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Abstract

We construct unbounded strange attractors for vector fields in R
3 that are robust transitive

under uniformly small perturbations. Their geometry is reminiscent of geometric Lorenz and

other singular hyperbolic attractors, but they contain no equilibria.
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1 Introduction

Central topics in dynamical systems are the characterization of robust dynamical properties and

the description of attractors. In this paper we consider vector fields in R
3 and provide a geometric

construction of robust transitive unbounded attractors.

It is well known that compact hyperbolic attractors, and various singular hyperbolic attractors [11]

such as geometric Lorenz attractors, occur robustly with respect to smooth perturbations. In the

reverse direction it is known that compact attractors for differential equations in R
3 that are robust

transitive in the C1 topology, are hyperbolic or singular hyperbolic [12]. Unbounded invariant sets

that are robust transitive have attracted much less interest. Unbounded attractors do seem to

appear naturally in applications; numerical experiments on the Rikitake model [8, 10, 14], see also

Section 5, indicate the robust occurrence of unbounded attractors.

The topology on the class of vector fields we will consider is the uniform Cj topology. Write X j(R3)

for the set of Cj vector fields on R
3 endowed with the uniform Cj topology. A closed transitive

invariant set Λ (transitivity means the existence of a dense forward orbit) for a differential equation

u̇ = f(u) is robust transitive if there is an open neighborhood U of Λ for which Λ is the maximal

invariant set, and if for any differential equation u̇ = g(u) with g sufficiently close to f , the maximal

invariant set for g in U is a transitive invariant set. An attractor for a vector field f is a closed

transitive invariant set A, which attracts nearby orbits: there is an open neighborhood U of A for

which positive orbits for f of points x ∈ U have ω-limit sets contained in A (if A is unbounded there

may exist such positive orbits that escape to infinity, with empty ω-limit set). We speak of a robust

unbounded attractor A, if it is robust transitive and also the properties of being an attractor and

being unbounded are robust.
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Theorem 1.1. There is an open set U ⊂ X j(R3), j ≥ 3, so that each vector field from U possesses

a robust unbounded attractor.

The construction uses compactifications of differential equations to the closed unit ball, where the

vector field restricted to the unit sphere that bounds the unit ball can be seen as the “vector field at

infinity”. It generalizes to higher dimensions, yielding higher dimensional analogs of Theorem 1.1.

The construction starts with a vector field whose compactification has an attractor intersecting the

unit sphere. The original vector field therefore has un unbounded attractor. We construct the vector

field such that uniformly small perturbations of it have compactifications with nearby attractors as

well. It is a consequence of the construction that the vector field restricted to the attractor is not

structurally stable. Where the attractor of the compactified vector fields contains equilibria (in fact,

3 equilibria) on the unit sphere, the attractors of the original vector fields contain no equilibria.

To explain the construction in more detail, we first recall the notions of partially hyperbolic set and

singular hyperbolic set.

A compact invariant set Λ of u̇ = f(u) is a partially hyperbolic set if, up to time reversal, there is an

invariant dominated splitting TΛ = Es ⊕ Ec and positive constants K,λ such that

(i) Es is contracting: |Dϕt/E
s
u| ≤ Ke−λt, for all u ∈ Λ and t > 0.

(ii) Es dominates Ec: |Dϕt/E
s
u||Dϕ−t/E

c
ϕt(u)| ≤ Ke−λt, for all u ∈ Λ and t > 0.

The central direction Ec of Λ is said to be volume expanding if the additional condition

| det(Dϕt/E
c
u)| ≥ Keλt

holds for all u ∈ Λ and t > 0. Let Λ be a compact invariant set of u̇ = f(u) containing at least

one equilibrium. Then Λ is called a singular hyperbolic set if it is partially hyperbolic with volume

expanding central directions and all its equilibria are hyperbolic [11]. A singular hyperbolic set is

called a singular hyperbolic attractor if it moreover is an attractor. We refer to the book chapter

[4, Chapter 9], the article [2] and references therein for general information on singular hyperbolic

attractors.

