SKEW PRODUCTS OF INTERVAL MAPS OVER SUBSHIFTS

MASOUMEH GHARAEI AND ALE JAN HOMBURG

ABSTRACT. We treat step skew products over transitive subshifts of finite type with in-
terval fibers. The fiber maps are diffeomorphisms on the interval; we assume that the end
points of the interval are fixed under the fiber maps. Our paper thus extends work by
V. Kleptsyn and D. Volk who treated step skew products where the fiber maps map the
interval strictly inside itself.

We clarify the dynamics for an open and dense subset of such skew products. In
particular we prove existence of a finite collection of disjoint attracting invariant graphs.
These graphs are contained in disjoint areas in the phase space called trapping strips.
Trapping strips are either disjoint from the end points of the interval (internal trapping
strips) or they are bounded by an end point (border trapping strips). The attracting
graphs in these different trapping strips have different properties.

1. INTRODUCTION

We aim to describe the dynamics of specific step skew products

(W, ) = (0w, fuy (7))

with a shift as dynamics in the base and with interval fiber maps. That is, w = (w;)iez
is a sequence using finitely many symbols, and o is the left shift operator acting on it.
We treat such systems in cases where o is a subshift of finite type and where the f;’s are
diffeomorphisms on a compact interval that fix the endpoints of the interval.

Kleptsyn and Volk [5] conducted a study of dynamics of generic step skew products of
diffeomorphisms on the line over subshifts of finite type. They looked at diffeomorphisms
that are mapping a bounded interval strictly inside itself. They showed that so called bony
graphs (after Kudryashov, see [6]) arise as attractors: these attractors are the union of a
measurable graph and a zero measure set of intervals inside fibers (the bones).

A different situation occurs for diffeomorphisms on a compact interval that fix the end-
points of the interval. Such systems gained interest with an example by Kan [4] where they
gave rise to intermingled basins. This example is over a full shift on two symbols and the
end points of the interval are attracting on average. II’'yashenko [2, 3] similarly considered
examples of diffeomorphisms over a full shift under an assumption of repulsion on average
at the end points. He established attractors with positive standard measure (the standard
measure is the product of Markov measure on the shift space and Lebesgue measure on the
fiber space). The attractors are the closure of an invariant measurable graph. Note the
contrast with bony graphs which have zero standard measure.

We provide a classification of dynamics of generic step skew products of diffeomorphisms
on a compact interval (all diffeomorphisms fixing end points of the interval) over subshifts

of finite type. Both types of graphs, bony and thick, can arise in a single step skew product.
1
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1.1. Step skew product systems over subshifts of finite type. Write ) for the finite
set of symbols {1,...,N}. Let A = (aij)ﬁfj:l be a matrix with a;; € {0,1}. Associated
to A is the set ¥ 4 of bilateral sequences w = (wy,)>,, composed of symbols in €2 and with

transition matrix A:

opwnis = 1
for all n € Z. Let (X 4,0) be the subshift of finite type on 3 4. The map o shifts every
sequence w € X 4 one step to the left, (ow); = w;+1. We can also consider the left shift
operator ¢ acting on the one-sided symbol space Zjl, i.e. the space of sequences w = (wy,)§°
composed of symbols in  with ay,,w,,;, = 1 for all n > 0. The spaces ¥4 and Zj[l are
endowed with the product topology. We assume that A is primitive, i.e.

dng e NVi,j € (Ano)ij > 0.

This implies that the subshift ¢ is topologically transitive and topologically mixing.

Consider the interval I = [0,1] and {fi,..., fx}, a finite family of orientation preserving
(strictly increasing) C2-diffeomorphisms defined on I assuming that f;(0) = 0 and f;(1) = 1
for every i € Q. Write F'* for the skew product system

FH(w,2) = (ow, fu(x))

on Zj‘ x I, where the fiber maps f, depend only on wy, i.e. f, = fo,- We also write
(FH)"(w,z) = (0"w, f*(x)) for iterates of F* in which

fﬁ(x) - fwnfl 00 fwo(‘r)'
Likewise, on ¥ 4 x I we have
F(w,z) = (0w, fu(z)).

In this paper we consider the following set of step skew product systems.

Definition 1.1. We denote by S the set of step skew product systems F': X4 x T — X4 x [
of the form

F(wax) = (O'w,wa(l‘)),
for orientation preserving diffeomorphisms f; : I — I that fix end points of I.

1.2. Markov measures. Let II = (mj)%.:l be a right stochastic matrix, i.e. m;; > 0 and
Z;V:l m;j = 1, such that m;; = 0 precisely if a;; = 0. By the Perron-Frobenius theorem for
stochastic matrices, there exists a unique positive left eigenvector p = (p1, ..., pn) for I that
corresponds to the eigenvalue 1; i.e.
N
Zpiﬂ-ij =Dy, \V/] e . (1)
i=1
We assume that p is normalized so that it is a probability vector, Zf\il p; = 1.
For a finite word wg, ...wy,, , ki € Z, the cylinder Cfi’l';jf,]f&kn (we will also use the notation

CErFn) s the set

S (=D E w;ﬂ =wy,;, V1 <i<n}.

wkl,...,wkn
As cylinders form a countable base of the topology on X 4, Borel measures on X 4 are
determined by their values on the cylinders. A Borel measure v on X 4 is called a Markov
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measure constructed from the distribution p; and the transition probabilities m;;, if for every
we€ Xygand k <1,

-1
V(Colj’m’l) = Puwy, H Twiwi1
i=k

One can easily check that with this definition v is well-defined and is a probability measure.
Moreover, v is invariant under the shift map o; it is ergodic and supp(v) = X 4. From now
on, we consider a fixed ergodic Markov measure v on X 4. Write 7 for the natural projection
Y4+ ¥ Then, v = 7w is the Markov measure on X7,.

