is devoted to their analysis and use.
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Assume that p = 0 is a hyperbolic equilibrium for all µ. We may also assume that the stable and unstable

eigenspaces of fu(0, µ) do not depend on µ. We denote these spaces by Es
0 and Eu

0 , respectively, and choose

local coordinates u = (x, y) ∈ Es
0 ⊕ Eu

0 . In these coordinates, (3.3) becomes

ẋ = As(µ)x+ gs(x, y;µ), spec(As(µ)) = spec(fu(0, µ)) ∩ {Re ν < 0}, (3.7)

ẏ = Au(µ)y + gu(x, y;µ), spec(Au(µ)) = spec(fu(0, µ)) ∩ {Re ν > 0}.

For each fixed (x0, y1) close to zero and each τ � 1, we seek solutions (x, y)(t) of (3.7) that satisfy

x(0) = x0, y(τ) = y1. (3.8)

We proceed as follows to construct these solutions. First, we separate eigenvalues of fu(0, 0) into leading

and strong directions, and choose numbers λss and λuu for µ = 0 as in (2.8). Next, we write

x = (xls, xss) ∈ Es
0, y = (ylu, yuu) ∈ Eu

0 ,

where xls and xss lie in the generalized eigenspaces of fu(0, µ) that belongs to stable eigenvalues of fu(0, µ)

whose real parts are, respectively, larger and smaller than λss. Similarly, ylu and yuu lie in the generalized

eigenspaces of fu(0, µ) that belong to unstable eigenvalues of fu(0, µ) whose real parts are, respectively,

smaller and larger than λuu. Note that the leading stable and unstable eigenvalues may acquire slightly

different real parts upon changing µ. An appropriate coordinate transformation [104, 374] brings (3.7) into

the following normal form. More detailed normal forms may be obtained by similar methods if appropriate

spectral conditions are met.

Proposition 3.1. A smooth coordinate change brings the ODE near p into the form
ẋls

ẋss

ẏlu

ẏuu

 =


Als(µ) 0 0 0

0 Ass(µ) 0 0

0 0 Alu(µ) 0

0 0 0 Auu(µ)




xls

xss

ylu

yuu

+


O((|xls|2 + |xss|)|y|)

O(|xls|2 + |xss|(|x|+ |y|))
O((|xlu|2 + |xuu|)|x|)

O(|ylu|2 + |yuu|(|x|+ |y|))

 .

Proof. We may choose smooth coordinates x = (xss, xls, ylu, yuu) near p so that

W s(p) = {y = 0}, W u(p) = {x = 0},

W s,lu(p)∩Ws(p){yuu = 0}, W ls,u(p)∩Wu(p){xss = 0},

where the notation W∩qV means that W is tangent to V at q. This brings (3.7) into the form
ẋls

ẋss

ẏlu

ẏuu

 =


Als(µ) 0 0 0

0 Ass(µ) 0 0

0 0 Alu(µ) 0

0 0 0 Auu(µ)




xls

xss

ylu

yuu

+


O(|xs|(|x|+ |y|))

O(|xls|2 + |xss|(|x|+ |y|))
O(|yu|(|x|+ |y|))

O(|ylu|2 + |yuu|(|x|+ |y|))


The remaining coordinate changes are described in detail in [299], and we give here only a brief overview. A

polynomial coordinate change removes quadratic terms xlsxlu from the differential equations for xls. Consider

next a change of coordinates of the form

x̃ls = xls + pls(y)xls, x̃ss = xss, ỹlu = ylu, ỹuu = yuu (3.9)

for a function pls that vanishes along y = 0. Write the differential equation for xls in the new coordinates

(skipping the tildes) as

ẋls = Als(µ)xls + P ls(x, y)xls + gls(x, y)xss.

Along the unstable manifold x = 0 we find

P ls(0, y) = ṗls + plsAls(µ)−Als(µ)pls,
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where the higher-order terms are of at least quadratic order. Consider ṗls as a variable and construct the

local unstable manifold tangent to {pls = 0} at the origin for the resulting differential equations

ṗls = Als(µ)pls − plsAls(µ) + h.o.t.,

ẏlu = Alu(µ)ylu + h.o.t.,

ẏuu = Auu(µ)yuu + h.o.t.

along the unstable manifold {x = 0}. The resulting coordinate change will transform f ls to a map with

expansion

f ls(x) = O(|xls|2 + |xss|(|x|+ |y|)).

As the coordinate change leaves ylu unaltered, a similar coordinate change for f lu can be performed. We

have now achieved the following form:
ẋls

ẋss

ẏlu

ẏuu

 =


Als(µ) 0 0 0

0 Ass(µ) 0 0

0 0 Alu(µ) 0

0 0 0 Auu(µ)




xls

xss

ylu

yuu

+


O(|xls|2 + |xss|(|x|+ |y|))
O(|xls|2 + |xss|(|x|+ |y|))
O(|ylu|2 + |yuu|(|x|+ |y|))
O(|ylu|2 + |yuu|(|x|+ |y|))


Within the stable manifold, there is a smooth strong stable foliation, which can be transformed into an affine

foliation with leaves {xss = constant}. The differential equation for xls in the set {y = 0} depends only on

xls and no longer on xss. Since eigenvalues of Als(µ) have the same real part, one can smoothly linearize this

differential equation.

In the coordinates of the preceding proposition, there exists an ε > 0 such that the boundary-value problem

(3.8) has a unique solution (x, y)(t) for each (x0, y1), µ and τ that satisfy |x0|+ |y0| < ε, |µ| < ε and τ > 1/ε.

This solution depends smoothly on the data (x0, y1, µ, τ).

Proposition 3.2. Assuming the normal form from Proposition 3.1, there is an η > 0 so that the solution

(x, y)(t) admits the expansion

xls(t) = eA
ls(µ)t

[
xls

0 + O(e−ηt)
]
, xss(t) = O(e(Re νs−η)t),

ylu(t) = eA
lu(µ)(t−τ)

[
ylu

0 + O(eη(t−τ))
]
, yuu(t) = O(e(Re νu+η)(t−τ)).

(3.10)

These asymptotic expansions are derived by considering integral formulae for solutions obtained using varia-

tion of constants. Similar estimates also hold for the derivatives of the solution with respect to the data. Note

the similarity with the expansions for linear differential equations. We refer the reader to [99, 104, 369, 374]

for proofs and generalizations of this result.

3.3 Lin’s method

In this section, we discuss a functional-analytic approach due to Lin [256]. For clarity of exposition, we

assume that the equilibrium p of

u̇ = f(u, µ) (3.11)

is hyperbolic and that the homoclinic orbit h(t) satisfies Hypothesis 2.1(i). We pick a nontrivial bounded

solution ψ(t) of the adjoint variational equation (2.3) about h(t) and the cross section Σ from (3.1). The idea

of Lin’s method is to construct a sequence uj of solutions to (3.11) that begin and end in Σ after spending a

given number of time units near the homoclinic orbit. The key feature of these solutions is that the difference

between the end point of the jth solution and the initial condition for the (j + 1)th solution lies in Rψ(0):

In particular, the individual solutions can be spliced together to form a solution of (3.11) if, and only if, the

jumps in Rψ(0) vanish for all j. This is further illustrated in Figure 3.2.
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Figure 3.2: Orbit pieces in Lin’s method with jumps in a specified direction in the cross section.

In detail, is has been shown in [256, 339] that there are constants 0 < ε � 1 and T∗ � 1 such that the

boundary-value problem

u̇−j = f(u−j , µ) t ∈ (−Tj , 0)

u̇+
j = f(u+

j , µ) t ∈ (0, Tj)

u±j (0) ∈ Σ (3.12)

u−j (−Tj) = u+
j (Tj)

‖u±j (t)− h(t)‖ < ε t ∈ [−Tj , 0] and [0, Tj ], respectively

u−j (0)− u+
j+1(0) ∈ Rψ(0)

with j ∈ Z has a unique solution {uj}j∈Z for given data {Tj}j∈Z and µ with Tj > T∗ and |µ| < ε, and the

solution is smooth in those data. In particular, if the bifurcation functions

ξj := 〈ψ(0), u−j (0)− u+
j+1(0)〉

all vanish, then the concatenation of the solutions uj gives a solution u of (3.11) that follows the homoclinic

orbit h(t) for all times. Using the notation introduced in §2, the bifurcation functions ξj admit the expansion

ξj = 〈ψu(−Tj , µ), hs(Tj , 0)− p(µ)〉 − 〈ψs(Tj+1, µ), hu(−Tj+1, 0)− p(µ)〉+ ∆(µ) (3.13)

+O
(

e−(2 min(|νs|,νu)+η) mink∈Z Tk
)

for some η > 0. We refer the reader to [344, §5.1.1] for a geometric explanation of the quantities that appear

in the above expression. The error estimate in (3.13) can be greatly improved, and we refer to [256, 339] for

details.

Example. If Hypothesis 2.3(i) is met, then we can use (2.6), (2.9) and (2.11) to simplify the expression

(3.13) to get the bifurcation equations

〈vs
∗(µ), vs(µ)〉e2νsTj − 〈vu

∗ (µ), vu(µ)〉e−2νuTj+1 +Mµ+ O
(

e−(2 min(|νs|,νu)+η) mink∈Z Tk + |µ|2
)

= 0. (3.14)

3.4 Homoclinic center manifolds

Instead of directly investigating the full n-dimensional ODE

u̇ = f(u, µ) (3.15)

near a given homoclinic orbit h(t), it may be desirable to first reduce the dimensionality of the system by

constructing a locally invariant, normally hyperbolic manifold that contains the homoclinic orbit and all

solutions staying close to it for all times. We refer to such a manifold as a homoclinic center manifold :

normal hyperbolicity implies robustness under parameter perturbations, while the property that it contains

all recurrent dynamics shows that it plays indeed a role similar to that of center manifolds in local bifurcation

theory. The theorem stated below asserts that linear normal hyperbolicity along the homoclinic orbit implies

the existence of a homoclinic center manifold.
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Figure 3.3: If the bundle Ec is two-dimensional, a homoclinic center manifold is a two-dimensional surface

that is diffeomorphic to either an annulus [left] or a Möbius band [right]. The associated orientation index

O defined in (2.10) is O = 1 [left] or O = −1 [right].

Hypothesis 3.1 (Linear normal hyperbolicity). Assume that h(t) is a homoclinic orbit of (3.15) for µ = 0

that converges to the hyperbolic equilibrium p. Suppose further that

spec(fu(p, 0)) = σs ∪ σc ∪ σu, max Reσs < min Reσc, max Reσc < min Reσu,

and denote by Es
p⊕Ec

p⊕Eu
p the associated decomposition of Rn into generalized spectral eigenspaces of fu(p, 0).

In this setting, we assume that there are subspaces Ej(t) of Rn for j = s, c,u, defined and continuous in

t ∈ R, so that Es(t)⊕Ec(t)⊕Eu(t) = Rn for all t ∈ R and Ej(t)→ Ejp as |t| → ∞ for each j, such that the

evolution Φ(t, s) of

v̇ = fu(h(t), 0)v

maps Ej(s) into Ej(t) for all t, s ∈ R and each j. Lastly, we assume that ḣ(t) ∈ Ec(t).

The following result has been proved in [182, 339, 343], see also [188, 331, 359, 400].

Theorem 3.3. Assume that Hypothesis 3.1 is met. Pick any integer l ≥ 1 and a number α ∈ (0, 1) so that

l + α < min

{
min Reσc

max Reσs
,

min Reσu

max Reσc

}
,

then there are a constant ε > 0 and a locally invariant, normally hyperbolic homoclinic center manifold

W c
hom(µ) associated with h(t) and defined for |µ| < ε with the following properties: W c

hom(µ) is of class Cl,α

jointly in (u, µ) and has dimension equal to dimEc
p.

The tangent bundle Ec(t) = Th(t)W
c
hom(0) along the homoclinic orbit is uniquely defined and, in fact, given

by the intersection of Th(t)W
s,lu(p, 0) and Th(t)W

ls,u(p, 0).

If Hypotheses 2.2(i), 2.3(ii), and 2.4 are met, then Ec(t) is a continuous bundle of planes that limit on

the eigenspace of fu(p, 0) associated with the leading eigenvalues, and a two-dimensional homoclinic center

manifold therefore exists in this situation; see Figure 3.3. In this case, the orientability of W c
hom(µ) is

determined by the index O defined in (2.10).

3.5 Stable foliations

For some global bifurcations, reductions to homoclinic center manifolds or other global center manifolds

are not possible. In such situations, stable foliations may still provide reductions to semiflows on branched

manifolds. This applies, in particular, to flows that contain Lorenz-like attractors, but also to studies of

annihilation processes of suspended horseshoes through homoclinic bifurcations. Whether such reductions

are helpful depends on the smoothness of the foliation (i.e. the smoothness of the holonomy map along the

leaves of the foliation).

Geometric models for Lorenz-like attractors depend on the existence of a stable foliation F ss with one-

dimensional leaves for the flow. Stable foliations can be constructed by graph transform techniques. Their
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smoothness, however, depends on spectral gap conditions at the equilibrium: if λss < λls are the stable

eigenvalues, and λlu is the unstable eigenvalue, then the stable foliation is Cl for l < (λls − λss)/λlu; see

[324]. In particular, for open sets of eigenvalues, the stable foliation is merely continuous. A stable foliation

Gss for a return map on a cross section is obtained by projecting F ss along flow lines into the section. This

projection can be expected to increase smoothness and map F ss to a continuously differentiable foliation. A

general result along these lines has been obtained by Homburg [182] in the context of bifurcations of singular

horseshoes: we shall present it later in Proposition 4.3. Similar statements apply, for instance, to Lorenz-like

attractors that occur in the unfolding of two homoclinic loops to an equilibrium with resonant eigenvalues; a

continuous stable foliation for the flow projects to a continuously differentiable stable foliation for the return

map on a cross section.

Alternatively, one could construct foliations directly for the return map defined on some cross section, rather

than constructing them for flows and then projecting along flow lines. We shall now present a theorem that

gives continuously differentiable stable foliations for return maps with prescribed asymptotic expansions.

Consider a map Π = (f, g) from D = ([−1, 1] \ {0})× [−1, 1]n ⊂ R× Rn to itself of the form

f(x, y) =

{
x−∗ + |x|α(A− + φ−(x, y)), x < 0,

x+
∗ + |x|α(A+ + φ+(x, y)), x > 0,

g(x, y) =

{
y−∗ + |x|αψ−(x, y), x < 0,

y+
∗ + |x|αψ+(x, y), x > 0.

We make the following assumption.

Hypothesis 3.2 (Asymptotic expansions). Assume that the following is true for some η > 0:

(i) A−, A+ 6= 0.

(ii) φ±, ψ± have continuous derivatives up to order two in D.

(iii) For some ε > 0, ‖ ∂k+l

∂xk∂yl
φ±‖ ≤ ε|x|η−k and ‖ ∂k+l

∂xk∂yl
ψ±‖ ≤ ε|x|η−k.

The following result due to Shashkov and Shil’nikov is stated for maps with sufficiently small higher-order

terms; sharper results can be found in [357].

Theorem 3.4 ([357]). There exists an ε0 > 0 so that, if Hypothesis 3.2 is met for ε < ε0, then Π admits a

stable C1-smooth foliation on D with C2 leaves that contains {x = 0}.

The preceding result is similar to a result by Rychlik [334], who considered maps on D that are close

to (x, y) 7→ (1 − c sign(x)|x|α, 0) with c ∈ (1, 2) and cα > 2; closeness is expressed by estimates as in

Hypothesis 3.2(iii) with α+ η > 1.

3.6 Case study: The creation of periodic orbits from a homoclinic orbit

We illustrate the different approaches to homoclinic bifurcation theory by applying them to a homoclinic

bifurcation of codimension one with real leading eigenvalues: specifically, we assume that Hypotheses 2.1,

2.2, 2.3(iv) and 2.4 are all satisfied. First, we derive bifurcation equations that capture periodic orbits using,

separately, Shil’nikov variables and Lin’s method. Afterwards, we discuss how homoclinic center manifolds

can be used to derive similar results. The resulting phase and bifurcation diagrams are summarized in

Figure 3.4. We remark that this bifurcation is an example of a blue sky catastrophe where a periodic orbit

disappears in a bifurcation at which its period goes to infinity.

3.6.1 Shil’nikov variables

For Shil’nikov variables, it is convenient to introduce a single cross section Σ that is transverse to the

homoclinic solution h at µ = 0. Proceeding in this way will also illuminate the differences and similarities

between the approaches via Shil’nikov variables and Lin’s method.
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Figure 3.4: The phase [top row] and bifurcation [bottom panel] diagrams of a nondegenerate homoclinic orbit

h(t) to an equilibrium with real leading eigenvalues |νs| > νu is shown. A unique attracting single-round

periodic orbit bifurcates to one side of µ = 0 (for µ < 0, say), and its period goes to infinity as µ tends to

zero.

Let Π(·, µ) : Σ → Σ be the first-return map given by the flow of u̇ = f(u, µ) and consider the dynamical

system xj+1 = Π(xj , µ) for xj ∈ Σ. If both the stable and unstable manifolds of p along the homoclinic orbit

are not in an inclination-flip configuration, then a parameter-dependent coordinate system x = (xss, xlu, xuu)

on Σ can be chosen so that

W s(p) ∩ Σ = {xlu, xuu = 0},

W u(p) ∩ Σ = {xss, xlu = 0},

W s,lu(p) ∩ Σ ∩Ws(p)∩Σ {xuu = 0},

W ls,u(p) ∩ Σ ∩Wu(p)∩Σ {xss = 0},

where the notation W∩qV means that W is tangent to V at q. The following result provides a normal form

for the return map on Σ. Its proof combines Proposition 3.2 for solutions between the local cross sections Σin

and Σout with expansions for the transition maps between Σ and Σin and between Σout and Σ; the transition

time from Σin to Σout is solved for as a function of the initial data on these cross sections.

Proposition 3.3 ([188]). Assume that Hypothesis 2.4 is met. In the coordinates constructed above, xj+1 =

Π(xj , µ) and xj are related by

(xss
j+1, x

lu
j+1, x

uu
j ) = Π̃(xss

j , x
lu
j , x

uu
j+1, µ)

for some map Π̃ with the asymptotics

xss
j+1 = O(|xlu

j |−ν
s/νu+η),

xlu
j+1 = a(µ) + ϕ(µ)[xlu

j ]−ν
s/νu

+ O(|xlu
j |−ν

s/νu+η), (3.16)

xuu
j = O(|xlu

j+1|1+η),

where a and ϕ are smooth functions of µ.

Consider a sequence {xj}j∈Z in Σ. These points lie on the same orbit of Π(·, µ) if, and only if,

(xss
j+1, x

lu
j+1, x

uu
j )− Π̃(xss

j , x
lu
j , x

uu
j+1, µ) = 0, j ∈ Z (3.17)

or, more detailed,

xss
j+1 −O(|xlu

j |−ν
s/νu+η) = 0,

xlu
j+1 − a(µ)− ϕ(µ)[xlu

j ]−ν
s/νu

+ O(|xu
j |−ν

s/νu+η) = 0, (3.18)

xuu
j −O(|xu

j+1|1+η) = 0.

If we denote by l∞RN be the space of bi-infinite sequences with entries in RN equipped with the supremum

norm, then equation (3.17) can be considered as an equation in l∞Rnss × l∞R × l∞Rnuu . Since the first and third
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equation in (3.18) depend smoothly on (xss, xuu), we can use an implicit function theorem in l∞, see [38] or

[89], to solve the first and third equation in (3.18) for (xss, xuu). Substitution into the second equation of

(3.18) gives the reduced bifurcation equations

xlu
j+1 − a(µ)− ϕ(µ)[xlu

j ]−ν
s/νu

+ O(|xu|−ν
s/νu+η) = 0. (3.19)

Note that the higher-order terms depend on the entire sequence xlu = {xlu
j }j∈Z. Imposing periodicity on the

entire sequence, we obtain N reduced bifurcation equations if we wish to investigate N -periodic orbits of

Π(·, µ) that have period N . In particular, the reduced bifurcation equation for a single-round periodic orbit

takes the form

xlu − a(µ)− ϕ(µ)[xlu]−ν
s/νu

−O(|xlu|−ν
s/νu+η) = 0,

where xlu ∈ R with |xlu| � 1. Solving is straightforward: if −νs > νu, then the solution is xlu = a′(0)µ+o(µ)

where µ is such that a′(0)µ > 0; similarly, if −νs < νu, then the solution is [xlu]−ν
s/νu

= −a′(0)µ/ϕ(0)+o(µ)

where µ is such that a′(0)µ/ϕ(0) < 0.

3.6.2 Lin’s method

To apply the technique outlined in §3.3 to the bifurcation of single-round periodic orbits from homoclinic

orbits, we assume |νs| > νu and consider the bifurcation equations (3.14)

− 〈vu
∗ (µ), vu(µ)〉e−2νuTj+1 +Mµ+ O

(
e−(2νu+η) mink∈Z Tk + |µ|2

)
= 0 (3.20)

for j ∈ Z that describe the existence of solutions that follow the homoclinic orbit with prescribed return times

Tj > T∗, where the Melnikov integral M has been defined in Hypothesis 2.2. To find single-round periodic

orbits, we set Tj = T for all j: With this choice, (3.20) is the same equation for all j due to uniqueness of

solutions to (3.12), and (3.20) therefore reduces to

− 〈vu
∗ (µ), vu(µ)〉e−2νuT +Mµ+ O

(
e−(2νs+η)T + |µ|2

)
= 0. (3.21)

For M 6= 0, this equation can be solved uniquely for µ as a function of T to get

µ = µ∗(T ) =
1

M
〈vu
∗ (0), vu(0)〉e−2νuT + O

(
e−(2νs+η)T

)
, (3.22)

which proves that periodic orbits bifurcate from the homoclinic orbit and shows how period and system

parameter are related for large periods.

3.6.3 Homoclinic center manifolds

As in local bifurcation theory, where Lyapunov–Schmidt reductions and center-manifold reductions each have

their own advantages and disadvantages, analytic and geometric approaches to global bifurcation theory can

complement each other: some aspects and questions are easier to investigate from a geometric viewpoint

while, in other situations, it might be advantageous to use analytical techniques.

The assumptions we made at the beginning of §3.6 guarantee that the homoclinic center manifold given in

Theorem 3.3 is two-dimensional and that it is of class C1+α for some α > 0 and depends in a C1+α fashion

on the parameter µ. The lack of smoothness of homoclinic center manifolds is often an obstacle for deriving

and solving bifurcation equations near homoclinic orbits. On the other hand, the dimension reduction gives

much insight into the geometry of the flow, which is helpful when studying stability and hyperbolicity. In

our case, the existence of a two-dimensional homoclinic center manifold W c
hom immediately excludes the

existence of N -periodic solutions for N > 2 if W c
hom is nonorientable, and for N > 1 for orientable W c

hom.

Even though the homoclinic center manifold is only C1+α, it is possible to find continuously differentiable

linearizing coordinates of the flow on W c
hom(µ) [182]. The argument to prove this statement utilizes the

smoothness of the flow in Rn and differs as such from a parameter-dependent version of linearization results

by Belitskii [30].
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Figure 4.1: Shown are a 2-round homoclinic orbit [left] and a 2-round periodic orbit [right], relative to a

given primary homoclinic orbit. N-homoclinic and N-periodic orbits for larger N are defined analogously:

these solutions make N rounds near the primary, or 1-homoclinic, orbit.

Proposition 3.4. There exist constants α > 0 and ε > 0 so that, for |µ| < ε, there are local C1+α

coordinates on W c
hom(µ) near the equilibrium p(µ), which are also C1+α in µ, for which the local transition

map Πloc : W c
hom(µ) ∩ Σin →W c

hom(µ) ∩ Σout has the expression Πloc(x, µ) = x−ν
s(µ)/νu(µ).

Up to a reparameterization, the first-return map Π on W c
hom(µ) ∩ Σin is therefore given by

Π(x, µ) = µ+ x−ν
s/νu

(a(µ) + O(xη))

for some η > 0, and the bifurcation of single-round periodic orbits follows trivially from this expression.

We mention again that the geometric approach via homoclinic center manifolds immediately excludes the

existence of multi-round homoclinic and periodic solutions.

4 Phenomena

Although there are a great many types of homoclinic and heteroclinic bifurcations, as evidenced by the

considerable list in §5, a number of features are common to several of them. In this section, we discuss

such common features. We also survey a number of transitions through global bifurcations from Morse–

Smale flows with finitely many critical elements (equilibria and periodic orbits) to complicated dynamics

involving suspended transitive hyperbolic sets, singular hyperbolic attractors, and suspended Hénon-like

attractors. Homoclinic-doubling cascades, the analogue of period-doubling cascades for homoclinic orbits,

provide another mechanism for the transition from Morse–Smale to non Morse–Smale flows. Finally, we

review the creation of intermittent time series through homoclinic bifurcations.

4.1 N-pulses and N-periodic orbits

The occurrence of multi-round homoclinic orbits is of central importance in applications to spatial dynamics,

where they correspond to travelling or standing multi-pulses. A large collection of homoclinic bifurcation

results have been derived with these applications in mind.

Multi-round homoclinic orbits may be created in bifurcations from a homoclinic orbit, which we refer to as

the primary or single-round homoclinic orbit. The definition of a multi-round homoclinic orbit is given with

reference to a tubular neighborhood of the primary homoclinic orbit. Let u̇ = f(u, µ) be a family of ODEs

with a homoclinic orbit h = {h(t)}t∈R at µ = 0 and denote by by U a small tubular neighborhood of the

closure of the homoclinic orbit h. If Σ is a cross section placed at h(0) that is transverse to the orbit h

when µ = 0, then a homoclinic loop contained in U is called an N -homoclinic orbit or N -round homoclinic

loop if it intersects Σ precisely N times. Multi-round periodic orbits are defined analogously by counting

the number of intersections with Σ. Figure 4.1 illustrates a 2-round homoclinic orbit and a 2-round periodic

orbit.

Near Shil’nikov saddle-focus homoclinic orbits, N -homoclinic orbits for allN appear in the unfolding provided

the leading eigenvalues satisfy a certain condition (in this case, the homoclinic orbit is called a wild saddle-

focus homoclinic orbit). Although perturbations from a codimension-one homoclinic bifurcation with real
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leading eigenvalues do not give rise to multi-round homoclinic orbits, various codimension-two homoclinic

bifurcations with real leading eigenvalues do. Consider a two-parameter family u̇ = f(u, µ) of ODEs that

have a homoclinic solution h(t) to a hyperbolic equilibrium with real leading eigenvalues when µ = 0. As

long as Hypotheses 2.1 and 2.2 hold, the homoclinic orbit persists along a curve in parameter space (see

§6.1 for a topological continuation theory for homoclinic orbits). At isolated parameter points along such a

curve, and assuming that the leading eigenvalues stay real, one of the conditions in Hypotheses 2.3 or 2.4

may be violated. At these points, multi-round homoclinic solutions may bifurcate from the curve of primary

homoclinic solutions, and we refer to the bifurcation theorems in §5.1.5, §5.1.6, and §5.1.7 for the results.

Subject to further conditions on spectrum and geometry of the flow, a double-round homoclinic orbit will

be created in all these cases.

If the dynamics contains N -periodic orbits for all N , then the overall dynamics is often organized around

suspended horseshoes: we say that the system has a suspended horseshoe if the first-return map Π to a cross

section Σ of the homoclinic orbit admits a Smale’s horsehoe, that is, a compact hyperbolic invariant set on

which the dynamics coming from Π is conjugated to a shift on two symbols; see, for instance, [309] for further

details. Suspended horseshoes are found in the unfoldings of various homoclinic bifurcations. Wild saddle-

focus homoclinic orbits and bi-focus homoclinic orbits have suspended horseshoes in each neighborhood of

the homoclinic orbit. Homoclinic orbits to equilibria with real leading eigenvalues can give rise to suspended

horseshoes in cases of higher codimension. In particular, suspended horseshoes can be found in the unfolding

of codimension-two inclination-flip and orbit-flip bifurcations, provided certain eigenvalue conditions are met.

In all these scenarios, suspended horseshoes are created through homoclinic tangencies (akin to the Hénon

family), which implies that it is impossible to give a complete description of the bifurcations in finitely many

parameters: we refer to [44, 309] for an overview of the underlying theory.

4.2 Robust singular dynamics

Within the framework of perturbations in the C1 topology, a comprehensive theory of generic dynamical

properties of flows exists, at least for three-dimensional flows, which is still under active development. This

program is in the spirit of Palis’s papers [305, 306] in which conjectures for the dynamics of typical systems

is sketched out. We will only skim through the relevant results, instead referring to the books [13, 44] and

the review article [317] for further discussion.

The central technique is the C1-connection lemma by Hayashi [174, 175]. For critical elements4 σ, the

connection lemma entails the following. Let σ be a hyperbolic critical element of a differential equation

u̇ = f(u) and suppose there exists a point q 6∈ σ in
(
W s(σ) ∩W u(σ)

)
∪
(
W u(σ) ∩W s(σ)

)
; such a point is

called an almost homoclinic point. There is then a differential equation C1 close to f that coincides with f

in a neighborhood of σ and has a homoclinic solution to σ.

Making use of his connection lemma, Hayashi finished in [174, 175] the proof of the C1 stability conjecture for

flows, which states that a differential equation on a three-dimensional compact manifold is C1 structurally

stable if, and only if, it is uniformly hyperbolic and all stable and unstable manifolds are transverse.

There are, however, open sets of flows that are not C1 structurally stable, so that the search for typical

dynamical properties remains. Arroyo and Rodriguez-Hertz [24] proved that a differential equation on a

three-dimensional compact manifold can be C1 approximated either by a system that is uniformly hyperbolic

or that has a homoclinic tangency between stable and unstable manifolds of periodic orbits or a singular cycle;

a singular cycle is a heteroclinic cycle between critical elements among which is at least one equilibrium.

In this context, transitive but non-hyperbolic sets can exist. The primary example is the Lorenz attractor,

4A critical element is a periodic orbit or an equilibrium
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which is the ‘butterfly’ attractor in the Lorenz equations [260, 383] given by

ẋ = −σx+ σy,

ẏ = ρx− y − xz,

ż = −βz + xy.

To understand the geometry of the Lorenz attractor, geometric models have been developed [3, 162, 423]. The

robust strange attractors in these models are called geometric Lorenz attractors or Lorenz-like attractors.

Tucker provided a computer-assisted proof for the existence of a robust strange attractor in the Lorenz

equations whose geometry is that of the robust strange attractors in geometric Lorenz models.

Theorem 4.1 ([397, 398]). The Lorenz equations support a robust strange attractor for the classical param-

eter values σ = 10, ρ = 28, and β = 8/3.

It turns out that the relevant notion for a general theory of robust transitive sets is that of dominated

splitting. A compact invariant set Λ of u̇ = f(u, µ) is a partially hyperbolic set if, up to time reversal, there

is an invariant dominated splitting TΛ = Es ⊕ Ec: this means that there are positive constants K,λ such

that

(i) Es is contracting: ‖∂xϕt|Es
x
‖ ≤ Ke−λt, for all x ∈ Λ and t > 0;

(ii) Es dominates Ec: ‖∂xϕt|Es
x
‖ ‖∂xϕt|Ec

ϕt(x)
‖ ≤ Keλt, for all x ∈ Λ and t > 0.

The central direction Ec of Λ is said to be volume expanding if the additional condition

|det(∂xϕt|Ec
x
)| ≥ Keλt

holds for all x ∈ Λ and t > 0. Let Λ be a compact invariant set of u̇ = f(u) that contains at least one

equilibrium, then Λ is called a singular hyperbolic set if it is partially hyperbolic with volume expanding

central directions, and Λ is called a singular hyperbolic attractor if, in addition, it attracts all points in some

open neighborhood.

A compact invariant set Λ for a flow ϕt of u̇ = f(u) is robust transitive if it is the maximal invariant set

∩t∈Rϕt(U) inside an open neighborhood U of Λ and, for the flow ψt of any differential equation u̇ = g(u)

with g C1-close to f , ∩t∈Rψt(U) is a nontrivial transitive set (nontrivial means that it does not consist of

a critical element). Morales, Paćıfico and Pujals demonstrated for three-dimensional flows that C1 robust

strange attractors which contain equilibria are singular hyperbolic sets. An invariant set is proper if it is not

the whole manifold.

Theorem 4.2 ([282]). A robust transitive set for a three-dimensional flow that contains an equilibrium is a

proper singular hyperbolic attractor or repeller.

There are ODEs in R3 that possess singular hyperbolic attractors with any number of equilibria, and §5.5.5

provides theorems that can be used to construct such examples; see also Figure 5.28. An example of a

singular hyperbolic attractor from a fluid convection model that contains two equilibria can be found in

[294]. We refer to [6, 12, 15, 262] for further results, addressing primarily ergodic properties, Lorenz-like and

other singular hyperbolic attractors.

A different class of strange attractors that contain an equilibrium is found in contracting Lorenz models. Like

the strange attractors encountered in the Hénon family, these strange attractors persist only in a measure

theoretic sense. Contracting Lorenz models are geometric Lorenz models but with contracting instead of

expanding central directions (the saddle quantity, i.e. the quotient −νs/νu of the leading stable and unstable

eigenvalues at the equilibrium, is larger than 1). Arneodo, Coullet and Tresser [19] noted that contracting

Lorenz models contain dynamics that can be described by interval maps (in fact unimodal maps if one

restricts to Z2-symmetric flows). Indeed, in geometric (contracting) Lorenz models, an invariant strong
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stable foliation enables a reduction to a semiflow on a branched manifold and to interval maps through a

first-return map. We recall a result by Rovella on the dynamics of contracting Lorenz models, focusing on

strange attractors that contain an equilibrium.

Theorem 4.3 ([333]). There exists a contracting Lorenz model u̇ = f(u) in R3 with an attractor Λ containing

a hyperbolic equilibrium so that the following properties hold:

(i) There exists a local basin of attraction B for Λ, a neighborhood V of f in the C3 topology, and an open

and dense subset V0 ⊂ V so that, for an ODE u̇ = g(u) with g ∈ V0, the maximal invariant set in B
consists of the equilibrium, one or two attracting periodic orbits, and a hyperbolic basic set.

(ii) In generic two-parameter families u̇ = f(u, µ) with f(·, 0) = f , there is a set of positive measure

containing µ = 0 as a density point for which an attractor in B containing the equilibrium exists.

The proof of the above result uses further eigenvalue conditions at the equilibrium to ensure C3 strong

stable foliations. Such strange attractors can occur in unfoldings of (symmetric) resonant homoclinic loops

[284, 327]; see also §5.5.5.

Another type of strange attractors in three-dimensional flows that contain an equilibrium would be formed

by strange attractors for which there is no strong stable foliation near the attractor and hence no reduction to

a branched manifold. Apart from spiral attractors (see §5.1.2), these can be found in hooked Lorenz models

[44]. Such attractors may also occur in unfoldings from certain homoclinic and heteroclinic bifurcations; see

[228, 293]. For an analysis of the dynamics of interval maps with both singularities and critical points that

yield approximate one-dimensional models for these attractors, see [110, 263, 264].

Examples of higher-dimensional robust strange attractors that contain equilibria are described in [46, 406].

4.3 Singular horseshoes

In this section we review the creation, or disappearance, of a suspended Smale horseshoe through sequences

of homoclinic bifurcations; each periodic orbit in the horseshoe will be created in a homoclinic bifurcation.

We will point out relations with bifurcation theory of singular cycles between an equilibrium and a periodic

orbit. The disappearance of suspended horseshoes through homoclinic bifurcations has been shown to occur

near the codimension-two bifurcations of homoclinic orbits in inclination-flip or orbit-flip configurations,

which will be discussed in §5. The appearance in these bifurcations makes this phenomenon a common

feature in the bifurcation diagrams of models of ODEs with two or more parameters.

Starting point is the disappearance through a homoclinic bifurcation of a periodic orbit that is part of a

larger transitive invariant set. This can be expected to trigger additional bifurcations of orbits within the

invariant set. The basic case illustrating this phenomenon is where the periodic orbit lies in the suspension

of a hyperbolic horseshoe, and we review this scenario in detail below, following [182]. It is instructive

to compare the bifurcation scenario with other scenarios in which horseshoes break up, in particular the

involved scenarios triggered by homoclinic tangencies [309] or saddle-node bifurcations of periodic orbits

[94, 96, 109, 431].

To fix ideas, consider a differential equation that admits an invariant set which is a suspended Smale horseshoe

Λ. Orbits in Λ are coded by doubly infinite sequences {0, 1}Z. Write q for the periodic orbit that corresponds

to the coding 0∞. The stable manifold W s(q) is a one-sided boundary leaf of the lamination W s(Λ): near

a point x ∈ W s(q), other leaves in W s(Λ) can be found only on one side of W s(q). The unstable manifold

W u(q) is likewise a one-sided boundary leaf of the lamination W u(Λ). Note that both W s(q) and W u(q) are

orientable surfaces.

Bifurcations that possess a suspended horseshoe for µ < 0 and undergo a homoclinic bifurcation of the

periodic orbit q(t) at µ = 0 can be identified in the following set-up. Assume u̇ = f(u, µ) is a one-parameter

family of ODEs on Rn that has a homoclinic solution h(t) at µ = 0 which satisfies Hypotheses 2.1, 2.2,
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Figure 4.2: A homoclinic orbit that coexists with a superhomoclinic orbit, which connects the equilibrium

to the homoclinic orbit, implies the existence of a singular horseshoe [left]. Singular cycles between the

equilibrium and a periodic orbit appear in the unfolding of singular horseshoes [right].

2.3(ii), and 2.4. In particular, the linearization fu(p, 0) has unique real leading eigenvalues and is not in an

inclination-flip or orbit-flip configuration.

Hypothesis 4.1. Consider the following spectral and geometric conditions:

(i) −νs/νu > 1.

(ii) The two-dimensional homoclinic center manifold W c
hom near h is an annulus.

Under these hypotheses one can identify a nonempty stable set of the homoclinic orbit.