The main arguments to arrive at Theorem 1.1 are as follows. For a vector field f on R
3, a com-

pactification Γf on the unit ball D
3 is defined. This is a vector field of the form αφ∗f , where φ is

a diffeomorphism R
3 → D

3 and α is a suitable positive function so that φ∗f extends continuously

to the boundary S
2 of D

3. In Section 3 we review this construction. We construct Γf so that Γf

is has a Cj extension to S
2 and possesses a singular hyperbolic attractor A that intersects S

2, see

Section 2. For fixed α in the definition of compactification, Γf determines f . The existence of a

singular hyperbolic attractor for Γf implies that f has un unbounded attractor φ−1(A). We find α

so that uniformly Cj , j ≥ 3, small perturbations f + r of f yield, under compactification Γ(f + r),

vector fields Cj close to Γf . Then Γ(f + r) has a singular hyperbolic attractor close to A. Hence,

f + r has an unbounded attractor close to φ−1(A). Theorem 1.1 directly follows from combining

Proposition 3.1 and Theorem 2.1.

We note that [9] contains constructions of vector fields with “singular horseshoes” on the closed unit

ball; invariant sets (not attractors) containing a heteroclinic connection between an equilibrium and

a periodic orbit inside the unit sphere.

We are grateful to Hamid Zangeneh for discussions about the Rikitake model.
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2 Singular hyperbolic attractors on the closed unit ball

We construct a smooth vector field

˙̄u = f̄(ū),

on R
3 which admits the unit sphere S

2 as an invariant manifold and which has a transitive invariant

set Λ containing orbits on S
2. The set Λ has a singular hyperbolic structure and is a (singular

hyperbolic) attractor for the vector field restricted to the closure of D
3.

Theorem 2.1. There exists a smooth vector field ˙̄u = f̄(ū) on the closure of D
3 with a singu-

lar hyperbolic attractor intersecting S
2. The attractor is robust in the Cj topology, j ≥ 3 (under

perturbations that keep S
2 invariant).

Proof. The construction of f̄ is similar to that of geometric Lorenz attractors [1, 6, 18], the singular

hyperbolic attractor will however contain three equilibria instead of one.
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y

Figure 2.1: Separatrices of the flow in W u(S) flow into W and E.

We construct f̄ to be Z2 equivariant under the action R(x, y, z) = (−x,−y, z);

f̄ ◦R = Rf̄. (2.1)

The vector field f̄ has hyperbolic equilibria on S
2 at S = (0, 0,−1) and W = (−1, 0, 0), E = (1, 0, 0).

These equilibria have one dimensional unstable manifolds, with tangent directions parallel to the

x-axis. Invariance of S
2 forces Wu(S) ⊂ S

2; for the vector field f̄ , the closure of Wu(S) is a circle

arc connecting W to E, see Figure 2.1. The unstable manifolds of E and W are transverse to S
2.

Within the class of vector fields for which S
2 is invariant, these heteroclinic connections are robust

as they give saddle-sink connections inside S
2.

We pose the following spectral conditions on the linearized differential equation about the equilibria.

The eigenvalues λ1, λ2, λ3 of Df(S) satisfy

λ1 < λ2 < 0 < λ3, λ2 + λ3 > 0.
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The eigendirections corresponding to λ1, λ2, λ3 are respectively the y-axis, the z-axis and the x-axis.

The eigenvalues ν1, ν2, ν3 of Df(W ) and Df(E) satisfy

ν1 < ν2 < 0 < ν3, ν2 + ν3 > 0.

The eigendirections corresponding to ν1, ν2, ν3 are respectively the y-axis, the z-axis and the x-axis.
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Figure 2.2: The first return map Π = (Π1, Π2), with indicated the images of the parts Σ+ = Σ∩{x >

0}, Σ− = Σ ∩ {x < 0}, and the interval map Π1 .