We do not consider measures on X 4 that are not Markov measures. The reason is the
connection of Markov measures to stationary measures for the stochastic process induced
by F7T, see Section 3.

Definition 1.2. The standard measure s on X4 X I is the product of v and the Lebesgue
measure on the fiber.

1.3. Trapping strips, bony graphs and thick graphs. Let F' € S. As in [5], F' admits
forward invariant regions called trapping strips. Let (1,02 : ¥4 — I, be continuous
functions such that ¢; < @2, i.e. p1(w) < p2(w) for any w € ¥ 4. Given such functions, we
define the strip

Sprpe = {(w,2) 5 p1(w) <o < pa(w)}-
We distinguish two types of strips:

(1) An internal strip has 0 < 1 < 2 < 1;
(2) For a border strip, 1 = 0 or @9 = 1, or both.

If the graph of ¢; (or ¢9) is disjoint from ¥ 4 x {0} (from ¥ 4 x {1}), then this graph is
called an internal boundary.

Definition 1.3. A strip Sy, ,, is called a trapping strip if F(Sy, ¢,) € Spy - The strip
S0 15 called a strict trapping strip if moreover internal boundaries are mapped inside the
interior of Sy, o, -

Likewise one can consider trapping strips for F'™. It is clear that internal and border
trapping strips are the only two possible kinds of trapping strips. Consider a trapping
strip § with boundary functions ¢ < @o. Because of monotonicity of the fiber maps, the
images F"(S) are strips. Since for a trapping strip S also F™(S) C S, we get that for every
n > 0 the image F"(S) is a trapping strip. Therefore any trapping strip S has a non-empty
maximal attractor

Ao = ﬁ Fr(S).
n=0

We encounter two different types of maximal attractors.

Definition 1.4. A measurable graph B in ¥ 4 X I is called a bony graph if it is contained
i a closed set that intersects v-almost every fiber in a single point and every other fiber in
an interval, which is called a bone.
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Note that the standard measure of the closure of a bony graph is zero;
] (E) =0.

Following [5] we also call the closed set that is the union of the measurable graph and the
bones, a bony graph. A bony graph can have an empty set of bones; a bony graph with
an empty set of bones is a continuous graph. It is easy to construct examples where the
maximal attractor is in fact a continuous graph.

Definition 1.5. A measurable graph B in ¥ 4 x I is called a thick graph if its closure has
positive standard measure, i.e.

s (E) > 0.
We also call the closure of the thick graph, a thick graph.

2. CLASSIFICATION OF DYNAMICS FOR GENERIC SKEW PRODUCTS

The Lyapunov exponent of a system F' € S at a point (w,z) € ¥4 x I is

lim —ln(fw . --~of(f}0( >_hm721n awfw ))), (2)

n—oo N n—oo n

in case the limit exists. Since for every ¢ € €}, z = 0, 1 are fixed points of f;, by the definition
of Markov measure and Birkhoff’s ergodic theorem, we obtain for x = 0,1 that

N
L(z) = lim ﬁzln oiw(®)) = /E+ In (f,(z)) dv*(w) ZZ;piln (fi(@))

for v*-almost all w € £¥. Note that generically L(0) and L(1) differ from zero.

We have introduced all notions needed to present our description of the dynamics of
generic step skew product systems. The following theorem holds for step skew product
systems from an open and dense subset of S which is given explicitly in Section 2.1 below.

Theorem 2.1. There is an open and dense set G of S, so that F' € G satisfies the following.
F admits a finite collection of disjoint trapping strips St, 1 <t < T, of the form

St=uUl_,CY x [AL, B!].
Furthermore,

(1) 8 contains a unique attracting invariant graph Tt: Tt is the graph of a measurable
function X' : D' C ¥ 4 — I defined on a set D' with v(D') = 1. Given x; € [Al, Bl],
for 0w € DY,

| (@) — X' (w)| = 0 as n — oco.

(2) If L(0) < 0, then I' = ¥4 x {0} is an attracting invariant graph: there is a set
D! C ¥4 with v(DY) =1, and a positive function r : D' — (0,1] so that for (w,x)
with w € D', 0 <z < r(w),

f5(z) = 0 as n — oo.

A similar statement applies to X4 x {1} if L(1) < 0.
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(8) (a) if the strict trapping strip is a border trapping strip, then its mazimal attractor
is a thick graph.
(b) if the strict trapping strip is an internal trapping strip, then its mazimal at-
tractor is a bony graph.
(4) With respect to the standard measure on X 4 x I, the positive orbit of almost every
initial point converges to one of the attracting graphs from items (1), (2).

