
Learning PostScript by Doing

André Heck

c© 2005, AMSTEL Institute, UvA

Contents

1 Introduction 3

2 Getting Started 3
2.1 A Simple Example Using Ghostscript . 4
2.2 A Simple Example Using GSview . 5
2.3 Using PostScript Code in a Microsoft Word Document 6
2.4 Using PostScript Code in a LATEX Document 7
2.5 Numeric Quantities . 8
2.6 The Operand Stack . 9
2.7 Mathematical Operations and Functions . 11
2.8 Operand Stack Manipulation Operators . 12
2.9 If PostScript Interpreting Goes Wrong . 13

3 Basic Graphical Primitives 14
3.1 Point . 15
3.2 Curve . 18

3.2.1 Open and Closed Curves . 18
3.2.2 Filled Shapes . 18
3.2.3 Straight and Circular Line Segments 21
3.2.4 Cubic Bézier Line Segment . 23

3.3 Angle and Direction Vector . 25
3.4 Arrow . 27
3.5 Circle, Ellipse, Square, and Rectangle . 29
3.6 Commonly Used Path Construction Operators and Painting Operators 31
3.7 Text . 33

3.7.1 Simple PostScript Text . 33
3.7.2 Importing LATEX text . 38

3.8 Symbol Encoding . 40

4 Style Directives 42
4.1 Dashing . 42
4.2 Coloring . 43
4.3 Joining Lines . 45

1

5 Control Structures 48
5.1 Conditional Operations . 48
5.2 Repetition . 50

6 Coordinate Transformations 66

7 Procedures 75
7.1 Defining Procedure . 75
7.2 Parameter Passing . 75
7.3 Local variables . 76
7.4 Recursion . 76

8 More Examples 82
8.1 Planar curves . 83
8.2 The Lorenz Butterfly . 88
8.3 A Surface Plot . 89
8.4 Iterated Functions . 91
8.5 Marking Angles and Lines . 95

2

1 Introduction

PostScript is a graphic programming language developed by Adobe Systems that allows its
user to produce high-quality graphics and text that can be printed. By high quality we mean
that an author has full control over the graphical output and can produce clean computer code
in exactly the way he or she wants it, in contrast with the PostScript code produced by high-
end software packages like xfig, pictex, METAPOST, Adobe Illustrator, and computer
algebra systems like Maple and Mathematica. A drawback of this ‘do-it-yourself’ approach is
that an author has to put effort in learning to write PostScript code and that he or she must
accept less simplicity in return of high quality graphical output. This course is only meant
as a short, hands-on introduction to PostScript for newcomers who want to produce rather
simple graphics, say e.g. teachers who want to produce neat graphics for their personally
created tutorials and tests. The main objective is to get students started with PostScript.
A more thorough, but also much longer introduction that also discusses the mathematics
behinds graphics is the textbook Mathematical Illustrations of Bill Casselman [Cas05]. For
complete descriptions of the PostScript language we refer to the so-called red book [Pos99],
green book [Pos88], and blue book [Pos86]. These are the ultimate reference manuals.

We follow a few didactical guidelines in writing the course. Learning is best done from
examples, learning is done from practice. The examples are often formatted in two columns,
as follows:1

newpath
1 1 moveto
91 1 lineto
91 91 lineto
1 91 lineto
1 1 lineto
stroke

The exercises give you the opportunity to practice PostScript; the answers to the exercises
in which a picture or program must be created are provided separately as Encapsulated
PostScript files on a cd-rom and electronically via Internet.

2 Getting Started

PostScript is not a WYSIWYG drawing tool like xfig or paint. It is a graphic document
preparation system. First, you write a plain text containing graphic formatting commands
into a file by means of your favorite editor. Next, an interpreter allows you to preview
the graphical object. We will use two PostScript interpreters, viz. AFPL Ghostscript and
GSview. Both interpreters can be downloaded without cost from www.cs.wisc.edu/~ghost.
In this chapter we will describe the basics of this process of creating and viewing PostScript,
as well as conversion into different graphic formats such as bitmap, gif, and jpeg.