On a cross section Σ ⊂ {z = −1/2} a first return map Π is defined, mapping Σ (apart from

{x = 0} ∩ Σ which is contained in W s(S)) inside itself. As for the geometric Lorenz model one

obtains Π as a composition of local transition maps through neighborhoods of the equilibria S,W,E

and global transition maps from the flow boxes connecting these neighborhoods. For suitable cross

sections Σin
S ,Σ

out
S near S, and suitable coordinates (x, y) on them, the local transition map Πloc

S :

Σin
S → Σout

S reads

Πloc
S : (x, y) = (x−λ2/λ3 , yx−λ1/λ3)

(this is a transition map for a linear vector field). Likewise, for suitable cross sections Σin
W ,Σout

W near

W , the local transition map Πloc
W : Σin

W → Σout
W writes

Πloc
W : (x, y) = (x−ν2/ν3 , yx−ν1/ν3).

With the global transition map ΠS,W : Σout
S → Σin

W equal to the identity map, the global transition

map ΠW,S : Σout
W → Σin

S equal to (x, y) 7→ (1 − ax, y/2 + 1/2) (with a < 2, close to 2) and

the other transition maps with W replaced by E obtained by symmetry, one gets an expression

Π : [−1, 1]2 → [−1, 1]2:

Π(x, y) = (Π1(x),Π2(x, y)) =

{

(1 − a|x|λ2ν2/λ3ν3 ,Π2(x, y)), x < 0,

(−1 + a|x|λ2ν2/λ3ν3 ,Π2(x, y)), x > 0,

where Π2 is a contraction and Π1 is an expansion (see Figure 2.2). This is the same type of expression

as for the geometric Lorenz model. Because of this and the assumed spectral conditions, f̄ possesses

a singular hyperbolic attractor.

To prepare for a proof of robustness of the singular hyperbolic attractor, we consider stable foliations.

Near the singular hyperbolic attractor there is a stable foliation Gs for the flow, compare [6, 15, 18].

Note that Gs defines a foliation Fs on the cross sections, invariant under the transition maps, by
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Figure 2.3: Branched surface W .

projecting along flow lines. On Σin
S , Fs = {x = constant}. Take a branched surface W transverse

to leaves of the stable foliation, as for the Lorenz model [18], see Figure 2.3. Projecting along

leaves of Fs to the branched surface, yields one dimensional maps. This gives Π1 as a composition

πW,S ◦ πloc
W ◦ πS,W ◦ πloc

S if x < 0 and πE,S ◦ πloc
E ◦ πS,E ◦ πloc

S if x > 0. Here πW,S(x) = −1 + ax,

πloc
W (x) = x−ν2/ν3 , πS,E(x) = x, πloc

S (x) = x−λ2/λ3 .

Now we prove robustness of the singular hyperbolic attractor. As in [7, Proposition A.2.1], Cj , j ≥ 3,

small perturbations of f̄ give rise to first return maps admitting C1 invariant stable foliations (stable

foliations for the perturbed vector fields are merely continuous). Choosing the branched surface near

the equilibria to be a local center manifold, one may assume πloc
W (x) = x−ν2/ν3 and πloc

S (x) = x−λ2/λ3

also for the perturbed vector field (where the eigenvalues may have changed slightly) [7, Proposition

A.1.1]. The global transition maps are C1 perturbations of those for f̄ . Hence, the one dimensional

map resulting from projecting along foliation leaves is expanding. Conclusion: each vector field near

f̄ has a singular hyperbolic attractor.

The proof simplifies somewhat under additional eigenvalue conditions λ1 < λ2−λ3 and ν1 < ν2−ν3.

Then the stable foliation Gs for vector fields near f̄ is C1 and local center unstable manifolds near

the equilibria are C2 [16]. See [15, 17] for further information on stable foliations for return maps.

We assume Cj , j ≥ 3, vector fields. A similar result may be accomplished with less smoothness,

working directly with return maps on a cross section and using Shil’nikov variables to compute their

asymptotic expansions.

The arguments in the above proof yield an open class of vector fields with robust singular hyper-

bolic attractors. Similar attractors containing three equilibria, for differential equations in R
4, are

considered in [13].

3 Compactifications

We consider compactifications of vector fields on R
3: vector fields equivalent to a push-forward to the

open unit ball D
3 with a smooth extension to the unit sphere S

2 that bounds D
3. Such techniques

are frequently applied to the study of polynomial vector fields in the plane [5]. We identify open

classes of vector fields on R
3, in the uniform Cj topology, with identical extension to S

2 when

compactifying.