Lemma 4.1. If u̇ = f(u, 0) has a homoclinic orbit h to an equilibrium p so that Hypotheses 2.1, 2.2, 2.3(ii),

and 2.4 are met and, in addition, Hypothesis 4.1 is satisfied, then the stable set

Ms(h) = {x ∈ Rn; ω(x) = h},

where h = h∪ {p} is the closure of h, is a manifold with boundary W s(p), and dimMs(h) = 1 + dimW s(p).

Under the above assumptions, so-called superhomoclinic orbits may exist which are transverse intersections

of Ms(h) and W u(p) [182, 376, 401]. The following proposition connects the resulting bifurcations to

bifurcations of singular cycles between an equilibrium and a periodic orbit as further illustrated in Figure 4.2.

Proposition 4.1. Let u̇ = f(u, µ) be a one-parameter family of ODEs on Rn with a homoclinic orbit h to

an equilibrium p so that Hypotheses 2.1, 2.2, 2.3(ii), and 2.4 are met. If Hypothesis 4.1 is met and Ms(h) t

W u(p), then there are bifurcation values that accumulate onto µ = 0 at which u̇ = f(u, µ) possesses a singular

cycle between p and a saddle periodic orbit q(t) such that dimW u(q) = dimW u(p) and W s(q) tW u(p).

In the reverse direction, if a singular cycle as stated exists, the λ-lemma implies that W u(p) accumulates onto

W u(q), and small perturbations of the differential equation will create homoclinic orbits to p. Bifurcations

from singular cycles form an interesting problem in their own right, and we review relevant material on this

subject, which was initiated in [28], in §5.2.4. We note that the singular cycles in Proposition 4.1 are called

expanding (and remark that the definitions in [28] consider the time reversed flow).

Let u̇ = f(u, µ) be a one-parameter family of ODEs on Rn with a homoclinic orbit h to an equilibrium p

as in the above proposition, so that Ms(h) t W u(p) along a solution h1(t). Identify a small neighborhood

U of the closed set h ∪ h1. We will formulate a bifurcation theorem for orbits in U . Along the unstable

separatrices of p one can identify a bundle of center directions Ec that are invariant under the variational

equation and converge to the sum of the leading stable and leading unstable directions over p as the base

point approaches p (see §3.4). This bundle yields a continuous plane bundle over h ∪ h1.

Hypothesis 4.2. Different orientations of the bundle of center directions Ec occur:
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Figure 4.3: The return map for a singular horseshoe (pictured here in a two-dimensional section Σ) maps

two wedge-shaped regions to vertical strips, roughly contracting horizontal directions and expanding vertical

directions.

(i) The center bundle Ec along h ∪ h1 is orientable.

(ii) The center bundle Ec along h ∪ h1 is nonorientable.

Theorem 4.4 ([182]). Let u̇ = f(u, µ) be a one-parameter family of ODEs on Rn with a homoclinic orbit

h to the equilibrium p and a generalized homoclinic orbit h1 in Ms(h) tW u(p) so that Hypotheses 2.1, 2.2,

2.3(ii), and 2.4 are met. On one side of µ = 0, say for µ < 0, the invariant set in U is then a suspended

horseshoe. For µ ≥ 0, the bifurcation set is a set of Lebesgue measure zero with the following properties:

(i) If Hypothesis 4.2(i) is met, then the bifurcation set is a Cantor set in which homoclinic bifurcation

values lie dense.

(ii) If Hypothesis 4.2(ii) is met, then the bifurcation set is the union of a Cantor set in which homoclinic

bifurcation values lie dense and infinitely many sequences of homoclinic bifurcation values that converge

to points in the Cantor set.

First, we describe the dynamics for µ < 0. Let Σ be a small cross section transverse to the homoclinic orbit

h. The return map on Σ maps two horizontal wedge-like strips that emerge from the same point to two

vertical strips; see Figure 4.3. The invariant set of u̇ = f(u, 0) in U is a singular hyperbolic set (as introduced

in §4.2 for flows in R3 after reversing the direction of time) which we call a singular horseshoe (we note that

our usage of this term differs from [246]).

We write Π−1 for the continuous extension of the inverse of the first-return map on Σ and remark that Π−1

has a fixed point at W s(p) ∩Σ; note that Π−1 is not invertible. Let Λ be the maximal invariant set of Π−1,

then we claim that iterates of Π−1 restricted to Λ are conjugate to a factor of a full shift on two symbols.

To make this precise, let Ω = {0, 1}Z equipped, as usual, with the product topology. Let τ be the right shift

τs(i) = s(i − 1) on Ω. Define an equivalence relation on Ω by s ∼ s′ if s(i) = s′(i) = 0 for all i ≤ 0. Let

Ω∗ = Ω/∼, and let τ∗ be the map on Ω∗ induced by τ ; observe that τ∗ is not invertible. Denote the two

vertical strips in Π(Σ) by V0, V1 with W s(p) ∩ Σ lying in the closure of V0. For x ∈ Λ, let h(x) ∈ Ω∗ be the

itinerary of x under Π−1: h(x)(i) = j if [Π−1]i(x) ∈ Vj , then h gives a conjugacy of Π−1 on Λ with τ∗ on

Ω∗, see [102].

Proposition 4.2. h ◦Π−1 = τ∗ ◦ h.

The orbits in the suspended horseshoe, which exists for µ < 0, disappear in bifurcations for µ > 0 as stated

in Theorem 4.4. The homoclinic bifurcations that occur for µ > 0 come in two types, depending on the

orientability of the homoclinic center manifolds. The homoclinic bifurcations of nonorientable homoclinic

orbits are the locally isolated bifurcation values that appear in one of the two cases.

The analysis leading to Theorem 4.4 proceeds through dimension reductions using invariant manifolds and

foliations. This reduction leads to interval maps, whose study then gives the theorem. We will continue

with some details of the constructions. Choose a coordinate chart (x, y) on Σ so that W s(p) intersects Σ in
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Figure 4.4: The map π on the leaves of the unstable foliation is an expanding interval map for the case

described in Hypothesis 4.2(ii).

(0, 0) and W u(p)∩Σ = {x = 0}. The first-return map Π on Σ admits a continuously differentiable unstable

foliation that contains {x = 0} as a leaf.

Proposition 4.3. Under the conditions of Theorem 4.4, there exists a normally hyperbolic center-unstable

manifold W cu(h ∪ h1) in U that is C1+α for some α > 0 jointly in (u, µ). Moreover, there are C1+α

coordinates (x, y) on W cu(h ∪ h1) ∩ Σ so that {x = constant} defines an unstable foliation Fu for the first-

return map Π on Σ.

The invariant manifolds and foliations are constructed by the usual graph transform techniques. We note

that the center unstable manifold admits an invariant unstable foliation for the flow which is, in general,

only continuous. Its projection along flow lines to the cross section Σ defines an invariant foliation for the

first-return map that is continuously differentiable. The return map Π acts on the space of leaves of Fu as

a multi-valued interval map, while its inverse acts as a piecewise expanding interval map π. The domain of

π is the union of two intervals I1, I2 with the left boundary I1 equal to 0. In fact, one finds the following

asymptotic expansions for π:

π(x) =

{
a(µ) + b(µ)x−ν

u/νs

(1 + O(xη)), x ∈ Il,
d(µ)x−ν

u/νs

(1 + O(xη)), x ∈ I2,

for some η > 0; see Figure 4.4.

4.4 The boundary of Morse–Smale flows

Morse–Smale flows are flows with finitely many equilibria and periodic orbits that are all hyperbolic and

whose stable and unstable manifolds intersect transversally. Morse–Smale flows are robust, and their dy-

namics can therefore only change when a family crosses the boundary of the set of all Morse–Smale flows.

Write X (M) for the set of smooth vector fields on a compact manifoldM endowed with the Whitney topology.

A bifurcation on the boundary of the set of Morse–Smale flows in X (M) is accessible if there exists a path

χ : [0, 1] 7→ X (M) of Morse–Smale flows except for the bifurcation at the endpoint χ(1). We are interested

in accessible bifurcation points in whose vicinity the Morse–Smale flows are not everywhere dense. In

particular, we review bifurcations directly from Morse–Smale flows to flows with suspended horseshoes or

strange attractors. Local bifurcations with such transitions are considered in §5.4.

Consider a one-parameter family of ODEs u̇ = f(u, µ) that unfold a saddle-node bifurcation of an equi-

librium p occurring at µ = 0. Shil’nikov established that the unfolding of a saddle-node bifurcation can

create suspended horseshoes if there are multiple homoclinic solutions to the saddle-node equilibrium. The

bifurcation is on the boundary of Morse–Smale flows and is accessible from the set of Morse–Smale flows.

Theorem 4.5 ([370]). Consider a one-parameter family of ODEs that has a saddle-node equilibrium, which

satisfies Hypothesis 2.5, so that Ms(p) has transverse intersections with Mu(p) along more than one orbit.

On one side of the parameter µ = 0, the family then has a hyperbolic transitive set with infinitely many

periodic orbits.
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Figure 4.5: Lorenz-like attractors are created directly from a Morse–Smale flow at the unfolding of certain

singular cycles between a hyperbolic equilibrium and a saddle-node periodic orbit.

There exist families as in the above theorem for which the periodic orbits in the hyperbolic transitive set

span every possible knot and link type [148].

Later papers have produced several constructions of codimension-one bifurcations leading directly from

a Morse–Smale flow to strange attractors of different types. Afrăımovich, Chow and Liu [4] describe a

codimension-one bifurcation from a Morse–Smale flow to Lorenz-like attractors, that involve singular cycles

between a hyperbolic equilibrium p and a periodic solution q of saddle-node type: the equilibrium p is

assumed to have two-dimensional stable and one-dimensional unstable directions and leading eigenvalues

that satisfy −νs/νu < 1, while the periodic orbit q has an attracting normally hyperbolic direction. Its

stable set Ms(q) is thus an open region of R3 bounded by the stable manifold W s(q) of q, and the unstable

set Mu(q) is a surface bounded by q. The differential equation at the moment of bifurcation satisfies

W u(p) ⊂Ms(q) and admits a transverse intersection ofMu(q) with W s(p). Observe that both separatrices

that form W u(p) tend to the periodic orbit q. One-parameter unfoldings from an open set of vector fields with

the given properties are shown to possess Lorenz-like attractors on one side of the bifurcation value µ = 0;

see Figure 4.5 for an illustration. The creation of Lorenz-like attractors from codimension-two homoclinic

bifurcations in Z2-equivariant flows is considered in §5.5.5.

Additional analysis by Morales, Paćıfico and Pujals [281] produced further examples of transitions from

Morse–Smale flows, through bifurcations of singular cycles between a hyperbolic equilibrium and a saddle-

node periodic orbit, to robust singular attractors. Their work contains examples were these last attractors

are not Lorenz-like. In the example of Afrăımovich, Chow and Liu, Mu(q) intersects the strong stable

foliation F ss of Ms(q) transversally. In critical cycles, when a tangency of Mu(q) with some leaf of F ss

exists, transitions from Morse–Smale flows to flows with suspended Hénon-like attractors are possible [285].

We mention that Morales [277] has examples of direct transitions in one parameter families of ODEs from

Lorenz-like attractors to suspended Plykin attractors, i.e. from a singular hyperbolic attractor to a uniformly

hyperbolic attractor.

In two-parameter families of ODEs, one can study the creation of multiple homoclinic solutions to a saddle-

node equilibrium through a quadratic tangency of Ms(p) and Mu(p). Let ψ(t) be the unique bounded

nonzero solution to the adjoint variational equation

ẇ = −fu(h(t), 0)∗w

so that ψ(t) ∈ (Th(t)W
cs(p) +Th(t)W

cu)⊥ exists and decays to zero exponentially. Similar to Hypothesis 2.5,
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we define the two vectors

M =

∫
−∞
〈ψ(t), fµ(h(t), 0)〉dt, N = 〈wc, fµ(p, 0)〉

in R2.

Hypothesis 4.3. Consider the following nondegeneracy conditions:

(i) 〈wc, fuu(p, 0)[vc, vc]〉 6= 0,

(ii) M and N are linearly independent.

The following result from [73, 278] establishes the existence of suspended Hénon-like strange attractors.

arbitrarily close to the boundary of Morse–Smale systems in codimension-two unfoldings involving a saddle-

node bifurcation of an equilibrium.

Theorem 4.6 ([73, 278]). Assume Hypothesis 2.5 and −νs/νu > 1. A generic two-parameter family u̇ =

f(u, µ) in R3 for which Hypothesis 4.3 is met then admits parameter values with suspended Hénon-like strange

attractors.

4.5 Homoclinic-doubling cascades

Cascades of period-doubling bifurcations in one-parameter families of ODEs have attracted much interest

as it is one of the routes to onset of chaos. Scaling properties of the period-doubling bifurcations, universal

in the sense that they do not depend on details of the family, are the most noticeable feature. Recall that

the universal scalings are explained by renormalization theory and, in particular, by the existence of a fixed

point for the renormalization operator with a single unstable eigenvalue. One can ask the general question

on how this scenario can change if a second parameter is varied. One way involves the disappearance of the

periodic orbits through homoclinic bifurcations and gives rise to cascades of homoclinic-doubling bifurcations.

In this section, we review the relevant literature and discuss approximations by interval maps: universal

scalings in the bifurcation diagram for the interval maps turn out to be related to the appearance of a fixed

point of a renormalization operator with two unstable eigenvalues. An extensive numerical investigation

of homoclinic-doubling cascades can be found in [298], and further numerical evidence for the existence of

homoclinic-doubling cascades has been provided in the Shimizu–Morioka model

ẋ = y,

ẏ = x− ay − xz,

ż = −bz + x2;

see [375].

Under certain conditions, an orbit homoclinic to a hyperbolic equilibrium can undergo a homoclinic-doubling

bifurcation that creates a double-round homoclinic orbit, see §5.1.5, §5.1.6, and §5.1.7. In a two-parameter

family of ODEs, one can continue homoclinic solutions along curves in the parameter plane. A two-parameter

family of ODEs is said to possess a cascade of homoclinic bifurcations if there exists a connected set of

parameter values in the parameter plane, corresponding to homoclinic orbits, that contains a cascade {µn}n∈N
of homoclinic-doubling bifurcations in which a 2n-homoclinic orbit is created. The actual existence of this

phenomenon in confirmed in [190], following earlier work in [226, 227].

Theorem 4.7 ([190]). In the space of two-parameter families of smooth vector fields on R3, there is an open

set consisting of families that possess a cascade of homoclinic-doubling bifurcations.

Next, we outline the bifurcation theory of homoclinic-doubling cascades that occur in unfoldings of codimension-

three homoclinic bifurcations which lead to strongly dissipative return maps that are small perturbations of

interval maps.
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Consider a three-parameter family u̇ = f(u, µ) of ODEs with µ = (µ1, µ2, µ3) ∈ R3 that have a hyperbolic

equilibrium at p. Write νss < νs for the two real negative eigenvalues at p and νu for the single real positive

eigenvalue, and define

α = −νss/νu, β = −νs/νu.

Suppose the differential equation has a homoclinic orbit to p when µ2 = 0, which is an inclination-flip

homoclinic orbit when µ1 = µ2 = 0. We let µ3 = 2 − 1
β , so that β = 1

2 when µ3 = 0. We assume

that the eigenvalue index α will satisfy the open condition α > 1. Furthermore, assume that the two-

dimensional invariant manifold W ls,u(p) of p has a quadratic tangency with the stable manifold W s(p) along

the homoclinic orbit when µ = 0. Take a cross section Σ transverse to the homoclinic orbit.

Following [190, 191], there are coordinates (xss, xu) on Σ so that the first-return map Π(·, µ) : Σ → Σ has

the asymptotics

Π(xss, xu, µ) =

(
a0(µ) + a1(µ)(xu)β + a2(µ)(xu)2β + O((xu)2β+η)

µ2 + µ1(xu)β + a3(µ)(xu)2β + O(|µ1|(xu)β+η + (xu)2β+η)

)
(4.1)

for some η > 0 when µ varies near zero. The coefficients aj(µ) depend smoothly on µ, and the higher-order

terms can be differentiated for xu > 0.

Theorem 4.8. Let u̇ = f(u, µ) be as above and assume that a3(0) > 1. For each small fixed µ3 > 0, the

resulting two-parameter family u̇ = f(u, µ) possesses a cascade of homoclinic-doubling bifurcations.

Related scenarios near other codimension-three bifurcation points are treated in [191].

The proof of the preceding theorem utilizes return maps. First, a rescaling transforms the first-return map

to a map that is a small perturbation of an interval map. Let Π be as in (4.1) and define rescaled coordinates

(x̂ss, x̂u) by

xss − a0(µ) = |µ1|x̂ss,

xu =

∣∣∣∣ µ1

2a3(µ)

∣∣∣∣1/β x̂u.

The following proposition, which gives expansions for the first-return map in rescaled coordinates, is proved

by a direct computation.

Proposition 4.4. Let Π̂ be the first-return map in the rescaled coordinates (x̂ss, x̂u) and write b2(µ) =

|µ1|µ3/4a3(µ) and b1(µ) = b2(µ)(4a3(µ)µ2|µ1|−2 − 1). For some η > 0, we then have

Π̂(x̂ss, x̂u) =

(
a1(µ)
2a3(µ) (x̂u)β + O(|µ1|η(x̂u)β)

b1(µ) + b2(µ)(1− (x̂u)β)2 + O(|µ1|η(x̂u)β)

)
.

As µ1 → 0, restricting x̂u to a compact interval and parameters (µ1, µ2, µ3) to a chart near the origin on

which b = (b1, b2) is bounded, Π̂ converges to a map that depends only on x̂u and is given by

x̂u 7→ f(x̂u) = b1 + b2(1− (x̂u)β)2. (4.2)

Scaling properties that exist in the bifurcation diagram of f in the (b1, b2) parameter plane can be investigated

with renormalization theory [194]. The renormalization scheme involves a renormalization operator whose

fixed point has two unstable directions, in contrast to the single unstable direction one finds in the theory

of period-doubling cascades. A renormalization theory for the actual differential equations is not available.

What follows is a concise version of the results, and we refer to [194] for precise and complete statements

and a discussion of the implications for scaling properties of the bifurcation diagram. Consider the class of

unimodal functions on a fixed interval [0, R] for some R > 1 of the form x 7→ g(xβ) with g smooth and a

minimal value g(1) = 0. The renormalization operator R, defined on a subset of these functions, maps g to

a rescaled version of the second iterate g2.
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Theorem 4.9 ([194]). For β > 1
2 with |β − 1

2 | � 1, the renormalization operator R possesses an isolated

fixed point φ. The function φ depends continuously on β and converges to x 7→ (1 −
√
x)2 as β → 1

2 . The

linearization DR at φ has two unstable eigenvalues ν1, ν2 which depend continuously on β and satisfy ν1 → 2,

ν2 →∞ as β → 1
2 . The remainder of the spectrum of DR(φ) is strictly inside the unit disc.

4.6 Intermittency

Intermittency has been identified as one of the principal routes of the transition from a periodic state to chaos

[37]. In this context, a time series is said to be intermittent if it is almost periodic apart from infrequent

variations. Thus, intermittent time series consists of an almost periodic laminar phase and a chaotic burst

or relaminarization phase. Saddle-node, Hopf or period-doubling bifurcations of periodic orbits can give rise

to intermittency, which are labelled intermittency of type I, II, or III, respectively. Homoclinic bifurcations

of homoclinic solutions to equilibria with real leading eigenvalues can also cause intermittent time series,

and we review their characteristics in this section.

In equivariant systems, heteroclinic cycles can be robust under equivariant perturbations and attract orbits

from an open neighborhood; see §5.5.1. Such stable heteroclinic cycles provide a mechanism for intermittency:

a solution approaching the cycle spends long periods near equilibria and makes fast transitions from one

equilibrium to the next. In a perfectly symmetric system, the return times increase monotonically and

approach infinity, thus making the intermittent behavior uninteresting, though we remark that more complex

switching phenomena can occur in more complicated heteroclinic networks. However, under small, symmetry-

breaking perturbations, the cycling behavior persists even though there may no longer be a cycle, and the

transition times no longer converge to infinity. Alternatively, stochastic perturbations lead to boundedness

of transition times [17, 385]. Relevant references for these dynamical features include [84, 86, 181, 272].

Suppose f(u, µ) is a one-parameter family of vector fields that unfolds a homoclinic bifurcation with real

leading eigenvalues at µ = 0. We will consider codimension-one phenomena where a continuous bundle of

center directions along the homoclinic orbit exists (see also §4.3).

We assume the unstable manifold of the equilibrium p is one-dimensional. It is therefore the union of two

separatrices and the equilibrium p: one separatrix in Wu(p) forms the homoclinic solution h, while we assume

that the other separatrix converges to the homoclinic solution. This can only happen if −νs/νu > 1 at µ = 0.

Such flows appear in unfoldings of gluing bifurcations where two homoclinic orbits coexist; see §5.1.8. More

precisely, we shall assume the following.

Hypothesis 4.4. The unstable manifold W u(p) of the hyperbolic equilibrium p is one-dimensional and

therefore equal to the union of p and two separatrices W u
±(p). The leading eigenvalues νs, νu are unique and

real and satisfy −νs/νu > 1. We assume that there is a homoclinic orbit h to p that lies in W u
+(p). The

bundle Ec of center directions is a continuous orientable plane bundle over the closure h = h ∪ {p} of h.

The above hypothesis implies that the homoclinic center manifold is an orientable annulus near the homoclinic

orbit h. Due to the orientability of the plane bundle Ec and the condition on the saddle quantity −νs/νu,

the stable set Ms(h) of initial data whose ω-limit set is h is an open set bounded by W s(p).

Hypothesis 4.5 (Existence of a superhomoclinic orbit). The ω-limit set of points on the separatrix h1(t) ∈
W u
−(p) equals h so that W u

−(p) ⊂Ms(h).

We need additional information about the behavior around the superhomoclinic orbit h1(t). The plane

bundle Ec(h1(t)) along the superhomoclinic orbit h1(t) extends to a continuous plane bundle Ec over h ∪ h1.

Hypothesis 4.6. Consider the following properties for the plane bundle Ec over h ∪ h1:

(i) The bundle Ec over h ∪ h1 is an orientable plane bundle.

(ii) The bundle Ec over h ∪ h1 is a nonorientable plane bundle.
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Theorem 4.10 ([182]). Consider a one-parameter family of ODEs as above that satisfies Hypotheses 4.4

and 4.5.

(i) If Hypothesis 4.6(i) is met, then the bifurcation set in µ ≥ 0 is a Cantor set of zero Lebesgue measure:

the one-sided boundary points of the Cantor set are homoclinic bifurcations, while there is a unique

periodic attractor for parameters outside the bifurcation set.

(ii) If Hypothesis 4.6(ii) is met, then the bifurcation set is a cascade µn ↓ 0 of homoclinic bifurcations,

while there are one or two periodic attractors for parameters outside the bifurcation set.

The geometry of the flow near the separatrices of p becomes clear by the following center-manifold theorem,

which is similar to the homoclinic center-manifold theorem [182, 400].

Theorem 4.11. Assume that Hypotheses 4.4 and 4.5 are met, then there is a two-dimensional locally

invariant, normally hyperbolic center manifold W c(W u(p) ∪ {p}). The manifold is of class Cl,α jointly in

(u, µ) for each l ≥ 1 and α ∈ (0, 1) with

l + α < min

{
λss

νs
,
λuu

νu

}
.

The manifold W c(W u(p)∪{p}) is homeomorphic to either a torus with a hole when Hypothesis 4.6(i) is met or

a Klein bottle with a hole when Hypothesis 4.6(ii) is met. We refer to [182] for a study of scaling properties

of the bifurcation set; see also [265] for related results. The reduction result expressed by Theorem 4.11

entails that the dynamics is described by interval maps that occur as first-return maps on a cross section

inside the center manifold. In the orientable case, this leads to the interval maps studied by Keener [212].

5 Catalogue of homoclinic and heteroclinic bifurcations

This section forms the core of this survey paper: it contains a catalogue of bifurcation results for homoclinic

and heteroclinic orbits. We have subdivided the list into sections treating generic systems, conservative and

reversible systems, and equivariant systems. Various homoclinic bifurcations, bifurcations from heteroclinic

cycles, and the occurrence of homoclinic solutions from local bifurcations are reviewed.

We use the notation and the hypotheses that we introduced in §2. We consider differential equations of

the form u̇ = f(u, µ) on Rn with parameters µ ∈ Rd for some d ≥ 1 that admit a homoclinic orbit h to

an equilibrium p when µ = 0; we restrict ourselves to three- or four-dimensional systems whenever results

have only been proved for such lower-dimensional systems. A typical bifurcation result requires, apart from

the defining conditions, a number of nondegeneracy and unfolding conditions that encapsulate a generic

dependence on parameters.

5.1 Homoclinic orbits in generic systems

5.1.1 Creation of 1-periodic orbits

The problem of the birth of a limit cycle5 from a homoclinic orbit to a hyperbolic equilibrium was solved

for differential equations in the plane by Andronov and Leontovich [11]. Shil’nikov extended this work to

differential equations on Rn [366, 369]. We state a general result on the creation of a limit cycle in homoclinic

bifurcations with saddle quantity −Re νs/νu larger than one [375]. We also refer to §3.6 and Figure 3.4 for

the case of real leading eigenvalues.

Theorem 5.1. Let u̇ = f(u, µ) be a one-parameter family of ODEs with a homoclinic solution h(t) to a

hyperbolic equilibrium p at µ = 0. Assume that Hypotheses 2.2 and 2.3(i) are met, then a unique periodic

5A limit cycle is a periodic orbit that is the ω- or α-limit set of an orbit other than itself
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Figure 5.1: Plotted are the period T versus the parameter µ for the 1-periodic orbits that bifurcate from

a homoclinic orbit with real leading eigenvalue (Theorem 5.1) [left] and complex leading eigenvalue (Theo-

rem 5.4) [right]. See (3.22) for the expression of period versus parameter in the first case; a similar formula,

now with νu complex, holds in the latter case.

solution q(t, µ) bifurcates from the homoclinic orbit; this periodic solution is hyperbolic, it bifurcates either

for µ > 0 or for µ < 0, and q(t, µ) converges to h(t) as µ → 0 for each fixed t. Furthermore, W s(q) =

dimW s(p) + 1.

Note that the periodic orbit q(t, µ) is stable if p has one-dimensional unstable manifold and that the period

of q(t, µ) goes to infinity as µ → 0; see Figure 5.1, and also §3.6 and Figure 3.4. If the saddle quantity is

less than one, we can simply apply the preceding theorem to the time-reversed vector field (noting that the

conclusion about the dimension of the stable manifold is then for the unstable manifold in the original time

variable).

In [307] the question was posed whether other bifurcations were possible in which a periodic orbit develops

infinite period and disappears in a so-called blue sky catastrophe. This question was answered affirmatively

by Medvedev [270, 271]; see also [49, 50, 202].

Theorem 5.2 ([270]). There is a one-parameter family u̇ = f(u, µ) of vector fields on the Klein bottle that

has a saddle-node bifurcation of a periodic orbit at µ = 0 and an attracting periodic orbit for µ > 0 with

unbounded arclength as µ ↓ 0.

The example given in [270] can be embedded in a family of ODEs on R4 that have a Klein bottle as normally

attracting invariant manifold. For µ = 0, the Klein bottle coincides with the set of homoclinic solutions of the

saddle-node periodic orbit. A different example has been constructed by Shil’nikov and Turaev [377, 405]:

again, a periodic attractor with unbounded period appears from a saddle-node bifurcation of a periodic

orbit, but the unstable manifold of saddle-node periodic orbit now forms a tube that spirals back towards

the saddle-node periodic orbit.

Theorem 5.3 ([377, 405]). There is a one-parameter family u̇ = f(u, µ) of vector fields on R3 that has a

saddle-node bifurcation of a periodic orbit at µ = 0 and an attracting periodic orbit for each µ > 0 with

unbounded arclength as µ ↓ 0.

A numerical analysis of the explicit family of ODEs

ẋ = x[2 + µ− b(x2 + y2)] + x2 + y2 + 2y,

ẏ = −z3 − (y + 1)(z2 + y2 + 2y)− 4x+ µy,

ż = z2(y + 1) + x2 − ε

reveals the existence of the latter type of blue sky catastrophe in low order ODEs [144]. We also refer to

[363, 365] for blue sky catastrophes in a singularly perturbed context and their role in explaining bursting

phenomena in neuron models. Finally, we mention that the term blue sky catastrophe has also been used

in reversible or conservative ODEs when sheets of periodic orbits are bounded by a homoclinic orbit; see

Theorem 5.38 below.
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5.1.2 Shil’nikov’s saddle-focus homoclinic orbits

A systematic study of the dynamics near saddle-focus homoclinic orbits was pioneered by Shil’nikov since

the mid 1960s. Under an eigenvalue condition that states that the real leading eigenvalue dominates the

complex conjugate leading eigenvalues, infinitely many periodic orbits of saddle type were shown to occur in

each neighborhood of the homoclinic orbit [367]. These periodic orbits are contained in suspended horseshoes

that accumulate onto the homoclinic orbit [371]. In fact, the periodic orbits near two coexisting saddle-focus

homoclinic orbits under the same eigenvalue condition are known to span every possible knot and link type

[147]. Dynamical features beyond hyperbolic suspended horseshoes, including the existence of periodic and

strange attractors accumulating onto the homoclinic orbit, were described in later papers [155, 185, 299].

Attractors with a spiral structure were envisaged to occur for perturbations of ODEs with two coexisting

saddle-focus homoclinic orbits under suitable eigenvalue conditions [20]. Namely, a dissipative differential

equation u̇ = f(u) with two saddle-focus homoclinic orbits to the same equilibrium will admit an invariant

tubular neighborhood U that contains both homoclinic orbits. Any sufficiently small perturbation of f will

then have an attractor inside U . There is some evidence, from the study of models of interval maps, that

spiral attractors exist and are robust in the sense of measure [14, 302, 303].

In this section, we discuss mostly three-dimensional ODEs, as much of the existing literature treats three-

dimensional ODEs and the most complete picture arises in three dimensions. Several of these results extend

readily to higher-dimensional systems. We start with some general results in Rn. Consider the differential

equation u̇ = f(u) with a hyperbolic equilibrium p that has a unique real leading unstable eigenvalue νu

and unique complex conjugate leading stable eigenvalues νs, νs. Assume the differential equation has a

homoclinic solution h(t) to p; see Figure 5.2 for an illustration. We will consider different conditions on the

saddle quantity −Re νs/νu as outlined in the following hypothesis.

Hypothesis 5.1 (Eigenvalue conditions). Consider the following eigenvalue conditions:

(i) The saddle-focus homoclinic orbit is tame: −Re νs/νu > 1.

(ii) The saddle-focus homoclinic orbit is wild: −Re νs/νu < 1.

(iii) We have −2 Re νs/νu > 1 (which, in R3, means that the differential equation is dissipative near p).

Hypothesis 5.1(i) implies that an attracting periodic solution approaches the homoclinic solution h as µ

goes to zero from one side and disappears there, a bifurcation that we already discussed in §5.1.1. Shil’nikov

discovered that, when Hypothesis 5.1(ii) is met, the dynamics near the homoclinic solution involves infinitely

many periodic orbits arbitrarily close to the homoclinic solution [367, 371]. A geometric explanation of the

organization of these periodic orbits into infinitely many horseshoes has been given in [396]. We note

that, for three-dimensional flows, Belitskii’s linearization theorem [30], which we stated in §3.1, allows a C1

linearization of the flow near the equilibrium, thus facilitating asymptotic expressions for the first-return

map on a cross section. For higher-dimensional flows, the homoclinic center-manifold theorem [343] gives a

three-dimensional homoclinic center manifold, provided the homoclinic orbit is not in a flip configuration.

This allows a geometric reduction to the three-dimensional case; we note that, although the homoclinic

center manifold is, in general, only continuously differentiable with Hölder continuous derivatives, we can

still C1 linearize. Shashkov and Turaev [360] treat the dynamics near the saddle-focus homoclinic orbit for

C1 vector fields.

Multi-round homoclinic orbits occur when unfolding the homoclinic orbit [126–128, 139, 140].

Theorem 5.4. Assume that the system u̇ = f(u, µ) on Rn has a Shil’nikov saddle-focus homoclinic orbit for

µ = 0 which satisfies Hypotheses 2.2, 2.4, and 5.1(ii). At µ = 0, there are infinitely many suspended Smale

horseshoes in each neighborhood of the homoclinic solution. Furthermore, for each N > 0, N -homoclinic

orbits exists for infinitely many parameter values which accumulate onto µ = 0 from one side, say for µ > 0.

In fact, for ρ > −Re νs/νu, in any interval (0, µ+), there is a set of parameter values corresponding to
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N -homoclinic loops that are indexed by ΓN (ρ) = {(k1, . . . , kN ) ∈ NN ; ρki−1 < ki < k1/ρ}. The parameter

values corresponding to double-round homoclinic orbits form two sequences µαn ↓ 0, α = 0, 1 with

lim
n→∞

∣∣∣∣ln µαn+1

µαn

∣∣∣∣ = 2π

∣∣∣∣ νu

Im νs

∣∣∣∣ .
For multi-round homoclinic orbits, Feroe [127] has derived estimates for the time differences between suc-

cessive rounds near the principal homoclinic orbit which, equivalently, gives the spacing between pulses in

the time profiles of the homoclinic orbits.

The dynamics near saddle-focus homoclinic solutions is considerably more complex than hinted at by the

existence of infinitely many horseshoes. To outline the complexity, we restrict ourselves to three-dimensional

ODEs, though several results have straightforward generalizations to more dimensions (see e.g. [103]). Dy-

namics and bifurcations are studied through the first-return map Π on a cross section Σ for which expressions

can be derived by transforming the differential equation near the equilibrium into normal form and deriving

expansions for solutions near the equilibrium by estimating integral formulae; see §3.2 on Shil’nikov variables.

This procedure gives:

Proposition 5.1. Assume Hypothesis 5.1(ii) is met, then there is a cross section Σ and smooth coordinates

(θ, z) on Σ so that Π(·, µ) has the following asymptotic expansion:

Π(θ, z, µ) =

(
a+ φ1(θ)z

−Re νs

νu sin
(
− Im νs

νu ln z
)

+ φ2(θ)z
−Re νs

νu cos
(
− Im νs

νu ln z
)

+R1(θ, z, µ)

b+ φ3(θ)z
−Re νs

νu sin
(
− Im νs

νu ln z
)

+ φ4(θ)z
−Re νs

νu cos
(
− Im νs

νu ln z
)

+R2(θ, z, µ)

)
.

The functions a, b, φi, i = 1, 2, 3, 4, are smooth functions of θ and µ (the dependence on µ is suppressed in

the notation) and satisfy det

(
φ1 φ2

φ3 φ4

)
6= 0. Furthermore, there exist η > 0 and positive constants Ci so

that ∣∣∣∣ ∂k+l+m

∂θk∂zl∂µm
Ri(θ, z, µ)

∣∣∣∣ ≤ Ck+l+mz
−Re νs

νu +η.

A topological invariant or a modulus is a function of the vector field that is invariant under topological

equivalence; see also §6.2. The saddle quantity, whether larger than one or not, is always a topological

invariant of saddle-focus homoclinic orbits [21, 67, 116, 395]. The proof of Togawa [395] uses link types of

period orbits for saddle quantities smaller than one. Dufraine [116] proved that the absolute value of Im νs

is also a modulus.

Theorem 5.5. Suppose f ∈ X (R3) has a saddle-focus homoclinic orbit as above, then −Re νs/νu and

| Im νs| are topological invariants.

The topological invariance of the saddle quantity reflects the dependence of the global configuration of the

stable manifold of p on the saddle quantity. This fact has further implications for the bifurcation diagrams of

bifurcations for two coexisting saddle-focus homoclinic orbits solutions [356, 358, 375]. It also suggests that

it is natural to consider two-parameter families u̇ = f(u, µ) with µ ∈ R2 to unfold the homoclinic bifurcation.

Hypothesis 5.2 (Generic unfolding of saddle quantities). The saddle quantity unfolds generically with

respect to the parameter µ2:
∂

∂µ2

(
−Re νs

νu

)
6= 0.

If Hypothesis 2.2(ii) is met, we may assume that f(u, µ) has homoclinic orbits when µ1 = 0. Setting

µ1 = 0 and varying µ2 allows us to study variations in the dynamics when keeping the homoclinic orbit

but changing eigenvalues. In [142, 150, 155], generic two-parameter families of differential equations near

a Shil’nikov saddle-focus are studied, in particular with regard to curves of multi-round homoclinic orbits:

they show that, in between the curves corresponding to double-round homoclinic orbits which, as stated in

Theorem 5.4, occur along curves that accumulate onto µ1 = 0, there are curves of N -homoclinic orbits that

fold back in µ2.
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Figure 5.2: A Shil’nikov saddle-focus homoclinic orbit is shown in the left panel. If the complex eigenvalues

are closest to the imaginary axis, then the return map Π : Σ → Σ contains infinitely many horseshoe maps

obtained by restriction to strips Hi. The second iterate Π2 restricted to a union Hi ∪ Hj may contain

nonhyperbolic dynamics: this is illustrated in the right panel where the horseshoe-shaped images of two strips

under Π and, with a darker shade, part of the image under Π2 of the union of the strips are shown.

Theorem 5.6 ([155]). Assume that u̇ = f(u, µ) with (u, µ) ∈ R3×R2 has a Shil’nikov saddle-focus homoclinic

orbit for µ1 = 0 that satisfies Hypotheses 2.2, 2.4, and 5.1(ii), 5.2. There is then a dense set of µ2 values

near µ2 = 0 for which a curve of homoclinic orbits of N -homoclinic orbits with N ≥ 3 is tangent to the line

µ2 = constant in the parameter plane.

The horseshoes from Theorem 5.4 are not isolated in the recurrence set. The existence of infinitely many

suspended horseshoes and the nonhyperbolic dynamics around it, which we shall present below, is reminiscent

of the unfolding of homoclinic tangencies. Ovsyannikov and Shil’nikov [299] established that the set of

equations with nonhyperbolic dynamics is dense in the space of ODEs with Shil’nikov homoclinic orbits.