1On the left is printed the graphic result of the PostScript code on the right. Here, a square is drawn.

3

2.1 A Simple Example Using Ghostscript

GhostScript is an interactive PostScript interpreter. This means that you can type Post-
Script commands in a command line interface and see the effect of it in a separate image win-
dow. In this way you can have a quick start with learning the effect of PostScript commands.
To invoke Ghostscript on a Unix platform, enter the gs command. On a Windows PC,
double-click the gswin32.exe application.

EXERCISE 1
Do the following steps:

1. Install the AFPL Ghostscript interpreter on your PC, if necessary, and start the pro-
gram by double-clicking the gs.exe application. You will get a command window that
looks like this:

AFPL Ghostscript 8.00 (2002-11-21)
Copyright (C) 2002 artofcode LLC, Benicia, CA. All rights reserved.
This software comes with NO WARRANTY: see the file PUBLIC for details.
GS>

2. Enter the PostScript statements on the right-hand side and verify in the Ghostscript Image
window that the picture on the left-hand side appears:2

GS>newpath
GS> 1 1 moveto
GS>91 1 lineto
GS>91 91 lineto
GS> 1 91 lineto
GS> 1 1 lineto
GS>stroke

The example in the above exercise needs some explanation. The Ghostscript Image window
opens with a default coordinate system, the origin of which is at the lower left corner of the
page. The default unit of measurement, which is the same in both horizontal and vertical
directions, is equal to a point, exactly equal to 1/72 of an inch. The size of the Ghostscript
Image page is by default U.S. letter (8.5×11 inches, 216×279 millimeters, or 612×792 points),
but it can be changed into European A4 paper size (8.3× 11.7 inches, 210× 297 millimeters,
or 595× 842 points) by editing the initialization file gs init.ps. This file is usually in the lib
directory somewhere in the search path of Ghostscript. Find the consecutive lines

% Optionally choose a default paper size other than U.S. letter.
% (a4)

Then, to make A4 the default paper size, uncomment the second line by removal of the
comment character %.

You draw things in PostScript by constructing paths. A path is a set of connected and dis-
connected points, lines and curves that together describes a geometric figure. A path is

2If necessary, scroll down to get the lower left corner of the page in view.

4

constructed out of simple graphics primitives such as moveto and lineto. The resulting path
may then have paint applied to it with one of the painting operators such as stroke and fill.
At any moment there is only one current path on the drawing surface called the current page.

The newpath operator on the first line empties the current path and declares we are starting a
new path. We start building a path with a moveto. This operator treats the two numbers as x
and y coordinates to which to move, in this case to the point (1, 1). The coordinates specified
become the current point. The lineto operator on the third line, 91 1 lineto, adds a line
segment to the current path that connects the current point to the position specified by the
numbers, in this case 91 and 1. The point specified as the argument to this operator becomes
the new current point. Note that the lineto operator does not actually draw on the current
page. It simply adds a line segment to the current path. The stroke operator in the last line
in the program code causes the path we have constructed to be painted on the current page.
Our path, in this case a square, becomes visible.

2.2 A Simple Example Using GSview

GSview is an PostScript previewer built on top of Ghostscript. In this tutorial we will
use the GSview 4.4 PostScript previewer. It allows you to type PostScript commands in a file
with your favorite editor, as long as it produces ordinary text without formatting, and see the
effect of its contents in an preview window. Once you have become more familiar with Post-
Script it will be more convenient to use the PostScript previewer GSview than the underlying
PostScript interpreter Ghostscript. To invoke Ghostscript on a Unix platform, enter the
gsview command. On a Windows PC, double-click the gsview32.exe application.

EXERCISE 2
Do the following steps:

1. Install the PostScript previewer GSview on your PC, if necessary, and start the program
by double-clicking the gsview32.exe application.

2. Create a text file, say exercise2.eps, that contains the following PostScript statements:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 5 5 105 105
%%BeginProlog
%%EndProlog
newpath
10 10 moveto
90 0 rlineto
0 90 rlineto

-90 0 rlineto
closepath
5 setlinewidth
stroke
showpage
%%EOF

5

3. Open the PostScript file in GSview and verify that a square is drawn with thick border
lines.3

4. Select the EPS Clip item in the Option menu and verify that a square is drawn with a
little bit of white around it (1 pt to be precise).