Consider the smooth coordinate transformation φ mapping R
3 to D

3;

φ(u) = u/
√

1 + |u|2.
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The inverse coordinate transformation is given by

φ−1(ū) = ū/
√

1 − |ū|2.

Start with a differential equation

u̇ = f(u) (3.1)

on R
3 and the push-forward by φ−1,

˙̄u = f̄(ū), (3.2)

on D
3. Then

f̄(ū) =
f(u)(1 + |u|2) − u〈f(u), u〉

(1 + |u|2)3/2

= f(ū/
√

1 − |ū|2)
√

1 − |ū|2 − ū〈f(ū/
√

1 − |ū|2), ū〉
√

1 − |ū|2. (3.3)

Suppose (3.1) is such that it equals the push-forward by φ−1 of some vector field (3.2) extending

smoothly to S
2. Uniformly Cj small perturbations of (3.1) may not correspond to Cj small per-

turbations of (3.2). To remedy this difficulty, we introduce additional multiplications of the vector

fields with positive functions, implying changes of the topology of perturbations (when multiplying

perturbations with these functions).

For σ > 0, define the function

ασ(u) = (1 + |u|2)σ

and consider vector fields fσ = ασf . As ασ is a positive function, this multiplication is equivalent to

a time reparameterization. Write ᾱσ(ū) = ασ(φ−1(ū)) = 1/(1 − |ū|2)σ. Note that φ∗fσ = φ∗ασf =

ᾱσφ∗f = ᾱσ f̄ . Define the compactification Γσfσ of fσ as the vector field φ∗fσ/ᾱσ = f̄ .

Let r be a Cj uniformly small vector field on R
3 and perturb u̇ = fσ(u) to u̇ = fσ(u) + r(u). Define

the compactification Γσ(fσ + r) as φ∗(fσ + r)/ᾱσ and note

Γσ(fσ + r) = f̄ + (φ∗r)/ᾱσ.

Proposition 3.1. Let fσ be a smooth differential equation on R
3, so that its compactification Γσfσ =

f̄ has a Cj extension to S
2. Then for 2σ > 3j − 1 there is an open neighborhood U of fσ in the

uniform Cj topology so that any g ∈ U has compactification Γσg that has Cj extension to S
2, equal

to f̄ .

Proof. This is a direct computation using the definition of Γσ and (3.3) with f replaced by f +

r/α.

If f̄ is Z2-equivariant as in (2.1), then so are f and fσ; note also that the Lorenz model and the

Rikitake model (see the next section) have this symmetry.

4 Vector fields on the positive half space

Alternatively one can consider vector fields on the positive half space H
3 = {z > 0} that have a

smooth limit on the boundary {z = 0}. For computational ease, we look at vector fields on H
3 and

pushforwards by ψ : H
3 → H

3 given by ψ(x, y, z) = (x, y, 1/z).

Writing u = (x, y, z), consider differential equations

u̇ = g(u) (4.1)
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and u̇ = gσ(u) = zσg(u) on H
3. With ū = (x̄, ȳ, z̄) = ψ(u), let ḡ = ψ∗g and assume ū 7→ ḡ(ū) has a

smooth extension to {z̄ = 0}. Write ḡσ = ψ∗gσ. Consider the compactification ˙̄u = z̄σḡσ(ū) = ḡ(ū).

For σ > 2j − 2, the compactification ḡ(ū) + z̄σψ∗r(ū) of a uniformly Cj small perturbation g + r of

g is a vector field with a Cj extension to the boundary {z̄ = 0} of H
3.

For the construction of a vector field, equivalent to f̄ in Theorem 2.1 but on the upper half space H
3

(see the end of Section 3), the singular hyperbolic attractor would intersect the plane that bounds

H
3 in a line segment connecting three equilibria. Another possible construction, closer to the idea

of taking a Lorenz vector field and pushing the origin to infinity, is as follows. Consider a vector

field f̄ with a Lorenz like attractor contained in H
3 and with the origin as hyperbolic equilibrium.