More precisely, write XH(R3) for the space of ODEs in X (R3) with a Shil’nikov homoclinic solution, then,

for each ε > 0, the set of ODEs in XH(R3) that admit

(i) a saddle-node bifurcation of a periodic orbit, and

(ii) a period-doubling bifurcation of a periodic orbit, and

(iii) a homoclinic tangency to a hyperbolic periodic orbit

inside an ε-tubular neighborhood of the homoclinic solution is dense in XH(R3).

For dissipative vector fields, the homoclinic tangencies give rise to suspended Hénon-like strange attractors.

In fact, combining [299] and [93] (see also [318, 319]) yields the following result.

Theorem 5.7. For each ε > 0, there is a dense subset D in the set of ODEs in XH(R3) for which Hypoth-

esis 5.1(ii)-(iii) holds with the following property: for all f ∈ D, u̇ = f(u) has infinitely many coexisting

strange attractors in an ε-neighborhood of h.

For ODEs with wild saddle-focus homoclinic orbits and −2 Re νs/νu = 1 (on the boundary of the class of

ODEs where Hypothesis 5.1(iii) is met), renormalizations of a return map yield near area-preserving maps

[41].

Next, we formulate a bifurcation result that makes the existence of attractors in parameterized families more

precise [185]. To prove this result, one analyzes the first-return map Π; the additional eigenvalue condition

−2 Re νs/νu > 1 assumed below allows for an improved asymptotic expansion.
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Theorem 5.8 ([185]). Consider a one-parameter family u̇ = f(u, 0, µ2) of ODEs in R3 so that each dif-

ferential equation has a saddle-focus homoclinic orbit. Suppose Hypothesis 5.2(ii) is met and that Hypoth-

esis 5.1(ii)-(iii) holds for each µ2. Let Σ be a cross section transverse to h and denote by Un a decreasing

sequence of tubular neighborhoods of h.

Let P2,n be the set of parameter values µ2 for which f has an attracting 2-periodic orbit in Un, then, for

n large enough, P2,n is open and dense in I and limn→∞ |P2,n| = 0, where | · | denotes Lebesgue measure.

Furthermore, the set of parameter values γ ∈ I for which Xγ has infinitely many 2-periodic attractors is

dense in I, but has zero measure.

Let A2,n be the set of parameter values in γ ∈ I for which Xγ has a Hénon-like strange attractor in Un that

intersects Σ in 2 connected components. For n large enough, A2,n has positive measure and is dense in I,

and limn→∞ |A2,n| = 0.

The complicated dynamics and the large number of attractors do not trap most orbits in a neighborhood of

the homoclinic orbit:

Theorem 5.9 ([185]). Let u̇ = f(u) be a differential equation in R3 with a saddle-focus homoclinic orbit

and assume that Hypothesis 5.1(ii)-(iii) is met. Let Σ be a cross section transverse to the homoclinic orbit h

and Un be a decreasing sequence of tubular neighborhoods of the homoclinic orbit. If Dn is the set of points

x in Σ ∩ Un whose forward orbit leaves Un, then |Dn|/|Σ ∩ Un| → 1 as n→∞.

5.1.3 Bi-focus homoclinic orbits

Homoclinic orbits to an equilibrium at which both the leading stable and the leading unstable eigenvalues are

complex conjugate give dynamics similar to that near wild saddle-focus homoclinic orbits that we discussed

in the previous section. However, apart from a nonresonance condition, no eigenvalue conditions are needed.

Also, in an unfolding, subsidiary homoclinic orbits typically accumulate on the primary bifurcation value

from both sides.

Starting point is a one-parameter family u̇ = f(u, µ) on Rn with a homoclinic orbit to a hyperbolic equilibrium

p for µ = 0.

Hypothesis 5.3 (Leading eigenvalues). The leading stable eigenvalues of fu(p, 0) are two simple complex

eigenvalues νs, νs; similarly, the leading unstable eigenvalues are two simple complex eigenvalues νu, νu.

A homoclinic orbit to an equilibrium that satisfies the preceding eigenvalue conditions is called a bi-focus

homoclinic orbit. The existence of infinitely many suspended horseshoes accumulating onto a bi-focus ho-

moclinic orbit has been proved by Shil’nikov [371], while bifurcations to subsidiary homoclinic orbits were

studied in [149]. A discussion of the geometry of first-return maps for four-dimensional flows can be found

in [135].

Theorem 5.10. Assume that u̇ = f(u, µ) with (u, µ) ∈ Rn × R has a Shil’nikov bi-focus homoclinic orbit

for µ = 0 that satisfies Hypotheses 2.2, 5.3, and 2.4. For µ = 0, there are infinitely many suspended Smale

horseshoes in each neighborhood of the homoclinic solution. If Im νs/ Im νu 6∈ Q, then, for any N > 0,

there is an infinite number of parameter values near µ = 0 at which an N -homoclinic orbit exists and these

parameter values accumulate from both sides onto µ = 0.

As for Shil’nikov saddle-focus homoclinic orbits discussed in §5.1.2, the horseshoes from Theorem 5.10 are

not isolated in the recurrence set. Ovsyannikov and Shil’nikov [300] established that, in the space of ODEs

with a Shil’nikov bi-focus homoclinic orbit in R4, one finds again dense subsets with nonhyperbolic dynamics.

Write XH(R4) for the space of ODEs in X (R4) with a nondegenerate Shil’nikov bi-focus homoclinic solution,

then, for each ε > 0, the set of ODEs in XH(R4) for which

(i) a saddle-node bifurcation of a periodic orbit, and
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Figure 5.3: Shown are the bifurcation diagrams of 2-homoclinic orbits for the Belyakov transitions described

in Theorem 5.11 [left] and Theorem 5.12 [right]; the eigenvalues at the equilibrium p are shown as insets.

The bifurcation curves for N-homoclinic orbits for any N ≥ 2 look similar.

(ii) a period-doubling bifurcation of a periodic orbit, and

(iii) a homoclinic tangency to a hyperbolic periodic orbit

occurs within an ε-tubular neighborhood of the homoclinic solution is dense in XH(R4).

5.1.4 Belyakov transitions

Two different codimension-two homoclinic bifurcations are commonly referred to as Belyakov transitions [34]:

the first involves an equilibrium with two real eigenvalues that collide and become complex [33], while the

second [34] refers to the transition from tame to wild saddle-focus homoclinic orbits (see §5.1.2). Although

we formulate conditions for two-parameter flows u̇ = f(u, µ) with (u, µ) ∈ Rn × R2, we state the results for

three-dimensional flows as in Belyakov’s papers.

Hypothesis 5.4 (Transition from tame to wild homoclinic loops). At µ = 0, we have Re νs + νu = 0 and

[Re νs + νu]µ2 6= 0.

Theorem 5.11 ([34]). Let u̇ = f(u, µ) with (u, µ) ∈ R3 × R2 be a two-parameter family of ODEs on R3

with a homoclinic solution h(t) to a hyperbolic equilibrium p at µ = 0. Suppose that Hypotheses 2.2, 2.4,

and 5.4 are met. Upon changing parameters, we may also assume that the primary homoclinic orbit exists

for µ1 = 0 and that [Re νs + νu]µ2
> 0 so that the primary homoclinic orbit is a wild saddle-focus homoclinic

orbit for {µ1 = 0, µ2 > 0}. There is then a countable set of bifurcation curves for double-round homoclinic

orbits that accumulate onto {µ1 = 0, µ2 > 0}.

Belyakov [34] has further statements on curves of 3-round homoclinic orbits and curves of saddle-node

bifurcations of periodic orbits, and it can also be shown, for instance using Lin’s method, that N -homoclinic

orbits bifurcate for each N ≥ 2.

In the second Belyakov transition, two eigenvalues of the linearized vector field at the equilibrium collide

on the real axis and become complex. Recall that the imaginary parts of the leading stable eigenvalues are

nonzero if the discriminant ∆(µ) of fu(p, µ) restricted to the leading stable directions is negative.

Hypothesis 5.5 (Non-semisimple leading eigenvalues). At µ = 0, the real leading stable eigenvalue νs has

geometric multiplicity one and algebraic multiplicity two with ∂µ2
∆(0) 6= 0 and −νs/νu < 1. Furthermore,

lim
t→∞

1

|t|
e|ν

st|‖h(t)‖ 6= 0, lim
t→−∞

1

|t|
e|ν

st|‖ψ(t)‖ 6= 0

at µ = 0.

Theorem 5.12 ([33, 243]). Let u̇ = f(u, µ) with (u, µ) ∈ R3 × R2 be a two-parameter family of ODEs

on R3 with a homoclinic solution h(t) to the hyperbolic equilibrium p at µ = 0. Suppose Hypotheses 2.2,
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Figure 5.4: Shown are the bifurcation diagrams at a resonant bifurcation described in Theorem 5.13 for

orientable (i) and nonorientable (ii) homoclinic orbits.

2.4(iii)-(iv), and 5.5 are met. We may assume that the primary homoclinic orbit exists for µ1 = 0 and that

∂µ2
∆(0) < 0 so that complex conjugate leading stable eigenvalues occur for µ2 > 0. There are then infinitely

many one-sided curves of 2-homoclinic orbits in the half plane µ1 > 0 that emerge from µ = 0, are tangent

to {µ1 = 0} at µ = (0, 0) and accumulate onto µ1 = 0 from one side. Furthermore, there are infinitely many

one-sided curves of saddle-node bifurcations and of period-doubling bifurcations of periodic orbits in µ1 > 0

that emerge from µ = 0, are tangent to {µ1 = 0} at µ = (0, 0), and accumulate onto µ1 = 0 from both sides.

In this situation, it can again be shown that N -homoclinic orbits bifurcate for each N ≥ 2. See Figure 5.3

for sketches of the bifurcation diagrams for the Belyakov transitions.

5.1.5 Resonant homoclinic orbits

The prototype homoclinic bifurcation theorem for homoclinic orbits with real leading eigenvalues, Theo-

rem 5.1, requires that the saddle quantity is not equal to one. A homoclinic orbit to an equilibrium with

real leading eigenvalues for which the saddle quantity is equal to one is called a homoclinic orbit at reso-

nance. Bifurcations from homoclinic orbits at resonance for planar vector fields have been investigated by

Leontovich [254] and Nozdracheva [296]. Chow, Deng and Fiedler [89] have treated the general bifurcation

problem in Rn. We review these results here and remark that the case of complex conjugate eigenvalues that

are at resonance is discussed in the previous section. We will consider two-parameter families u̇ = f(u, µ)

with µ = (µ1, µ2) to unfold a homoclinic orbit at resonance.

Hypothesis 5.6 (Resonance condition). We assume that the leading eigenvalues satisfy νs(0) = νu(0) and

∂µ2
νs(0) 6= ∂µ2

νu(0).

We shall also assume that the homoclinic orbit is not in an inclination-flip and or orbit-flip configuration:

this implies the existence of a two-dimensional homoclinic center manifold as in §3.4. It turns out that

there are two cases, with different bifurcation diagrams, that depend on the orientability of the homoclinic

center manifold. Under Hypothesis 2.4 there is a continuous bundle of planes Ec along the homoclinic orbit,

invariant under the variational equation, so that limt→±∞Ec(h(t)) is the sum of the eigenspaces associated

with the leading eigenvalues.

Hypothesis 5.7 (Generic separatrix value). For µ = 0, the separatrix quantity

e
∫∞
−∞ div2(h(t)) dt 6= 1,

is not equal to one, where div2 denotes the rate of change of area within the plane field Ec(h(t)).

Theorem 5.13 ([89]). Let u̇ = f(u, µ) with µ = (µ1, µ2) be a two-parameter family of ODEs on Rn with a

homoclinic solution h(t) to the hyperbolic equilibrium p at µ = 0. Suppose Hypotheses 2.2, 2.3(ii), and 2.4

are met. Furthermore, assume that −νs/νu = 1 at µ = 0 and that Hypotheses 5.6, 5.8 hold. If the homoclinic

center manifold W c
hom is orientable, then the bifurcation diagram is as shown in Figure 5.4(i): a one-sided

curve of saddle-node bifurcations of periodic orbits emerges from the curve of homoclinic orbits at µ = 0 in

the parameter plane. If the homoclinic center manifold W c
hom is orientable, then the bifurcation diagram is as
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shown in Figure 5.4(ii): a one-sided curve of period-doubling bifurcations of periodic orbits and a one-sided

curve of 2-homoclinic orbits emerge from the curve of primary homoclinic orbits at µ = 0 in the parameter

plane. All bifurcation curves are exponentially flat to the curve of primary homoclinic orbits at µ = 0.

The bifurcation equations for recurrent orbits take the form

xi+1 = µ1 + ax1+µ2

i +R({xi}i∈Z, µ)

with R({xi}i∈Z, µ) = O(‖{xi}i∈Z‖1+η) for some η > 0. In fact, |a| equals the separatrix quantity defined in

Hypothesis 5.7, and the sign of a reflects the orientation of the homoclinic center manifold [325, 326]. The

bifurcation equations can be readily solved for N -homoclinic orbits and N -periodic orbits with N = 1, 2; see

also [339]. Note that the occurrence of N -homoclinic orbits and N -periodic orbits with N > 2 is excluded

by the existence of a two-dimensional homoclinic center manifold.

Lorenz-like attractors can be found near differential equations with two homoclinic orbits to the same equilib-

rium at resonance. This has been researched by Robinson [325–327] whose results we review in Theorem 5.80

in §5.5.5. Other bifurcation phenomena that occur in resonant bifurcations from two homoclinic orbits are

described in [146, 186].

Higher codimension bifurcations of ODEs in the plane have been considered by Leontovich [254] and Roussarie

[329]. In these studies, bounds are derived on the number of limit cycles that may appear in unfoldings.

The following account follows [329]. Let u̇ = f(u, µ) be a smooth family of ODEs on R2 with a saddle type

equilibrium for µ = 0 whose saddle quantity −νs/νu is equal to one. For µ small and fixed ` ∈ N, the family

near the equilibrium is then C`-equivalent to

ẋs = −xs +

N(`)∑
i=0

αi(µ)(xsxu)ixu,

ẋu = xu,

where αi(µ) are smooth functions of µ. The C`-equivalence is by rescaling time in an x-dependent C`-smooth

fashion and conjugating with diffeomorphisms of class C` in (xs, xu, µ). Introduce the function

ω(x, ε) =
x−ε − 1

ε
. (5.1)

Note that, for each k > 0, xkω tends to −xk ln(x) as ε→ 0, uniformly for x ∈ [0, X] for any X > 0. A Dulac

map is a local transition map from a cross section transverse to the local stable manifold to a cross section

transverse to the local unstable manifold. We may assume that these cross sections are given by {xs = 1}
and {xu = 1}. The Dulac map D(x, µ) now has the following expansion:

D(x, µ) = x+ α1 (xω + · · · ) + α2

(
x2ω + · · ·

)
+ · · ·+ αN+1

(
xN+1ω + · · ·

)
+ ψ`(x, µ), (5.2)

for a C` function ψ` of (x, µ) which is `-flat for x = 0. Each function between brackets is a finite combination

of terms xiωj with 0 ≤ j ≤ i in an increasing order (xiωj < xi
′
ωj
′

precisely if i < i′ or i = i′ and j < j′).

For µ = 0, the Dulac map is equivalent to either x 7→ βkx
k or x 7→ αk+1x

k+1 ln(x). Using this expansion,

the following estimate on the number of limit cycles that appear in an unfolding from the homoclinic loop

has been proved.

Theorem 5.14 ([329]). Let u̇ = f(u, µ) be a family of ODEs on the plane with a homoclinic loop to the

hyperbolic equilibrium for µ = 0. Suppose that the saddle quantity νs/νu is equal to one at µ = 0 and that

the Dulac map for µ = 0 is not flat. If the Dulac map for µ = 0 is equivalent to x 7→ βkx
k, then u̇ = f(u, µ)

has at most 2k limit cycles for small µ. If the Dulac map for µ = 0 is equivalent to x 7→ αk+1x
k+1 ln(x),

then u̇ = f(u, µ) has at most 2k + 1 limit cycles for small µ.

We remark that, for analytic ODEs on the plane, the Dulac map is known to be nonflat [200], so that a

uniformly bounded number of limit cycles appears in the unfolding of a resonant homoclinic loop.
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A homoclinic center manifold reduces the general case of ODEs in Rn to a two-dimensional flow. As the

degree of differentiability of the homoclinic center manifold is limited by gap conditions on the spectrum at

the equilibrium, this reduction is of limited use for the study of bifurcations of periodic orbits. Bifurcations of

higher codimension for higher-dimensional flows are considered in [164, 165, 331], and we remark that more

complicated dynamics may occur: as stated in the next theorem, Turaev found an example of codimension

three in which infinitely many limit cycles appear under perturbations in the non-planar case.

Theorem 5.15 ([402]). Let u̇ = f(u) be an ODE on Rn for n ≥ 4 with a homoclinic solution h(t) to the

hyperbolic equilibrium p. Suppose that Hypotheses 2.2(i), 2.3(ii), and 2.4 are met and that −νs/νu = 1.

Assume furthermore that the separatrix quantity is equal to one and that the stable eigenvalue closest to νs is

complex. Under generic conditions, the homoclinic orbit is then the limit of infinitely many isolated periodic

orbits.

5.1.6 Inclination flips

Yanagida [428] realized that 2-homoclinic solutions might appear in the unfolding of codimension-two bifur-

cations of homoclinic orbits to equilibria with real leading eigenvalues. He considered three different scenarios

that are related to the three nondegeneracy conditions that we introduced in Hypotheses 2.3 and 2.4. The

first of these scenarios, homoclinic orbits at resonance, has been discussed in §5.1.5. The remaining two bi-

furcations, which are concerned with homoclinic orbits that are in inclination-flip or orbit-flip configurations,

are discussed in this and the following section. Depending on eigenvalue conditions, 2-homoclinic orbits may

appear in the unfolding or complicated dynamics may set in, involving N -homoclinic orbits for all N and

suspended Hénon-like attractors.

We consider two-parameter families u̇ = f(u, µ) of three-dimensional vector fields with (u, µ) ∈ R3 × R2.

Throughout, we assume that the eigenvalues of fu(p, 0) at the equilibrium p satisfy νss < νs < 0 < νu and

that h(t) is an orbit homoclinic to p for µ = 0.

Hypothesis 5.8 (Inclination flip). Using the notation from Hypothesis 2.4, we assume that vs, vu, vu
∗ 6= 0

at µ = 0. Furthermore, we assume that vs
∗ = 0 at µ = 0 with ∂µ2

vs
∗(µ)|µ=0 6= 0.

As outlined in §2.1, the orientation of the two-dimensional homoclinic center manifold changes at an incli-

nation flip. Define

α = −νss/νu, β = −νs/νu

and observe α > β > 0. We distinguish the following three cases:

Type A: β > 1;

Type B: α > 1 and 1
2 < β < 1;

Type C: α < 1 or β < 1
2 ,

and impose the following additional nondegeneracy condition for type C bifurcations:

Hypothesis 5.9 (Nondegeneracy conditions for type C). For type C, we assume that

(i) β 6= 1
2α.

(ii) If β < 1
2α, the homoclinic orbit does not lie in the unique smooth leading stable manifold W ls(p).

(iii) If β > 1
2α, W ls,u(p) has a nondegenerate quadratic tangency with W s(p) along the homoclinic orbit.

To expand on the above hypothesis: If β < 1
2α, a typical one-dimensional leading stable manifold is C1 but

not C2, but there exists a unique leading stable manifold that is smooth. If β > 1
2α, then W ls,u(p) is a C2

manifold, and Hypothesis 5.9(iii) is well defined.
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Figure 5.5: The bifurcation diagrams at inclination- and orbit-flip bifurcations are shown for homoclinic-

doubling bifurcations (type B) and the more involved type C bifurcations. For type C bifurcations, there are

infinitely many branches of N-homoclinic orbits for each fixed N ≥ 2.

For inclination flips of type A, we refer to Theorem 5.1 in §5.1.1: a single periodic solution is created when

crossing the curve of homoclinic orbits in the parameter plane; this result is also true in Rn and does not

require that νs is real. The bifurcation diagrams in the remaining cases are shown in Figure 5.5. The

unfolding for case B was treated in [217], see also [190, 218, 362, 364, 375], for vector fields in Rn: it leads to

homoclinic doubling, and the result holds also when νss is not simple or complex (in this case, α is defined

using Re νss in place of νss).

Theorem 5.16. Assume that Hypotheses 2.2, 2.3(ii) and 5.8 are met. Suppose further that the inclination

flip is of type B, then the bifurcation diagram is as shown in Figure 5.5 with one-sided curves of saddle-node

and period-doubling bifurcations of periodic orbits and a one-sided curve of 2-homoclinic orbits that emerge

from the inclination-flip point at µ = 0 on the branch of primary homoclinic orbits.

Finally, the unfolding for case C gives rise to N -homoclinic orbits for all N that are created through the

unfolding of a singular horseshoe [189] (see also §4.3): There are two cases that differ in the global geometry of

the stable and unstable manifolds of the equilibrium, and the existing proofs are limited to three-dimensional

vector fields.

Theorem 5.17. Assume that Hypotheses 2.2, 2.3(ii) and 5.8 are met. Suppose further that the inclination

flip is of type C and that Hypothesis 5.9 is met. Depending on a global condition on the stable and unstable

manifolds, the bifurcation diagram is then given by one of the two cases shown in Figure 5.5. In either case,

infinitely many one-sided curves of N -homoclinic orbits emerge for each N ≥ 2 from the inclination-flip

point at µ = 0 on the branch of primary homoclinic orbits.

Naudot [290] proved the existence of suspended Hénon-like attractors in the unfolding of type-C inclination-

flip homoclinic orbits in R3. Results on inclination-flips in Z2-equivariant ODEs, in which Lorenz-like strange

attractors appear, can be found in Theorems 5.61 and 5.81 below. Applications in which inclination-flips

appear include travelling waves in FitzHugh–Nagumo equation [240], 1 : 2 spatial resonances in systems with

broken O(2) symmetry [313], and models for instabilities in thermal convection [293].

5.1.7 Orbit flips

At an orbit-flip bifurcation, the homoclinic orbit approaches the equilibrium along a strong stable or strong

unstable direction. The most comprehensive study of the homoclinic orbit-flip bifurcation can be found in
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[339], and the bifurcation diagrams closely resemble those at inclination flips. Geometrically, the orientation

of the two-dimensional homoclinic center manifold changes at an orbit flip; see §2.1.

We consider two-parameter families u̇ = f(u, µ) of vector fields with (u, µ) ∈ Rn × R2. Throughout, we

assume that the leading eigenvalues of fu(p, 0) at the hyperbolic equilibrium p are real and simple, and that

h(t) is a homoclinic orbit to p for µ = 0. We assume an orbit-flip configuration within the stable manifold

W s(p).

Hypothesis 5.10 (Orbit flip). We assume that vs
∗, v

u, vu
∗ 6= 0 at µ = 0, while vs(0) = 0 and ∂µ2

vs(0) 6= 0.

We write λss for the largest real part of the stable eigenvalues that lie strictly to the left of the leading

eigenvalue νs, and define

α = −λss/νu, β = −νs/νu

so that α > β > 0. We distinguish the cases

Type A: β > 1;

Type B: β < 1 and α > 1;

Type C: α < 1.

If the eigenvalues are of type C, we need the following additional genericity assumption, which is similar to

Hypothesis 5.9(ii):

Hypothesis 5.11 (Nondegeneracy condition for type C). There exists a unique eigenvalue νss of fu(p, 0) with

Re νss = λss (hence, νss = λss is real and simple), and the homoclinic orbit h(t) satisfies limt→∞ e−ν
ssth(t) 6=

0.

For orbit flips of type A, we refer to Theorem 5.1 in §5.1.1: a single periodic solution is created when crossing

the curve of homoclinic orbits in the parameter plane. Results for orbit flips of type B and C are stated in

the following two theorems and summarized in Figure 5.5.

Theorem 5.18 ([339]). Assume that Hypotheses 2.2, 2.3(ii) and 5.10 are met. If the orbit flip is of type

B, then the bifurcation diagram is as shown in Figure 5.5 with one-sided curves of saddle-node and period-

doubling bifurcations of periodic orbits and a one-sided curve of 2-homoclinic orbits that emerge from the

inclination-flip point at µ = 0 on the branch of primary homoclinic orbits.

Theorem 5.19 ([339]). Assume that Hypotheses 2.2, 2.3(ii) and 5.10 are met. If the orbit flip is of type C

and that Hypothesis 5.11 is met. Depending on a global condition on the stable and unstable manifolds, the

bifurcation diagram is then given by one of the two cases shown in Figure 5.5. In particular, infinitely many

one-sided curves of N -homoclinic orbits emerge for each N ≥ 2 from the inclination-flip point at µ = 0 on

the branch of primary homoclinic orbits.

In [280], the occurrence of inclination-flips in perturbations from orbit-flips is discussed. We refer to §5.3.6

for orbit-flip bifurcations in conservative or reversible ODEs.

5.1.8 Coexisting homoclinic orbits

In this section, we review the unfolding of two-parameter families u̇ = f(u, µ) on Rn with a hyperbolic

equilibrium at p. We assume that there are two homoclinic orbits h0 and h1 to p for µ = 0.

Periodic orbits near the two coexisting homoclinic orbits can often be described completely by symbolic

codes. Let q(t) be a periodic orbit that bifurcates in a gluing bifurcation, then we define its itinerary χ(q) by

listing the index i of the unstable separatrix hi it follows in consecutive loops. More precisely, pick two cross

sections Σ0, Σ1 transverse to h0 and h1, respectively, and list the sequence of indices 0, 1 that corresponds

to which section the periodic orbit intersects at each return: this sequence is denoted by χ(q).
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Figure 5.6: Figure-eight, butterfly, and bellows configurations of two coexisting homoclinic orbits are illus-

trated (note that bellows can only exist in dimension four or greater).

If the eigenvalue condition −Re νs/νu > 1 is met, the bifurcation involving two homoclinic orbits is often

referred to as a gluing bifurcation. It turns out that the symbolic codes of periodic orbits that can be

created in gluing bifurcations and the codes of periodic points for rigid rotations on the circle are closely

related. Consider a circle rotation Rα(x) = x+α mod 1 on S1 = R/Z. We divide the circle in two intervals

I0 = [0, α) and I1 = [α, 1) and introduce a symbolic itinerary χα ∈ {0, 1}Z via χα(i) = j if Riα ∈ Ij . Any

sequence that occurs as an itinerary for some α is called a rotation compatible sequence. A given rotation

compatible sequence defines α uniquely as the frequency with which the symbol zero occurs in it: in other

words, α is the rotation number of the itinerary.

Theorem 5.20 ([137, 138]). We assume that the unstable manifold of p is one-dimensional and that there

are two homoclinic orbits h0 and h1 to p for µ = 0. Furthermore, suppose that −Re νs/νu > 1. The

itinerary of any periodic orbit created for nearby parameter values is then necessarily rotation compatible.

Furthermore, each bifurcating periodic orbit is asymptotically stable, and there are at most two periodic orbits

for each given parameter value. If two periodic orbits exist for the same parameter value, then the rotation

numbers of their itineraries are Farey neighbors6.

In the following, we assume that Hypothesis 2.3(ii) holds so that the leading eigenvalues νs, νu at p are unique

and real. Recall the definition of the vectors vs
i (µ) and vu

i (µ) with i = 0, 1 from (2.9), where the subscript

i indicates that these vectors are computed for the homoclinic orbit hi. Different geometric configurations

can now be distinguished as follows; see also Figure 5.6.

Hypothesis 5.12 (Geometric configurations). Assume that p has unique real leading eigenvalues νs, νu.

(i) Figure eight: vs
0(0) = −vs

1(0), vu
0 (0) = −vu

1 (0).

(ii) Expanding butterfly: −νs/νu < 1 and vs
0(0) = vs

1(0), vu
0 (0) = −vu

1 (0).

(iii) Contracting butterfly: −νs/νu > 1 and vs
0(0) = vs

1(0), vu
0 (0) = −vu

1 (0).

(iv) Bellows: vs
0(0) = vs

1(0), vu
0 (0) = vu

1 (0).

Bifurcations from two coexisting homoclinic solutions have been investigated by Turaev [399, 403]. Near

differential equations with two homoclinic orbits in the expanding butterfly configuration or the bellows

configuration, one finds differential equations with suspended horseshoes (see Theorem 5.79 in §5.5.5).

We now present the bifurcation diagrams of the remaining cases, where the flow remains Morse–Smale

outside bifurcation curves, and refer to [375] for a more detailed description, including symbolic codings of

orbits. We shall refer to a geometric configuration of two homoclinic orbits as orientable, semi-orientable,

or nonorientable if respectively both, one, or none of the homoclinic center manifolds W c(hi) with i = 1, 2

are annuli. If a primary homoclinic orbit admits an orientable homoclinic center manifold (and thus has

nonempty stable set), then one encounters the intermittency phenomenon surveyed in §4.6 along any curve

in parameter plane that crosses the branch of primary homoclinic orbits transversally.

6Recall that two rational numbers p/q and r/s are Farey neighbors if |ps− qr| = 1
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Figure 5.7: Curves of homoclinic bifurcations in unfoldings of flows with two coexisting homoclinic solutions

to an equilibrium with real leading eigenvalues: single one-sided curves correspond to 2-round homoclinic

orbits, while sequences of one-sided curves correspond to multi-round homoclinic orbits.

Figure 5.8: Curves of homoclinic bifurcations in unfoldings of flows with two coexisting tame saddle-focus

homoclinic solutions.

Theorem 5.21 ([399, 403]). Assume that the equilibrium p is hyperbolic and that Hypothesis 2.3(ii) is met

with −νs/νu > 1. Suppose furthermore that there are distinct homoclinic orbits hi(t) to p for i = 1, 2

which exist when µi = 0, satisfy Hypotheses 2.2(i) and 2.4, and are unfolded generically with respect to

the parameter µi. The bifurcation diagrams for the figure-eight configuration (Hypothesis 5.12(i)) and for

the contracting butterfly (Hypothesis 5.12(iii)) are then as shown in Figure 5.7. Homoclinic orbits with

arbitrarily large arclength are found in the orientable and semi-orientable butterfly and the nonorientable

figure eight. For each parameter value, there exist at most two periodic orbits.

The next theorem treats the case when the leading stable eigenvalues are complex and the homoclinic orbits

are tame. See also [180] for a description of the dynamics near two tame saddle-focus homoclinic orbits.

Theorem 5.22 ([356, 358]). Assume that the equilibrium p is hyperbolic and that Hypothesis 2.3(iii) is met

with −Re νs/νu > 1. Suppose furthermore that there are distinct homoclinic orbits hi(t) to p for i = 1, 2

which exist when µi = 0, satisfy Hypotheses 2.2(i) and 2.4, and are unfolded generically with respect to the

parameter µi. The bifurcation diagram is then as shown in Figure 5.8 and, for each parameter value, there

are at most two periodic orbits.
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Figure 5.9: The unfolding of a generic homoclinic orbit to a saddle-node equilibrium as described by Theo-

rem 5.24.

Due to the moduli for topological equivalence (see Theorem 5.5), the bifurcation diagrams for different values

of the saddle quantity −Re νs/νu differ from each other.

5.1.9 Degenerate homoclinic orbits

A homoclinic orbit to a hyperbolic equilibrium p is called degenerate if the tangent spaces of the stable and

unstable manifolds W s(p) and W u(p) along the homoclinic orbit h(t) have more than the vector field direction

in common. Typically, this defines a homoclinic bifurcation of codimension three at which Th(0)W
s(p) ∩

Th(0)W
s(p) is two-dimensional. We consider an equation u̇ = f(u, µ) in Rn with µ ∈ R3 for which a

homoclinic orbit h(t) to a hyperbolic equilibrium p exists at µ = 0.

Hypothesis 5.13. Assume that Th(0)W
s(p, 0) ∩ Th(0)W

s(p, 0) is two-dimensional and that the stable and

unstable manifolds W s(p, µ) and W u(p, µ) of p for u̇ = f(u, µ) intersect transversally along h × {0} in the

product Rn × R3 of state and parameter space.

Note that this requires n ≥ 4. We have the following result.

Theorem 5.23 ([413]). Suppose that h is a homoclinic orbit to the hyperbolic equilibrium p and assume that

Hypothesis 5.13 is met, then the set of parameter values for which a single-round homoclinic orbits exists

forms a Whitney umbrella in parameter space.

To visualize the geometry, consider a degenerate homoclinic orbit h(t) in R4 to an equilibrium with stable

and unstable manifolds that are two-dimensional. Take a cross section Σ transverse to h(t) at t = 0, then

W s(p, µ) and W u(p, µ) intersect Σ along curves W s
Σ(p, µ) and W u

Σ(p, µ). Suppose that these curves intersect

in a single point when µ = 0 and have a quadratic tangency at this point then, in a generic three-parameter

family, the set of parameter values for which W s
Σ(p, µ) and W u

Σ(p, µ) intersect forms a Whitney umbrella.

5.1.10 Homoclinic orbits to nonhyperbolic equilibria

In this section, we discuss homoclinic orbits to nonhyperbolic equilibria and restrict ourselves to bifurcations

of overall codimension at most two. In particular, we consider only local bifurcations of codimension at

most two and remark that homoclinic orbits to nonhyperbolic equilibria can be robust under perturbations

that do not unfold the local bifurcation at the equilibrium: examples are provided by homoclinic orbits to

saddle-node (codimension one) or Hopf/saddle-node (codimension two) equilibria. Additional degeneracies

of the homoclinic orbit may, of course, further increase the codimension. We do not consider homoclinic

orbits to pitchfork equilibria, which have been discussed in [100].

We start with homoclinic orbits to saddle-node equilibria. Consider a one-parameter family u̇ = f(u, µ) on

Rn unfolding a saddle-node equilibrium p for µ = 0. The geometry of the flow near p is clarified in §2.2,

and we assume that Hypothesis 2.5 is met. Thus, the dimensions of the stable and unstable setsMs(p) and

Mu(p) of p add up to n + 1: these sets can therefore intersect transversally to give an isolated homoclinic

orbit.

48



Figure 5.10: The unfolding of a nongeneric homoclinic orbit to a saddle-node equilibrium as described by

Theorem 5.25.

Theorem 5.24 ([11, 368]). In the above setup, assume that Hypotheses 2.5 and 2.7 are met, then the ho-

moclinic orbit and the equilibrium p form a normally hyperbolic set diffeomorphic to a circle, which therefore

persists for µ near zero.

On the persistent invariant circle, the dynamics changes from two hyperbolic equilibria with heteroclinic

connections between them for µ < 0, say, to a single periodic orbit for µ > 0, with the homoclinic loop to

the saddle-node equilibrium forming the boundary at µ = 0; see Figure 5.9.

If the setsMs(p) andMu(p) intersect simultaneously and transversally at several distinct homoclinic orbits

or have a tangency at a single homoclinic orbit, then the resulting ODE can lie on the boundary of Morse–

Smale systems; see §4.4 for details. In particular, coexisting transverse intersections of Ms(p) and Mu(p)

lead to the creation of suspended horseshoes in an appropriate unfolding; see Theorem 4.5.

Next, we consider a codimension-two bifurcation of homoclinic orbits to saddle-node equilibria where Hy-

pothesis 2.7 is violated. By reversing the direction of time if necessary, we may assume that Hypothesis 2.7(i)

is violated. Thus, consider a two-parameter family u̇ = f(u, µ) on Rn with a saddle-node equilibrium p at

µ1 = 0. We need the following unfolding condition for the homoclinic connection when varying µ2.

Hypothesis 5.14. Upon setting µ1 = 0 and varying only µ2, the manifolds W cu(p, µ) and W s(p, µ) intersect

transversally in Rn × R along h× {0}.

Theorem 5.25 ([92, 100, 261, 349]). In the above two-parameter setting, assume that p is a saddle-node

equilibrium when µ1 = 0. We assume that Hypothesis 2.5 is met if µ1 is varied and that there is a homoclinic

orbit h(t) at µ = 0 for which Hypothesis 2.7(ii) is met but Hypothesis 2.7(i) is violated. Suppose further that

the unfolding condition Hypothesis 5.14 is met. The bifurcation diagram then contains a one-sided curve that

emerges from µ = 0 tangent to the µ2-axis along which a homoclinic orbit to a hyperbolic equilibrium exists.

Heteroclinic connections and periodic orbits bifurcate also; see Figure 5.10.

The codimension-three bifurcation of a homoclinic orbit to a Bogdanov–Takens equilibrium7 has been treated

in [122]. As the unfolding of a local Bogdanov–Takens bifurcation gives rise to small homoclinic orbits, both

small and large homoclinic orbits occur here. A codimension-three bifurcation of a homoclinic orbit to a

saddle-node equilibrium in which both Hypothesis 2.7(i) and 2.7(ii) are violated occurs in a model for solitary

pulses in an excitable reaction-diffusion medium [433]: this bifurcation is dynamically more complicated and

leads to inclination-flip homoclinic orbits and cascades of T-point bifurcations [193].

Finally, we consider homoclinic loops to an equilibrium that undergoes a supercritical Hopf bifurcation. This

bifurcation, which is commonly referred to as a Shil’nikov–Hopf bifurcation, has codimension two, and we

therefore treat two-parameter families u̇ = f(u, µ). Suppose that the Hopf bifurcation of the equilibrium p

occurs at µ1 = 0 and unfolds generically in the parameter µ1 so that Hypothesis 2.8 is met. Assume also

a generic unfolding that breaks the intersection of the center-stable with the unstable manifold of p when

varying µ2 for µ1 = 0.

7The local bifurcation of codimension two with two non-semisimple eigenvalues at zero; see §5.4.1
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Figure 5.11: The unfolding of a Shil’nikov–Hopf homoclinic orbit described in Theorem 5.26 is sketched in

the left panel, where the insets show the eigenvalues at the equilibrium: a wild saddle-focus homoclinic orbit

exists along the curve 1-hom, while the stable and unstable manifolds of the bifurcating small periodic orbits

q have precisely two transverse intersections above the parabola which disappear through a tangency along the

parabola. The mechanism that creates and destroys transverse homoclinic orbits of the small periodic orbits

q for fixed µ2 > 0 as µ1 varies is illustrated in the right panel, where the arrows indicate how the unstable

manifolds of equilibrium and periodic orbits move as µ1 varies.