Kleptsyn and Volk [5] show that the bony graphs in internal strict trapping strips are
upper-semicontinuous:

Vw € XyVe > 036 > 0d(w,w’) < § = By C Us(By),

where d metrizes the product topology on ¥4, B, = BN ({w} x I) and U.(B,) denotes
the e-neighborhood of B, in {w} x I. They refer to these bony graphs as continuous bony
graphs.

2.1. Genericity conditions. The open and dense set G of S in Theorem 2.1 is determined
by a number of genericity conditions. Here we list the imposed genericity conditions. They
are equal to those appearing in [5], with two additional conditions related to the fixed
boundary points of I (items (1) and (5) below). The first condition gives that the end
points of I are repelling or attracting, on average.

(1) L(0), L(1) #0.
To formulate the further conditions we introduce the notions of simple transition and
simple return.

Definition 2.1. A finite word wy ...w, is called admissible if each pair of consecutive
symbols wiw; 1 is admissible; i.e. Ty,w,., # 0. A map of the form

fwl...wn = fwno“’ofwl :I—)I,

1s called an admissible composition if the word wy . ..w, is admissible.

Definition 2.2. A simple transition is an admissible composition f,,, ., I — I in which
all the symbols w;, 1 < i < n are different. It is called a simple return if also w1 = wpy1.

We can now state the following genericity conditions.
(2) Any fixed point ¢ of any simple return g is hyperbolic: ¢'(q) # 1;
and if we consider the restriction of f;’s to the open interval (0, 1) then

(3) No attracting fixed point of a simple return is mapped to a repelling fixed point of a
simple return by a simple transition. Also, no repelling fixed point of a simple return
is mapped to an attracting fixed point of a simple return by a simple transition;

(4) One can not choose from the interior of each interval Iy, k € 2, a single point ay
such that for any admissible couple 4, j one could have f;(a;) = a;.

Condition (4) precludes finite invariant sets, see [5]. The final condition relates to minimal
iterated function systems. First we recall the definition of minimality of an iterated function
system. Suppose given an iterated function system IFS{gi,...,gr} of continuous maps g;
on a metric space X. Let Y be a subset of X with ¢;(Y) C Y for all i. We say that
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IFS{g1,...,9x} is minimal on Y if for every points z,y € Y and every neighborhood V' of
y, there is a composition g;, o --- o g;, that maps = into V.
The proof of [2, Lemma 3] gives the following result.

Proposition 2.1. Let f,g : I — I be diffeomorphisms fixing the boundary points of I.
Assume that A = f'(0) <1, up=¢'(0) > 1. Assume further that either

In(A)/In(y) ¢ Q,

. 70, g'(0)
1/0 gllo
AQ—A#MQ—M'

Then the iterated function system generated by f,g is minimal on some interval (0,u).

Proof. T’yashenko [2, Lemma 3] considers, for z,y € (0,1), compositions ¢' o f*(x) that
converge to y for suitable k,l — co. His analysis uses linearizing coordinates ho foh™!(z) =
Az with € [0,s] for an s < 1. Here h is a local diffeomorphism. The two cases where
In(\),In(p) are rationally dependent or not, are distinguished. In case In(\),In(u) are
rationally dependent, the argument works if the second order derivative of hogoh™! at 0 is
not zero. An explicit calculation shows that this gives the condition in the proposition. [J

(5) The admissible returns f, g introduced in Lemma 4.6 satisfy the conditions formu-
lated in Proposition 2.1.

3. STATIONARY MEASURES

A key role in our study is played by ergodic invariant measures for the skew product
systems. The necessary material is collected in this section.

Write Z = Q x I. For every i,j € €0, m;; equals the probability of the transition from a
point (i, z) in Z to another point (7, fi(z)). For every i € Q we denote {i} x I € T by I,.
We can identify I; with I. Denote by B the Borel sigma-algebra on I. We consider Borel
probability measures m on the space Z with m(/;) = p;. For such a measure m, define the
probability measure m; on I; by

m; = m|1i .
m(/;)
We denote by fim; the push-forward measure of m; by f;, where fym;(B) = m;(f;1(B)) for

)

B-measurable sets B. Define T on the space of probability measures on Z by

N
1
(Tm), = o E pimik fimg, Yk € €,
)

with an understanding that 7Tm(I;) = p;.
Definition 3.1. A measure m on the space T is stationary if Tm = m.

Recall the notation CY = {w € ¥4 | wy = k}. Write C’,j’o = {w € T} | wo = k}. For
k € €, write I/]j for the restriction of the Markov measure v™ to the cylinder C,:r 0 A direct
computation gives the following correspondence between stationary measures and invariant

measures for the skew product system with one sided time.
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Lemma 3.1. A probability measure m is a stationary probability measure if and only if pu*
defined by

N
ph=>"yb xmy, (3)
k=1

is an invariant measure of F* with marginal v on Ej‘.

Let FT be the Borel sigma-algebra on Zj[l. It yields a sigma-algebra Fy = 7 'FT on
>4, where m: 3 4 — Zj‘ is the natural coordinate projection. Write F for the Borel sigma-
algebra on X 4. A measure p on X4 X I with marginal v has conditional measures p,, on
the fibers {w} x I, such that

p(A) = [ (A0 () x D) dvle)

for measurable sets A. A measure u* on Ej[‘ x I with marginal v likewise has conditional
measures p. It is convenient to consider T also as a measure on ¥ 4 with sigma-algebra
Fo and pT also as a measure on ¥ 4 X [ with sigma-algebra Fy ® B. When w € ¥ 4 we will
write . for the conditional measures . The spaces of measures are equipped with the
weak star topology. The following result relates invariant measures for the one-sided and
the two-sided skew product systems. It is a special case of [1, Theorem 1.7.2]. We write
Y4 =Y, x X} and with this w = (w™,w") for w € 4.