Suppose near the origin, the vector field is in normal form

ẋ = λ3x,

ẏ = λ1y,

ż = λ2z + x2,

which has a local unstable manifold z = x2/(2λ3 − λ2). Near the origin along {z = 0}, away from

the local strong stable manifold (the y-axis), the vector field moves into H
3. As in the previous

section, one produces robust strange unbounded attractors by combining a blow-up with a time

reparametrization.

Finally we remark that Dψ−1 may not map a splitting in contracting and center unstable directions

of a partially hyperbolic set for ḡ to (uniform) contracting and center unstable directions for g. This

can be seen from a construction of a vector field with a compact singular hyperbolic attractor on

H
3 containing equilibria on its boundary as in Section 2, combined with the following computation:

the push-forward of a vector field ˙̄x = λ3x̄, ˙̄y = λ1ȳ, ˙̄z = λ2z̄ by ψ−1 is ẋ = −λ3x, ẏ = λ1y, ż = λ2z.

5 The Rikitake model

Numerical experiments on the Rikitake model indicate the existence of unbounded strange attractors,

with a geometry as in the above constructed geometric model. A compactification of the Rikitake

model however leads to a conservative vector field on S
2, different from the geometric model and

making a rigorous analysis complicated. For reference we deduce the compactification.

The nondimensionalized Rikitake equations [8, 14] are given by

ẋ = −µx+ yz,

ẏ = −µy + (z −A)x,

ż = 1 − xy. (5.1)

Figure 5.1 shows what appears to be a strange attractor approaching the z-axis arbitrarily close, see

also [10]. Restricted to the z-axis (5.1) equals ż = 1; orbits on it escape to infinity.

To compute the compactification of (5.1) to D
3, it is convenient to work with the coordinate trans-

formation û = u/(1 + |u|), which is smooth away from u = 0 and maps R
3 to the interior D

3 of the

unit sphere S
2. Note that ū = û/

√

1 − 2|û| + 2|û|2. The inverse transformation of û = u/(1 + |u|)

is given by u = û/(1 − |û|). Compute

˙̂u = (1 − |û|)u̇− (1 − |û|)〈û, u̇〉
û

|û|
.
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Figure 5.1: Rikitake attractor for parameter values µ = 1 and A = 4.

Plugging in the differential equation yields, for û = (x̂, ŷ, ẑ),

˙̂x = −µx̂+
ŷẑ

1 − |û|
−

x̂

|û|
F (û),

˙̂y = −µŷ + x̂

(

ẑ

1 − |û|
−A

)

−
ŷ

|û|
F (û),

˙̂z = 1 − |û| −
x̂ŷ

1 − |û|
−

ẑ

|û|
F (û), (5.2)

where

F (û) = −µx̂2 − µŷ2 −Ax̂ŷ +
x̂ŷẑ

1 − |û|
+ (1 − |û|)ẑ.

Multiplying by a factor 1− |û| yields a differential equation on D
3 which can be smoothly extended

to S
2. In fact, on S

2, one obtains the differential equation

˙̂x = ŷẑ(1 − x̂2),

˙̂y = x̂ẑ(1 − ŷ2),

˙̂z = −x̂ŷ(1 + ẑ2). (5.3)

It is clear that this statement also applies when using the smooth coordinate transformation ū =

u/
√

1 + |u|2. Note that (5.3) has six equilibria on S
2, at the intersections points of the coordinate

axes with S
2. The northpole N = (0, 0, 1) and southpole S = (0, 0,−1) are saddles for (5.3). The

linearization of (5.2) about N has an additional eigenvalue 0 for the invariant z-axis; along the z-axis

the flow is thus weakly attracting from inside D
3. Likewise the flow is weakly expanding along the

z-axis near the southpole. The four other equilibria are foci. Inside the coordinate planes there are

heteroclinic connections between N and S. The flow consists further of periodic solutions encircling

the foci and converging to the heteroclinic cycles. Note that the center stable and center unstable

manifolds of N are smooth manifolds yielding, in the original coordinates, stable and unstable

manifolds of the z-axis [3]. We have

d

dt
|û|2 = (−µx̂2 − µŷ2)(1 − |û|)2 −Ax̂ŷ(1 − |û|)2 + x̂ŷẑ(1 − |û) + ẑ(1 − |û|)3,
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showing that the foci are weakly repelling in directions into D
3.
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