Hypothesis 5.15 (Generic unfolding). For µ1 = 0, the intersection of W cs(p, µ) and W u(p, µ) unfolds

generically with respect to the parameter µ2.

Shil’nikov–Hopf bifurcations lead to complicated dynamics such as suspended horseshoes via two different

mechanisms: first, their unfolding may contain homoclinic tangencies of the stable and unstable manifolds

of the small periodic orbits that are created in the Hopf bifurcation; secondly, wild saddle-focus homoclinic

orbits are created at such bifurcations. Hirschberg and Knobloch [178] considered three-dimensional flows and

study first-return maps, while Deng and Sakamoto [105] derived bifurcation equations in higher-dimensional

systems. In higher-dimensional systems, additional conditions such as a nondegeneracy condition akin to

Hypothesis 2.2(i) and the absence of inclination-flip and orbit-flip configurations akin to Hypothesis 2.4, are

needed. We formulate here a bifurcation result in R3 and refer to [105] for the higher-dimensional results.

Theorem 5.26 ([105, 178]). Suppose u̇ = f(u, µ) is a two-parameter family in R3 for which a homoclinic

orbit to a Hopf equilibrium exists when µ = 0. If Hypotheses 2.8(iii) and 5.15 are met, then there is a one-

sided curve in parameter space that emerges from µ = 0 and is transverse to the curve of Hopf bifurcations

along which a generic wild saddle-focus homoclinic orbit exists. Furthermore, there is a curve tangent to

the curve of Hopf bifurcations along which homoclinic tangencies of the stable and unstable manifolds of the

small periodic orbits created in the Hopf bifurcation occur; see Figure 5.11.

We finish with a few remarks on the interaction of homoclinic and Hopf/saddle-node bifurcations. Local

unfoldings of Hopf/saddle-node equilibria are discussed in §5.4.2, and we remark that small Shil’nikov ho-

moclinic orbits occur in certain cases of the local unfolding. With a global homoclinic orbit present, global

Shil’nikov homoclinic orbits will also occur. These bifurcations of a homoclinic orbit to an equilibrium at a

Hopf/saddle-node bifurcation arise in models of semiconductor lasers with optical injection [233, 434], and

we refer also to [234] for a numerical investigation of such global Shil’nikov homoclinic orbits with one or

more global excursions.

5.2 Heteroclinic cycles in generic systems

In this section, we discuss primarily bifurcations from heteroclinic cycles that connect different equilibria,

though cycles that involve a periodic orbit instead of an equilibrium are considered briefly in §5.2.4. Thus,

we consider the system u̇ = f(u) in Rn with a heteroclinic cycle that consists of disjoint equilibria pi and

heteroclinic orbits hi(t) with hi(t) ∈ W u(pi) ∩ W s(pi+1) for each i with 1 ≤ i ≤ `, where indices are

taken modulo `; see §2.3. We will mostly consider heteroclinic cycles with two heteroclinic orbits as the
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Figure 5.12: Planar heteroclinic cycles can be nontwisted [left] or doubly twisted [right].

codimension gets too large otherwise. We recall that the Morse index of an equilibrium p is defined via

ind(p) := dimW u(p).

5.2.1 Heteroclinic cycles with saddles of identical Morse index

We discuss heteroclinic cycles built from codimension-one heteroclinic connections that occur when the

equilibria involved have the same Morse index. One observation is that homoclinic orbits can appear in

unfoldings of heteroclinic bifurcations. A prototype result is Theorem 5.27 below by Chow, Deng, and

Terman. We start with results on heteroclinic cycles between two equilibria with real leading eigenvalues.

Bifurcations that involve equilibria with complex conjugate leading eigenvalues exhibit more complicated

features and will be discussed briefly afterwards.

Let u̇ = f(u, µ) be a two-parameter family in Rn that has a heteroclinic cycle for µ = 0 with heteroclinic

orbits h1 and h2 that connect the hyperbolic equilibria p1 and p2 with identical Morse index: thus, we assume

that Hypothesis 2.10(i) is met at µ = 0 with codimension di = 1 for i = 1, 2. Furthermore, we assume that

the leading eigenvalues at both equilibria are unique and real (Hypothesis 2.11(ii)) and that Hypothesis 2.12

is met along both heteroclinic orbits, so that neither is in either orbit- or inclination-flip configuration.

As a consequence, there exists a two-dimensional continuous plane bundle Ec along the heteroclinic cycle

h1 ∪h2 ∪ p1 ∪ p2 that is invariant under the variational equations along h1 and h2. The plane Ec
pi is spanned

by two eigenvectors es
i and eu

i that belong to the leading eigenvalues and which we pick according to

es
i = lim

t→∞
ḣi−1(t)/‖ḣi−1(t)‖, eu

i = lim
t→−∞

ḣi(t)/‖ḣi(t)‖, (5.3)

with indices taken modulo 2. We choose orientations on Ec
pi so that the bases {es

i , e
u
i } are both positively

oriented. By continuity, this induces an orientation on the plane bundle Ec
i (t) along hi(t) by continuing the

orientation from t = −∞. We define the orientation index Oi = ±1 as follows:

Oi =

{
1 if the orientation Ec

i (t) along hi(t) matches the orientation of Ec
pi when t→∞,

−1 otherwise
(5.4)

and refer to Figure 5.12 for an illustration.

Hypothesis 5.16 (Twist conditions). Consider the following twist conditions along the heteroclinic cycle:

(i) nontwisted: O1,O2 = 1,

(ii) single twisted: O1O2 = −1,

(iii) doubly twisted: O1,O2 = −1.

Note that, in the spirit of §3.4, there exists a two-dimensional center manifold near the heteroclinic cycle

which will be orientable if the cycle is nontwisted or doubly twisted, and nonorientable otherwise.

Theorem 5.27 ([90, 91, 101, 225, 342]). Let u̇ = f(u, µ) be a two-parameter family that admits a heteroclinic

cycle with heteroclinic orbits h1, h2 to two hyperbolic equilibria p1, p2 with identical Morse index when µ = 0.

(i) Suppose that Hypotheses 2.10 with di = 1, 2.11(i) at pi, and 2.12(ii),(iv) for hi are met for i = 1, 2. In

the parameter plane, there are then two curves of heteroclinic orbits that intersect at µ = 0. Branching

off µ = 0 and tangent to the curves of the heteroclinic orbit hi are two one-sided curves of homoclinic

orbits. Other solutions may bifurcate as well.
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Figure 5.13: Bifurcation diagrams for Theorem 5.27: subscripts denote to which equilibria the solution

connects. In the right panel, there is a unique curve of N-heteroclinic orbits that connect p1 to p2 for each

N ≥ 2, and these curves accumulate onto the branch of homoclinic orbits to p2.

(ii) Suppose that Hypotheses 2.10 with di = 1, 2.11(ii) with8 −νs
i/ν

u
i < 1, and 2.12 for hi hold for i = 1, 2.

If Hypothesis 5.16(i) is also met, then the complete bifurcation diagram is given in Figure 5.13(i).

If Hypothesis 5.16(ii) is met, the complete bifurcation set given in Figure 5.13(ii) which contains, in

addition, a one-sided curve of 2-heteroclinic orbits that makes two passages near the twisted hetero-

clinic orbit. If Hypothesis 5.16(iii) is met, then the complete bifurcation set, given by Figure 5.13(iii),

contains, for each N ≥ 1, a unique one-sided curve of N -heteroclinic orbits between p1 and p2 that

make N +1 passages near h1 and N near h2 as well as another branch of N -heteroclinic orbits between

p2 and p1 that make N passages near h1 and N + 1 near h2.

The geometric picture is as follows. There is a two-dimensional normally hyperbolic center manifold that

contains the heteroclinic cycle for µ = 0 (see §3.4 and [342]). Take two cross sections Σ1 and Σ2 in the

center manifold transverse to the heteroclinic orbits h1 and h2, respectively, then there are C1 coordinates

on these cross sections in which the transition maps are of the form x 7→ bi(µ) + ai(µ)x−ν
s
i/ν

u
i + o(x−ν

s
i/ν

u
i )

for x > 0; see §3.6.3. If −νs
i/ν

u
i > 1 for both i = 1, 2, then the return map restricted to the center manifold

is a contraction and, consequently, there can be at most one periodic orbit (if −νs
i/ν

u
i < 1, then the return

map is an expansion, and the conclusion still holds).

The above results assumed, apart from real simple leading eigenvalues, that the saddle quantities are either

both larger or both smaller than one: thus, we assumed that we are in the first of the two cases distinguished

below:

Hypothesis 5.17 (Saddle quantities). We distinguish two cases for the saddle quantities λi = −νs
i/ν

u
i :

(i) λ1, λ2 > 1 (the case λ1, λ2 < 1 is brought to this case by chancing the direction of time);

(ii) λ1λ2 < 1.

Heteroclinic cycles under Hypothesis 5.17(ii) have been considered by Shashkov [353–355], and we refer to

these references for the bifurcation diagrams. Depending on the orientability of the primary heteroclinic

orbits, the two-parameter bifurcation diagrams show, in addition to homoclinic and heteroclinic bifurcation

curves, bifurcation curves of saddle-node or periodic-doubling bifurcations of periodic orbits.

Bifurcations from heteroclinic cycles where at least one of the equilibria has complex conjugate leading

eigenvalues lead to great complexity in bifurcation diagram and dynamics. Various cases have been studied

in [64, 65, 358], and we refer to these references and also to [375] for an overview of the resulting dynamics.

Apart from determining bifurcation curves in an unfolding, one can also look for prevalent dynamics as

parameters are varied. We present a result in this direction due to San Mart́ın, involving a heteroclinic cycle

8We assume here that the saddle quantities are both smaller than one: if they are both larger than one, the result holds for

the time-reversed system; note that this changes the definition of 1-het12 to 1-het21, and vice versa, in Figure 5.13, but not

that of 1-homj .
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in R3 between an equilibrium with real leading stable eigenvalues and a second equilibrium with complex

conjugate stable eigenvalues.

Consider a two-parameter family u̇ = f(u, µ) on R3 that has a heteroclinic cycle consisting of connecting

orbits h1 and h2 and hyperbolic equilibria p1 and p2 of index 1 when µ = 0.

Hypothesis 5.18 (Heteroclinic cycle with one saddle focus). Suppose that p1 has real eigenvalues νss
1 <

νs
1 < 0 < νu

1 , while p2 has a real eigenvalue νu
2 > 0 and complex eigenvalues νs

2, ν
s
2 with Re νs

2 < 0. For µ = 0,

there is a heteroclinic cycle with h1 ∈W u(p1) ∩W s(p2) and h2 ∈W u(p2) ∩W s(p1).

Hypothesis 5.19 (Expanding heteroclinic cycle). The heteroclinic cycle is expanding: Re νs
2ν

s
1 < νu

2 ν
u
1 .

The following result shows that hyperbolic dynamics is prevalent in an unfolding of an expanding heteroclinic

cycle that involves a saddle focus.

Theorem 5.28 ([337]). Consider a two-parameter family of ODEs on R3 that satisfies Hypotheses 5.18,5.19,

and 2.10(ii). Furthermore, assume that h2 satisfies Hypothesis 2.12(ii), and h1 satisfies Hypothesis 2.12(i).

We also assume the generic condition that, for µ near 0, there are C2 linearizing coordinates near p1 and p2.

Last, we assume that the heteroclinic cycle is the locally maximal invariant set in a small open neighborhood

U of itself when µ = 0. Let P be the set of parameter values µ near zero for which u̇ = f(u, µ) has a chain

recurrent set in U that is equal to the two equilibria pj(µ) and at most one nontrivial hyperbolic basic set,

then

lim
ε↓0

|Bε(0) ∩ P |
|Bε(0)|

= 1,

where Bε(0) is a disc of radius ε around zero, and | · | denote two-dimensional Lebesgue measure.

Similarly hyperbolic dynamics is prevalent for contracting heteroclinic cycles where the inequality in Hy-

pothesis 5.19 is reversed: in this case, the single hyperbolic basic set in the definition of P is replaced by an

attracting periodic orbit; see [337].

A central question in the study of heteroclinic cycles of planar ODEs has been to estimate its cyclicity, that is,

to find bounds on the number of cycles that can appear in unfoldings9. In §5.1.5, this problem is discussed

for the unfolding of planar homoclinic loops near resonant eigenvalues; see, in particular, Theorem 5.14.

Here, we briefly discuss general heteroclinic cycles and begin with the flow near a hyperbolic equilibrium

with eigenvalues that are not necessarily at resonance. Let u̇ = f(u, µ) be a smooth family of ODEs on R2

with a saddle type equilibrium at µ = 0. For µ small and fixed ` ∈ N, the vector field near the equilibrium

is then C`-equivalent to

ẋs = νsxs +

N(`)∑
i=0

αi(µ)(xsxu)ixu,

ẋu = νuxu,

where αi(µ) are smooth functions of µ. The C`-equivalence is by rescaling time in an x-dependent C`-

smooth fashion and conjugating with diffeomorphisms of class C` in (xs, xu, µ); see [330] and use [47] for the

parameter-dependent case. Recall that a Dulac map is a local transition map from a cross section transverse

to the local stable manifold to a cross section transverse to the local unstable manifold. We may assume

that these cross sections are given by {xs = 1} and {xu = 1}. Mourtada proves the following expansion for

the Dulac map.

Theorem 5.29 ([286]). For each fixed k ∈ N, there is a neighborhood Uk of µ = 0 in R so that the Dulac

map D(x, µ) has the asymptotic expansion

D(x, µ) = x−ν
s/νu

[a(µ) + ψ(x, µ)]

9This question has its origin in Hilbert’s 16th problem; see [201] for a review
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Figure 5.14: The geometric configuration of heteroclinic orbits at a T-point is illustrated.

for µ ∈ Uk, where a is a smooth function of µ and

lim
x→0

xj∂jxψ(x, µ) = 0

for each j ≤ k.

A hyperbolic polycycle is a polycycle for a planar ODE that consists of hyperbolic equilibria and connecting

heteroclinic orbits. The above expansion for the Dulac map near a hyperbolic equilibrium can now be used

to bound the cyclicity of hyperbolic polycycles. Note that a return map on a cross section transverse to

a hyperbolic polycycle is a composition of local diffeomorphisms and Dulac maps. Mourtada derived the

following bound for the number of limit cycles that can appear in the unfolding of hyperbolic polycycles. We

remark that Kaloshin [210] obtained an explicit bound for the cyclicity of more general polycycles, which we

state as Theorem 5.36 further below.

Theorem 5.30 ([286, 287]). There is a function C : N → N so that the following holds. Let u̇ = f(u, µ)

be a generic family of planar ODEs depending on a parameter µ ∈ Rk that has a hyperbolic polycycle that

contains k equilibria when µ = 0, then the number of limit cycles that exist near the polycycle for small

values of µ is bounded by C(k).

We mention that C(2) = 2, C(3) = 3, C(4) = 5. The cyclicity of hyperbolic polycycles with two equilibria

was studied in [81, 124, 288].

5.2.2 T-points: Heteroclinic cycles with saddles of different index

T-points are codimension-two bifurcations of heteroclinic cycles that involve equilibria with different Morse

indices. We consider

u̇ = f(u, µ), (u, µ) ∈ R3 × R2 (5.5)

and assume that pi with i = 1, 2 are hyperbolic equilibria of (5.5) for all µ.

Hypothesis 5.20. The linearization fu(p1, 0) has simple eigenvalues νs
1, ν

u
1 , ν̃

u
1 with νs

1 < 0 < Re νu
1 ≤ Re ν̃u

1 ,

while the linearization fu(p2, 0) has simple eigenvalues ν̃s
2, ν

s
2, ν

u
2 with Re ν̃s

2 ≤ Re Re νs
2 < 0 < νu

2 . We assume

that the saddle quantities

λ1 := −Re νu
1

νs
1

, λ2 := − νu
2

Re νs
2

satisfy λj 6= 1.

Thus, the manifolds W s(p1, µ) and W u(p2, µ) are one-dimensional, while W u(p1, µ) and W s(p2, µ) are two-

dimensional. We assume that (5.5) has a heteroclinic cycle for µ = 0 that consists of a transversely

constructed heteroclinic orbit h1(t) ∈ W u(p1, 0) ∩ W s(p2, 0) and a codimension-two connection h2(t) ∈
W u(p2, 0) ∩W s(p1, 0), as indicated in Figure 5.14. We also need to make several genericity assumptions.

Hypothesis 5.21. We assume the following:
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Figure 5.15: Shown are the bifurcation diagrams in the parameter plane µ ∈ R2 near a generic T-point at

µ = 0 that involves two hyperbolic equilibria with real and simple eigenvalues: the diagrams depend on the

saddle quantities λj defined in Hypothesis 5.20 and the orientation index O from Hypothesis 5.21(iii).

(i) The heteroclinic orbit h1(t) ∈ W u(p1, 0) ∩W s(p2, 0) satisfies Hypothesis 2.10 with d = 0, while the

orbit h2(t) ∈W u(p2, 0) ∩W s(p1, 0) satisfies Hypothesis 2.10 with d = 2.

(ii) Neither h1 nor h2 are in an orbit-flip configuration (that is, hj obeys Hypothesis 2.12(ii) and (iv) for

j = 1, 2).

(iii) If the eigenvalues of p1 and p2 are all real, we assume in addition that the heteroclinic cycle is not in an

inclination-flip configuration: more precisely, we assume that the closure of W s(p2, 0) is homeomorphic

to a cylinder (O := 1) or to a Möbius band (O := −1); in this case, the closure of W u(p1, 0) is also

homeomorphic to a cylinder if O = 1 and to a Möbius band if O = −1.

The following theorem summarizes the different bifurcation diagrams at T-points when the eigenvalues of

the equilibria pj are real.

Theorem 5.31 ([61]). Assume that Hypotheses 5.20 and 5.21(i)-(iii) are met. If the eigenvalues of both

equilibria p1 and p2 are all real, then the bifurcation diagrams near µ = 0 are as shown in Figure 5.15.

Next, we consider the case where one of the equilibria (say p1) has complex eigenvalues, while the other

equilibrium (p2) has only real eigenvalues.

Theorem 5.32 ([61, 150, 151]). Assume that Hypotheses 5.20 and 5.21(i)-(ii) are met. Assume furthermore

that the eigenvalues of p2 are real, while p1 is a focus so that Im νu
1 = − Im ν̃u

1 > 0. The bifurcation diagram

of heteroclinic orbits and 1-homoclinic orbits is shown in Figure 5.16(i). In addition, for each µ close to zero,

there are infinitely many hyperbolic periodic orbits near the heteroclinic cycle and the dynamics contains a

shift of two symbols.

Finally, we consider the situation where both p1 and p2 are foci. In coordinate systems in which the vector

fields near p− 1 and p2 are linearized, we pick a number T � 1 and place small sections at h2(−T ) near p2

and at h2(T ) near p1. Without loss of generality, the return map Π along h2 that maps these section into

each other satisfies

Πu(h2(−T )) =

(
1
d 0

0 d

)
.
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Figure 5.16: Shown are the partial bifurcation diagrams in the parameter plane µ ∈ R2 near a generic T-point

at µ = 0. Panel (i) is for the case where the unstable eigenvalues of p1 are not real, while the eigenvalues of

p2 are all real: There is a sequence of parameter values that converge to µ = 0 and correspond to T-points

of (5.5); furthermore, the homoclinic orbits to the saddle p1 undergo a sequence of inclination flips that

accumulate at µ = 0. Panel (ii) shows the bifurcation diagram of 1-homoclinic orbits when both equilibria

have complex leading eigenvalues.

We set

γ :=
1

2

(
d2 +

1

d2

)
≥ 1, Γ :=

(
λ1

Im νu
1

)2

+

(
λ2

Im νs
2

)2

− 2γ
λ1λ2

| Im νu
1 | | Im νs

2|
+ 1− γ2.

We can now state the following theorem.

Theorem 5.33 ([64, 65]). Assume that Hypotheses 5.20 and 5.21(i)-(ii) are met. Assume furthermore that

the unstable eigenvalues of p1 and the stable eigenvalues of p2 are complex and that λ1 Im νs
2 6= λ2 Im νu

1 and

Γ 6= 0. Under these assumptions, the following is true:

First, the manifolds W u(p1, 0) and W s(p2, 0) intersect transversely at infinitely many different heteroclinic

orbits. If Γ < 0, the class of systems for which there is a heteroclinic orbit along which W u(p1, 0) and

W s(p2, 0) intersect non-transversely is dense is the class of systems with generic T-points.

Second, the bifurcation diagram of 1-homoclinic orbits is as shown in Figure 5.16(ii): in particular, there

exists an infinite sequence of parameter values that accumulate at µ = 0 so that (5.5) has a pair of coexisting

homoclinic orbits to p1 and p2: the two homoclinic bifurcation curves intersect transversely in the parameter

plane when Γ > 0, while near each system for which Γ < 0 there is a system that satisfy the assumptions

stated above for which one of these intersections is not transverse.

Depending on the values of the saddle quantities λi, the dynamics of (5.5) can contain attractors and repellors

near parameter values at which homoclinic orbits to the foci p1 and p2 coexist; see §5.1.2.

We remark that T-points arise in the Lorenz equation [150, 151] as well as in systems that model the oxidation

on platinum surfaces [193, 432, 433], the propagation of calcium waves [328, 379], Josephson junctions [408]

and laser systems [420].

5.2.3 Heteroclinic cycles with nonhyperbolic equilibria

In generic two-parameter families of ODEs, heteroclinic cycles that involve a saddle-node equilibrium and a

hyperbolic equilibrium may appear. We remark that heteroclinic cycles with two saddle-node equilibria may

also occur: such a cycle is of codimension two if it forms a normally hyperbolic invariant circle that contains

the two saddle-node equilibria.

Planar systems with heteroclinic cycles that consist of two heteroclinic orbits, which connect a hyperbolic

saddle to a saddle-node equilibrium and back, have been studied by Grozovskĭı [159]. Polycycles where both

unstable separatrices of the hyperbolic saddle are heteroclinic orbits to the saddle-node equilibrium are also

of codimension-two: they have also been treated in [159]. Homburg [184] studied general heteroclinic cycles

between a hyperbolic equilibrium and a saddle-node equilibrium for ODEs in Rn. We present here a single
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Figure 5.17: Bifurcation set and phase-space dynamics at µ = 0 for Theorem 5.34.

theorem for the case where the hyperbolic equilibrium has a pair of complex conjugate leading eigenvalues:

for simplicity, this result is stated for three-dimensional flows; generalizations to higher dimensions involve

geometric conditions akin to no-flip conditions.

Theorem 5.34 ([184]). Let u̇ = f(u, µ) be a two-parameter family of ODEs on R3 with µ ∈ R2. Assume that

a heteroclinic cycle exists for µ = 0 which connects a hyperbolic equilibrium p1 and a saddle-node equilibrium

p2 so that the following assumptions are met. The eigenvalues of fu(p1, 0) at the hyperbolic equilibrium p1

satisfy Hypothesis 2.3(ii) and are of Type B as explained in §5.1.6, while the saddle-node equilibrium p2

satisfies Hypotheses 2.5 and 2.6(ii) with respect to µ1, so that µ1 unfolds the saddle node. Furthermore, we

assume that W u(p1, 0) 6⊂W s(p2, 0) and that the intersection of the stable manifold W s(p1, µ) and the center

manifold W c(p2, µ) is unfolded generically with respect to the parameter µ2 when µ1 = 0. The bifurcation set

then contains a sequence of inclination-flip homoclinic bifurcations that converge to µ = 0. Branching from

the inclination-flip bifurcation points are curves of saddle-node and period-doubling bifurcations of periodic

orbits and curves corresponding to 2-homoclinic orbits to p1 as shown in Figure 5.17.

The inclination-flip bifurcations occur as the stable manifold of p1 undergoes an arbitrary number of rotations

in the vicinity of p2 for parameter values near µ1 = 0 (recall that µ1 unfolds the saddle-node bifurcation).

The above result assumed eigenvalues of type B that lead to the homoclinic-doubling bifurcation. For

type-C eigenvalues, one likewise finds a converging sequence of inclination-flip homoclinic orbits with more

complicated bifurcation diagrams as in §5.1.6.

We conclude this section with a few remarks on heteroclinic bifurcations for planar ODEs. Kotova and Stanzo

[231] compiled a list of codimension one, two and three bifurcations of heteroclinic cycles (the ‘Kotova zoo’).

The interest lies in estimating the cyclicity, that is, the number of limit cycles that are born in an unfolding

of these cycles. It turns out that there are heteroclinic cycles in three parameter families for which any

number of limit cycles bifurcates.

Theorem 5.35 ([231]). For each N ∈ N, there is a planar ODE u̇ = f(u) with a heteroclinic cycle that

connects two saddle-node equilibria as shown in Figure 5.18 so that N limit cycles occur for an arbitrary

small perturbation of u̇ = f(u).

Note that the heteroclinic cycle shown in Figure 5.18 contains a normally attracting saddle-node equilibrium

p− and a normally repelling saddle-node equilibrium p+. To prove the preceding theorem, three-parameter

families u̇ = f(u, µ) are considered. The normal form near the saddle-node equilibria p± are given by

ẋ =
x2 + δ±(µ)

1 + a±(µ)

ẏ = ±y,

which can be integrated explicitly to construct local transition maps. Composing with global transition

maps yields a return map that can be studied to prove the above result.

In contrast, generic k-parameter families that unfold elementary polycycles always lead to a bounded number

of limit cycles: a polycycle (which, by definition, consists of finitely many heteroclinic orbits and equilibria)

is called elementary if each of its equilibria has at least one nonzero eigenvalue.
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Figure 5.18: An arbitrary number of limit cycles can occur in perturbations from a ‘lips-shaped’ heteroclinic

cycle; see Theorem 5.35.

Theorem 5.36 ([204, 210]). There is a function E : N → N so that the following holds. Let u̇ = f(u, µ)

be a generic family of planar ODEs that depends on a parameter µ ∈ Rk and has an elementary polycycle

at µ = 0. The number of limit cycles that exist near the polycycle for small values of µ is then bounded by

E(k). Furthermore, the explicit estimate E(k) ≤ 225k2 holds.

The existence of the function E(k) is due to Il’yashenko and Yakovenko, while Kaloshin proved the explicit

estimate.

5.2.4 Heteroclinic cycles containing periodic orbits

In this section, we consider heteroclinic cycles that involve heteroclinic connections between a hyperbolic

equilibrium and a hyperbolic periodic orbit. We focus on three-dimensional flows and refer to [321] for results

in higher dimensions for cycles of codimension one and two.

Let u̇ = f(u, µ) be a one-parameter family on R3. Suppose that the differential equation with µ = 0 has

a hyperbolic periodic orbit q(x) of saddle type and a hyperbolic equilibrium p with eigenvalues νss < νs <

0 < νu. We assume that one separatrix in W u(p) is contained in the stable manifold W s(q) of q, and we

denote this solution by h1. The manifolds W u(q) and W s(p) are assumed to intersect transversally along

a heteroclinic solution h2 from q(t) to p. Finally, the singular cycle h1 ∪ h2 is assumed to be the maximal

invariant set in some neighborhood U of itself.

Hypothesis 5.22 (Genericity and unfolding conditions). Consider the following genericity conditions:

(i) W u(q) and W s(p) intersect transversally along h2.

(ii) h2 6∈W ss(p).

(iii) The distance between W u(p) and W s(q), measured in a cross section, varies with nonzero speed in µ.

Hypothesis 5.23 (Expanding versus contracting cycles). We distinguish the following two cases:

(i) Expanding singular cycle: −νs/νu < 1;

(ii) Contracting singular cycle: −νs/νu > 1.

Bifurcations from expanding and contracting singular cycles are quite different in nature, and we illustrate

this with the following bifurcation result.

Theorem 5.37 ([28]). Let u̇ = f(u, µ) be a one-parameter family of ODEs that unfolds a singular cycle that

satisfies Hypothesis 5.22.

(i) If Hypothesis 5.23(i) is met, then the bifurcation set has zero Lebesgue measure.

(ii) If Hypothesis 5.23(ii) is met, then there are parameter values arbitrarily close to µ = 0 for which an

attracting periodic orbit exists near the singular cycle.
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Further results on singular cycles for equilibria with real eigenvalues can be found in [245, 289, 301, 336], while

results for singular cycles that contain an equilibrium with complex conjugate leading eigenvalues appear

in [36, 62, 63]. Codimension-two singular cycles involving tangencies of stable and unstable manifolds are

considered in [75, 279]. Papers in which singular cycles are treated using Lin’s method include [222, 235, 322]

and [29]; the latter paper uses Fenichel theory to describe trajectories near the periodic orbits.

5.3 Conservative and reversible systems

Systems that are reversible or conserve a certain energy-like quantity appear in many applications. In

this section, we consider homoclinic bifurcations in such systems. We decided to review them together as

they share several dynamical features and also since many models are both conservative and reversible: for

instance, the energy H(q, p) = 1
2‖p‖

2+V (q) leads to a Hamiltonian system that is reversible and conservative.

In the introduction, we mentioned travelling waves in parabolic partial differential equations as an important

source of ODE models where homoclinic orbits are of interest. One reason for the interest in reversible ODEs

is the fact that standing waves u(x) of reaction-diffusion systems Ut = DUxx+F (u) are captured by reversible

systems. For surveys of reversible systems and their applications, we direct the reader to [69, 70, 248].

5.3.1 Introduction and hypotheses

In this section, we consider homoclinic orbits in systems

u̇ = f(u), u ∈ R2n (5.6)

that are conservative or reversible. A differential system is conservative if it preserves an appropriate real-

valued quantity. More precisely, we assume the following:

Hypothesis 5.24 (Conservative systems). There is a smooth function H : R2n → R with 〈∇H(u), f(u)〉 = 0

for all u ∈ R2n, and ∇H(u) = 0 only at a discrete set of points in R2n.

Thus, if Hypothesis 5.24 is met, then H(u(t)) = H(u(0)) along any solution u(t) of (5.6). A particular

example of conservative systems are Hamiltonian systems given by

u̇ = J∇H(u), J =

(
0 1

−1 0

)
, u ∈ Rn × Rn.

If Hypothesis 5.24 is met and h(t) is a homoclinic orbit, then

ψ(t) = ∇H(h(t)) (5.7)

is a nontrivial bounded solution to the adjoint equation (2.3)

ẇ = −fu(h(t))∗w. (5.8)

Homoclinic orbits h(t) to hyperbolic equilibria p are found as intersection of stable and unstable manifolds

of p which all lie in the codimension-one surface H−1(p):

Hypothesis 5.25 (Transversality). Assume that p is a hyperbolic equilibrium of (5.6) and that h(t) is a

homoclinic orbit with h(0) ∈W s(p) tW u(p) in H−1(p) (which is equivalent to assuming Hypothesis 2.2(i)).

A differential system is reversible if it admits a reverser R:

Hypothesis 5.26 (Reversible systems). There exists a linear operator R : R2n → R2n such that R2 = 1,

dim Fix(R) = n, and Rf(u) = −f(Ru) for all u ∈ R2n.

59



If Hypothesis 5.26 is met, then v(t) := Ru(−t) is a solution of (5.6) whenever u(t) is. In particular, we have

RW s(p) = W u(p) for any equilibrium p. Furthermore, if u(0) ∈ Fix(R), then u(t) = Ru(−t) for all t ∈ R,

and we call u(t) reversible or symmetric:

Hypothesis 5.27 (Transversality). We assume that

(i) h(t) is a symmetric homoclinic orbit of (5.6) to the hyperbolic equilibrium p.

(ii) W s(p) t Fix(R) in R2n at u = h(0).

Homoclinic orbits in conservative or reversible systems are codimension-zero phenomena, that is, they persist

under structure-preserving C1-perturbations, and they are accompanied by periodic orbits.

Theorem 5.38 ([107, 414]). A homoclinic orbit h(t) to (5.6) that satisfies Hypotheses 5.24 and 5.25 (or

Hypotheses 5.26 and 5.27) is accompanied by a family qT (t) of unique 1-periodic orbits which is parameterized

by their period T for all T sufficiently large. For symmetric homoclinic orbits in reversible systems, the

accompanying periodic orbits are also symmetric. Furthermore, such homoclinic orbits persist under C1-

perturbations of the vector field f that preserve the conservative (reversible) structure.

We remark that the spectrum of the linearization of conservative or reversible systems about equilibria are

symmetric:

Lemma 5.1. We have

ν ∈ spec(fu(p))⇐⇒ −ν ∈ spec(fu(p)),

counted with multiplicity, if p is a hyperbolic equilibrium with Huu(p) invertible in a conservative system or

a symmetric equilibrium in a reversible system.

Proof. For reversible systems, we infer from Hypothesis 5.26 and Rp = p that

Rfu(p) = −fu(Rp)R = −fu(p)R

which shows that fu(p) and −fu(p) are similar. For conservative systems, Hypothesis 5.24 implies that

g(u) := Hu(u)∗f(u) ≡ 0. Thus, 0 = gu(p) = Huu(p)f(p) + Hu(p)∗fu(p) = Hu(p)∗fu(p) which gives

Hu(p) = 0 since p is hyperbolic. Computing the second derivative of g, we get

0 = guu(p)[ej , ek] = [Huu(p)ej ]
∗[fu(p)ek] + [Huu(p)ek]∗[fu(p)ej ]

= e∗jHuu(p)fu(p)ek + e∗kHuu(p)fu(p)ej

= e∗jHuu(p)fu(p)ek + e∗jfu(p)∗Huu(p)ek

= e∗j [Huu(p)fu(p) + fu(p)∗Huu(p)]ek

for all j, k which shows that Huu(p)fu(p) = −fu(p)∗Huu(p). Invertibility of Huu(p) then implies that fu(p)

and −fu(p)∗ are similar.

5.3.2 Bi-foci homoclinic orbits

For conservative and reversible systems, homoclinic orbits to hyperbolic bi-foci are accompanied by infinitely

many horseshoes. The result for conservative systems is as follows:

Theorem 5.39 ([106, 341]). Assume that Hypotheses 5.24 and 5.25 are met. We also assume that there

are precisely two leading stable eigenvalues νs = −α± iβ which are simple with β > 0, and that

lim
t→∞

e2αt‖h(t)‖ ‖h(−t)‖ 6= 0

(which is equivalent to assuming Hypothesis 2.4(i) and (iii)). There are then infinitely many horseshoes close

to the homoclinic orbit h(t). Furthermore, for each N ≥ 2 and each sequence (k1, . . . , kN ) ∈ NN , there are
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numbers k∗, T∗ ≥ 1 and infinitely many N -homoclinic orbits near h(t) which are parameterized by k ≥ k∗

with return times given by

Tj =
2π(kj + k)

β
+ T∗ + O(e−δk), k ≥ k∗, j = 1, . . . , N.

The N -pulses with these return times are unique.

For Hamiltonian systems, the transversality condition can be relaxed significantly; see [55]. An application

of the preceding theorem to fourth-order Hamiltonian systems can be found in [56]. Next, we state a similar

result for reversible systems.

Theorem 5.40 ([68, 169, 341]). Assume that Hypotheses 5.26, 5.27(i), and 2.2(i) are met. We also assume

that Hypothesis 2.4(i)-(ii) hold and that there are precisely two leading stable eigenvalues νs = −α± iβ which

are simple with β > 0. There are then infinitely many horseshoes close to the homoclinic orbit h(t), which

consist of symmetric orbits. Furthermore, for each N ≥ 2 and each sequence (k1, . . . , kdN/2e) ∈ NdN/2e, there

are numbers k∗, T∗ ≥ 1 and infinitely many symmetric N -homoclinic orbits near h(t) which are parameterized

by k ≥ k∗ with return times given by

Tj =
2π(kj + k)

β
+ T∗ + O(e−δk), k ≥ k∗, j = 1, . . . , dN/2e.

The N -pulses with these return times are unique.

5.3.3 Belyakov–Devaney transition

For reversible and conservative systems that have a homoclinic orbit, we consider the codimension-one

bifurcation where two real stable (and thus also the unstable) leading eigenvalues collide and become complex

as the parameter is varied. This bifurcation was called Belyakov–Devaney in [69]; see also §5.1.4. For

simplicity, we consider one-parameter families

u̇ = f(u, µ), (u, µ) ∈ R4 × R (5.9)

in R4 that are reversible or conservative. For µ = 0, we assume that h(t) is a homoclinic orbit to the

hyperbolic equilibrium p. Recall that the imaginary parts of the two stable eigenvalues are nonzero if the

discriminant ∆(µ) of fu(p, µ) restricted to the stable directions is negative.

Hypothesis 5.28 (Non-semisimple leading eigenvalues). At µ = 0, the real leading stable eigenvalue νs of

fu(p, 0) has geometric multiplicity one and algebraic multiplicity two with ∂µ∆(0) 6= 0, and we have

lim
t→∞

1

|t|
e|ν

st|‖h(t)‖ 6= 0, lim
t→−∞

1

|t|
e|ν

st|‖ψ(t)‖ 6= 0.

In the conservative case, we have the following result on the existence of N -homoclinic orbits.

Theorem 5.41. Assume that (5.9) satisfies Hypothesis 5.24 for all µ and Hypotheses 5.25 and 5.28 at

µ = 0. Without loss of generality, assume that ∂µ∆(0) = −1 so that the eigenvalue at p(µ) are complex for

µ > 0. For each N ≥ 2 and each sequence (k1, . . . , kN ) ∈ NN , there are numbers k∗, T∗ ≥ 1 and 0 < µN � 1

so that (5.9) has infinitely many N -homoclinic orbits near h(t) for each 0 < µ < µN which are parameterized

by k ≥ k∗ with return times given by

Tj =
2π(kj + k)

µ
+ T∗ + O(e−δk/ε), k ≥ k∗, j = 1, . . . , N.

The N -pulses with these return times are unique.