Proposition 3.1. Let u* be an F ' -invariant probability measure with marginal v™. Then
there exists an F-invartant probability measure p with marginal v and conditional measures

— I +
foo = T fon i (4)

v-almost surely.
Let p be an F'-invariant probability measure with marginal v and 11 : 37, X Ej\ xI — Zj‘ x I
be the natural projection where ¥4 = ¥4 X Ej\. Then

pt =Ty (5)
is an FT-invariant probability measure with marginal vT.
The correspondence <> ut given by (4), (5) is one-to-one and p is ergodic if and only
if ut is ergodic. An invariant measure u for which p,, depends on the past w™ € E;tl only,
corresponds to a measure u* that comes from a stationary measure m as in (3).

4. BONY GRAPHS AND THICK GRAPHS

The proof of Theorem 2.1 is divided into different steps. We will first discuss the case
where both L(0) > 0 and L(1) > 0. The other cases are then easy to treat and will be
considered later.

4.1. Repelling end points. We assume L(0) > 0 and L(1) > 0. We briefly outline the
different steps in the proof of Theorem 2.1, which will be worked out below.
Step 1: Stationary measures: By a Krylov-Bogolyubov procedure on a suitable class of

probability measures we construct stationary measures that do not assign measure
to the endpoints 0 or 1 of the interval [0, 1].
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Step 2: Trapping strips: The convex hull of the support of an ergodic stationary measure,
as constructed in the first step, provides a trapping strip. Trapping strips can be
border trapping strips or internal trapping strips.

Step 3: Conditional measures: A stationary measure gives rise to an invariant measure of
the skew product system with two sided time. We prove that such an invariant
measure has delta measures as conditional measures on fibers. For each trapping
strip there is a unique invariant measure with support in the trapping strip.

Step 4: Attracting graphs: The points of the delta measures constitute an invariant graph.
We discuss its properties in this final step.

For internal trapping strips these results have been obtained by Kleptsyn and Volk [5].
We now elaborate the different steps.

Step 1: Stationary measures. In the construction of stationary measures we iterate the
transformation 7, whose fixed points are the stationary measures. For & € Q and for any
n € N, the nth iterate of m under the transformation 7 is calculated on I}, as

(r Z Diy Tiqig * 'Win—linwinkfg...’inmil' (6)

7»17 Sin=1

The above sum is over all N™ possible symbol sequences of length n + 1 in " ending with
the symbol k, and p;, i 4, - - T, 4, T,k 1S the probability of the transition to the symbol
k in n steps along the symbol sequence i1, ..., iy, k.

We will need the following arithmetic bound that is connected to formula (6). Recall the
assumptions L(0) > 0 and L(1) > 0. Write A; = /(0) and \; = f/(1).

Lemma 4.1. For n large enough and any k, 1 <k < N,

1
Z PiyTiyig - Trin—linﬂ-inkﬁ In(Ai, -+ A,) >0, (7)
11, Sin=1
1 _
Z PiyTiqig ~ - ﬂ-in—linﬂ-inkﬁ In(Ai, -+ Ai,) > 0. (8)
7/17 Hin=1

Proof. We consider the end point 0. First note that for »T-almost all w,
1 k—1
L(0) = lim z In(f’;(0))

k—o0
=0

1 7 1 nz
= Jim, nZn ) (0)

_ 1 n((f") v (w
- /Ejl((fw)(o))d ®

n

N
1
= Z Diy Tiqig =" * ﬂ'infling ln(flll (0) T flln (0))

1yeyin=1
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Hence

N
1
L(0) = | Z PirTiyig * = Tt 10Xy - Ay ) (9)
1] 4eeyn=1
A similar equality as (9) holds for L(1), the Lyapunov exponent at z = 1.
The sum in (7) is an average over all symbol sequences of length n + 1 ending with a
symbol k:

N
1 1 1
o > D, i Wik I0(Ady o A, ) = o

i1 peyin=1

1
/P ﬁ ln()\il ce )‘Zn) dVJr(i),
n,k

where i = (i1,...) and P,y = {i € % ; o™ € Ci}. Since vt is invariant we have
vH(Cr) = vT(o~T(CL)) = vH(Pyg) for any n € N. We observe that v+ (P,x) = py
independent of n and we suppress the dependence of P, j, to n.

Write

1
L, M) = {w62+; 'nln(/\h"')‘in)_L(O)‘ <£forn2M}.

By ergodicity (2), 2In(X; -+ A;,) converges to L(0) for v-almost all (i1,...) € X7, as
n — oo. We therefore have that for all € > 0 there exists M so that v (I'(g, M)) > 1 —e.

Take the positive constant K such that |In\; — L(0)] < K for all j. Choose ¢ small and
M = M(e) so that v+ (I'(e, M)) > 1 —e. Write I'(e, M)¢ = X \ I'(¢, M). For any n > M
we can compute,

1 1
dy = |4~ [ Lo, oa) dvt6) = LO
[ I A ()~ L)
Py
< L / (- An) — L(0)] v (3)
T Pk n ' "
PuT(e, M)
—|—i / ’lln()\i S )—L(O)|du+(z’)
pk n 1 n
Py (e, M)e
< e+ Ke.