An analogous theorem is true for reversible systems (see Figure 5.19).
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Figure 5.19: In reversible or conservative systems, eigenvalues that collide on the real axis will typically

be non-semisimple and therefore become complex: the resulting Belyakov–Devaney transition, described in

Theorems 5.41 and 5.42, leads to N-homoclinic orbits for all N [left]. If an additional Z2-symmetry is

present, semisimple eigenvalues may be enforced that cannot leave the real axis: N-homoclinic orbits may

still bifurcate as shown in Theorem 5.43 [right].

Theorem 5.42. Assume that (5.9) satisfies Hypothesis 5.26 for all µ and Hypotheses 5.27(i), 2.2(i) and 5.28

at µ = 0. Without loss of generality, assume that ∂µ∆(0) = −1 so that the eigenvalues at p(µ) are complex

for µ > 0. For each N ≥ 2 and each sequence (k1, . . . , kdN/2e) ∈ NdN/2e, there are numbers k∗, T∗ ≥ 1 and

0 < µN � 1 so that (5.9) has infinitely many symmetric N -homoclinic orbits near h(t) for each 0 < µ < µN

which are parameterized by k ≥ k∗ with return times given by

Tj =
2π(kj + k)

β
+ T∗ + O(e−δk), k ≥ k∗, j = 1, . . . , dN/2e.

The N -pulses with these return times are unique.

Theorem 5.41 was proved by Champneys and Toland [78] for a special class of Hamiltonian systems, while

Theorem 5.42 was established by Peroueme (unpublished notes) for N = 2. Alternatively, these theorems

follow as in [341] from Lin’s method upon using [339, Lemma 1.5] or [429, Lemma 2.1] to write down

expansions in t of the quantities that appear in (3.13).

5.3.4 Homoclinic orbits to equilibria with semisimple spectrum

We consider reversible Hamiltonian systems of second-order ODEs of the form

ü1 = u1 + gu1
(u1, u2) (5.10)

ü2 = (1 + µ)u2 + gu2
(u1, u2),

where the Hamiltonian is given H(u1, u2) = u̇2
1 + u̇2

2 + u2
1 + u2

2 + g(u1, u2). Systems of the above type arise

in coupled nonlinear Schrödinger equations [429] and in the study of three-dimensional water waves [158].

The key feature in (5.10) is the semisimple eigenvalue of multiplicity two that is unfolded by the parameter

µ: in contrast to the situation studied in §5.3.3, the unfolded eigenvalues are always real. We assume the

following:

Hypothesis 5.29. We have g(0, 0) = gu(0, 0) = 0 and g(−u1, u2) = g(u1, u2) for all u = (u1, u2). Further-

more, we assume that there is a constant δ /∈ {0, 1} so that δgu1
(u1, δu1) = gu2

(u1, δu1) for all u1.

The preceding hypothesis implies that the first-order system associated with (5.10) is equivariant with respect

to the Z2-action κ : (u1, u2) 7→ (−u1, u2). It also implies that the subspace u2 = δu1 is invariant under (5.10)

when µ = 0.

Hypothesis 5.30. For µ = 0, equation (5.10) has a pair u = (±h1(t), h2(t)) of homoclinic orbits that lie

in the invariant subspace u2 = δu1 and satisfy Hypothesis 5.27.

We refer to [158, 429] and [10] for conditions on g(u1, u2) that guarantee the existence of transverse homoclinic

orbits. The next theorem shows that (5.10) admits N -homoclinic orbits near µ = 0.

Theorem 5.43 ([158, 429]). Assume that Hypotheses 5.29 and 5.30 are met for (5.10). For each N ≥ 2, there

is then an µN > 0 such that (5.10) has a unique pair of N -homoclinic orbits for each µ with 0 < |µ| < µN and

signµ = sign ln |δ|: the N loops in each of the N -homoclinic orbits follow alternately (h1, h2) and (−h1, h2).

No other N -homoclinic orbits exist near µ = 0.
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5.3.5 Reversible systems with SO(2)-symmetry

We consider the equation

u̇ = f(u, µ), (u, µ) ∈ R4 × R (5.11)

with f ∈ C2 and assume that this equation is reversible for all µ; see Hypothesis 5.26. In addition, we

assume (5.11) is equivariant with respect to an S1-action for all values of µ:

Hypothesis 5.31. There is a one-parameter group of orthogonal matrices Tρ : R4 → R4, defined for

ρ ∈ S1 := R/2πZ, such that Tρ1Tρ2 = Tρ1+ρ2 for all ρ1, ρ2 and dim Fix(Tρ) = {0} for ρ 6= 0. Furthermore,

we assume that f(Tρu, µ) = Tρf(u, µ) and RTρ = TρR for all (u, µ) and all ρ.

In particular, u = 0 is an equilibrium for all µ which we assume to be hyperbolic. The presence of the S1-

action precludes that homoclinic orbits are transversely constructed in the sense of Hypothesis 5.27(ii), since

any homoclinic orbit h(t) yields an S1-orbit Tρh(t) of distinct symmetric homoclinic orbits for ρ ∈ S1. Thus,

we assume that Hypothesis 5.27(i) is met with p = 0 when µ = 0 and need then to assume that the parameter

µ unfolds the S1-orbit of homoclinic orbits. To make this precise, note that we have W s(0, 0) = W u(0, 0)

due to the presence of the S1-action, which implies that the adjoint equation

w′ = −fu(h(t), 0, 0)∗w

has two bounded, linearly independent solutions ψ1(t) and ψ2(t), which can be chosen so that

ψ1(0) ∈ Fix(R∗), ψ2(0) ∈ Fix(−R∗).

Note that this implies R∗ψ1(t) = ψ1(−t) and R∗ψ2(t) = −ψ2(−t) for all t. We can now encode transversality

with respect to µ using a Melnikov integral.

Hypothesis 5.32. We assume that ∫ ∞
−∞
〈ψ2(t), fµ(h(t), 0)〉dt 6= 0.

We are interested in N -homoclinic orbits near the S1-orbit {Tρh(t) : ρ ∈ S1}: in particular, to each N -

homoclinic orbit near this group orbit, we can associate a sequence {ρk}k=1,...,N so that the kth loop of the

N -homoclinic orbit follows Tρkh(t). We can now state the following result:

Theorem 5.44 ([2, 211, 267, 268]). Assume that Hypotheses 5.26, 5.27(i), 5.31 and 5.32 are met. We also

assume that the eigenvalues of fu(0, 0) are ±α± iβ with α, β > 0 and that

lim
t→∞

〈ψ1(t), ψ2(t)〉
‖ψ1(t)‖ ‖ψ2(t)‖

6= 0.

For N = 2, 3, there are then sequences µj,±N with µj,±N → 0 as j → ∞ and µj,−N < 0 < µj,+N for all j so

that (5.11) has an S1-orbit of symmetric N -homoclinic orbits for µ = µk,±N with N = 2, 3. The 2-homoclinic

orbits associated with µj,±2 have ρ1ρ2 = (−1)j. Last, each of the N -homoclinic orbits constructed above for

N = 2, 3 satisfies the assumptions of this theorem.

Of interest in applications to travelling waves, for instance in the complex Ginzburg–Landau equation, is the

system

u̇ = f(u, µ, c), (u, µ, c) ∈ R4 × R× R

where we assume that the equation for c = 0 satisfies the hypotheses of Theorem 5.44, while the parameter

c breaks the reversibility and the homoclinic orbit, while preserving the S1-action. In this case, asymmetric

N -homoclinic orbits can also be found near (µ, c) = 0, and we refer to [267, 268] for results.
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5.3.6 Reversible and Hamiltonian flip bifurcations

The presence of reversers and conserved quantities has interesting implications for homoclinic flip bifurca-

tions. Since the dynamics near reversible homoclinic orbits is symmetric with respect to time reflection, they

undergo simultaneous orbit-flips in the stable and unstable direction, and the same is true for inclination-

flips. For conservative systems, ∇H(h(t)) is the unique nontrivial solution of the adjoint variational equation;

see (5.7). Since we have ∇H(h(t)) ≈ Huu(p)[h(t) − p] as |t| → ∞, we find that if a homoclinic orbit in a

conservative system undergoes an orbit-flip in the stable direction, say, it is at the same time in an inclination-

flip configuration. Lastly, in reversible conservative systems, orbit-flips and inclination-flips of symmetric

homoclinic orbits occur simultaneously and in both stable and unstable directions.

Throughout, we consider the equation

u̇ = f(u, µ), (u, µ) ∈ R2n × R (5.12)

with f ∈ C4 and assume that this equation is conservative or reversible for all µ.

Hypothesis 5.33. Equation (5.12) has p = 0 as equilibrium for µ = 0. Furthermore, the linearization

fu(0, 0) has simple real eigenvalues −νuu < −νu < 0 < νu < νuu, and the real part of all other eigenvalues

has modulus strictly larger than νuu.

We begin with the reversible non-conservative orbit-flip.

Theorem 5.45 ([345]). Assume that Hypothesis 5.26 is met for all µ, and that Hypotheses 2.2(i), 5.27(i)

and 5.33 hold at µ = 0. We assume that h(t) is in an orbit-flip configuration so that

vs(0) = 0,
d

dµ
vs(0) 6= 0, vs

∗(0) 6= 0, S := lim
t→∞

e2νuut〈ψ(−t), h(t)〉 6= 0, (5.13)

where we used the notation from (2.9) and (2.11)10. We set δ := − signS〈vs
∗(0),dvs/dµ(0)〉, then, for each

N > 1, there is a µN > 0 so that (5.12) has a unique N -homoclinic orbit for each |µ| < µN with signµ = δ.

Since conservative equations have (5.7) as the adjoint solution, they always violate assumption (5.13). To

our knowledge, the reversible non-conservative inclination-flip has not been studied so far. Next, we state

results on conservative non-reversible flip bifurcations.

Theorem 5.46 ([401]). Assume that Hypothesis 5.24 is met for all µ, and that Hypotheses 5.9, 5.25

and 5.33 hold at µ = 0. We assume that h(t) is in a flip configuration in the stable direction so that

vs(0) = 0,
d

dµ
vs(0) 6= 0, vu(0) 6= 0, (5.14)

see (2.9) and (2.11) for the notation11. Under these assumptions, there is then a δ ∈ {±1} such that (5.12)

has a unique N -homoclinic orbit for each N > 1 and each sufficiently small µ with signµ = δ, and no

N -homoclinic orbits for signµ = −δ.

The bifurcation direction in the preceding theorem is made more explicit in [401], which contains also a

complete characterization of the recurrent set and additional results about super-homoclinic orbits. Note

again that the assumption (5.14) precludes reversibility of (5.12) since symmetric homoclinic orbits have

vu(0) = vs(0). It remains to consider the case where (5.12) is reversible and conservative.

Theorem 5.47 ([338]). Assume that Hypotheses 5.24 and 5.26 are met for all µ, and that Hypotheses 5.25

and 5.33 hold at µ = 0. We assume that h(t) is in a flip configuration so that

vs(0) = 0,
d

dµ
vs(0) 6= 0, (5.15)

see (2.9) and (2.11) for the notation12. Under these assumptions, (5.12) has a unique N -homoclinic orbit

for each N > 1 and each sufficiently small nonzero µ.

10Reversibility and (5.13) imply that vu(0) = 0 and vu∗ (0) 6= 0
11Equations (5.7) and (5.14) imply then that vu∗ (0) = 0 and vs∗(0) 6= 0
12Reversibility, (5.7) and (5.14) together imply that vu(0) = vu∗ (0) = vs∗(0) = 0
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Thus, in contrast to the previous cases, N -homoclinic orbits bifurcate for either sign of the bifurcation

parameter µ.

5.3.7 Coexisting homoclinic orbits

As symmetric homoclinic orbits in reversible systems are typically persistent, one can find multiple coexisting

homoclinic orbits. On the other hand, the action of the reverser R forces nonsymmetric homoclinic orbits

(which typically occur in one-parameter families of ODEs) to a symmetric hyperbolic equilibrium to come

in pairs. The consequences of these two scenarios for the dynamics are reviewed in this section.

We consider homoclinic orbits to hyperbolic equilibria with unique real leading eigenvalues. Recall from

Theorem 5.38 that nondegenerate symmetric homoclinic orbits in reversible systems, as well as nondegen-

erate homoclinic orbits in conservative systems, are accompanied by a sheet of periodic solutions. For two

coexisting homoclinic orbits, one thus expects two sheets of periodic solutions. The sheets are normally

hyperbolic and, depending on the geometry, transverse intersections of the stable and unstable manifolds

of these sheets are feasible. This indeed occurs if both homoclinic orbits are in a bellows configuration,

i.e. approach the equilibrium along the same direction for positive as well as negative time (see §5.1.8).

For conservative systems, the transverse intersections of stable and unstable manifolds of single periodic

orbits occur inside levels of the first integral and thus give a suspended horseshoe in each level. In other

words, two homoclinic orbits in a bellows configuration for a conservative system give a one-parameter family

of suspended horseshoes. The following theorem, contained in [188, 404], can be obtained from standard

constructions of invariant laminations [177].

Theorem 5.48 ([188, 404]). Let u̇ = f(u) be a conservative, reversible ODE on R2n with first integral H
that satisfies Hypotheses 5.24 and 5.26. Suppose that it has a hyperbolic symmetric equilibrium p and two

symmetric homoclinic orbits h1, h2 to p: we assume that both h1 and h2 satisfy Hypotheses 2.1, 2.2(i), and 2.4

and that they are in the bellows configuration so that Hypothesis 5.12(iv) is met. In a small neighborhood of

h1 ∪ h2, there is then a one-parameter family of suspended horseshoes, parameterized by the energy H, for

values on one side of H(p).

If the system is reversible but not conservative, then the dynamical picture is more complicated. The following

two theorems summarize some of the features, and we refer to the cited papers for further properties such

as the existence of sheets of almost periodic orbits and of heterodimensional cycles.

Theorem 5.49 ([188, 192]). Let u̇ = f(u) be a reversible ODE on R2n that satisfies Hypothesis 5.26. Suppose

that it has a hyperbolic symmetric equilibrium p and two symmetric homoclinic orbits h1, h2 to p: we assume

that both h1 and h2 satisfy Hypotheses 2.1, 2.2(i), and 2.4 and that they are in the bellows configuration so

that Hypothesis 5.12(iv) is met. There is then an invariant normally hyperbolic lamination that contains the

nonwandering set near h1 ∪ h2. Furthermore, there are infinitely many sheets of symmetric periodic orbits,

and arbitrarily small perturbations of f in the C1 topology create saddle-node bifurcations of periodic orbits.

The following theorem covers the case of nonsymmetric homoclinic orbits in a one-parameter family of

reversible ODEs.

Theorem 5.50 ([188, 192]). Let u̇ = f(u, µ) be a one-parameter family of reversible ODEs on R2n with

reverser R as stated in Hypothesis 5.26. For µ = 0, we assume that this system has a hyperbolic symmetric

equilibrium p and two homoclinic orbits h1 and h2 with h1 = Rh2 to p that satisfy Hypotheses 2.1, 2.2, 2.4,

and 5.12(iv). For each µ close to zero, there are then infinitely many sheets of symmetric periodic orbits.

Furthermore, for µ on one side of µ = 0, there are infinitely many hyperbolic periodic orbits. Arbitrarily

small perturbations of f in the C1 topology create saddle-node bifurcations of periodic orbits.

65



Figure 5.20: The unfolding of degenerate reversible homoclinic orbits that satisfy Hypothesis 5.34(i) [top row]

and 5.34(ii) [bottom row] is shown: the phase diagram in the middle column is for µ = 0.

5.3.8 Degenerate homoclinic orbits

Recall that a homoclinic orbit to a hyperbolic equilibrium is called degenerate if the tangent spaces of the

stable and unstable manifolds along the homoclinic orbit have at least a plane in common. In generic

systems, degenerate homoclinic orbits are of codimension three; see §5.1.9. In reversible systems, symmetric

homoclinic orbits can be degenerate in two different ways which are of codimension one or codimension two.

Such degenerate symmetric homoclinic orbits hence occur generically in one-parameter or two-parameter

families. We review the situation near degenerate homoclinic orbits in reversible systems.

Thus, consider a family u̇ = f(u, µ), µ ∈ R or µ ∈ R2, of reversible ODEs on R2n with reverser R. We

may assume that Fix(−R) is perpendicular to Fix(R). Assume that h(t) is a symmetric homoclinic orbit

for µ = 0, then we can choose a cross section Σ ⊂ ḣ(0)⊥ at h(0) transverse to h, so that Σ is symmetric and

thus contains part of Fix(R). A tangency of W s(p, 0) and W u(p, 0) can occur in two different ways, which

we detail in the following hypothesis; see also Figure 5.20.

Hypothesis 5.34 (Generic Unfolding). Consider the following nondegeneracy and unfolding conditions:

(i) The manifold W u(p, 0) ∩ Σ has a quadratic tangency with Fix(R) at h(0), and W u(p, µ) ∩ Σ × R
intersects Fix(R)× R transversally at (h(0), 0) in the extended phase space Σ× R.

(ii) The manifold W u(p, 0) ∩ Σ has a cubic tangency with [Fix(R) ∩ Σ]⊥ at h(0), and W u(p, µ) ∩ Σ × R2

intersects [Fix(R) ∩ Σ]⊥ × R2 transversally at (h(0), 0) in the extended phase space Σ× R2.

Homoclinic orbits near the degenerate homoclinic orbit can be found by studying the geometry of W s(p, µ)

and W u(p, µ) in the vicinity of Fix(R)∩Σ. Since W s(p) = RW u(p), any intersection of W u(p) with Fix(R)

in Σ yields a homoclinic orbit. We begin by stating a result in R4 due to Fiedler and Turaev that covers the

case outlined in Hypothesis 5.34(i).

Hypothesis 5.35 (Transversality conditions). Assume that W s,lu(p, 0)∩Σ is transverse to both Fix(R) and

[Fix(R) ∩ Σ]⊥ in Σ at h(0).

Theorem 5.51 ([130]). Let u̇ = f(u, µ) be a one-parameter family of reversible ODEs on R4 with reverser

R as in Hypothesis 5.26. Assume that W s(p, 0) is tangent to Fix(R) at h(0) and that Hypotheses 2.3(ii),

2.4(ii),(iv) and Hypotheses 5.34(i) and 5.35 are all met. At µ = 0, two symmetric homoclinic orbits that

exist on one side of µ = 0 (say µ > 0) collide and disappear when µ < 0. Furthermore, one of the following

two alternatives holds:
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(i) For µ > 0, there is a single surface of symmetric periodic solutions joining the homoclinic orbits. No

periodic solutions exist for µ < 0.

(ii) For µ < 0, there is a surface of symmetric periodic solutions that breaks into two components each

bounded by a homoclinic orbit when µ > 0.

Interestingly, the surfaces of periodic solutions in the above theorem contain both hyperbolic and elliptic

periodic solutions with real and complex conjugate Floquet multipliers.

The next theorem is for degenerate homoclinic orbits that satisfy Hypothesis 5.34(ii): in this case, while the

stable and unstable manifolds are tangent to each other, the tangent space of their intersection does not lie

in Fix(R) but instead in Fix(−R). Since this bifurcation is of codimension two, we consider two-parameter

families u̇ = f(u, µ) of reversible ODEs.

Theorem 5.52 ([221]). Assume that the system u̇ = f(u, µ) with (u, µ) ∈ R2n × R2 is reversible with

reverser R as stated in Hypothesis 5.26. Suppose that W u(p, 0) intersects Fix(R) transversally at h(0) and

that Th(0)W
u(p, 0)∩Fix(R)⊥ is one-dimensional. If Hypothesis 5.34(ii) is met, then a symmetric homoclinic

orbit to p exists for all small µ, and there is a one-sided curve in the parameter plane that terminates at

µ = 0 along which the family has two nonsymmetric homoclinic orbits.

The coexisting homoclinic orbits that occur in the unfoldings described in the preceding two theorems come

with complicated recurrent dynamics even when the leading eigenvalues are real: see Theorems 5.49 and 5.50

in the previous section.

5.3.9 Saddle-center homoclinic orbits

We begin by considering Hamiltonian systems

u̇ = J∇H(u), u ∈ R4, (5.16)

where J is the skew-symmetric matrix

J =

(
0 −1

1 0

)
,

which satisfy the following hypothesis:

Hypothesis 5.36. We assume that u = 0 is a saddle-center equilibrium so that the linearization about 0

has two nonzero eigenvalues νc = ±iω on the imaginary axis in addition to nonzero stable and unstable

eigenvalues at ±νu. We also assume that h(t) is a homoclinic orbit to the origin.

We record that homoclinic orbits to saddle-centers in Hamiltonian systems in R4 are a codimension-two

phenomenon, which can be seen from the following observations. A cross section Σ is foliated by level sets

of H, and the center-stable manifold W cs(0) ∩ Σ is tangent, typically at a single point, to the level set of

H(0). The same is true for W cu(0) ∩ Σ, and a homoclinic orbit to the origin exists if these two tangencies

occur at the same point. Since the level sets of H intersected with Σ are two dimensional, two parameters

are needed to find homoclinic orbits to saddle-centers.

We first investigate the dynamics of (5.16) itself and discuss the unfolding under parameter variations

afterwards. In appropriate coordinates (q1, q2, p1, p2), the Hamiltonian H : R4 → R has the Taylor expansion

H(q1, q2, p1, p2) = −q1p1 +
ω

2
(q2

2 + p2
2) + O(‖(q, p)‖3) (5.17)

where we may assume that ω > 0 to make the energy increasing in the (q2, p2) coordinates. In particular,

H(0) = 0, and the origin has a two-dimensional center manifold which, by the Lyapunov-center theorem,

is filled with periodic orbits uE(t), which are parameterized by their positive energy E = H(uE(0)) for

0 < E < E0 for some E0 > 0.
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To introduce a crucial genericity assumption needed below, we choose two-dimensional transverse sections

Σ± to the homoclinic orbit in the energy level set H−1(0) that contain the points h(±`) for some sufficiently

large times ` ≥ 1. Using the center coordinates (q2, p2) as coordinates in both sections Σ±, it can be shown

that the symplectic Poincaré map Π along the homoclinic orbit from Σ− to Σ+ is, after an appropriate

adjustment of `, of the form

Π(q2, p2) =

(
a 0

0 1/a

)
× rotation matrix ×

(
q2

p2

)
+ O(‖(q2, p2)‖2). (5.18)

Thus, the linearization of the Poincaré map about the homoclinic orbit contains stretching and contracting

directions when a 6= 0, while it is a pure rotation for a = 0. We shall also need a second geometric condition

which we explain below after stating it:

Hypothesis 5.37. Consider the following geometric conditions:

(i) The quantity a in (5.18) is nonzero.

(ii) The homoclinic orbit h(t) approaches the origin along the positive p1 and q1 axes as t → ±∞ or else

along the negative p1 and q1 axes.

The second assumption above implies that there are solutions in the level set H−1(0) that pass from Σ+ to

Σ− near the equilibrium p. If it is not met, then such solutions cannot exist.

Theorem 5.53 ([230, 255, 275]). Assume that Hypotheses 5.36 and 5.37(i) are met, and that H ∈ C3,

then there is an E0 > 0 such that the stable and unstable manifolds of each periodic orbit uE(t) near the

origin intersect transversally near h(t) for 0 < E < E0. In particular, the level sets {u; H(u) = E} contain

horseshoes for all 0 < E � 1. This result is also valid in R2n provided the leading stable and unstable

eigenvalues are unique and simple (but possibly complex), W cs(0) t W u(0) and W cu(0) t W s(0) at h(0) in

H−1(0), and the homoclinic orbit is not in an orbit-flip configuration (see Hypothesis 2.4(ii) and (iv)).

Under additional assumptions, horseshoes can also be shown to exist in the zero-energy level set.

Theorem 5.54 ([156]). Assume that Hypotheses 5.36 and 5.37 are met, that H is analytic, and that

ω|a− 1/a|
νu

>
3

2
,

then the energy level sets {u; H(u) = E} contain horseshoes for all E with |E| sufficiently small.

See [157] for a study of Lyapunov stability of two saddle-center homoclinic orbits in Hamiltonian systems

with an additional Z2-equivariance.

Next, we unfold the situation considered above for reversible Hamiltonian systems, and refer to [229, 230] for

unfoldings in nonreversible Hamiltonian systems. In reversible Hamiltonian systems, symmetric homoclinic

orbits to a saddle-center are of codimension one, so let

u̇ = J∇H(u, µ), (u, µ) ∈ R4 × R (5.19)

be a one-parameter family of Hamiltonian systems that satisfies Hypothesis 5.36 at µ = 0. In this case, the

Poincaré map (5.18) depends on µ and has the expansion

Π(q2, p2, µ) = µπ0 +

(
a 0

0 1/a

)
× rotation matrix ×

(
q2

p2

)
+ O((|q2|+ |p2|+ |µ|)2) (5.20)

for some π0 ∈ R2. We assume that π0 6= 0 and that (5.19) is reversible:

Hypothesis 5.38. (i) The vector π0 in (5.20) is not zero.
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(ii) There is a linear map R : R4 → R4 with R2 = 1 and dim Fix(R) = 2 so that RJ = −JR and H is

invariant under R (that is, H(Ru, µ) = H(u, µ) for all (u, µ)). We assume that h(0) ∈ Fix(R).

We are interested in N -homoclinic orbits near h(t) for parameter values µ near zero and therefore define

ΛN := {µ; µ ≈ 0 and (5.19) has an N -homoclinic orbit near h(t)}, Λ := ∪N≥1ΛN .

Theorem 5.55 ([156, 275]). Assume that H is analytic in (u, µ) and that (5.19) satisfies Hypothesis 5.38

for all µ and Hypotheses 5.36 and 5.37 at µ = 0.

(i) If µ is in Λk, then both (µ− ε, µ) and (µ, µ+ ε) contain infinitely many points of Λkm for any m ≥ 1

and any ε > 0.

(ii) The set Λ is countable, and each point in Λ is an accumulation point of Λ.

In particular, for each N ≥ 2, there are sequences µ±N (k) → 0 as k → ∞ with µ−N (k) < 0 < µ+
N (k) so that

(5.19) has an N -homoclinic orbit for µ = µ±N (k).

Lastly, we consider reversible systems

u̇ = f(u, µ), (u, µ) ∈ R4 × R (5.21)

with homoclinic orbits to a saddle-center equilibrium that are not Hamiltonian.

Theorem 5.56 ([72]). Assume that (5.21) satisfies Hypothesis 5.26 for all µ and Hypothesis 5.36 at µ = 0.

We also assume that h(t) is symmetric and that the vector field f(u, µ) can be conjugated near the origin to

a finite-order normal form by a C1-diffeomorphism that commutes with R. Lastly, we assume that

d

dµ
hu(µ)|µ=0 /∈ Thu(0)W

cs(0) (5.22)

where hu(µ) is the unique intersection near h(t) of the one-dimensional global unstable manifold W u(0) with

the section Σ+. Under these assumptions, 2-homoclinic orbits can exist either for µ > 0 or else for µ < 0.

Moreover, there is a sequence µk → 0 as k →∞ so that (5.21) has 2-homoclinic orbits near h(t) for µ = µk

(and the µk have the same sign independently of k).

This theorem shows that reversible Hamiltonian and reversible non-Hamiltonian systems with homoclinic

orbits to saddle-center equilibria behave in a fundamentally different way. It is worthwhile to remark that

it is the assumption (5.22) that discriminates between the two cases: indeed, (5.17) shows that the level set

H−1(0) is tangent to W cs(0) in Hamiltonian system; see [72, Lemma 2]. We refer to [72] for a comprehensive

discussion and unfolding results in the situation where the Hamiltonian structure is broken while reversibility

is retained; see also [219, 427] for results on homoclinic orbits to saddle-centers in reversible systems and to

[361] for infinite-dimensional conservative systems.

5.3.10 Homoclinic orbits to nonhyperbolic equilibria

In §5.1.10, we discussed homoclinic orbits to equilibria which themselves undergo a local bifurcation. Obvi-

ously, analogous bifurcations are possible in ODEs that preserving a structure such as reversibility. Recall

that homoclinic orbits to saddle-center equilibria were discussed in §5.3.9. Thus, we report here on reversible

transcritical and pitchfork bifurcations.

We first discuss bifurcations from a symmetric homoclinic orbit to an equilibrium that undergoes a reversible

transcritical bifurcation. Rather than stating detailed bifurcation results, for which we refer to [419], we focus

on the geometric arguments that lead to these results. Thus, consider a two-parameter family of reversible

ODEs on R4 that satisfies Hypothesis 5.26. Suppose that the origin has a double zero eigenvalue and two
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real eigenvalues νs < 0 and νu = −νs > 0 when µ = 0. Suppose that the unfolding is generic, so that the

vector field on the two-dimensional center manifold W c(0, µ) is given by

ẋ = y,

ẏ = µ1x+ x2.

For µ1 6= 0, the flow on the center manifold has a saddle and a focus equilibrium, and there exists a small

symmetric homoclinic orbit to the saddle equilibrium that encloses the focus equilibrium. At µ = 0, we

now also assume the existence of a large symmetric homoclinic orbit h to the origin. Take a symmetric

three-dimensional cross section Σ transverse to h(0) for µ = 0, then the fixed point space Fix(R) intersects

Σ in a two-dimensional plane. The geometry of single-round homoclinic and heteroclinic orbits can now

be understood from the following observations. First, we know that there are three-dimensional center-

stable and center-unstable manifolds W cs(0, µ) and W cu(0, µ), which are fibered by the stable and unstable

manifolds of orbits in the center manifolds. This yields copies of the dynamics on the center manifold in the

two-dimensional intersections W cs(0, µ)∩Σ and W cu(0, µ)∩Σ. Under the assumption that W cs(0, 0)∩Σ is

transverse to W cu(0, 0) ∩ Σ at h(0), these sets are also transverse to Fix(R) and intersect it along curves.

The curves W cs(0, µ) ∩ Σ ∩ Fix(R) provide symmetric homoclinic orbits to recurrent orbits in the center

manifold.

Bifurcations in systems with an additional Z2 symmetry, where the equilibrium undergoes a reversible pitch-

fork bifurcation, are discussed in [417–419]. Depending on the group action and on normal-form coefficients,

the bifurcating two equilibria may be connected by a heteroclinic cycle or be accompanied by symmetric or

nonsymmetric figure-eight homoclinic orbits to the persisting equilibrium.

5.3.11 Heteroclinic cycles and snaking

We consider the equation

u̇ = f(u, µ), (u, µ) ∈ R4 × R (5.23)

with f ∈ C2 and assume that this equation is reversible for all µ, see Hypothesis 5.26, and that it has two

symmetric hyperbolic equilibria, u = 0 and u = p 6= 0, for all µ near zero.

Hypothesis 5.39. For µ = 0, equation (5.23) has a heteroclinic orbit h1(t) that connects u = 0 to u = p

and is transversely constructed so that Hypothesis 2.2 is met.

If Hypothesis 5.39 is met, then h2(t) := Rh1(t) is a transversely constructed heteroclinic orbit between u = p

and u = 0. Our goal is to describe homoclinic orbits h(t) that connect u = 0 to itself and are obtained by

gluing the heteroclinic orbits h1(t) and h2(t) together for µ close to zero.

Theorem 5.57 ([223]). Assume that Hypotheses 5.26 and 5.39 are met and that the eigenvalues of fu(p, 0)

are ±α ± iβ with α, β > 0. Then there are constants a 6= 0, b ∈ R, and L∗ > 0 such that (5.23) has a

homoclinic orbit h(t) to u = 0 for µ close to zero that spends time L ≥ L∗ near u = p if and only if

µ = a sin(βL+ b)e−αL + o(e−αL), L ≥ L∗.

In particular, there are infinitely many homoclinic orbits to u = 0 when µ = 0; all but finitely many of them

disappear for µ 6= 0. In the same setting, the existence of multi-pulses was recently considered in [224] under

the assumption that u = 0 is also a bi-focus.

We now discuss the situation where the equilibrium p is replaced by a periodic orbit q(t). It it easier to

formulate the hypotheses in the conservative context:

Hypothesis 5.40. Equation (5.23) is conservative with an energy H(u, µ) that is invariant under the re-

verser R for all µ. The origin u = 0 is a hyperbolic equilibrium of (5.23), and we may assume that H(0, µ) = 0

for all µ. Furthermore, for each µ, (5.23) has a symmetric periodic orbit q(t, µ) with q(0, µ) ∈ Fix(R) and

H(q(t, µ), µ) = 0 that depends smoothly on µ and has two positive Floquet multipliers e±α(µ) with α(µ) > 0

(the other two Floquet multipliers are necessarily equal to one).
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Next, we define

Γ := {(ϕ, µ) ∈ S1 × R; W u(0, µ) ∩W ss(q(ϕ, µ), µ) 6= ∅}

which encodes and captures all heteroclinic orbits that connect u = 0 to q(t, µ). We assume that Γ is a

graph:

Hypothesis 5.41. The set Γ is the graph of a smooth function z : S1 → R, and we assume that z′(ϕ) = 0

implies z′′(ϕ) 6= 0.

The next result shows that the heteroclinic orbits described in Hypothesis 5.41 and their symmetric coun-

terparts can be glued together to construct homoclinic orbits that connect u = 0 to itself and spend a long

time near the periodic orbits q(t, µ).

Theorem 5.58 ([29, 79, 95, 232, 424]). Assume that Hypotheses 5.40-5.41 and an additional technical

condition (which can be found in [29]) are met, then there are constants L∗ � 1 and η > 0 so that the

following is true: for each L > L∗, (5.23) has a symmetric homoclinic orbit h(t) that spends time L near

q(t, µ) if and only if µ = z(ϕ0 + L) + O
(
e−ηL

)
for an appropriate ϕ0 ∈ {0, π}, and h(0) lies near q(ϕ0, µ)

in Fix(R).

Geometric versions of the preceding theorem were first given in [95, 424]. The theorem as stated was proved

in [29], and the results established there are, in fact, valid for higher-dimensional systems that are only

reversible and not necessarily conservative. In [79, 232], the conclusions of Theorem 5.58 were shown to hold

near degenerate Turing instabilities of the Swift–Hohenberg equation.

We remark that [58–60] gave numerical evidence for the existence of asymmetric homoclinic orbits of (5.23)

whose existence was subsequently proved in [29] under assumptions similar to those stated above. Near

degenerate Turing bifurcations, these results follow again from [79, 232]. We refer to the recent review [220]

for a list of open problems.

5.4 Homoclinic orbits arising through local bifurcations

Homoclinic orbits can emerge in local bifurcations, and the study of local bifurcations therefore provides one

way to obtain rigorous existence results for homoclinic orbits. We focus here on homoclinic bifurcations near

nilpotent singularities, near Hopf/saddle-node bifurcations in generic and reversible systems, and at 02+iω

resonances in reversible systems. Other local bifurcations that lead to homoclinic orbits (in particular, 1:3

and 1:4 resonances, and codimension-three Hopf/Bogdanov–Takens singularities) will not be discussed here.

Recall that two differential equations on Rn are said to be topologically equivalent if there exists a homeo-

morphism h that maps orbits of the first system to orbits of the second equation, while preserving the

direction of time. For two parameter-dependent families of ODEs on Rn, one can seek homeomorphisms

Φ(·, µ) of Rn and φ on the parameter space that provide an equivalence v = Φ(u, µ) between u̇ = f(u, µ)

and v̇ = g(v, φ(µ)). One speaks of a (fiber C0, Cr)-equivalence if Φ(·, µ) is C0 for each µ and φ is Cr. One

speaks of a (C0, Cr)-equivalence if (u, µ) 7→ Φ(u, µ) is C0 and φ is Cr. In local bifurcation theory, one uses,

of course, local versions of these notions.

5.4.1 Nilpotent singularities

A nilpotent singularity is an equilibrium of an ODE u̇ = f(u) for which the linearization about the equilibrium

has multiple eigenvalues at zero and no other eigenvalues on the imaginary axis. The algebraic and geometric

multiplicities of the zero eigenvalue distinguish different nilpotent singularities. By restricting to a center

manifold, we may assume that the eigenvalues of the linearization about the equilibrium are all zero. The

most elementary example of a nilpotent singularity is then the Bogdanov–Takens bifurcation in R2 where the

linearization is a nontrivial 2×2 Jordan block. It is well known that small homoclinic orbits with real leading
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Figure 5.21: The unfolding of a Bogdanov–Takens bifurcation (labelled TB) is illustrated.

eigenvalues at the equilibrium occur in the unfolding of the Bogdanov–Takens singularity, and we will recall

this statement and review homoclinic dynamics in unfoldings of higher-codimension nilpotent singularities

that may lead to other related dynamics such as small Lorenz-like attractors.

First, we review the Bogdanov–Takens bifurcation where the eigenvalue at zero has algebraic multiplicity two

and geometric multiplicity one. This bifurcation was studied by Bogdanov [42] and Takens [388] (reproduced

in [393]); a streamlined analysis can be found in [332]. The result is that a generic two-parameter family that

unfolds a geometrically simple but algebraically double eigenvalue at the origin is (fiber C0, C∞)-equivalent

to

ẋ = y,

ẏ = x2 + µ1 + y(µ2 ± x).

It was shown in [119] that this equivalence is, in fact, a (C0, C∞)-equivalence.

Theorem 5.59. The two-parameter unfolding of a nilpotent Bogdanov–Takens singularity at µ = 0 con-

tains one-sided curves of Hopf bifurcations and of homoclinic loops that branch from a curve of saddle-node

bifurcations at µ = 0; see Figure 5.21.

Codimension-three bifurcations of nilpotent equilibria in the plane have been studied by Dumortier, So-

tomayor and Roussarie [121, 123]: intricate bifurcation diagrams, including homoclinic and heteroclinic

bifurcations, arise, and we refer to these references for details.

Ibáñez and Rodŕıguez [199] considered nilpotent singularities with linearization 0 1 0

0 0 1

0 0 0

 (5.24)

in R3 and proved that saddle-focus homoclinic orbits occur in the three-parameter unfolding, confirming a

conjecture in [18]. This singularity appears in differential equations for coupled Brusselators [115]. In passing,

we note that saddle-focus homoclinic orbits occur also near nilpotent singularities of higher codimension; see

[198, 386]. Returning to (5.24), a generic unfolding is given by the normal form

ẋ = y,

ẏ = z, (5.25)

ż = µ1 + µ2y + µ3z + x2 + bxy + cxz + dy2 + eyz + O(‖(x, y, z, µ)‖3),

which depends on the parameters µ = (µ1, µ2, µ3) ∈ R3.

Theorem 5.60 ([199]). For any given neighborhood U of 0 ∈ R3, there are parameter values µ arbitrary

close to zero for which (5.25) has a wild saddle-focus homoclinic orbit in U .

The proof involves a singular rescaling that reduces the problem to a study of perturbations of

ẋ = y,

ẏ = z,

ż = c2 − 1

2
x2 − y
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for c = 15
√

22/193. This system has a T-point heteroclinic cycle between the equilibria p+ = (
√

2c, 0, 0) and

p− = (−
√

2c, 0, 0): the two-dimensional stable manifold of p− and the two-dimensional unstable manifold of

p+ intersect along an isolated heteroclinic orbit, while the codimension-two heteroclinic connection between

p− and p+ lies in the x-axis.

Next, we consider nilpotent singularities with rank-one linearization 0 1 0

0 0 0

0 0 0

 .

The associated linear system is equivariant with respect to the Z2-action (x, y, z) 7→ (−x,−y, z). Within the

class of Z2-equivariant perturbations, one finds miniature Lorenz-like attractors.

Theorem 5.61 ([118]). Consider a family of ODEs on R3 with parameter µ ∈ R5 whose third-order trun-

cation is given by

ẋ = y,

ẏ = µ1x− x3 + µ3y + µ4xz + µ5yz,

ż = µ2z + x2,

then there exist arbitrarily small values of µ for which the differential equation has a small Lorenz-like

attractor near the origin.

To prove this result, Dumortier, Kokubu, and Oka showed that the unfolding of the singularity contains

inclination-flip homoclinic orbits and that the eigenvalues at the equilibrium are such that Rychlik’s theorem

in [334] (see Theorem 5.81) applies which gives the existence of Lorenz-like attractors. In [364], further

information on the connection between Z2-equivariant unfoldings of the nilpotent singularity with a triple

zero eigenvalue of rank one and the Shimizu–Morioka system

ẋ = y,

ẏ = x− µ̄2y − xz,

ż = −µ̄3z + x2

is obtained: Consider Z2-equivariant systems with third-order truncation

ẋ = y,

ẏ = µ1x− µ2y + axz − a1x(x2 + y2)− a2yz + a3y(x2 + y2),

ż = −µ3 + z2 + b(x2 + y2)

for ab > 0 and µ3 > 0, and let τ2 = µ + a
√
µ3. The time scaling t → s/τ , the phase-space scaling

x → x
√
τ3/(ab), y → yτ

√
τ3/(ab), z → √µ3 + zτ2/a, and the parameter scaling µ2 = µ̄2τ , µ3 = (µ̄3τ/2)2

then produces the Shimizu–Morioka system in the limit τ → 0. We refer to [362] for a bifurcation study of

the Shimizu–Morioka system.

5.4.2 Hopf/saddle-node bifurcations in generic and reversible systems

In the previous section, we reviewed local bifurcations that give rise to small homoclinic orbits; in particular,

wild saddle-focus homoclinic orbits appear in the unfolding of a codimension-three nilpotent singularity. We

emphasize that the unfoldings considered so far were determined by finite jets.

Wild saddle-focus homoclinic orbits can also arise in Hopf/saddle-node bifurcations, which can occur in two-

parameter families of ODEs. In this case, the normal form is invariant under rotations, and the perturbations

that create homoclinic orbits are flat and therefore not captured by finite jets. It is an open problem to
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determine whether saddle-focus homoclinic orbits bifurcate for analytic two-parameter families that do not

possess rotational symmetry.

To set the scene, let u̇ = f(u, µ) be a two-parameter family of ODEs on R3. For µ = 0, we assume that p is

an equilibrium whose linearization has a simple eigenvalue at zero and a pair of purely imaginary eigenvalues.

Under certain nondegeneracy conditions, the normal form near p is given by

ẋ = ν1 + x2 + s|z|2 + O(‖(x, z, z̄)‖4),

ż = (ν2 + iω)z + (a+ ib)xz + x2z + O(‖(x, z, z̄)‖4),

where (x, z) ∈ R×C, and ν = (ν1, ν2) ∈ R2 is the unfolding parameter; see, for instance, [242]. In the above

expression, we have s = ±1, while ω, a, and b are smooth functions of ν with ω(0) 6= 0 and a(0) 6= 0. The

truncated normal form, in which only terms of order at most three are retained, is equivariant under rotations

of z. The following proposition, proved in [52, 389], shows that a normal form exists that is rotationally

symmetric except possibly for flat terms.

Proposition 5.2. There exists a smooth coordinate change that transforms the above system into a differ-

ential equation of the form

ẋ = ν1 + x2 + s|z|2 +R1(x, |z|, ν) + S1(x, z, z̄, ν)

ż = (ν2 + iω)z + (a+ ib)xz + x2z + zR2(x, |z|, ν) + S2(x, z, z̄, ν),

where R1(x, |z|, ν) and zR2(x, |z|, ν) are O(‖(x, z)‖4), and Sj are smooth functions that are flat in (x, z, z̄, ν)

at the origin in R× C× R2.

Writing the z-equation of the truncated system in polar coordinates (ρ, φ), we can ignore the equation for

the angle φ due to rotational symmetry and obtain the equation{
ẋ = ν1 + x2 + sρ2,

ρ̇ = ν2ρ+ axρ+ ρx2
(5.26)

for the amplitudes (x, ρ). Depending on the signs of s and a, different unfoldings need to be considered.

Here, we shall discuss only the case s = 1, a < 0, where a heteroclinic cycle occurs in the unfolding of the

amplitude system. Thus, we impose the condition:

Hypothesis 5.42 (Coefficient condition). Assume that s = 1 and a < 0 in (5.26).

An analysis of the amplitude equation gives the following picture; see also Figure 5.22. For ν1 < 0, there are

two hyperbolic equilibria p+ = (
√
−ν1, 0, 0) and p− = (−

√
−ν1, 0, 0). Inside the region bounded by the Hopf

bifurcation curve, the equilibrium p+ has two complex conjugate stable eigenvalues, while p− has two complex

conjugate unstable eigenvalues. Along a curve Γ that emerges from the origin in the parameter plane, we find

an invariant sphere of heteroclinic connections from p− to p+, while the x-axis contains a heteroclinic orbit

from p+ to p−. Generic perturbations from the truncated normal form will create transverse intersections

of W u(p−) and W s(p+) [160]. Moreover, the x-axis may no longer be invariant, so that homoclinic orbits to

p− and to p+ could exist. A detailed analysis yields the existence of parameter values for which saddle-focus

homoclinic orbits exists in generic families.

Theorem 5.62 ([53]). A generic two-parameter family on R3 that unfolds a Hopf/saddle-node equilibrium

at ν = 0 and satisfies Hypothesis 5.42 has saddle-focus homoclinic orbits for parameter values arbitrarily

close to ν = 0. These parameter values are contained in a wedge-shaped region whose width is flat in ν

as ν → 0 and that is tangent at ν = 0 to the curve Γ for which a sphere of heteroclinic connections from

p+ to p− exists in the truncated normal form. Furthermore, the saddle-focus homoclinic orbits are wild for

−2 < a < 0.
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Figure 5.22: The upper-left panel contains the bifurcation diagram of the truncated amplitude system in

the (ν1, ν2)-parameter plane: the curve labelled ’het’ corresponds to the existence of an invariant sphere in

phase space, shown in the upper-right panel, whose surface is filled with heteroclinic connections from p−

to p+, while the axis connecting these equilibria contains the indicated heteroclinic orbit from p+ back to

p + −. Numerical computations for the non-truncated equation show entwined wiggling curves of saddle-

focus homoclinic orbits of which the lower-left panel gives an impression. The center and right panels in

the bottom row indicate possible geometries of the invariant manifolds of p− and p+ at parameter values

where saddle-focus homoclinic orbits appear: homoclinic orbits to p− can appear for parameter values where

transverse intersections of W u(p−) and W s(p+) exist [right] but also for parameter values for which an

invariant region exists [center].

Gaspard [141] noted the possible existence of a flow-invariant region for parameter values for which saddle-

focus homoclinic orbits to p− occur (the invariant region is bounded by the stable manifold of p+), which

implies the existence of an attractor in this region; see Figure 5.22.

Much subsequent work has focused on the question whether specific families, which consist of the truncated

normal form with small analytic terms added to it that break the rotational symmetry, would unavoidably

contain saddle-focus homoclinic bifurcations. When adding small third-order symmetry-breaking terms to

the normal form, one finds two curves of saddle-focus homoclinic orbits (to p+ and to p−) that cross infinitely

often on parameter space; see [74, 141, 214, 215] for earlier results, [27] for recent progress on this topic, and

Figure 5.22 for an illustration of the bifurcation diagram.

Next, we discuss Hopf/saddle-node bifurcations in reversible systems in R3, where the fixed-point space of

the reverser is a line of equilibria. In contrast to the situation for generic systems, where this bifurcation

has codimension two (see above), Hopf/saddle-node bifurcation have codimension one in reversible systems.

We remark that the conservative case is also of codimension one and refer to [53, 98] for results on small

homoclinic orbits that emerge in this setting.

The reversible Hopf/saddle-node bifurcation occurs in the Michelson system [274] given by

ẋ = y

ẏ = z

ż = c2 − 1

2
x2 − y,

which is reversible with respect to the involutionR(x, y, z) = (−x, y,−z). Michelson’s system is equivalent to

the third-order system
...
x + ẋ+ 1

2x
2 = c2, which is the integrated travelling-wave equation of the Kuramoto–

Sivashinsky equation ut+uux+uxx+uxxxx = 0. Analogous to the preceding analysis of generic Hopf/saddle-

node bifurcation, the truncated normal form for reversible systems is invariant under rotations and reduces
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Figure 5.23: The eigenvalues of an equilibrium in the unfolding of a 1:1 resonance [left] and a 02+iω resonance

are shown; see §5.4.3 and §5.4.4.

therefore to a planar amplitude system of the form

ẋ = ν + x2 + ρ2,

ρ̇ = aρx

with unfolding parameter ν, which replaces the amplitude equation (5.26) for the generic Hopf/saddle-node

bifurcation. Lamb, Teixeira and Webster showed in [249] that reversible perturbations of this normal form

lead to the existence of infinitely many N -homoclinic orbits, where the number number of rounds is defined

with respect to a rescaled normal form.

Theorem 5.63 ([249]). A generic one-parameter family on R3 that is reversible with respect to a reverser

R with one-dimensional fixed-point space and that unfolds a Hopf/saddle-node equilibrium admits infinitely

many hyperbolic basic sets, infinitely many parameter values that correspond to saddle-focus N -homoclinic

orbits, and infinitely many parameter values that correspond to symmetric N -heteroclinic cycles.

In contrast to the situation for dissipative and conservative Hopf/saddle-node bifurcations, where heteroclinic

cycles are of codimension two, symmetric heteroclinic cycles are codimension one in the reversible context. It

was further established in [249] that the Michelson system has infinitely many bifurcations to N -homoclinic

orbits and to symmetric N -heteroclinic cycles when varying the parameter c. For additional information on

global bifurcations in the Michelson system, we refer to [117, 250, 421, 422].

5.4.3 1:1 resonances in reversible systems

We now turn to local bifurcations in reversible systems and begin with the 1:1 resonance: this bifurcation

occurs at equilibria where two purely imaginary pairs of eigenvalues collide on the imaginary axis and turn in

to a quadruplet of complex conjugate eigenvalues as a one-dimensional parameter is varied; see Figure 5.23.

At the bifurcation point, the equilibrium therefore has a pair of two non-semisimple eigenvalues at ±iω for

some ω > 0. Restricting to a center manifold, we may therefore consider a one-parameter family u̇ = f(u, µ)

on R4 that is reversible for all µ. The generic unfolding of the 1:1 resonance was studied by Iooss and

Peroueme [207], and we report first on their results.

Thus, suppose that we are given a reversible family of ODEs on R4 so that the origin is an equilibrium for

all µ. For µ = 0, we assume that iω is a non-semisimple eigenvalue of multiplicity two for some ω > 0 (and

so is then −iω). The normal form of a reversible family near the origin is, to any finite order, given by

Ȧ = iωA+B + iAP

(
|A|2, i

2
(AB̄ − ĀB);µ

)
(5.27)

Ḃ = iωB + +AQ

(
|A|2, i

2
(AB̄ − ĀB);µ

)
+ iAP

(
|A|2, i

2
(AB̄ − ĀB);µ

)
,

where (A,B) ∈ C2 and the reverser acts as (A,B) 7→ (Ā,−B̄). The functions P (u, v;µ) and Q(u, v;µ) are

real polynomials in (u, v) that vanish at (u, v, µ) = 0; we write

Q(u, v;µ) = q1µ+ q2u+ q3v + O((|u|+ |v|+ |µ|)2). (5.28)

Note that the eigenvalues at the origin have nonzero real part for all µ with q1µ > 0.
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Theorem 5.64 ([207]). If the normal-form coefficients of a one-parameter family of reversible ODEs with

a 1:1 resonance at µ = 0 satisfy q1 6= 0 and q2 < 0, then the system has a pair of small symmetric

homoclinic orbits to the origin for each µ close to zero for which q1µ > 0, and these homoclinic orbits satisfy

Hypothesis 5.27.

If q2 > 0, then a pair of homoclinic orbits to periodic orbits bifurcates, and we refer to [207] for the precise

results.

To prove the preceding theorem, Iooss and Peroueme first observed that the normal form (5.27) is integrable:

two conserved quantities are given by v = i
2 (AB̄ − ĀB) and |B|2 −

∫ |A|2
0

Q(u, v;µ) du. The normal form is

furthermore equivariant under the S1-action (A,B) 7→ eiφ(A,B). If q2 < 0, an S1-orbit of small homoclinic

orbits to the origin bifurcates into q1µ > 0, and Iooss and Peroueme showed that the symmetric homoclinic

orbits survive the perturbations by nonflat terms that are neglected in the normal form.

We remark that Bolle and Buffoni [43] constructed algebraically decaying homoclinic orbits for Hamiltonian

systems that are exactly at a 1:1 resonance, provided a certain normal-form coefficient has the correct sign.

Next, we consider the situation where q2 changes sign as a second parameter is varied. This case is important

in applications to snaking that we discussed in §5.3.11. When q2 = 0 and the normal-form coefficient q4

corresponding to the term q4u
2 in the expansion of Q in (5.28) satisfies q4 6= 0, then the normal form can

exhibit homoclinic orbits to the origin and heteroclinic cycles that connect the origin to small periodic orbits

and back: this scenario was first studied by Woods and Champneys [424]. The persistence of these solutions

for the full system involves asymptotics beyond all orders and has not yet been proved rigorously: we refer

to recent work by Chapman and Kozyreff [79, 232], who provided a detailed analysis of this bifurcation using

formal methods.

5.4.4 02+iω resonances in reversible systems

In this section, we discuss 02+iω resonances in reversible systems: these bifurcations occur at equilibria

that have eigenvalues 0, 0, and ±iω with ω > 0; see Figure 5.23. We outline the results contained in

the monograph [259] by Lombardi who studied homoclinic loops near 02+iω resonances in both four- and

infinite-dimensional state space. Consider a one-parameter family u̇ = f(u, µ) of reversible ODEs on R4 with

reverser R that satisfies the following hypothesis.

Hypothesis 5.43 (02+iω resonance). At µ = 0, the origin is an equilibrium so that fu(0, 0) has eigenvalues

0, 0,±iω for some ω > 0 with (generalized) eigenvectors v0, v1, v± that satisfy

fu(0, 0)v0 = 0, fu(0, 0)v1 = v0, fu(0, 0)v± = ±iωv±,

and the reverser R maps v0 to v0.

We remark that the case where Rv0 = −v0 is referred to as the 02−iω resonance. In the following, we write

v∗0 , v
∗
1 , v
∗
± for a basis that is dual to v0, v1, v±.

Hypothesis 5.44 (Generic unfolding of 02+iω resonances). Consider the following conditions on the quadratic

terms and the dependence on the parameter:

(i) c1 = 〈v∗1 , fuµ(0, 0)v0〉 6= 0;

(ii) c2 = 〈v∗1 , fuu(0, 0)[v0, v0]〉 6= 0.

Without loss of generality, we may assume that c1 > 0 is positive. Under these assumptions, the equilibrium

persists for µ near zero, and the double zero eigenvalues of the linearization about it move from the imaginary

axis for µ < 0 onto the real axis for µ > 0. Thus, for µ > 0, the linearization about the origin has a fast

oscillatory part corresponding to the purely imaginary eigenvalues at ±iω and a slow hyperbolic part with real
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eigenvalues ±
√
µ[c1 + O(µ)]. The question then is whether small-amplitude homoclinic orbits can bifurcate

for µ > 0, and the following result shows that this will not happen for generic families due to exponentially

small terms beyond all orders.

Theorem 5.65 ([259]). Assume that the reversible one-parameter family u̇ = f(u, µ) is analytic in (u, µ) ∈
R4 × R and satisfies the Hypotheses 5.43 and 5.44. For all c1µ > 0 close to zero, the system then admits

a sheet of small periodic solutions qκ,µ that are parameterized by their amplitude κ, and there are positive

constants κ1, κ2, σ > 0 so that the ODE has a pair of symmetric homoclinic orbits to the periodic solution

qκ,µ for each κ with

κ1c1µe−ω[π−σ(c1µ)3/10]/
√
c1µ < κ < κ2c1µ.

Furthermore, there is a constant κ0 ≥ 0, which generically is positive, so that the ODE has no single-round

symmetric homoclinic orbits to qκ,µ for

0 ≤ κ < κ0c1µe−π/[ω
√
c1µ].

The qualifier ’single-round’ in the preceding theorem is with respect to a homoclinic orbit to the origin in

a rescaled normal-form family of ODEs that we now describe. Using a singular rescaling and the rescaled

parameter ν =
√
c1µ, the one-parameter family can be transformed into the normal form

ẋ

ẏ

v̇

ẇ

 =


y

x− 3
2x

2 − c(v2 + w2)

−w(ω/ν + xν + bνx)

v(ω/ν + xν + bνx)

+R(x, y, v, w, ν) (5.29)

with higher-order terms R(x, y, v, w, ν); see [259]. The truncated normal form is integrable and has a sheet

of small symmetric periodic orbits qκ,ν for ν > 0 that is parameterized by the amplitude κ. Moreover, the

truncated normal form admits a symmetric homoclinic orbit h(t) to the origin, and the stable and unstable

manifolds of each periodic orbit qκ,ν coincide to form a two-parameter family of homoclinic orbits between

symmetric periodic orbits. Among the circle of homoclinic orbits to a periodic orbit, two intersect the fixed

point space of R and therefore correspond to symmetric homoclinic orbits. Integrability holds not only for

the normal form truncated at second-order terms but, in fact, for the normal forms truncated at any order.

The geometry becomes clearer in a symmetric three-dimensional cross section Σ placed at h(0). The two-

dimensional stable and unstable manifolds W s(qκ,ν) and W u(qκ,ν) of each individual periodic orbit qκ,ν are

identical and, for κ > 0, their intersection with Σ are circles that intersect the plane Fix(R) transversally.

The one-dimensional stable and unstable manifolds of the origin, on the other hand, each intersect Σ in a

point, and these intersection points coincide and lie in Fix(R) for all truncated normal forms. We remark

that the truncated system also admits elliptic periodic orbits and invariant tori.

The central issue is to study the effect of perturbations of the truncated normal form which will perturb

the intersections W s(qκ,ν) ∩ Σ and W u(qκ,ν) ∩ Σ. In particular, we expect that the homoclinic orbit to

the origin breaks as there is no reason why the zero-dimensional intersections of the stable and unstable

manifolds of the origin with Σ should coincide. The precise statement for analytic families that unfold the

local bifurcation forms the content of the preceding theorem; we remark that this result does not address the

possible existence of multi-round homoclinic orbits. The proof of the theorem involves the complexification

of the system and the time variable which leads to a complex differential equation in C4 in a complex time

variable.

We remark that the geometry sketched above suggests that an additional parameter could be used to con-

trol the existence of symmetric homoclinic orbits to the origin: these homoclinic orbits should then occur

along curves in the parameter plane. This idea is expounded in [71], which also contains careful numerical

experiments.
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The occurrence of exponentially small phenomena is illustrated in the following toy model which is taken

from [259]. Consider the differential equation

ẋ = 1− x2,

ż =
iωz

ε
+ iερ(1− x2)

on R× C, which respects the reverser R(x, z) = (−x, z̄); note that Fix(R) is the real axis in {0} × C. This

system has two families of periodic solutions given by q±k (t) = (±1, keiωt/ε). For ρ = 0, there is a sheet

of heteroclinic solutions, given by hk,φ(t) = (tanh t, keiωt/ε+iφ), which connect q−k to q+
k . The connections

corresponding to φ = 0, 1 are symmetric. Thus, this toy problem has features reminiscent of those of the

normal form of the 02+iω resonance, where the parameter ρ can now be thought of as breaking the truncated

normal form. To determine the fate of the stable manifold W s(1, 0) of the equilibrium (x, z) = (1, 0) upon

varying ρ, we note that it is given explicitly by

u(t) =

(
tanh t,−iρε

∫ ∞
t

eiω(t−s)/ε

cosh2 s
ds

)
.

For t→ −∞, u(t) converges to the periodic solution q−K(ε) with

K(ε) = ρε

∫ ∞
−∞

e−iωs/ε

cosh2 s
ds =

πωρ

sinh(ωπ/2ε)
,

which is asymptotic to 2πωρe−ωπ/2ε as ε → 0. Thus, the splitting distance between stable and unstable

manifolds is exponentially small in ε. For more general problems such as the 02+iω resonance, oscillatory

integrals of the form
∫∞
−∞ eiωs/εg(u(s)) ds with a small parameter ε for a solution u(t) and an analytic

function g need to be studied. We refer to [205, 206, 258] for further details and results in this direction.

5.5 Equivariant systems

In flows that are equivariant under the action of a symmetry group, global bifurcations can differ substantially

from those in generic flows. The restriction to equivariant perturbations often reduces the codimension

of bifurcations and may also constrain the dynamics found in an unfolding. One striking example are

heteroclinic cycles which can appear robustly in equivariant systems.

Homoclinic and heteroclinic bifurcation theory for equivariant systems is a broad area in itself. To stay within

the central theme of this survey, we limit ourselves to flows that are equivariant under the linear action of

a finite group and discuss existence, stability, and bifurcations of heteroclinic cycles within this framework.

Thus, continuous group actions will not be considered, and we will also not discuss how homoclinic and

heteroclinic dynamics can emerge in local bifurcations. For general background on equivariant flows, we refer

the reader to the books [153] and [87, 132, 133]; the latter references also contain sections on homoclinic and

heteroclinic bifurcation theory.

To set the scene, let Γ be a finite group with a linear action x 7→ γx on Rn. We may assume that Γ ⊂ O(n), so

that its action leaves the inner product 〈·, ·〉 invariant. We may also assume that the action of Γ is faithful13.

By definition, a differential equation

u̇ = f(u), u ∈ Rn (5.30)

is Γ-equivariant if the following statement holds:

u(t) is a solution to (5.30) if, and only if, γu(t) is a solution to (5.30) for each γ ∈ Γ.

Equivalently, Γ-equivariance means that

f(γu) = γf(u), ∀γ ∈ Γ, ∀u ∈ Rn. (5.31)

13That is, for each γ ∈ Γ, there is an x ∈ Rn with γx 6= x
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For each u ∈ Rn, we write Γu = {γu ∈ Rn; γ ∈ Γ} for its group orbit and Γu = {γ ∈ Γ; γu = u} for its

isotropy group. If Σ ⊂ Γ is a subgroup of Γ, we write Fix(Σ) = {u ∈ Rn; γu = u ∀γ ∈ Σ} for the fixed-point

space of Σ: note that (5.31) implies that Fix(Σ) is flow invariant. For any set {γi} of elements in Γ, we

denote by 〈{γi}〉 the group generated by {γi}: this is the smallest subgroup of Γ that contains the set {γi}.
Finally, we recall that an isotypic component is a subspace of Rn which is given as the sum of isomorphic

irreducible subspaces of the action of Γ. The associated isotypic decomposition of Rn is the decomposition

of Rn into isotypic components; see, for instance, [153].

To avoid any possible confusion between group and flow orbits, we shall use the terms ’trajectory’ and

’solution’ to refer to flow orbits and reserve, in this section, the term ’orbit’ for group orbits.

5.5.1 Robust heteroclinic cycles

Equivariant flows may admit heteroclinic cycles between equilibria that persist under equivariant perturba-

tions: this is because symmetry may force subspaces to be invariant, and a heteroclinic solution can now

connect an equilibrium within an invariant subspace to a second equilibrium that is stable within this in-

variant subspace. We note that robust heteroclinic cycles can also occur in flows that are not equivariant

but have invariant subspaces for all parameter values: this is a common feature of models in population dy-

namics, where the coordinate subspaces {u ∈ Rn; ui = 0} are typically invariant (if species i is not present

at t = 0, its population ui(t) vanishes for all t); see [179]. An extensive review of robust heteroclinic cycles

is [236], which also includes a historical overview and descriptions of relevant experiments.

We ought to mention that the terminology of homoclinic and heteroclinic dynamics in equivariant systems

varies widely in the literature: for consistency, we shall adhere to the notation introduced earlier in this

paper, though this may not always agree with the prevalent terminology used in the literature.

Let u̇ = f(u) be a Γ-equivariant differential equation. A collection of different hyperbolic equilibria p1, . . . , p`

and heteroclinic solutions hj(t) from pj to pj+1 is called a heteroclinic cycle14. Since the pointwise isotropy

groups Σj = Γhj(t) along each heteroclinic solution do not depend on t, we refer to it as the isotropy group

of hj . Define the fixed point spaces Sj = Fix(Σj) and recall that these spaces are flow invariant.

Hypothesis 5.45 (Robustness). We distinguish the following properties:

(i) W u(pj) ∩ Sj and W s(pj+1) ∩ Sj intersect transversally in Sj.

(ii) dimW u(pj) = 1, and pj+1 is a sink in Sj.

(iii) Each fixed point space Sj is two-dimensional.

If Hypothesis 5.45(i) is met, then the manifold of heteroclinic connections from pj to pj+1 is robust under

Γ-equivariant perturbations, since the subspace Sj will continue to be invariant. Let indSj (pj) denote the

Morse index dim[W u(pj)∩Sj ] of pj inside Sj , then the dimension of the manifold of heteroclinic connections

in Sj is equal to indSj (pj)− indSj (pj+1). If this dimension is one, then the space Sj contains a robust isolated

heteroclinic trajectory that connects pj to pj+1. We call the resulting heteroclinic cycle a robust heteroclinic

cycle. Note that Hypothesis 5.45(ii), which is often found in the literature, is stronger: heteroclinic cycles

that satisfy this assumption are often attracting, and we refer to §5.5.2 for stability results in this direction.

If Hypothesis 5.45(ii)-(iii) is met, we call the heteroclinic cycle a simple heteroclinic cycle. Any connected

component in the image of a heteroclinic cycle under the group Γ is called a heteroclinic network . A

homoclinic cycle is a polycycle15 that is equal to the group orbit 〈γ〉h of a heteroclinic trajectory h(t) that

connects the equilibrium p to γp for some γ ∈ Γ. The element γ ∈ Γ is called the twist of the homoclinic cycle:

the twist is well defined modulo the isotropy group of p. A homoclinic network is a connected component of

the group orbit ΓH of a homoclinic cycle H = 〈γ〉h. We may now also define robust and simple homoclinic

cycles in an analogous fashion. The following lemma characterizes homoclinic cycles:

14Throughout this section, all indices are taken modulo `
15Recall that any connected invariant set that is the union of finitely many heteroclinic cycles is called a polycycle
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Figure 5.24: Shown are the four different robust homoclinic cycles in R3: the symmetry groups are Γ = Z2nZ2
2

in the left two panels pictures and Γ = Z3nZ3
2 in the right two panels. For each Γ, the two different homoclinic

cycles correspond to the same homoclinic network.

Lemma 5.2 ([187]). Let h be a heteroclinic trajectory that connects the equilibria p and γp for some γ ∈ Γ,

then Γh is connected, and thus a homoclinic cycle, if and only if Γ = 〈γ,Γp〉.

Proof. Note that H1 = 〈γ〉h is trivially connected. Define inductively Hi+1 = ∪q∈HiΓqHi, where the union

is over equilibria in Hi, and note that each Hi is connected. Since Γ is finite, this process terminates and

yields the homoclinic cycle H. For Abelian groups Γ, the isotropy groups Γp are identical for all equilibria

p in H, and thus H = H2. For general Γ, the preceding construction shows that the isotropy groups of

equilibria in H are conjugate to Γp via elements of 〈γ,Γp〉. Therefore, Γ = 〈γ,Γp〉.

We will now discuss the classification of simple homoclinic cycles in R3 and R4, the only dimensions for

which a complete classification is known, and refer the reader to [382] for details and an historical overview.

Homoclinic cycles for which indSj (pj)− indSj (pj+1) = 0 will be discussed in §5.5.3: such cycles are typically

of codimension one and will break under equivariant perturbations.

In R3, two different homoclinic networks exist that arise from four different homoclinic cycles:

Theorem 5.66. Figure 5.24 and the table

` Γ

2 Z2 n Z2
2

4 Z2 n Z2
2

3 Z3 n Z3
2

6 Z3 n Z3
2

contain the classification of simple homoclinic cycles in R3: listed are the number ` of heteroclinic trajectories

and the group Γ for which the cycle exists.

Figure 5.24 illustrates the four different homoclinic cycles in R3. Consider first the left two panels: the

associated symmetry group is Γ = Z2 n Z2
2, where Z2 and Z2

2 are generated by (x, y, z) 7→ (−x, z, y) and

(x, y, z) 7→ (x,±y,±z), respectively. Two equilibria lie on the x-axis, and the homoclinic cycle consists of two

heteroclinic trajectories when γ(x, y, z) = (−x, z, y) and of four trajectories when γ(x, y, z) = (−x, z,−y).

Both cycles generate the same homoclinic network. Such homoclinic networks were studied, for instance, in

[16, 316]. An explicit system which contains these homoclinic networks is given by [346]

ẋ = νx+ z2 − y2 − x3 + βx(y2 + z2),

ẏ = y(λ+ ay2 + bz2 + cx2) + yx,

ż = z(λ+ az2 + by2 + cx2)− zx

where ν > 0 is small and λ ∈ (λH(ν),
√
ν+ cν) for some λH(ν) = − 1

2ν+ O(ν); the homoclinic cycle connects

the equilibria (±
√
ν, 0, 0).
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Next, consider the homoclinic cycles in the two rightmost panels in Figure 5.24, which again generate the

same homoclinic network. The associated symmetry group is Γ = Z3nZ3
2 where Z3 and Z3

2 are generated by

(x, y, z) 7→ (y, z, x) and (x, y, z) 7→ (±x,±y,±z), respectively. An example of a Z3 n Z3
2-equivariant system

that contains this network is given by

ẋ = x(λ+ ax2 + by2 + cz2),

ẏ = y(λ+ ay2 + bz2 + cx2),

ż = z(λ+ az2 + bx2 + cy2)

with a < 0 and λ > 0: this ODE has a robust homoclinic cycle if, and only if, b < a < c or c < a < b [161].

To see how the robust homoclinic cycle arises, assume that b < a < c. The equilibria in the cycle are given by

the group orbit of p1 = (
√
−λ/a, 0, 0): it is easy to check that (±

√
−λ/a, 0, 0) are sinks and (0, 0,±

√
−λ/a)

are saddles in the (x, z)-plane. Since b < 0, the region {0 < z <
√
−λ/a} is forward invariant, and it is

also easy to verify that the unstable manifold of (0, 0,
√
−λ/a) is bounded. This implies that W u(p1) goes

to (±
√
−λ/a, 0, 0). It follows from the results presented in §5.5.2 that the corresponding homoclinic cycle

is asymptotically stable when 2a > b+ c.

We will now sketch the arguments that lead to Theorem 5.66 and refer to [382] for further details. Let γ ∈ Γ

be the twist so that pj+1 = γpj . Choose a basis {e1, e2, e3} of R3 so that16 S1 = 〈e1, e2〉, S2 = γS1 = 〈e2, e3〉
and S3 = γS2 = 〈cos(t)e2 + sin(t)e3, e1〉. The angle t between consecutive equilibria pj and pj+1 is called

the connecting angle. The matrix A that represents γ in the basis {ej} is

A =

 0 0 1

α sin(t) cos(t) 0

−α cos(t) sin(t) 0


with detA = α and α = 1 or α = −1. We claim that the connecting angle is either t = π/2 or t = π. Indeed,

let R = diag(1, 1,−1) be the matrix that fixes S1, then ARA−1 = diag(−1, 1, 1) is a matrix that represents

an element of Γ, and we conclude that the matrices 0 0 1

sin(t) cos(t) 0

− cos(t) sin(t) 0

 ,

 0 0 1

− sin(t) cos(t) 0

cos(t) sin(t) 0


both represent elements of Γ. The real parts of the complex eigenvalues of these matrices satisfy

1

2
cos(t)− 1

2
= cos(πa),

1

2
cos(t) +

1

2
= cos(πb)

for some rational numbers a, b. Hence sin((a + b)π/2) sin((a − b)π/2) = 1/2, which is only possible when

a+ b = a− b = 1/2, so that t = π/2 or t = π. Finally, if t = π, the homoclinic cycle contains two equilibria.

On the other hand, for t = π/2, it contains either three or six equilibria depending on the sign of detA. This

concludes the sketch of the arguments for Theorem 5.66.

Breaking the Z2-symmetry in Γ = Z2nZ2
2 creates a heteroclinic cycle with two equilibria from the homoclinic

cycle. Likewise, breaking the Z3-symmetry in Γ = Z3 n Z3
2 creates a heteroclinic cycle with three or six

equilibria near the homoclinic cycle. Hawker and Ashwin [172], see also [173], classify heteroclinic cycles in

Z3-equivariant ODEs in R3; see Figure 5.25 for simple heteroclinic cycles in Z3nZ3
2- and Z2nZ2

2-equivariant

ODEs in R3 (clearly, many more heteroclinic cycles exist).

Simple homoclinic cycles in R4 come in three types. Type B homoclinic cycles are contained in a three-

dimensional invariant subspace.

Hypothesis 5.46 (Type A,B,C homoclinic cycles). We distinguish the following configurations for simple

heteroclinic trajectories in R4:

16We use the notation 〈{uj}〉 for the vector space spanned by the vectors uj in R3
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Figure 5.25: Left panel: a heteroclinic cycle in a Z3 n Z3
2-equivariant ODE in R3, where the action of the

symmetry is defined by reflections in the coordinate planes and a permutation of the coordinates. Right panel:

a heteroclinic cycle in a Z2 n Z2
2-equivariant ODE in R3, where the action of the symmetry is defined by

reflection in two coordinate planes and a permutation of two coordinates.

(i) Type A: Sj + Sj+1 is not a fixed point space.

(ii) Type B: Sj + Sj+1 is a fixed point space that contains the homoclinic cycle.

(iii) Type C: Sj + Sj+1 is a fixed point space that does not contains the homoclinic cycle.

Simple homoclinic cycles of type B and C in R4 were investigated in [239], while Sottocornola [380–382]

studied type A simple homoclinic cycles in R4. To state the classification result, we need the definition of

structure angles that was introduced in [380–382]. Recall that the twist is the group element γ ∈ Γ for which

pj+1 = γpj . As for homoclinic cycles in R3, we choose a basis {e1, e2, e3, e4} in which S1, S2 = γS1, and

S3 = γS2 are given by

S1 = 〈e1, e2〉, S2 = 〈e2, e3〉, S3 = 〈cos(t)e2 + sin(t)e3, cos(s)e1 + sin(s)e4〉

for structure angles s, t, which can be thought of as the tilt and connecting angles of the hyperplane. The

matrix that represents the twist γ is given by

Aαt,s =


0 0 cos(s) − sin(s)

α sin(t) cos(t) 0 0

−α cos(t) sin(t) 0 0

0 0 sin(s) cos(s)

 , (5.32)

where det(A) = α with α ∈ {±}. The symmetry group Γ contains the matrix R1 = diag(1, 1,−1,−1) since

the elements of Σ1 are the identity on S1 and −1 on 〈e3〉. For type B and C homoclinic cycles, Γ also

contains R2 = diag(1, 1, 1,−1).

Theorem 5.67 ([239, 380–382]). The classification of simple homoclinic cycles in R4 is in Table 1 where we

list the homoclinic network, the generators of Γ, and the number of heteroclinic trajectories of the homoclinic

cycle 〈γ〉h for possible twists γ, where h is a heteroclinic trajectory in S = Fix(R1) that connects equilibria

in γ−1S ∩ S to S ∩ γS.