Therefore, d,, — 0, as n — oo. Likewise,

1 1. < <
— / “In(Agy -+ A, ) dvt (i) — L(1)| — 0, as n — oo.
pkp n

k

Since L(0) and L(1) are positive, for n large both

1 1
— [ —In(N\g -+ Ng,,)dvT(i) >0
P Jp, N
and
1 1 5 Ty
— —In(Ag, -+ Ni,) dv™ (i) > 0.
Pk Jp, 1
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Let M be the space of all Borel probability measures on Z endowed with the weak-star
topology. For small 0 < a < 1, ¢ > 0 and ¢ > 0 define

Ne={meM; VO<z <q, mp([0,2)) < ca® and my((1 — z,1]) < ca® Vk € Q}.

The condition on the measure of small intervals [0,z) and (1 — z,1] excludes measures
supported on the end points 0 and 1. Note that A, depends on « and ¢; but we do not
include this dependence in the notation. We first show that there exist ergodic stationary
measures which belong to N.

Proposition 4.1. Under the assumptions of Theorem 2.1 and in particular Zf\il piln fl(z) >
0 for x = 0,1, there exist positive o, c,q and nq € N such that T"*N. C N..

Proof. Note that by (1), for each k € ,

N
> DT i yin Wik = Pk (10)
i1yenyin=1
Let ny be a number such that for any n > n; the inequality (7) holds in Lemma 4.1. In the
following, fix any n > ny. Since for each k there are N™ possible transitions in n + 1 steps
ending with k& we may rewrite (7) as
NG

> piny >0
=1

in which Zfi nl pF = 1by (10). We claim that there is a small & > 0 such that our assumption

1—; .
o =Invy, 1 <i < NP,

Zfinl pf In~; > 0 implies Zf\;"l pf”yl-_ “ < 1. Namely, since lin%
a—r

Zf\i " pFIn~; > 0 implies that for sufficiently small o > 0,

N7 _
1—~7¢
; e
=1
Multiplying by a we get

N™ N™
S =D v >0,
=1 =1

which implies Zf\:l plin® < 1, because Zf\:l Pk =1
A similar reasoning applies to the end point 1 of I, starting with (8) rewritten as
Zfinl pFIn7; > 0, to show that for o small, also Zf\:l P < 1.
Thus, there exists a small 6 > 0 so that
N’VL k
Pi
0 (11)
; (vi — 0)>
n K
and likewise Zfil (7@7"5)0 < 1. Moreover, for such § > 0 we are able to choose a sufficiently
small ¢ = ¢(d) > 0 in such a way that for each symbol sequence i1, ..., %, in Q",
x
() —
“""’Z”( ) - ()\11)\,”) -4’
Take ¢ with c¢® > 1. Take a measure m from the A, that corresponds to a and q. We
will prove 7"m € M. To do this we must show that if < ¢ then (7"m);([0,)) < ca®

Vo<z<g. (12)
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and (7"m)((1 — z,1]) < ca® for all k € Q. Knowing that my([0,z)) < cz® for each k € Q
and applying (11), (12) we get:
Yo
(Tnm)k([oal‘)) = Z I?kpilﬂ-ili2“'7rin—linﬂ-inikfﬁ...inmil ([O,l‘))

i1yeyin=1

N
= Z 7p7:1ﬂ—i17;2"'ﬂ-inflinﬂ-inikmil( z:nzn [Oax))
L~
1] 4eeeyn=1
N
1 T
> ijpz'lm‘lz‘z---Winflinﬂz‘nikmil([07 Crn) =0 5))

14eyin=1

Nn
<> ke
=1

IN

x «a
%—5)

< cz®. (13)

Likewise, (7"m);((1 — z,1]) < ca® for © < g. Thus, for every m € A, the image 7"m
belongs to N.. O

Now we know that 7™ (N.) C N.. By the Krylov-Bogolyubov averaging method, for a
measure m € A on the compact metric space Z there is a subsequence of {% Zf;& T™Mm}pen
which is convergent to a probability measure m € N, such that 7"'m = m. Note that

m= (R TR T )
1

is a probability measure. Since 7 is linear and 7™ m = m, the measure m is a fixed point
of T:

1 . . . _

;(Tm+T2m+...+W1m) =m.
1

We have found a stationary measure m in N, for some c.

Tm=

The following additional reasoning shows that there is an ergodic stationary measure
in V.. Let N be the set of stationary measures on Z which is a convex compact subset
of M. The ergodic stationary measures are the extreme points of it. Note that N, is a
convex compact subset of A/, which is itself also convex and compact. We claim that the
extreme points of N, are extreme points of N. Suppose by contradiction that there are
my, me € N\ M. and the convex combination m = sm; + (1 — s)mg € N.. In this case, for
0<z<gq m(0,z) < (c/s)z* and my ;((1 — z,1]) < (¢/s)z™ and similar estimates for
my. That is, z — m; ([0, 2)) /2 and z — m; ;((1 —z, 1])/z* are bounded. As Tm = m, we
have by (11), (13) that m € A; for some ¢ < c. It follows that tmy + (1 — ¢t)mg € N, for ¢
close to s. So s is an interior point of the set of values ¢ for which tm; + (1 — t)my € Ne.
Since N, is closed it follows that m; € N, and the claim is proved. Since the extreme
points of A/ are ergodic stationary measures, we conclude that the extreme points of N,
are ergodic stationary measures. Since the set of extreme points of N, is nonempty by the
Krein-Milman theorem, there are ergodic stationary measures.
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Step 2: Trapping strips. Recall from Lemma 3.1 that a stationary measure m gives rise
to an invariant measure for the one-sided skew product system, with marginal v™ on Ejt'
We will see that the supports of such invariant measures are contained in mutually disjoint
trapping strips. This step closely follows [5], with adjustments to account for the fixed end
points.

Definition 4.1. A subset D = Uivzl Dy C T is called a domain if for each k € 0, Dy is a
closed interval in Ij.

A boundary point of an interval D;, different from 0 or 1 is called an internal boundary
point.

Definition 4.2. A domain D = Uévzl Dy, C T is trapping if any admissible map takes it to
itself,

Vk,l: my >0, fr(Dy) C Dy

The domain is strict trapping if any internal boundary point of Dy is mapped inside the
interior of Dj.

The following proposition is [5, Proposition 4.5] and holds also here.

Proposition 4.2. The following conditions are equivalent:

i) the domain D = Uff:l Dy C T is (strict) trapping;
ii) the strip ST = Uévzl C’;’O X Dy C Zj‘ x I is (strict) trapping for the skew product
FT;
i11) the strip S = Uszl C’,g X Dy, C X g x I is (strict) trapping for F'.

Consider an arbitrary ergodic stationary measure m € N.. Denote the interval that spans
the support of my by I = [Am i, Bmkl:

Ap ; = minsupp(my),

By, = maxsupp(myg).

For every admissible i, j we have f;(supp(m;)) € supp(m;). Since the maps f; are monotone
we have that for any admissible transition 4, j,

fillm;i) C Im,j- (14)

Therefore, the collection Z, = Uszl I 1 is a domain, which is trapping by (14).
The imposed genericity conditions imply that for a trapping domain no interval I, , can
be a single point.

Lemma 4.2. Consider an arbitrary trapping domain L. Then either Any = 0 for all
ke, or Any # 0 for all k € Q. In the latter case, there exist an attracting fized point
A of a simple return and a simple transition f such that Ag = f(A). In the former case,
i.e. if Anr = 0 for all k € Q, then 0 is an attracting fived point of a simple return. An
analogous statement holds for By .
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Proof. For a chosen trapping domain Z,, suppose that Ay = 0 for some k € 2. Then,
knowing that x = 0 is a fixed point of fj for all k, we have for any | € Q) such that k,[ is
admissible that

0 = fx(0) = fr.(minsupp(mg)) € fr(supp(mg)) C supp(my).

Hence, Ay; = minsupp(m;) = 0. Since the subshift o is transitive Ay = 0 for all k € Q.
If Ay # 0 for all &, [5, Lemma 6.3] applies and the result for Ay, holds by that lemma.

If Ap i = 0 for all k, the arguments of [5, Lemma 6.3] apply to yield the same conclusion

(the simple transition is redundant since 0 is a fixed point of all maps). ([

By Birkhofl’s ergodic theorem, a generic sequence of random iterations (ky,, xy), zn, € Iy,
of a m-generic initial point is distributed with respect to the measure m. If we choose such
a generic initial point (ko, zo) then because the points (k,, z,) are distributed with respect
to m, the set X = {xy}|k,=k is dense in supp(my) for any k. We apply this observation in
the proof of the next lemma, which corresponds to [5, Lemma 6.7].

Lemma 4.3. For any two trapping domains Ly, and Ly, of two ergodic stationary measures
my,mg € N, the corresponding intervals Iy, ) and I, are either disjoint for any k or
coincide for any k.

Proof. Assume that the intervals I, » and Iy, 5 intersect but do not coincide. Then, there
is at least one end point of one of them that does not belong to the other one. Without
loss of generality let it be the point By, . There is a neighborhood V' of By, ;. such that
Img,k NV =0.

By genericity condition (4), Am, x is different from By, . So there are generic points
of my in [y, 1 N Iy, k- Choose a generic point py for my in Iy, ; N Iy, which is different
from Ay, and B, k. There is an admissible return g such that g(pp) € V (recall the
observation that precedes the lemma), which implies g(py) ¢ Im, k- On the other hand
Po € Im, r by assumption and g(Iy, ) € Im,k by (14). Since the diffeomorphisms f;’s are
monotone ¢g(pg) € I, k. This is a contradiction. Therefore, Iy, ; and Iy, have empty
intersection or coincide. O

Again consider trapping domains Z,, corresponding to ergodic stationary measures m in
N.. According to Lemma 4.3 these trapping domains are non-intersecting or coincide. By
Lemma 4.2 for each trapping domain Z,, each end point Anj; and By which does not
coincide with x = 0 or = 1 (respectively) is an image of a fixed point of a simple return
by a simple transition. On the other hand, since {2 has a finite number of symbols there
is only a finite number of simple returns and simple transitions and by condition (2.1) in
Section 2.1 any simple return has only finitely many fixed points. Hence, for any k €
only a finite number of I, ;’s can exist in /. Therefore, we conclude that there are finitely
many disjoint trapping domains and corresponding to them finitely many disjoint trapping
strips for F' by Proposition 4.2. For every stationary measure m € N, the corresponding
domain 7, = Ugil Ity 1, and strip S, = Uff:l C? x Iy, are equal to some trapping domain
and trapping strip.