We briefly outline the strategy for proving the preceding theorem. First, the simple homoclinic cycles we

found in R3 occur in R4 as robust type A or type B homoclinic cycles, depending on whether R3 is a fixed

point space or not. We note that they can also occur as homoclinic cycles that are not simple. To see

this, consider the action of Z2 n Z2
2 on R4 given by the linear maps (x, y, z, u) 7→ (−x, z, y,−u), which

generates Z2, and (x, y, z, u) 7→ (x,±y,±z, u), which generate Z2
2. The subspaces S1 = {y = 0} and S2 =

{z = 0} are three-dimensional fixed-point spaces. Suppose that a differential equation with two hyperbolic
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type homoclinic

network

generators twist cycle

length

A with Γ ⊂ SO(4) HA,+2 A1
π,0, R1 A1

π,0 2

R1A
1
π,0 4

HA,+6 A1
π
2 ,0
, R1 A1

π
2 ,0

3

R1A
1
π
2 ,0

6

HA,+8 A1
π
2 ,
π
2
, R1 A1

π
2 ,
π
2
, R1A

1
π
2 ,
π
2

8

HA,+48 A1
π
4 ,
π
4
, R1 A1

π
4 ,
π
4

12

R1A
1
π
4 ,
π
4

24

A with Γ 6⊂ SO(4) HA,−2k2 , k ≥ 1 A−1
π
k ,
π
k
, R1 A−1

π
k ,
π
k

2k

R1A
−1
π
k ,
π
k

4

B HB2 A1
π,0, R1, R2 A1

π,0, R2A
1
π,0 2

R1A
1
π,0, R1R2A

1
π,0 4

HB6 A1
π
2 ,0
, R1, R2 A1

π
2 ,0
, R2A

1
π
2 ,0

3

R1A
1
π
2 ,0
, R1R2A

1
π
2 ,0

6

C HC8 A1
π
2 ,
π
2
, R1, R2 A1

π
2 ,
π
2
, R1A

1
π
2 ,
π
2

8

R2A
1
π
2 ,
π
2
, R1R2A

1
π
2 ,
π
2

4

Table 1: The classification of simple homoclinic cycles in R4 is shown: the columns contain the type

(including, for type A cycles, a sign that indicates whether or not Γ ⊂ SO(4) and the number of equilibria it

contains), the generators of Γ, and the number of heteroclinic trajectories of the homoclinic cycle 〈γ〉h.

equilibria p1 = (x∗, 0, 0, u∗) and p2 = (−x∗, 0, 0,−u∗) is given and assume further that the equilibria have

different indices when restricting the flow to the fixed-point space S1 so that dim[W u(p1) ∩ S1] = 2 and

dim[W u(p2) ∩ S1] = 1. If the manifolds W u(p1) ∩ S1 and W u(p2) ∩ S1 have a transverse intersection, its Γ

image is a robust homoclinic network. The other three-dimensional simple homoclinic cycles can similarly

provide models of robust homoclinic cycles in R4 that are not simple. Next, consider any other simple

homoclinic cycle of Type A in R4. If Γ ⊂ SO(4), Sottocornola proved that the structure angles are multiples

of π/4, and a direct analysis leads to the different simple homoclinic cycles listed in Table 1, where the

homoclinic cycles of length 12 and 24 give the same homoclinic network. The structure angles for the

remaining type A cycles that have Γ 6⊂ SO(4) turn out to satisfy either t = s or t + s = π. In the second

case, there is an infinite family of simple homoclinic cycles, all with 4 equilibria, that are parameterized by

t = π/k with k > 1. In the first case, there is likewise an infinite family of simple homoclinic cycles with

l = 2k equilibria for t = π/k with k > 1: each cycle gives the same network. For the existence of ODEs that

admit these homoclinic cycles, Sottocornola relies on a result by Ashwin and Montaldi [26].

In passing, we note that the classification of simple homoclinic cycles of type B and C in R4 extends to a

classification of those simple heteroclinic cycles that intersect each connected component of [Sj−1 ∩Sj ] \ {0}
in at most one point [239]. It turns out that there are four simple heteroclinic networks of type B and three

of type C which satisfy the preceding condition: in [239], these networks are denoted by B+
1 , B

+
2 , B

−
1 , B

−
3 and

C−1 , C
−
2 , C

−
4 , where the subscript m is the number of different group orbits of equilibria (m = 1 corresponds

to homoclinic networks) and the superscript ± indicates whether or not −id ∈ Γ (the minus sign means that

−id ∈ Γ).

Finally, we briefly discuss the construction of homoclinic and heteroclinic cycles in Rn with symmetry groups

Γ = Zn n Zn2 : details can be found in [132], and the reference [108] contains further information on their

appearance in local bifurcations. A very useful tool is the invariant-sphere theorem which we explain first.

Consider differential equations on Rn of the form

u̇ = λu+Q(u), (5.33)
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where λ > 0 and Q is a homogeneous polynomial of degree d that satisfies 〈Q(x), x〉 < 0 for all x ∈ Sn−1:

we refer to such maps Q as contracting. We can now split the vector field into its spherical and radial vector

components so that

ẋ = rd−1 (Q(x)− 〈Q(x), x〉) ,

ṙ = λr + rd〈Q(x), x〉.

The following invariant-sphere theorem due to Field shows that the radial part is, in a certain sense, irrelevant.

Theorem 5.68 ([131]). The differential equation (5.33) admits a unique invariant topological manifold Sn−1

which is homeomorphic to the (n − 1)-sphere and attracts every point except the origin. The flow of (5.33)

restricted to Sn−1 is topologically equivalent to the phase differential equation x′ = Q(x)−〈Q(x), x〉 on Sn−1.

To illustrate its use, consider the family
ẋ1 = x1 + ax1r

2 + bx1x
2
2 + cx1x

2
3 + dx1x

2
4,

ẋ2 = x2 + ax2r
2 + bx2x

2
3 + cx2x

2
4 + dx2x

2
1,

ẋ3 = x3 + ax3r
2 + bx3x

2
4 + cx3x

2
1 + dx3x

2
2,

ẋ4 = x4 + ax4r
2 + bx4x

2
1 + cx4x

2
2 + dx4x

2
3,

(5.34)

of Z4 n Z4
2-equivariant ODEs, where r2 = x2

1 + x2
2 + x2

3 + x2
4. The action of the symmetry group Z4 n Z4

2

is generated by (x1, x2, x3, x4) 7→ (−x1, x2, x3, x4) and (x1, x2, x3, x4) 7→ (x4, x1, x2, x3). Theorem 5.68 can

now be applied to yield an attracting invariant topological sphere provided a < 0, 2a+ c < 0, 4a+ b+d < 0,

and 4a + b + c + d < 0 [425]. An analysis of the flow inside the invariant planes shows that a homoclinic

cycle of type C exists when a < 0 and bd < 0.

More generally, if the differential equation (5.33) is Zn n Zn2 -equivariant for an appropriate contracting ho-

mogeneous polynomial Q, then the invariant-sphere theorem shows that it suffices to consider the associated

phase differential equation for x ∈ Sn−1. Define Λn−1 = {(x1, . . . , xn) ∈ Sn−1; x1, . . . , xn ≥ 0}, then Λn−1 is

left invariant by the action of Zn ⊂ Γ, we have Sn−1 = Zn2 Λn−1, and γ int(Λn−1)∩Λn−1 = ∅ for each γ ∈ Zn2
with γ 6= id. A homoclinic network is thus given by a heteroclinic cycle for the phase differential equation

on Λn−1. A given homoclinic cycle is called a k-face homoclinic cycle if the heteroclinic trajectories for the

phase differential equation are on the k-faces of the simplex Λn−1.

We end this section with a brief discussion of more general heteroclinic cycles that contain infinitely many

connecting trajectories. For instance, the definition of heteroclinic cycle given in [237], in which unstable

manifolds of groups orbits of equilibria connect to stable manifolds of group orbits of equilibria, allows for

manifolds of heteroclinic trajectories. Ashwin and Field [25] gave a definition of a heteroclinic network

which, in the context of trajectories that connect hyperbolic equilibria, consists of the following ingredients.

A compact invariant set Σ which consists of finitely many hyperbolic equilibria p1, . . . , pk and trajectories

connecting them is a heteroclinic network if

(i) Σ is indecomposable: for every ε > 0 and T > 0, any two points in Σ can be connected by an

(ε, T )-pseudo trajectory17;

(ii) Σ has finite depth: if Λi+1 denotes the recurrent set of the flow restricted to Λi, then there is a finite

sequence Λ0 = Σ, . . . ,ΛN = {p1, . . . , pk} (the minimal such N is called the depth of Σ; note the

similarity with the Birkhoff center, which is defined analogously for nonwandering sets).

Ashwin and Field further generalize the notion of heteroclinic network to sets that contain periodic solutions

or other recurrent invariant sets instead of equilibria. The sometimes intricate dynamics near invariant

polycycles and heteroclinic networks is discussed in various papers: see, or instance, [7, 133] for heteroclinic

networks in R4 that contain equilibria with complex conjugate eigenvalues and produce suspended horseshoes.

Some other key references are [8, 97, 314].

17An (ε, T )-pseudo trajectory from x to y is a finite set of points x0 = x, . . . , xn = y and times ti > T with ‖xi+1−ϕti (xi)‖ < ε
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5.5.2 Asymptotic stability of heteroclinic networks

Consider a robust heteroclinic cycle for which Hypothesis 5.45(ii) is met: the ω-limit point pj+1 of the

heteroclinic trajectory hj is an attracting equilibrium inside the fixed-point space Sj = Fix(Σj) of the

isotropy group Σj of the heteroclinic orbit hj(t). The geometry given by the subspaces Sj allows us to divide

the spectrum of fu(pj) into four disjoint sets:

(i) Radial eigenvalues, whose generalized eigenspaces lie in V rj = Sj−1 ∩ Sj ;

(ii) Contracting eigenvalues, whose generalized eigenspaces lie in V cj = Sj−1 	 V rj ;

(iii) Transverse eigenvalues, whose generalized eigenspaces lie in V tj = (Sj−1 + Sj)
⊥;

(iv) Expanding eigenvalues, whose generalized eigenspaces lie in V ej = Sj 	 V rj .

We remark that not all eigenvalues in V ej need to have positive real part. Define

rj = min{Reλ; λ is an eigenvalue of fu(pj)|V rj },

cj = min{Reλ; λ is an eigenvalue of fu(pj)|V cj },

tj = max{Reλ; λ is an eigenvalue of fu(pj)|V tj },

ej = max{Reλ; λ is an eigenvalue of fu(pj)|V ej }.

If Sj−1 + Sj = Rn, that is, when there are no transverse directions, we set tj = −∞. Note that the

eigenspaces corresponding to cj , tj , ej+1, and tj+1 all lie in S⊥j . The following condition is the analogue of

type A, which we defined in Hypothesis 5.46(i) for systems in R4, in higher-dimensional systems.

Hypothesis 5.47. The eigenspaces corresponding to cj , tj , ej+1, tj+1 lie in the same Σj isotypic component.

Theorem 5.69 ([237]). Suppose that Γ is a finite group that acts linearly, and assume that u̇ = f(u) is

a Γ-equivariant equation on Rn that admits a heteroclinic network H which satisfies Hypothesis 5.45(ii).

Assume, furthermore, that there are C1 linearizing coordinates near the equilibria in H. Write Cj = |cj/ej |
and Tj = |tj/ej |, then the network H is asymptotically stable if

∏k
i=1 min{Cj , 1−Tj} > 1. If Hypothesis 5.47

is met, this spectral condition is generically necessary and sufficient for asymptotic stability.

Thus, radial eigenvalues play no role in the spectral conditions for asymptotic stability. Note that for

homoclinic networks, where the spectral bounds are independent of j, the stability condition becomes −c > e.

We shall now work out the asymptotic stability conditions for some simple heteroclinic networks of type B

and C in R4.

Theorem 5.70 ([239]). Let u̇ = f(u) be a Γ-equivariant equation on R4 that admits a simple heteroclinic

network of type B or C. Assume that the heteroclinic network intersects each connected component of V rj \{0}
in at most one point. Generically, the conditions listed in Table 2 are then necessary and sufficient for

asymptotic stability.

We now attempt to make the conditions in Table 2 more transparent. The proof of Theorem 5.70 makes

use of transition matrices[134, 179], which we now introduce. Near each equilibrium pj , take coordinates

x = (xr, xc, xt, xe) corresponding to the splitting R4 = V rj ⊕ V cj ⊕ V tj ⊕ V ej . Pick the incoming and outgoing

cross sections18 Σin
j = {x; |xt|, |xe| ≤ 1, |xr|2 + |xc|2 = 1} and Σout

j = {x; |xr|, |xc|, |xt| ≤ 1, xe = 1}, define

transition maps Πloc
j : Σin

j → Σout
j and Πfar

j : Σout
j → Σin

j , and write Πj = Πfar
j ◦ Πloc

j . The first-return map

is therefore given by the composition Πk ◦ · · · ◦Π1. In linearizing coordinates near pj , we have

Πloc
j (xr, xc, xt, xe) = (xr(xe)−rj/ej , xc(xe)−cj/ej , xt(xe)−tj/ej , 1).

18We abuse notation by denoting these section by Σin,out
j which are not the isotropy groups Σj used earlier

86



type Γ stability condition

B+
1 Z2 n Z3

2 C1 > 1

B+
2 Z3

2 C1C2 > 1

B−1 Z3 n Z4
2 C1 > 1

B−3 Z4
2 C1C2C3 > 1

C−1 Z4 n Z4
2 C1 − T1 > 1

C−2 Z2 n Z4
2 C1 + C2 + T1T2 > min{2, 1 + C1C2}

C−4 Z4
2 C1C3+C2C4+T1T2C3+T2T3C4+T3T4C1+T4T1C2+

T1T2T3T4 + T1T2 min{2, 1 + C1C2C3C4}

Table 2: Necessary and sufficient conditions for asymptotic stability of simple heteroclinic networks of type

B and C in R4, where Cj = |cj/ej | and Tj = |tj/ej |.

For x near hj−1 ∩ Σin
j , the radii |xr|2 and |xc|2 will generically be nonzero, which suggests that the

(xt, xe) components are more important. Expanding the transition maps Πfar
j in a Taylor series, the

(xt, xe) components Πt
j ,Π

e
j of Πj are, at lowest order, given by Πt

j(x) = (aj(x
e)−cj/ej + bjx

t(xe)−tj/ej )

and Πe
j(x) = (cj(x

e)−cj/ej + djx
t(xe)−tj/ej ), respectively. As the (xr, xc) coordinates are absent, we can

consider the lowest-order terms of (Πt
j ,Π

e
j) as a map πj : R2 → R2 with

πj(x
t, xe) =

(
aj(x

e)−cj/ej + bjx
t(xe)−tj/ej , cj(x

e)−cj/ej + djx
t(xe)−tj/ej

)
.

For type B cycles, we have a = d = 0, while we have b = c = 0 for type C cycles. Hence, in both cases, we

can write πj(x
t, xe) = (E(xt)αj (xe)βj , F (xt)γj (xe)δj ) for suitable coefficients αj , βj , γj , δj . The transition

matrix is now defined as the matrix Mj =

(
αj βj

γj δj

)
, and asymptotic stability is deduced from the matrix

M = Mk · · ·M2M1: the network is asymptotically stable if the row sums of iterates M l diverge to infinity

as l → ∞. For type C cycles, this conditions becomes trace M > min{2, 1 + detM}, which translates into

the specific conditions stated in Theorem 5.70.

An interesting phenomenon occurs for robust heteroclinic networks that contain equilibria of different indices:

although the basin of attraction of such networks may not necessarily contain an open neighborhood of the

network, it may have full Lebesgue measure at points of the heteroclinic network. Such a heteroclinic network

is called essentially asymptotically stable [51, 273].

An example that exhibits essentially asymptotically stable networks can be constructed as follows. Con-

sider a differential equation in R4 that is Z2
2-equivariant under the action generated by (u1, u2, u3, u4) 7→

(u1,−u2,−u3, u4) and (u1, u2, u3, u4) 7→ (u1, u2,−u3,−u4). Consider a heteroclinic cycle with equilibria

p1 = (−1, 0, 0, 0) and p2 = (1, 0, 0, 0), and assume that both fu(p1) and fu(p2) have four distinct real eigen-

values with ind(p1) = 2 and ind(p2) = 1. Suppose that, inside the fixed-point plane {(u3, u4) = 0}, there

are two heteroclinic trajectories that are related by symmetry and connect p1 to p2: we assume that these

trajectories form an attracting normally hyperbolic circle inside {(u3, u4) = 0}. Similarly, we assume that

there are two symmetry-related heteroclinic trajectories inside {(u2, u3) = 0} that connect p2 to p1 and

again form an attracting normally hyperbolic circle. If the eigenvalues are such that the strong unstable

direction at p1 and the leading stable direction at p2 both lie in {(u3, u4) = 0}, the Z2
2-invariant heteroclinic

network can be essentially asymptotically stable. Recall the definitions of radial, transversal, contracting

and expanding eigenvalues from the beginning of this section.

Theorem 5.71 ([273]). Consider a Z2
2-equivariant equation on R4 that admits a robust heteroclinic network

as described above. If the open conditions

c1c2 > e1e2, −c2(e1 − t1) > e1e2, t2 < c2

on the transversal, contracting and expanding eigenvalues are satisfied, then the heteroclinic network is,

generically, essentially asymptotically stable.
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Figure 5.26: The geometry behind a non-asymptotically stable heteroclinic network is illustrated. Only two

heteroclinic trajectories are drawn. Starting near the upper heteroclinic trajectory, all points converge to the

heteroclinic network, whereas a small part of points near the lower heteroclinic trajectory escape.

Note that the heteroclinic network can be constructed so that is is contained in an attracting normally

hyperbolic three-sphere {‖u‖ = 1}. For this to hold, the additional eigenvalue conditions r1 < c1 and

r2 < min{t2, c2} must be satisfied. The flow near the heteroclinic network restricted to the three-sphere is

illustrated in Figure 5.26. Further information on the stability properties of heteroclinic networks can be

found in [238].

Lauterbach and Roberts [252] have shown how such essentially asymptotic robust heteroclinic networks

appear in symmetry-breaking bifurcations of systems with spherical symmetry. Starting point in their work

is a normally hyperbolic invariant three-sphere for an SO(3)-equivariant system for which the effects of

forced symmetry-breaking are considered; see also §5.5.4.

Kirk and Silber gave another example of an essentially asymptotically stable heteroclinic network. It involves

an equation on R4 that is equivariant under the action of Z4
2 generated by reflections of the coordinate axes.

Assume that the ith coordinate axis contains the hyperbolic equilibrium pi for each i = 1, . . . , 4 and that

there is a robust heteroclinic cycle inside the (u1, u2, u3)-space that connects the equilibria p1, p2 and p3.

We write H123 for the heteroclinic network in (u1, u2, u3)-space that is the image under the action of the

group. Likewise, assume the existence of a robust heteroclinic cycle that connects the equilibria p1, p2

and p4 and of a corresponding heteroclinic network H124 in (u1, u2, u4)-space. The connecting trajectories

from pi to pj lie in the (ui, uj)-plane, and the equilibria p1, p3, p4 have one-dimensional unstable manifolds,

while the equilibrium p2 has a two-dimensional unstable manifold. The following hypothesis captures the

asymptotic stability of H123 and H124 restricted to the (u1, u2, u3)-space and (u1, u2, u4)-space respectively;

see Theorem 5.70. Denote by cij the contracting eigenvalue of fu(pj) that corresponds to the connecting

trajectory from pi to pj and by ejk the expanding eigenvalue of fu(pj) restricted to the (uj , uk)-plane, which

corresponds to the trajectory from pj to pk.

Hypothesis 5.48 (Asymptotic stability of three-dimensional heteroclinic networks). The heteroclinic net-

works H123 and H124 are asymptotically stable within the enclosing three-dimensional spaces: we have

− c12c23c31

e23e31e12
> 1, − c12c24c41

e24e41e12
> 1.

Theorem 5.72 ([216]). Let u̇ = f(u) be a Z4
2 -equivariant ODE with a robust heteroclinic network as

above, and assume Hypothesis 5.48 is met, then the robust heteroclinic network is, generically, essentially

asymptotically stable.
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Postlethwaite and Dawes [314] considered heteroclinic networks in Z6 nZ6
2-equivariant differential equations

in R6 for which the equilibria lie on a single group orbit. They established the existence of trajectories that

follow different heteroclinic trajectories in an irregular order, while converging to the heteroclinic network.

Finally, we remark that homoclinic networks can also be essentially asymptotically stable [86, 113].

5.5.3 Bifurcations from heteroclinic cycles

In this section, we consider bifurcations from both robust and non-robust heteroclinic cycles.

First, we consider bifurcations from robust cycles: more specifically, we consider so-called resonant bifurca-

tions where, by definition, the eigenvalue conditions for asymptotic stability become violated; see also §5.1.5.

Certain resonant bifurcations from homoclinic cycles with real leading eigenvalues have been considered in

[87, 351] and, in more generality, in [114]; a specific bifurcation that involves complex leading eigenvalues can

be found in [315]. Here, we focus instead on transverse bifurcations where a transverse eigenvalue crosses the

imaginary axis. Obviously, other types of bifurcations exist as well, but we are not aware of any systematic

studies of bifurcations from robust heteroclinic cycles.

To outline the available results for transverse bifurcations of simple homoclinic cycles, we consider a Γ-

equivariant system in R4 and assume that H is a Γ-invariant simple homoclinic cycle consisting of equilibria

p1, . . . , p`. Recall from §5.5.2 that the linearization about each of the equilibria in a simple homoclinic

cycle has four real eigenvalues r, c, e, t, and we denote the corresponding eigenspaces at pj by V rj , . . . , V
t
j . A

transverse bifurcation occurs when the transverse eigenvalue t crosses through zero in V tj : the presence of

symmetry implies that this is a pitchfork bifurcation.

Hypothesis 5.49 (Transverse bifurcation). Assume that an asymptotically stable homoclinic cycle loses its

stability through a supercritical pitchfork bifurcation in the transverse directions:

(i) The pitchfork bifurcation is supercritical: on a one-dimensional center manifold, the differential equa-

tion has the normal form ż = µz + h(z, µ) with h(0, µ) = hz(0, µ) = 0 and hzzz(0, µ) < 0.

(ii) At µ = 0, the contracting and expanding eigenvalue satisfy −c > e.

We then have the following bifurcation result.

Theorem 5.73 ([85]). Let u̇ = f(u, µ) be a one-parameter family of ODEs on R4, which is equivariant

under the linear action of a finite group Γ. We assume that the equation for µ = 0 admits a simple Γ-

invariant homoclinic cycle H whose equilibria undergo a pitchfork bifurcation so that Hypothesis 5.49 is met.

Depending on the type of cycle (as defined in Hypothesis 5.46), we then have the following cases:

(i) If H is of type A, then, generically, there is a unique branch of limit cycles that bifurcate from the

homoclinic cycle. Furthermore, there is a constant d > 0, which depends only on the flow at µ = 0, so

that each periodic cycle is asymptotically stable for d < 1 and unstable for d > 1.

(ii) If H is of type B, then there is a supercritical pitchfork bifurcation to two asymptotically stable homo-

clinic cycles.

(iii) If H is of type C, then there is a supercritical pitchfork bifurcation to four asymptotically stable homo-

clinic cycles.

We will now briefly discuss the geometry for homoclinic cycles H of type B. In this case, H lies in a three-

dimensional fixed-point space Fix(τ) for some τ ∈ Γ. If hj is the heteroclinic trajectory of the homoclinic

cycle inside the fixed-point space Sj = Fix(ξj) that connects the equilibrium pj to pj+1, then Fix(ξjτ) is a

three-dimensional fixed-point space that contains Sj and the transverse directions to Sj . Furthermore, the

equilibria p′j , τp
′
j , p
′
j+1, and τp′j+1 that are created in the pitchfork bifurcation are contained in Fix(ξjτ): in

fact, p′j and τp′j are saddles, while p′j+1 and τp′j+1 are sinks in Fix(ξjτ). A continuity argument establishes
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the existence of heteroclinic trajectories from p′j to p′j+1 and, through the action of τ , from τp′j to τp′j+1,

which are all robust homoclinic cycles. Checking the eigenvalue conditions at the equilibrium p′j , where the

eigenvalues are close to those about pj , proves asymptotic stability.

Transverse bifurcations are among the bifurcation scenarios that occur in models of magnetic dynamos

in rotating Bénard convection; see [86]. In [113], transverse bifurcations from an asymptotically stable

homoclinic network in five-dimensional differential equations were considered, which lead to an essentially

asymptotically stable homoclinic network (see §5.5.2 for this notion) that are contained in an asymptotically

stable heteroclinic network.

Our next example of bifurcations from robust cycles is an inclination-flip bifurcation of simple type-A ho-

moclinic cycle in R4 that has been studied by Worfolk [425]. Consider the action of Z4 n Z4
2 generated by

(x1, x2, x3, x4) 7→ (−x1, x2, x3, x4) and (x1, x2, x3, x4) 7→ (x4, x1, x2, x3). Let Γ be the subgroup of index two

consisting of those elements that preserve orientation.

Theorem 5.74 ([425]). Let u̇ = f(u, µ) with u = (x1, x2, x3, x4) ∈ R4 be a one-parameter family on R4

which is equivariant under the action of Γ as stated above. Suppose that the family has a robust homoclinic

cycle and that, at µ = 0, the stable manifold W s(pi+1, 0) is in an inclination-flip configuration so that

Hypothesis 2.12(i) is violated. For a generic family of equivariant ODEs for which Hypotheses 2.9, 2.10,

2.11(ii), and 2.12(ii),(ii),(iv) are met, there exist values of µ arbitrarily close to zero for which there exist

hyperbolic invariant chaotic sets.

The genericity conditions referred to in the preceding theorem involve smooth linearizability assumptions.

We remark that local bifurcations in Γ-equivariant ODEs have been studied in [163]: starting point is the

system 
ẋ1 = x1 + ax1r

2 + bx1x
2
2 + cx1x

2
3 + dx1x

2
4 + ex2x3x4,

ẋ2 = x2 + ax2r
2 + bx2x

2
3 + cx2x

2
4 + dx2x

2
1 − ex1x3x4,

ẋ3 = x3 + ax3r
2 + bx3x

2
4 + cx3x

2
1 + dx3x

2
2 + ex1x2x4,

ẋ4 = x4 + ax4r
2 + bx4x

2
1 + cx4x

2
2 + dx4x

2
3 − ex1x2x3,

(5.35)

where r2 = x2
1 + x2

2 + x2
3 + x2

4, see also (5.34), and it is illustrated how complicated dynamics, including

Shil’nikov homoclinic loops, arise in unfoldings. The inclination-flip homoclinic cycle from Theorem 5.74

may possibly occur in the preceding cubic normal form.

Having discussed bifurcations from robust homoclinic cycles, we focus now on bifurcations from codimension-

one homoclinic cycles. An example of such a bifurcation is the Takens–Bogdanov bifurcation in R4 with

D3-symmetry that has been studied by Matthies [269]. The action of D3 on R4 ∼ C2 is generated by

(u1, u2) 7→ (e2πi/3u1, e
2πi/3u2) and (u1, u2) 7→ (u1, u2), and we assume that the D3 invariant equilibrium at

the origin undergoes the equivariant analogue of the Takens–Bogdanov bifurcation, where the linearization

at the origin is given by u̇1 = u2, u̇2 = 0. The unfolding of this bifurcation contains a D3-symmetric

configuration of three homoclinic loops to the origin (resembling a clover of homoclinic loops; see Figure 5.27)

that occurs a one-sided branch. The linearization of the ODE on the two-dimensional stable and unstable

directions is semi-simple, and the unfolding of the homoclinic cycle near the homoclinic branch contains a

suspended topological Markov chain.

Below, we discuss generalizations of this example in more detail. An important difference compared with

homoclinic loops in generic flows is the possibility that multiple semisimple eigenvalues can be enforced

by the symmetry, as is the case in the situation studied in [269]. Symmetry can also force heteroclinic

trajectories to approach an equilibrium along non-leading directions, thus enforcing orbit-flip configurations

(or inclination flips, if this occurs in the adjoint system). The bifurcation result we present below allows

for multiple semisimple eigenvalues, but assumes that heteroclinic trajectories approach equilibria along the

leading directions.

Thus, consider a Γ-equivariant system that admits a homoclinic cycle which consists of the heteroclinic

trajectories h1, . . . , h`, where hj connects hyperbolic equilibria pj to pj+1 (taking indices modulo `). We
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Figure 5.27: Illustration of three homoclinic trajectories approaching p when dimEs
p = 2. Note that the state

space has to be at least four dimensional.

will now assume that this connection is of codimension one inside the fixed-point space Sj of Γhj . We write

indSj (p) := dim[W u(p) ∩ Sj ] for the Morse index of an equilibrium p inside Sj .

Hypothesis 5.50. We have indSj (pj) = indSj (pj+1) for all j.

Recall that Els
j and Elu

j denote the leading stable and unstable eigenspaces of the Jacobian fu(pj , 0).

Hypothesis 5.51. The isotropy groups Γpj act real absolutely irreducibly on Els
j (so that νs

j is real), and

0 < −νs
j < Re νu

j .

Denoting by Els
j,∗ and Elu

j,∗ the leading stable and unstable eigenspaces of the adjoint Jacobian fu(pj , 0)∗.

Assuming the nondegeneracy condition Hypothesis 2.10(i), there is a unique bounded solution ψj of the

adjoint variational equation ẇ = −fu(hj , 0)∗w along the solution hj , and we record that ψj is contained

in Sj . The following conditions, which require that hj and ψj decay with rates coming from the leading

directions, are analogues of the orbit-flip and inclination-flip conditions we introduced for generic systems.

For equivariant systems, these conditions are open, but not necessarily generic.

Hypothesis 5.52. Consider the following conditions on the geometry of hj:

(i) The limit vs
j+1 = limt→∞ hj(t)/‖hj(t)‖ lies in the leading stable eigenspace so that vs

j+1 ∈ Els
j+1;

(ii) Sj ∩ Els
j,∗ 6= {0}, and the limit vs

j,∗ = limt→−∞ ψj(t)/‖ψj(t)‖ satisfies vs
j,∗ ∈ Els

j,∗.

Take cross sections Σj , transverse to the heteroclinic trajectory hj , related by symmetry. For a given `× `
matrix M with entries Mij ∈ {0, 1}, let BM be the topological Markov chain defined by M . For κ ∈ BM , we

denote a solution by u(µ, κ)(·) if there is a monotonically increasing sequence (τi)i∈Z such that

u(µ, κ)(τi) ∈ Σκi , but u(µ, κ)(t) 6∈
`
∪
j=1

Σj for t 6∈ {τi, i ∈ Z}.

We call κ the itinerary of u(µ, κ)(·). Let Π(·, µ) be the first-return map defined on ∪`j=1Σj (more precisely,

the domain of Π(·, µ) will be a subset of ∪`j=1Σj):

Π(·, µ) :
`
∪
j=1

Σj →
`
∪
j=1

Σj , Π(u(µ, κ)(τi), µ) = u(µ, κ)(τi+1). (5.36)

The next theorem describes how recurrent sets change through the bifurcation. For a given matrix A, we

write |A| = (|aij |)ij .

Theorem 5.75 ([187]). Let Γ be a finite group and u̇ = f(u, µ) be a one-parameter Γ-equivariant family

of differential equations on Rn that admits a homoclinic network for µ = 0. Suppose that Hypotheses 5.50,

5.51, 5.52, and 2.10 are met, then the system contains a recurrent set near the homoclinic network that is

given as follows. Define the matrix A = (aij)i,j∈{1,...,m} by

aij =

{
0 if ω(hi) 6= α(hj),

sign〈vs
i , v

s
j,∗〉, if ω(hi) = α(hj).
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Figure 5.28: An impression of a codimension-one D3-invariant homoclinic cycle for a D3-equivariant flow

in R3 with three Z2-symmetric equilibria. Note that a codimension-two bifurcation that involves resonance

conditions, an inclination flip, or an orbit flip condition would lead to D3-symmetric singular hyperbolic

attractors in an unfolding (akin to Lorenz-like attractors); see also §5.5.5.

Write M+ = 1
2 (A + |A|) and M− = − 1

2 (A − |A|). For µ > 0 small enough, there is an invariant set Dµ ⊂
∪`j=1Σj of Π(·, µ) such that, for each κ ∈ BM+

, there exists a unique solution u(µ, κ)(t) with u(µ, κ)(0) ∈ Dµ.

Moreover, Π(·, µ)|Dµ is topologically conjugated to the left shift on BM+
. An analogous statement holds for

µ < 0 with BM+
replaced by BM− .

The recurrent trajectories described in the preceding theorem generate the entire recurrent set for µ 6= 0

only when the inner products 〈esi , e
−
j 〉 are nonzero for all i, j with ω(hi) = α(hj).

5.5.4 Forced symmetry breaking

In this section, we consider equivariant systems in which the some of the symmetries are broken upon

changing parameters: in other words, we consider systems u̇ = f(u, µ) that are equivariant under Γ for

µ = 0 but respect only a proper subgroup Γ̃ of Γ for µ 6= 0. This situation is commonly referred to as forced

symmetry breaking19.

Forced symmetry breaking of relative equilibria in systems with continuous symmetries provides a mechanism

for creating robust heteroclinic cycles. This research was initiated by Lauterbach and Roberts, who used

forced symmetry breaking from SO(3) to the tetrahedral group T as an example.

Theorem 5.76 ([252]). Let u̇ = f(u) be an SO(3)-equivariant system with an SO(3)-orbit E of equilibria,

whose isotropy subgroups are conjugate to O(2), so that E is a normally hyperbolic invariant manifold. Let

u̇ = f̃(u) be a T-equivariant system that is close to u̇ = f(u) in the C1 topology. Restricted to the perturbed

invariant manifold Ẽ near E, the system u̇ = f̃(u) then admits equilibria with isotropy subgroups conjugate

to D2 and Z3; in addition, it admits either equilibria with isotropy conjugate to Z2 or robust heteroclinic

cycles that connect the equilibria with D2 symmetry. Moreover, there exist T-equivariant equations u̇ = f̃(u)

arbitrarily close to u̇ = f(u) in the C1 topology for which Ẽ contains one of the following:

(i) stable equilibria with Z3 symmetry;

(ii) stable equilibria with D2 symmetry and equilibria with Z2 symmetry;

(iii) stable relative homoclinic cycles that connect the equilibria with D2 symmetry.

There is a dual statement on forced symmetry breaking from SO(3) to O(2)-symmetry for equilibria with

isotropy T, in which a circle of heteroclinic cycles occurs that connect equilibria with D2 symmetry. If we

break symmetry from SO(3) to Dn, then non-asymptotically stable heteroclinic cycles, see Theorem 5.71,

can bifurcate:
19This contrasts so-called spontaneous symmetry breaking which involves changes in the isotropy group of a critical element

(or a attractor or any transitive invariant set) for systems that are equivariant under a fixed symmetry group
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Theorem 5.77 ([252]). Let u̇ = f(u) be an SO(3)-equivariant system with an SO(3)-orbit E of equilibrium

points with isotropy subgroups conjugate to T and assume that E is a normally hyperbolic invariant manifold.

Let u̇ = f̃(u) be a Dn-equivariant system close to u̇ = f(u) in the C1 topology, then the perturbed invariant

manifold Ẽ near E has the following properties:

(i) If 3|n, then Ẽ contains equilibria or periodic solutions with Z3 symmetry;

(ii) If n is odd, then Ẽ contains equilibria or periodic solutions with Z2 symmetry;

(iii) If n is even, then equilibria with D2-symmetry and heteroclinic cycles and/or equilibria with Z2-

symmetry exist in Ẽ.

We refer the reader to [82, 195, 251, 310] for further results of a similar flavor.

Next, we consider a few specific examples of the effect of forced symmetry breaking on robust relative

homoclinic cycles. Recall the classification of robust relative homoclinic cycles in R3 that we outlined in

Theorem 5.66. Let Γ = Z3 n Z3
2 and suppose that u̇ = f0(u) is a Γ-equivariant system on R3 that admits a

robust relative homoclinic cycle. We will consider perturbations u̇ = f(u, µ) with f(u, 0) = f0(u) that are

only Z3-equivariant for all µ. Generically, the two-dimensional fixed-point spaces that contain the homoclinic

cycle for µ = 0 will no longer be invariant for µ 6= 0, and we expect that the homoclinic cycle ceases to

exist. The following result, adapted from [346], shows that the original symmetry Γ may force the homoclinic

cycle to be in an inclination-flip configuration, which is then unfolded by small perturbations that retain Z3

symmetry. We remark that it is not hard to think of other examples where the symmetry enforces orbit flips

that can be unfolded by forced symmetry breaking. Let µ ∈ R2 and consider the following condition:

Hypothesis 5.53 (Inclination flip). We assume that vs
j , v

u
j , v

u
j,∗ 6= 0 at µ = 0, while vs

j,∗(0) = 0 with

∂µ2
vs
j,∗(0) 6= 0.

Theorem 5.78 ([346]). Let u̇ = f(u, µ) be a Z3-equivariant two-parameter family on R3 which, for µ = 0,

is Z3 n Z3
2-equivariant and has a simple relative homoclinic cycle. Suppose that Hypothesis 2.10(i) with

di = 0 and Hypothesis 2.12(ii) are met. If c < r, where c, r are the contracting and radial eigenvalues at

the equilibria, then the relative homoclinic cycle is of inclination-flip type. Furthermore, if the unfolding

condition Hypothesis 5.53 is met, then the bifurcation diagram is as in Theorems 5.1, 5.16, and 5.17,

depending on the eigenvalue νs = r and νu = e (the expanding eigenvalue).

Proof. Symmetry forces the bounded solution ψj to the adjoint variational equation along the heteroclinic

trajectory hj to be perpendicular to the fixed point space of Γhj . For c < r, the relative homoclinic cycle is

therefore of inclination-flip type. An orbit space reduction [83] reduces the problem to a generic inclination-

flip bifurcation of a homoclinic orbit.

An analogous result holds for forced symmetry breaking of robust homoclinic cycles from Z2 n Z2
2 to Z2

symmetry in systems in R3. A more detailed classification can be found in [346], where also four-dimensional

representations are considered. The additional transverse eigenvalue of the robust homoclinic cycle could be

a leading eigenvalue and must therefore be taken into account.

5.5.5 Homoclinic orbits in systems with Z2-symmetry

The unfolding of multiple homoclinic orbits to a hyperbolic equilibrium can lead to nontrivial dynamics,

including suspended horseshoes. One reason to devote an individual section to homoclinic orbits in differential

equations with reflection symmetries is that additional degeneracies may create Lorenz-like strange attractors.

To see this, consider a Z2-equivariant differential equation with homoclinic orbits to a symmetric equilibrium

p. We write ρ for the linear map that generates the action of Z2. If h is a homoclinic solution to p, then ρh

is a second homoclinic solution to p. Analogous to Hypothesis 5.12, we distinguish different geometries of

the closure of h ∪ ρh.
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Hypothesis 5.54 (Geometric configurations). Suppose that p has unique real leading eigenvalues νs and νu

with eigenvectors vs and vu. We distinguish:

(i) Figure eight: vs = −ρvs and vu = −ρvu;

(ii) Butterfly (expanding): −νs/νu < 1 and vs = ρvs, vu = −ρvu;

(iii) Butterfly (contracting): −νs/νu > 1 and vs = ρvs, vu = −ρvu;

(iv) Bellows: vs = ρvs and vu = ρvu.