We thus obtain a finite number of stationary measures m;, 1 < ¢ < T, with corresponding
trapping domain Z* and trapping strip S
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Step 3: Conditional measures. We will see that inside each trapping strip S*, 1 <t < T,
there exists a unique invariant measurable graph I'* to which almost every point of the
trapping strip is attracted. First we show that for each 1 < ¢ < T, u* = pi¢ has 6-measures
as conditional measures along fibers inside the trapping strip S?, v-almost surely. To prove
the following lemma we follow [1, Theorem 1.8.4].

Lemma 4.4. For every ergodic stationary probability measure m, the conditional measure
Hmw Of im 8 a 0-measure for v-almost every w € ¥ 4.

Proof. Consider a jun and its conditional measures fim . Let Xn(w) be the smallest median
of fim, i.e. the infimum of all points = for which

Mm,w([o7x]> > - and ,U/m,w([xv 1]) 2

NN
N | —

The set of medians of fiy . is a compact interval and Xy, : ¥ 4 — [ is measurable. Define
Cpa (W) := [0, X (w)] for which by definition pim(Cpy (w)) > 5. The set Cy (w) is invariant:
Since for every ¢ € Q, f; is increasing for every x1 < x9 and w we have f, (1) < fo(x2).
This implies that z is a median of iy, if and only if f,(z) is a median of f,pme. By
invariance of pm we have fufimw = fimow- Hence, Xp(ow) = fu(Xm(w)) which implies
Cr(0w) = [u(Cry ().

Because py is ergodic and Cpy (w) is invariant fim ., (Cp (w)) = 1, v-almost surely. By
the same argument for Cf (w) = [Xm(w),1] for {Xn(w)} = Cq(w) N Cf (w) we obtain
fimw({Xm(w)}) = 1. Thus pimw = 6x,,(w) for v-almost every w € ¥ 4. O

Lemma 4.5. Every trapping strip contains a unique stationary measure with support con-
tained in the trapping strip.

Proof. Suppose there are two invariant ergodic measures fim, 7 pfim, for which Sy, = Sp,.
By Lemma 4.4 there are measurable functions Xy, : ¥4 — I and D; C ¥ 4 with v(D;) =1,
for ¢ = 1,2, such that lim,,_, fc’:,nwu::i’o,% = 5Xm¢ (w) for every w € D; respectively. From
v(D;) =1 we have D1 N Dy # (. Therefore, there is @ € D1 N Dy so that X, (©) # X, (©).
Without loss of generality suppose that Xm, (W) < X, (@).

Since Sm, = Sm, we have that for every k € , Iy, = In, k. So we can find generic
points (k,r1%) and (k,x2%) for my and my such that zy; > wor. Because fI_,_(ziw_,)
converges to Xy, (w) as n — 0o, and for each j € Q, f; is strictly increasing, we conclude that
Ky (@) < Xy (@), contradicting our assumption. Thus, pim, = fim, is unique in Sy. O

Step 4. Attracting graphs. By Lemma 4.4 and 4.5, for every 1 < ¢ < T there exists a unique

measurable function X! : w — X'(w) for each S with the domain D' C ¥ 4, v(D!) =1

t,+
w'u“cr*"w

such that lim, e f = dxt(w for each w € D. So there are graphs I'* of X" with
I'* ¢ 8! which are invariant because X'(ocw) = f,(X!(w)). Therefore, for every generic
point (k, ) for m" we have limy, o0 f, (#w_,) = X*(w). Since the fiber maps are strictly
increasing for every choice of (k,x) with xy, € Iy (different from 0,1) and w € D,

lim £, (70 ,) = X' (w). (15)

n—o0
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t

For a trapping strip S* denote by A! the intersection of its maximal attractor, AL ..,

with the fiber I, = {w} x I. For an w € ¥ 4 define
Aﬁ.},n = fw—l 0--0 fw—n (8 N IU_”w)'

Since the strip S* is trapping for every n € N, AfJ’nH - A&n. Hence, for each w € ¥ 4,
Al = (N0 AL, is either an interval or a single point. So for every w € D, X(w) € A,
and I'" C AL ..

We state two theorems on the structure of the maximal attractor in internal and in border
trapping strips, respectively. The first result is contained in [5].

Theorem 4.1. Let St be an internal trapping strip of a skew product F' under the assump-

tions of Theorem 2.1. Then the mazximal attractor Al  is a bony graph. The attracting

max
t

mazx*

graph Tt forms the graph part of A

Theorem 4.2. Let St be a border trapping strip of a skew product F' under the assumptions
of Theorem 2.1. Then the mazimal attractor At .. is a thick graph. The attracting graph

t i Gt At .
I'" in §* is dense in A;,

L

Tt= At . (16)

Proof. We suppress the index t from the notation. Consider, without loss of generality, a
border trapping strip S that contains ¥ 4 x {0}. For a trapping strip ¥ 4 x [0, 1], the maximal
attractor obviously has positive standard measure. For a trapping strip with one internal
boundary, since x = 0 is a fixed point for each f, and I' C S, we have A, = [0, X (w)],
where X (w) > 0 for w € D. So, v-almost surely A, has positive Lebesgue measure and
$(Amax) > 0.