Theorem 5.79. Let u̇ = f(u, µ) be a one-parameter family of Z2-equivariant ODEs with admits two different

homoclinic loops h and ρh to the hyperbolic equilibrium p when µ = 0. Suppose that Hypotheses 2.1, 2.2,

2.3(ii), and 2.4 are met.

(i) If Hypothesis 5.54(i) or 5.54(iii) is met, then there are two nonsymmetric periodic solutions for µ on

one side of µ = 0 and a single symmetric periodic solution for µ on the other side of µ = 0.

(ii) If Hypothesis 5.54(ii) or Hypothesis 5.54(iv) holds, then there is no recurrent dynamics (apart from the

equilibrium) for µ on one side of µ = 0 and a suspended horseshoe for µ on the other side of µ = 0.

Shil’nikov [372, 373] observed that Lorenz-like attractors could be created via three different codimension-two

bifurcations in Z2-equivariant systems with two homoclinic loops: these are resonant leading eigenvalues,

inclination flips, and orbit flips. The resonant bifurcation has subsequently been studied by Robinson, the

inclination flip by Rychlik, and the orbit flip by Golmakani and Homburg. We now present the results of

these analyses in the following three theorems.

First, we discuss Z2 equivariant systems with homoclinic loops at resonance, which have been studied by

Robinson; see also [283, 284]. Although we only state a result on the existence of Lorenz-like attractors,

unfoldings of homoclinic loops at resonance can also give rise to contracting Lorenz models [284, 327]; see

also §4.2.

Theorem 5.80 ([325–327]). There exists an open set of two-parameter families of Z2-equivariant systems

with the following properties. Each such family has two homoclinic loops for µ = 0 that satisfy Hypotheses 2.1,

2.2, 2.3(ii), and 2.4, and there is an open set in the parameter plane for which a Lorenz-like attractor exists.

In fact, Robinson showed that Lorenz-like attractors occur in the cubic system

ẋ = y,

ẏ = x− 2x3 + αy + βx2y ± yz,

ż = −γz + δx2.

Recall that the Lorenz equations are quadratic. Rychlik proved a similar phenomenon in the unfolding of

Z2-equivariant ODEs with inclination-flip homoclinic loops.

Theorem 5.81 ([334]). Let u̇ = f(u, µ) be a two-parameter family of Z2-equivariant ODEs in R3 that admit

a hyperbolic equilibrium p with one-dimensional unstable and two-dimensional stable manifolds and has two

symmetry-related homoclinic orbits to p when µ = 0. Suppose furthermore that Hypotheses 2.1, 2.2, and 5.8

are met, and that this bifurcation is of Type B as explained in §5.1.6. There are then parameter values

arbitrarily close to µ = 0 for which the system has a Lorenz-like attractor.

In fact, Rychlik showed that Lorenz attractors occur in the Z2-equivariant cubic system

ẋ = y,

ẏ = x− 2x3 + αy + βx2y + δxz,

ż = −γz + x2,

which, up to a change of coordinates, coincides with the original Lorenz equations when β = 0. Finally,

orbit-flip homoclinic bifurcations can give rise to Lorenz-like attractors in much the same way.
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Theorem 5.82 ([152]). Let u̇ = f(u, µ) be a two-parameter family of Z2-equivariant ODEs in R3 that

admit a hyperbolic equilibrium p with one-dimensional unstable and two-dimensional stable manifolds and

has two symmetry-related homoclinic orbits to p when µ = 0. Assume that the action of the symmetry has

a one-dimensional fixed-point space, that Hypotheses 2.1, 2.2, and 5.10 are met, and that this bifurcation is

of Type B as explained in §5.1.7. There are then parameter values arbitrarily close to µ = 0 for which the

system has a Lorenz-like attractor.

Degenerate homoclinic loops of certain Z2-equivariant ODEs in R4 have been investigated in [23, 410]. These

bifurcation studies were motivated by the equation

ṡ1 = s2,

ṡ2 =
I − s2 − sin s1 cos r1

3 + β
,

ṙ1 = r2,

ṙ2 = −r2 + sin r1 cos r1

β

which models two coupled Josephson junctions with a capacitive load [22]. This system is equivariant

under the action of Z2 given by (s1, s2, r1, r2) 7→ (s1, s2,−r1,−r2), which fixes elements of the plane

{(s1, s2, r1, r2) ∈ R4; r1 = r2}. There is a value of β and I for which this system has a symmetric ho-

moclinic loop in the fixed-point space along which the stable and unstable manifolds of the origin have a

two-dimensional common tangent space. Among the phenomena found for nearby parameter is the exis-

tence of a one-sided curve in the parameter plane along which a pair of nonsymmetric homoclinic loops

in a bellows configuration exists. Further analytic work revealed the existence of curves of pitchfork and

periodic-doubling bifurcations of periodic solutions. Numerical work suggests a complicated bifurcation

diagram including chaotic dynamics.

6 Related topics

In this section, a number of topics are reviewed that do not fit into the previous sections but are of interest

to homoclinic bifurcation theory. Specifically, we discuss topological index theory for homoclinic orbits and

moduli of stability associated to heteroclinic and homoclinic orbits in some detail. We also give an overview of

existence theorems for homoclinic orbits, numerical techniques for continuing homoclinic orbits and detecting

their bifurcations, variational methods for constructing homoclinic orbits in Hamiltonian systems, techniques

for studying homoclinic orbits in singularly perturbed systems, and, finally, extensions to infinite-dimensional

systems. However, for the latter topics, we will be brief and focus primarily on giving pointers to existing

literature.

6.1 Topological indices

Homoclinic orbits occur along curves in two-dimensional parameter spaces. Of interest is then the fate of

these curves for generic systems: the issue is whether we can list generic possibilities for start and end

points of such curves and identify bifurcations along them that do not rely on unfolding and nondegeneracy

conditions.

First, we discuss topological bifurcations that do not rely on unfolding conditions and present a prototypical

result due to Nii. Recall that two-dimensional homoclinic center manifolds are orientable annuli or nonori-

entable Möbius strips. Nii proved that, if we are given a path of homoclinic orbits in the parameter plane so

that the orientations of the homoclinic center manifold are different at the end points, then a 2-homoclinic

orbit has branched somewhere along the path. We stress that there is no need to check unfolding conditions

at the bifurcation, though we need nondegeneracy conditions at the end points of the path that guarantee

the existence of two-dimensional homoclinic center manifolds. The proof given by Nii uses Conley index
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Figure 6.1: Bifurcation curves of homoclinic orbits that contain a homoclinic noose.

theory, see [136, 276] for an overview, to find the 2-homoclinic solutions; we remark that Lin’s method can

also be utilized to prove the following theorem.

Theorem 6.1 ([295]). Let u̇ = f(u, µ) be a two-parameter family of ODEs on Rn so that a homoclinic orbit

to a hyperbolic equilibrium p exists along a path s : [0, 1] → R2 in the parameter plane. Suppose that the

equilibria along the path have one-dimensional unstable manifolds and that Hypotheses 2.1, 2.2, and 2.3(ii)

are met for all µ ∈ s([0, 1]). Furthermore, we assume that the homoclinic orbit is not in a flip configuration so

that Hypotheses 2.4(i)-(ii) are met for µ = s(0), s(1). Finally, suppose that at µ = s(0) the homoclinic center

manifold is orientable, while at µ = s(1) the homoclinic center manifold is nonorientable, then there exists

a t ∈ (0, 1) so that a 2-homoclinic orbit is created in the homoclinic bifurcation at µ = s(t). The statement

remains true if the homoclinic center manifolds are nonorientable for µ = s(0), s(1) but −νs/νu > 1 at

µ = s(0), and −νs/νu < 1 at µ = s(1).

Next, we discuss the fate of curves of homoclinic orbits in the bifurcation plane. In the spirit of the

continuation theory for periodic orbits in [9], Fiedler [129] introduced an index for homoclinic orbits in

the interior of the closure of the class of Morse–Smale flows (that is, for tame homoclinic orbits) and used

this index to derive a pathfollowing result for homoclinic orbits in generic families. The idea is to follow

curves of homoclinic orbits up to the boundary (of the interior of the closure) of the class of Morse–Smale

flows or to a collection of bifurcations of higher codimension.

Let us illustrate the outcomes of the resulting homoclinic continuation theory by showing that certain

bifurcation diagrams cannot occur in generic two-parameter families of three-dimensional flows. Here, we

use the term ’generic’ to refer to two-parameter systems that contain homoclinic bifurcations of codimension

one and two only that, furthermore, unfold generically, that is, occur only along curves and at isolated

points, respectively. Adopting the term ’noose’ from the continuation theory of periodic orbits, we say that

a bifurcation diagram of homoclinic orbits has a homoclinic noose if it contains the structures shown in

Figure 6.1. The following result can be deduced from the general homoclinic continuation theory that we

describe further below.

Proposition 6.1. The bifurcation diagram of a generic two-parameter family of ODEs u̇ = f(u, µ) in R3

cannot contain homoclinic nooses.

Proof. Suppose that the bifurcation diagram of u̇ = f(u, µ) contains a homoclinic noose. The branching

point is then necessarily a homoclinic-doubling bifurcation, that is, either a resonant homoclinic bifurcation,

an inclination flip or an orbit flip (see §5), and the noose consists of the primary orbit that returns to itself as

a 2-homoclinic orbit. Draw a smooth curve in the parameter plane close to the homoclinic noose and consider

the bifurcations of periodic orbits along this curve. The bifurcation diagram for the periodic orbits in the

parameter that parameterizes the chosen curve then contains a noose, which is impossible by [147, 213].

Other applications of a topological continuation theory for homoclinic orbits include the existence of homoclinic-

doubling cascades, see §4.5, and of cascades of T -points in [193]. We remark that these results are similar

in spirit and detail to the existence proofs of cascades of period-doubling bifurcations that use continuation

theory for periodic orbits [430].

We now outline homoclinic continuation theory itself and follow the account given in [190] where a continu-

ation result without genericity conditions is proved. Let u̇ = f(u, µ) be a two-parameter family of ODEs in
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R3. We denote by P the set of compact subsets of R3, equipped with the Hausdorff metric, and define

G =

{
(µ, h) ∈ R2 × P;

h is the union of an equilibrium and a

homoclinic orbit of u̇ = f(u, µ)

}
. (6.1)

For (µ, h) ∈ G, let l(µ, h) denote the arclength of h. For simplicity, we assume l(µ, h) is finite, which is

guaranteed, for instance, if the equilibrium in h is hyperbolic. We say that k is a virtual length of (µ, h) if

there exists a sequence of smooth perturbations fi(·, ν) of the family f(·, ν) with fi(·, ν)→ f(·, ν) as i→∞
so that u̇ = fi(u, ν) has a homoclinic orbit hi at parameter values µi with µi → µ, hi → h in the Hausdorff

topology, and l(µi, hi)→ k as i→∞. We write τ(µ, h) for the set of virtual lengths of (µ, h) ∈ G.

To decide whether a homoclinic orbit can be continued globally, we associate an index to each such orbit.

First, pick an (µ, h) ∈ G and assume that it is a codimension-one homoclinic orbit that is unfolded generically

upon varying µ and satisfies τ(µ, h) = {l(µ, h)}. There are then a sequence µi of parameter values that

converges to µ and a sequence of periodic orbits qi for these parameter values that converges to h in the

Hausdorff topology as i → ∞. Our assumptions imply furthermore that qi is the unique periodic orbit

for parameter value equal to µi for all sufficiently large i and that its unstable manifold W u(qi) is either

orientable or nonorientable. Define the index

φ(µ, h) =

{
0 if W u(qi) is nonorientable for large i;

1 if W u(qi) is orientable for large i.
(6.2)

Note that one- and three-dimensional unstable manifolds are always orientable. If W u(qi) is two-dimensional,

then there exists a two-dimensional homoclinic center manifold W c(h) of h; see §3.4: this manifold is

orientable if φ(µ, h) = 1 and nonorientable otherwise. In particular, it is possible to define φ(µ, h) using only

the equation at the parameter value µ.

Next, we extend this definition of φ(µ, h) as follows to the entire set G. For each (µ, h) ∈ G, we set φ(µ, h) = 1

if the virtual length of (µ, h) is bounded and if there exists a sequence of families fi(·, ν) with fi(·, ν)→ f(·, ν)

as i→∞ and fi(·, ν) has a generically unfolded homoclinic orbit hi of codimension one at parameter values

µi so that µi → µ, hi → h in the Hausdorff topology, and φ(µi, τi) = 1 as i → ∞. For all other (µ, h) ∈ G,

we set φ(µ, h) = 0. Let

G1 = {(µ, h) ∈ G; φ(µ, h) = 1} (6.3)

be the set of (µ, h) of index one.

Finally, we can state precisely what global continuation of homoclinic orbits (µ, h) in G1 refers to. Let

(µ, h) ∈ G1 so that h is the union of a homoclinic orbit and a hyperbolic equilibrium, and write Γ1 for the

connected component of G1 that contains (µ, h). We call (µ, h) globally continuable if either

• Γ1\{(µ, h)} is connected

or else each component C1 of Γ1\{(µ, h)} satisfies at least one of the following conditions:

• C1 is unbounded;

• there exists a sequence (µi, hi) ∈ C1 so that supi τ(µi, hi) = ∞ or so that (µi, hi) → (µ̃, h̃) ∈ G as

i→∞ and (µ̃, h̃) has unbounded virtual length;

• there exists a sequence (µi, hi) ∈ C1 so that µi has a limit as i→∞, and hi converges, in the Hausdorff

topology, to a closed invariant set that contains either a nonhyperbolic equilibrium or more than two

orbits.

Note that the closure of a homoclinic orbit always consists of two orbits: thus, if the closed invariant set

consists of more than two orbits, it may contain two homoclinic orbits or a heteroclinic cycle.

Theorem 6.2 ([190]). A generically unfolded codimension-one homoclinic orbit in G1 is globally continuable.
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α(h) equilibrium equilibrium periodic orbit periodic orbit

ω(h) leading real complex real complex

equilibrium real

equilibrium complex Re νs Im νu

Im νs Re νu
Re νs

Im νs
1

ln |νu|
Re νs

Im νs
1

ln |νu| , arg νu

periodic real ln |νs|
ln |νu|

ln |νs|
ln |νu| , arg νu

periodic complex ln |νs|
ln |νu| , arg νs, arg νu

Table 3: Moduli for heteroclinic orbits are listed, where νs is the leading stable eigenvalue (or Floquet

multiplier) at α(h) and νu is the leading unstable eigenvalue (or Floquet multiplier) at ω(h).

6.2 Moduli

Recall that two differential equations u̇ = f(u) and u̇ = g(u) on Rn are topologically equivalent if there is a

homeomorphism that maps orbits of u̇ = f(u) to orbits of u̇ = g(u), while preserving the direction of time.

Any invariant of topological equivalence is called a modulus.

Palis [304] proved that heteroclinic orbits that involve a tangency between the stable and unstable manifolds

of two periodic orbits give rise to a modulus that can be expressed as the quotient of the leading Floquet

multipliers of the periodic orbits. Homoclinic tangencies of stable and unstable manifolds of periodic orbits

can give rise to infinitely many moduli: see [154] for a survey of results. Homoclinic and heteroclinic orbits

to equilibria can also give rise to moduli, and we remark that moduli near saddle-focus homoclinic orbits

were treated in Theorem 5.5 in §5.1.2.

In this section, we review some other results in this direction. Moduli of stability that occur for systems with

heteroclinic connections between critical elements (and for families that unfold these heteroclinic connections)

have been studied by van Strien, extending and generalizing work by Beloqui [32] and Newhouse, Takens

and Palis [291, 292, 390, 391]. The following result lists necessary and sufficient conditions for the existence

of a topological equivalence near a heteroclinic orbit for two nearby vector fields.

Theorem 6.3 ([411]). Let u̇ = f(u) be an ODE on Rn that has a heteroclinic orbit h(t) connecting hyperbolic

critical elements (equilibria or periodic orbits) α(h) to ω(h) and suppose that additional generic conditions

are met (for equilibria, these are Hypotheses 2.9, 2.10(i) with d = 1, 2.11(iii), and 2.12). Table 3 contains

the complete list of moduli of topological equivalence in this situation: if the moduli of two nearby vector

fields with such heteroclinic orbits are equal, then there exists a topological equivalence by a near-identity

homeomorphism in a neighborhood of the closure of the heteroclinic orbit.

Heteroclinic connections of codimension two are considered by Bonatti and Dufraine [45]. In [392], a com-

plete set of three invariants of conjugacy are constructed for attracting planar heteroclinic cycles with two

hyperbolic equilibria: the moduli arise because the time averages of continuous functions along orbits that

converge to the heteroclinic cycle typically do not converge [143], and we refer to [392] for the relation

between the moduli and these time averages.

Moduli are also relevant for the comparison of families of vector fields. Consider two families u̇ = f(u, µ)

and v̇ = g(v, ν) on Rn. A topological equivalence between these families is given by a family Φ(·, µ) of

homeomorphisms of Rn and a homeomorphism φ on the parameter space so that (v, ν) = (Φ(u, µ), φ(µ))

relates their orbits. As in §5.4, one distinguishes different regularity properties of Φ(·, µ) and φ: the properties

most relevant here are (fiber C0, C0)-equivalence (the above definition) and (C0, C0)-equivalence (where

Φ(u, µ) is continuous in (u, µ)). We consider one-parameter families and assume the following:

Hypothesis 6.1 (Generic unfolding). The unions of W s(ω(h)) and W u(α(h)) in the product Rn × R of

state and parameter space intersect transversally.

The next theorem is the analogue of Theorem 6.3 for families that unfold a heteroclinic bifurcation of

codimension one.
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α(h) equilibrium equilibrium periodic orbit periodic orbit

ω(h) leading real complex real complex

equilibrium real

equilibrium complex Re νs

Im νs ,
Re νu

Im νu
Re νs

Im νs , ln |νu| Re νs

Im νs , ln |νu|, arg νu

periodic real ln |νs|, ln |νu| ln |νs|, ln |νu|, arg νu

periodic complex ln |νs|, ln |νu|, arg νs, arg νu

Table 4: Moduli for unfoldings of heteroclinic orbits. In the table, νs is the leading stable eigenvalue (or

Floquet multiplier) at α(h) and νu is the leading unstable eigenvalue (or Floquet multiplier) at ω(h).

Theorem 6.4 ([411]). Let u̇ = f(u, µ) be a one-parameter family of ODEs on Rn that has a heteroclinic

orbit h(t) for µ = 0 which connects hyperbolic critical elements (equilibria or periodic orbits) α(h) to ω(h).

Suppose that certain generic conditions are met (for equilibria , these are Hypotheses 2.9, 2.10(i) with d = 1,

2.11(iii), and 2.12) and that the generic unfolding condition Hypothesis 6.1 holds. Table 4 then lists moduli

of topological equivalence: If the moduli of two nearby families with such a heteroclinic orbit are equal, then

there exists a (C0, C0)-equivalence by near-identity homeomorphisms in a neighborhood of the closure of the

heteroclinic orbit.

A topological equivalence between two nearby families in R2 that unfold a homoclinic bifurcation gives rise

to a modulus if one requires that the parameter change is a diffeomorphism.

Theorem 6.5 ([119]). For j = 1, 2, let u̇ = fj(u, µ) be one-parameter families in R2 that have a homoclinic

orbit to hyperbolic equilibrium pi at µ = 0. Suppose that Hypotheses 2.2 and 2.3(ii) are met for both

vector fields and denote the stable and unstable leading eigenvalues at pj by νs
j and νu

j . Suppose that there

exists a topological equivalence (Φ, φ) between these two systems by a homeomorphism Φ(·, µ) that depends

continuously on µ and a diffeomorphism φ, then necessarily −νs
1/ν

u
1 = −νs

2/ν
u
2 at µ = 0.

The proof uses C1 linearizations near the equilibria to obtain the expressions x 7→ αj(µ)+x−ν
s
j/ν

u
j (1+ϑj(x, µ))

for the first-return maps on curves that are transverse to the homoclinic orbits, where αj is differentiable,

and ϑj is continuous and vanishes along {x = 0} and {µ = 0}. A conjugacy of the vector fields then implies

a conjugacy of these maps that can be further analyzed to find moduli. Theorem 6.5 can be applied to

prove (C0, C∞)-equivalence of generic families with Bogdanov–Takens bifurcations and their normal forms;

see §5.4.1.

We briefly comment on extensions to global stability where the conjugacy is not restricted to a neighborhood

of the heteroclinic connection. A family of vector fields is called structurally stable if every nearby family

is (C0, C0)-equivalent. The following result by Labarca and Plaza characterizes structurally stable families

that unfold heteroclinic bifurcations.

Theorem 6.6 ([244, 247]). A generic one-parameter family u̇ = f(u, µ) on a compact three-dimensional

manifold whose nonwandering set consists of finitely many hyperbolic critical elements and that has no

heteroclinic cycles is structurally stable provided the following holds.

(i) Stable and unstable manifolds of periodic orbits intersect transversally;

(ii) If p is an equilibrium with one-dimensional unstable (stable) manifold and complex conjugate stable

(unstable) eigenvalues, then W u(p) is contained in the stable (unstable) manifold of an attracting

(repelling) critical element.

We refer to [416] for the global stability of families with non-trivial recurrent set and unfoldings of heteroclinic

bifurcations. An investigation of how the geometry of stable and unstable manifolds induces moduli can also

be found in [183]. An extension of Theorem 6.6 by Plaza and Vera, incorporating local bifurcations, is
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contained in [312]. One-parameter families of gradient vector fields on compact manifolds of any dimension

turn out to be generically structurally stable [308], and the same is true for two-parameter families of gradient

vector fields [66, 415].

Finally, we consider Lorenz-like attractors. Guckenheimer and Williams established that geometric Lorenz

models have two moduli.

Theorem 6.7 ([162]). There is an open set U in the space of smooth ODEs on R3 and a continuous mapping

k : U → R2 so that the following holds. Each f ∈ U has a Lorenz-like attractor, and f, f̃ ∈ U are topologically

equivalent by a homeomorphism close to identity precisely if k(f) = k(f̃).

The natural mapping k is obtained by considering the kneading sequences of the unstable manifolds [196, 323].

The above theorem becomes more precise in the language of interval maps; the statement below on expanding

Lorenz maps applies to Lorenz-like vector fields by identifying points on leaves of the stable foliation on a

cross section. We refer to [162, 323, 423] for the construction; see also §3.5.

Hypothesis 6.2 (Expanding Lorenz maps). Consider f : [−1, 1]→ [−1, 1] that satisfy:

(i) f is continuous and strictly increasing away from zero;

(ii) limx↑0 f(x) = 1 and limx↓0 f(x) = −1;

(iii) f is topologically expanding: there exists an ε > 0 so that, for all x0, y0 whose orbits do not contain

zero, |f i(x0)− f i(y0)| > ε for some i ∈ N.

Given an expanding Lorenz map and a point x that is not a preimage of 0, define its kneading sequence

k(x) ∈ {−1, 1}N by

k(x)(i) =

{
−1, f i(x) < 0,

1, f i(x) > 0.

For general x ∈ [−1, 1], we define its upper and lower kneading sequences by

k+(x) = lim
y↓x

k(x), k−(x) = lim
y↑x

k(x),

where the limits run over all points y that are not preimages of 0, and define the kneading invariant

K(f) = (k+(−1), k−(1)).

We write σ : {−1, 1}N → {−1, 1}N for the left shift operator defined by [σα](i) = α(i + 1) and take the

lexicographical ordering on {−1, 1}N.

Theorem 6.8 ([196]). If f is an expanding Lorenz map, then the kneading invariant K(f) = (α, β) satisfies

α ≤ σnα < β, α < σnβ ≤ β (6.4)

for all n ∈ N. Conversely, given a pair of sequences α, β ∈ {−1, 1}N satisfying (6.4), there exists an expanding

Lorenz map f with K(f) = (α, β), and f is unique up to conjugacy.

The combinatorial structure encoded by the kneading invariant is also apparent in the organization of

heteroclinic bifurcation curves as presented in the numerical study of the Lorenz equations in [112].

6.3 Existence results

The existence of homoclinic orbits has been proved in many concrete models and applications. We give a

few examples here and refer otherwise to some of the references listed in §5 for many other examples: in

particular, we mention the review of local bifurcations in §5.4 that lead to small homoclinic orbits, and the
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cubic equivariant vector fields given in §5.5.5 that admit two homoclinic loops to the origin at a resonance

or inclination-flip bifurcation, which lead to geometric Lorenz attractors in appropriate unfoldings.

Sandstede provided in [340] a general construction of vector fields which have homoclinic orbits that undergo

various codimension-two bifurcations. The idea is to begin with a two-dimensional vector field that leaves a

planar algebraic curve invariant and has a homoclinic solution which lies on this curve. A third coordinate is

then added in such a way that the geometry near the algebraic curve can be changed, while the curve itself

remains invariant. Further perturbations can now be added to break the homoclinic orbit. This construction

results in the system

ẋ = ax+ by − ax2 + (µ2 − αz)x(2− 3x) + δz,

ẏ = bx+ ay − 3

2
bx2 − 3

2
axy − (µ2 − αz)2y − δz,

ż = cz + µ1x+ γxz + αβ(x2(1− x)− y2).

that involves the real parameters a, b, c, α, β, γ, µ1, µ2 and δ ∈ {0, 1}.

Theorem 6.9 ([340]). For µ = 0, the above system has a homoclinic orbit which is contained in the Cartesian

leaf Γ = {(x, y, z) ∈ R3; x2(1 − x) − y2 = 0, z = 0}. First, suppose that δ = 0, then the eigenvalues of the

linearization at the origin are real, and the following codimension-two homoclinic bifurcations occur:

• A resonant bifurcation occurs for a = 0 if c < −
√
b2 − 4µ2

2 and for c = a+
√
b2 − 4µ2

2 otherwise. This

bifurcation is unfolded by µ1 and a.

• An inclination-flip occurs for c < a− b and β = 1. This bifurcation is unfolded by µ1 and α − α0 for

a certain α0 that depends on a, b, c and γ.

• An orbit-flip occurs for c > a − b, β = 0 and sufficiently small α > 0. The unfolding parameters are

µ1, µ2.

Next, suppose that δ = 1, then the eigenvalues of the linearization at the origin consists of a complex conjugate

pair and a real eigenvalue, and a saddle-focus homoclinic orbit occurs for c = a− b, γ = 0, α = 0.

Finally, we comment on the Lorenz system

ẋ = −σx+ σy,

ẏ = ρx− y − xz,

ż = −βz + xy

for which a number of results have been obtained that prove rigorously the existence of homoclinic orbits

for some parameter values and which do not rely on numerical computations (rigorous or otherwise). In

particular, a theoretical existence proof for homoclinic orbits has been given in [171], using an analytic

implementation of the shooting method: the authors prove that, for σ near 10 and β near 1, there exists

a ρ ∈ (1, 1000) for which the Lorenz equations have a homoclinic orbit. Leonov [253] states that, for

σ > (2β + 1)/3, there is a ρ > 1 for which the Lorenz equations have a homoclinic orbit; this refines earlier

results from [35].

6.4 Numerical techniques

Since homoclinic and heteroclinic orbits are genuinely global dynamical objects, it is typically very hard

to prove their existence and nondegeneracy in a given explicit system of differential equation. In these

situations, numerical computations are often the only way to get insight into the existence and bifurcation

structure of connecting orbits.
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The most efficient and accurate algorithms seek homoclinic and heteroclinic orbits as solutions to appropriate

boundary-value problems on bounded time intervals (−T, T ). Path-following in systems parameters can then

be used to continue connecting orbits and to locate parameter values where they undergo bifurcations. We

refer to the recent surveys [40, §6 and §8] and [344, §6.1] for details and references.

Algorithms of this kind can also be used for large systems, and specifically for discretizations of partial

differential equations, and we refer to [77] for a recent overview. They have also been applied to delay

differential equations [335] and even to equations with advanced and retarded terms [1].

These methods have been implemented via the driver homcont [76] in the software package auto [111] by

Doedel. auto also allows users to switch to N -homoclinic orbits at bifurcation points using a numerical

implementation of Lin’s method developed in [297]. dde-biftool is a matlab package that implements a

similar functionality for delay differential equations [125].

6.5 Variational methods

For Hamiltonian systems of the form(
ṗ

q̇

)
= J =

(
0 −1

1 0

)
∇H(p, q), (p, q) ∈ R2n, (6.5)

global methods from the calculus of variations can often be used to prove the existence of homoclinic, hete-

roclinic and periodic orbits. To find connecting orbits in this manner, an appropriate variational formulation

needs to be set up whose critical points are the desired heteroclinic orbits. The difficulty lies in finding

variational formulations to which minimization techniques, mountain-pass theorems or other global methods

can be applied by verifying the necessary hypotheses.

This approach has been used successfully to construct N -pulses (multibump orbits) near a given primary

homoclinic orbits without having to impose any nondegeneracy conditions. In particular, multibump orbits

have been constructed near homoclinic orbits to bi-foci in [55, 57, 209]. Such orbits have also been found

in four-dimensional systems where the primary homoclinic orbit converges to a center with non-semisimple

eigenvalues on the imaginary axis [43] and in systems that have two primary homoclinic orbits to the same

saddle equilibrium [39]. In [378, 407, 409], variational methods were used to find multibump orbits in the

Swift–Hohenberg equation.

We refer to the recent survey [320] for more details and a comprehensive list of references.

6.6 Singularly perturbed systems

Many physical systems admit two or more natural time scales. In ODE models, multiple time scales typically

manifest themselves via the presence of small parameters that multiply the time derivatives of some of the

variables. We shall give a very brief outlook of such singularly perturbed problem. Specifically, we consider

systems of the form

u̇ = f1(u, v) (6.6)

v̇ = εf2(u, v),

where t is the time variable and (u, v) ∈ Rn1×n2 . The singular character of these equations is reflected in

the assumption that 0 < ε � 1. That the perturbation caused by ε is singular becomes more visible if we

use the slow time s = εt which yields the slow system

εu′ = f1(u, v) (6.7)

v′ = f2(u, v)
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Figure 6.2: Shown are the dynamics of the fast system [left] and the slow system [center] for ε = 0, and the

anticipated dynamics for ε > 0 [right].

in the slow time variable s. For ε > 0, equations (6.6) and (6.7) are equivalent. However, for ε = 0, we

obtain the fast system

u̇ = f1(u, v), v̇ = 0, (6.8)

where v plays the role of a parameter, and the slow system

v′ = f2(u, v), f1(u, v) = 0, (6.9)

which is a differential-algebraic system, where v is constrained to the surface M0 = {(u, v); f1(u, v) = 0},
which we refer to as the slow manifold. Note that the elements of M0 correspond to the equilibria of (6.8).

Since the systems (6.8) and (6.9) are equations with fewer dependent variables, we can exploit this reduction

in dimension to understand the occurrence and bifurcations of homoclinic and heteroclinic orbits for ε > 0

by investigating the two systems (6.8) and (6.9) for ε = 0 separately and gluing their solutions together to

get solutions that persist for ε > 0.

Rigorous matched asymptotic expansion provides one possible avenue for gluing slow and fast solutions

together, and we refer to [257] for further details. Geometric singular perturbation theory, originating in

work by Fenichel, offers an alternative approach: if the slow manifold M0 is normally hyperbolic for (6.8),

then it persists as an invariant manifold Mε of (6.6) for ε > 0 with dynamics that is close to the dynamics

of (6.9) on M0. The so-called Exchange Lemma [54, 208, 240, 350] due to Jones and Kopell then describes

the dynamics near the manifold Mε and allows one to carry out the matching of slow and fast solutions,

and we refer to [208] for a review of this approach; see Figure 6.2 for an illustration. If M0 is not normally

hyperbolic, then geometric blowup can often be used to analyze the dynamics, and [120, 241] contain recent

results in this direction.

Last, we mention that homoclinic orbits in near-integrable Hamiltonian systems are often the building blocks

of complicated chaotic behavior, and we refer to [168] for a comprehensive book on this topic.

6.7 Infinite-dimensional systems

Many of the results reviewed and summarized in this survey can be generalized to infinite-dimensional

dynamical systems. We give a brief list of such systems and a few pointers to the relevant literature.

Delay differential equations are systems where the evolution of the solution u(t) depends not only on its

state at time t but also on its history: they occur often as models in population dynamics, in laser systems,

and in system with time-delayed feedback. A typical delay differential equation is of the form

u̇(t) = f(u(t), u(t− τ)), u ∈ Rn,

where τ > 0 is the temporal delay. Such equations generate dynamical systems on the function space

C0([−τ, 0],Rn). Both geometric and analytical approaches can be used to study homoclinic and heteroclinic
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bifurcations in delay differential equations, and we refer to [166, 167] and [426] for results and further

references.

Functional differential equations of mixed type (FDEs) are of the form

u̇(t) =

m∑
j=−m

αju(t+ j) + f(u(t)), u ∈ Rn, (6.10)

for constants αj ∈ R and m ≥ 1. Thus, in contrast to delay differential equation, the equation for the rate

of change of u at time t depends here not only on the past but also on the future. FDEs are ill-posed in

the sense that, given an initial condition u(t) defined on the interval [−m,m], a solution to (6.10) may not

exist. In particular, FDEs do not generate a flow on an appropriate function space, which prevents us from

studying homoclinic bifurcations using geometric Poincare-map based approaches. Recently, however, the

existence of exponential dichotomies was established for FDEs; see [170, 266]. This opens up the possibility

of using Lin’s method for studying homoclinic bifurcations for FDEs and recent work in this direction can

be found in [145, 197].

Partial differential equations (PDEs) provide another important class of infinite-dimensional dynamical sys-

tems. Consider, for instance, systems of parabolic partial differential equations

ut = D∆u+ f(u), x ∈ Ω ⊂ Rd, u ∈ Rn

with Dirichlet or Neumann conditions, where ∆ =
∑d
j=1

∂2

∂x2
j

denotes the Laplace operator on a domain Ω

with smooth boundary, D is a diagonal positive matrix, and f is a smooth nonlinearity. More generally, we

may consider an abstract system of the form

u̇ = Au+ f(u), (6.11)

where A is a sectorial operator with dense domain defined on some Banach space X. These equations

generate semiflows: solutions with prescribed initial data at t = 0 exist for t > 0 but not necessarily for

t < 0 in backward time. Having a semiflow available is sufficient to use many of the analytical and geometric

techniques we discussed in §3, and we refer to [176] for results in this direction. In particular, the bifurcation

of periodic orbits with large period from a homoclinic orbit considered in §3.6 was investigated in [88]. We

also mention that the homoclinic center-manifold theory developed in [343] is applicable to equations (6.11)

with A sectorial.

Homoclinic bifurcation theory for elliptic partial differential equations

∆u+ f(u) = 0, x ∈ Ω× R, u ∈ Rn

on cylindrical domains is often of interest as elliptic PDEs on cylinders arise when studying travelling waves

of parabolic PDEs on such domains. Similar to FDEs, elliptic PDEs are ill-posed as initial-value problems.

Exponential dichotomy theory for such systems was developed in [311], and we refer to [311, 347, 348] for

results on homoclinic and heteroclinic bifurcations for elliptic and pseudo-elliptic PDEs.
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[5] V. S. Afrăımovich and S.-B. Hsu. Lectures on chaotic dynamical systems. American Mathematical Society,

Providence, RI, 2003.
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[31] G. R. Belitskĭı and A. Y. Kopanskii. Equivariant Sternberg-Chen theorem. J. Dynam. Differential Equations

14 (2002) 349–367.

[32] J. A. Beloqui. Modulus of stability for vector fields on 3-manifolds. J. Differential Equations 65 (1986) 374–395.

[33] L. A. Belyakov. Bifurcation set in a system with homoclinic saddle curve. Math. Notes 28 (1981) 910–916.

[34] L. A. Belyakov. Bifurcations of systems with a homoclinic curve of the saddle-focus with a zero saddle value.

Mat. Zametki 36 (1984) 681–689, 798.

[35] V. N. Belykh. Bifurcation of separatrices of a saddle point of the Lorenz system. Differ. Equations 20 (1984)

1184–1191.

[36] V. N. Belykh and V. V. Bykov. Bifurcations for heteroclinic orbits of a periodic motion and a saddle-focus and

dynamical chaos. Chaos Solitons Fractals 9 (1998) 1–18.
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[45] C. Bonatti and E. Dufraine. Équivalence topologique de connexions de selles en dimension 3. Ergodic Theory

Dynam. Systems 23 (2003) 1347–1381.

[46] C. Bonatti, A. Pumariño and M. Viana. Lorenz attractors with arbitrary expanding dimension. C. R. Acad.

Sci. Paris Sér. I Math. 325 (1997) 883–888.

[47] P. Bonckaert. Conjugacy of vector fields respecting additional properties. J. Dynam. Control Systems 3 (1997)

419–432.

[48] P. Bonckaert and P. De Maesschalck. Gevrey and analytic local models for families of vector fields. Discrete

Contin. Dyn. Syst. Ser. B 10 (2008) 377–400.

[49] A. R. Borisyuk. Global bifurcations on the Klein bottle. The unimodal case. Math. Notes 71 (2002) 316–329.

106



[50] A. R. Borisyuk. Global bifurcations on a Klein bottle. The general case. Sb. Math. 196 (2005) 465–483.

[51] W. Brannath. Heteroclinic networks on the tetrahedron. Nonlinearity 7 (1994) 1367–1384.

[52] H. W. Broer. Formal normal form theorems for vector fields and some consequences for bifurcations in the

volume preserving case. In: Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), volume

898 of Lecture Notes in Math. Springer, Berlin, 1981, 54–74.

[53] H. W. Broer and G. Vegter. Subordinate shil′nikov bifurcations near some singularities of vector fields having

low codimension. Ergodic Theory Dynam. Systems 4 (1984) 509–525.
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