Now we prove the density of the graph I' for border trapping strips. We restrict to the
case of a trapping strip with one internal boundary. Let m be the ergodic stationary measure
supported in § = &y, = U,ivzl C,g X Iy - By Lemma 4.2, there is a simple return map f with
f'(0) < 1. Hence, for some 1 < kg < N there are admissible return maps f, g : Ty ky — Im.ko
and J, a small neighborhood of z = 0, such that for every k € Q, J C Iy, f'(z) <1 and
g'(z) > 1 for every = € J.

Lemma 4.6. All orbits of the iterated function system generated by f, g restricted to J are
dense in it, i.e., for any point v € J and an open interval J* C J there is a return map
hi, € IFS{f, g} such that hy,(z) € J'.

Proof. This follows [2, Lemma 3|, see Proposition 2.1. O

Lemma 4.7. Let m be an ergodic stationary measure in N, k and k' be two arbitrary
symbols and I i, I iy with An g, Amg =0 and By i, B # 1. Then, for any € > 0 there
exists an admissible composition G : I j; — I iy such that G(Iyn ) C Us(Amp)-

Proof. See [5, Lemma 6.9]. O

To establish (16), we need to show that for every point P € A ax and every neighborhood
U of P there exists a point @ in T' such that @ € Y. We may assume U = C"""™ x U,
m € N, where ® € D and U is a small interval in [0, X (©)]. We need to findw € C;"™""ND
such that X (0) € U. Take a sequence w’ € D with past part ...w’ sw’ ow’ ; = w’ and denote
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' = X (w'). Note that X depends only on the past part of the sequence, so 2’ depends on

By Lemma 4.7 there is an admissible composition G = fa, © ... 0 fa; : Iy — Imke SO
that G(Iy.;) C J and a1 = wy. Hence, G(2') € J. Let Uy, C J C Iy, be defined by an
admissible composition such that

fdz,l O... Ofu”;,m Ofﬂﬁ O'”Of51(Um) =U,

where 31 = ko. By Lemma 4.6 there is a return map hy, = f,, 0=~ o fo, : In ko — Imi, in
IFS{f, g} that takes G(2') to Up,. Take

~ / ~ ~ A "
W=w_at...opN .. NP1 Bl Q0. Wy,

where @y = @y and W/ is any admissible sequence. Indeed, with such a construction the

sequence @ belongs to C;"™ " ND, f*H04r. (') € Uy, and I, (Un) € U. Therefore,
X(@) = fmiretn) (@) € Uand Q = (@, X(@)) € T NU. O

4.2. An attracting end point. It remains to consider cases with negative Lyapunov
exponents at end points, i.e. where L(0) < 0 or L(1) < 0 or both. Note that in an internal
trapping strip or border trapping strip bounded by an end point with positive Lyapunov
exponent, stationary measures are constructed as before and the analysis proceeds as in the
previous sections.

The following subcases remain:

(1) L(0) and L(1) have different signs and F' has no internal trapping strip,
(2) L(0) and L(1) are both negative and F' has no internal trapping strip,
(3) at least one of L(0) or L(1) is negative and F' admits an internal trapping strip.

L(0) and L(1) have different signs and F has no internal trapping strip. Here L(0) and
L(1) have different signs. To be definite, say L(0) > 0 and L(1) < 0. We claim that the
only ergodic stationary measures are point measures ?°, 9! on 0 and 1; 02 = prdo and
0,1c = prd1 on the intervals I. Indeed, let m be a stationary measure that assigns mass
outside the points {0,1}. Suppose that the convex hull of the support of m is a union of
intervals [Ag, 1] C Ij. This defines a trapping strip that we denote by S. As in the previous
section, the stationary measure m gives rise to an attracting invariant graph I' of a map
X : D — [0,1] with v(D) = 1, so that T" lies inside S and for every (o~ "w,x,_,) € S,
we D (and z; #0,1),

lim fr . (Te_,) = X(w) (17)

n—oo
(compare (15)). Since the skew product system has negative Lyapunov exponent at the
endpoint 1, ¥4 x {1} has a basin of attraction with positive standard measure. This
contradicts (17). Hence, there is no stationary measure m that assigns mass outside the
points {0,1}. It follows that for almost all w € X,
lim fr, (x)=1

n—oo

for any = € (0, 1].
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L(0) and L(1) are both negative and F has no internal trapping strip. By the reasoning in
the previous section, the inverse skew product map admits an attracting invariant graph.
The skew product system hence has a repelling invariant graph, and attracting invariant

graphs ¥4 x {0}, ¥4 x {1}.

At least one of L(0) or L(1) is negative and F admits an internal trapping strip. Suppose
L(0) < 0. Again by following the reasoning in the previous section, the inverse skew product
map then admits a border trapping strip, bounded by ¥ 4 x {0}, that contains an attracting
invariant graph. The skew product system hence has a repelling invariant graph, and an
attracting invariant graph ¥ 4 x {0}.
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