The example in the above exercise needs some explanation. At the very beginning of a Post-
Script file you must have the characters %!PS to identify it as a conforming PostScript language
program. The longer line %!PS-Adobe-3.0 EPSF-3.0 specifies the version of PostScript to
which the program is supposed to conform, viz. Encapsulated PostScript Adobe level 3. The
next few lines beginning with %% are document structure comments, which are mostly ignored
by the PostScript interpreter, but may be parsed by other programs, e.g. while incorporating
PostScript graphics. For example, %%EOF informs the previewer or printer that the end of the
document has been reached. The %%BoundingBox: 5 5 105 105 statement, which is required
for an Encapsulated PostScript file, informs the previewer or printer about the boundaries of
the drawing area, in this case a rectangular box with lower left corner at position (5,5) and
upper right corner at position (105, 105). As you will see later on in this tutorial, the prolog
may also contain definitions of variables and procedures that are used in the program code.
The %%BeginProlog and %%EndProlog statements mark the beginning and end of the prolog,
respectively. The showpage statement near the end of the file is only needed in case you want
to print the PostScript picture. It can be used elsewhere in a PostScript program to transmit
the contents of the current page to the output device.

The rlineto operator on the third line of the main program, 90 0 rlineto, adds a line
segment to the current path extending 90 units to the right from the current point. In other
words, rlineto means a relative lineto. Similarly, the rmoveto operator means motion
relative to the current point. The setlinewidth operator allows you to specify the width of
the line that is stroked onto your path. By default, the linewidth is 1 unit; in this case, a
linewidth of 5 units (here, 5 points) is specified. The closepath operator in the program code
causes the current path to be closed by extending it with a straight line to the last moveto
point.

EXERCISE 3
See what happens with the picture when you do not use the closepath

operator to ensure a closed path, but replace this statement by 0 -90 rlineto.

EXERCISE 4
You can fill the interior of a closed path with some color or shade of gray,

using the fill operator instead of the stroke operator. The gray shading is obtained by the
statement c setgray, where c is a number between 0 and 1 (0 corresponds with black and 1
means white). Draw a black square box that contains a smaller gray square box centered in
the middle of the black one.

2.3 Using PostScript Code in a Microsoft Word Document

In MS word 2002, a picture can easily be inserted from a file in various formats, including the
Encapsulated PostScript format. Just select the menu items Insert, Picture, From File,
and browse for files of type All Pictures. In older versions of MS Word, the insertion of

3If necessary, scroll down to get the lower left corner of the page in view.

6

an Encapsulated PostScript file is less easy. In this case, you better open the EPS file within
GSview, select the EPS Clip item in the Option menu, copy the picture to the clipboard (by
selecting the Copy item in the Edit menu or by using the shortcut Ctrl+C), and paste into
the Word document (by selecting the Paste item in the Edit menu or by using the shortcut
Ctrl+C). In this way, a preview of the display will be copied into the Word document so
that the printout will also not look optimal. You have more control on the resolution of the
preview when you add it explicitly to the EPS file; select for example Edit, Add to EPS,
TIFF 6 packbits, and save to a file. Insert this EPS file with Preview by selecting the
menu items Insert, Picture, From File, and browse for files of type All Pictures. The
printout will also be of good quality.

2.4 Using PostScript Code in a LATEX Document

EXERCISE 5
Do the following steps:

1. Create a file, say sample.tex, that contains the following lines of LATEX commands:

\documentclass{article}
\usepackage{graphicx}
\begin{document}
Figure~\ref{fig:square} is an example of a picture in a \LaTeX\ text.

\begin{figure}[hbt]
\begin{center}
\includegraphics{exercise2.eps}
\caption{A square.}
\label{fig:square}
\end{center}
\end{figure}
\end{document}

Above, we use the extended graphicx package for including the external graphic file that
was prepared by us in the second exercise.

2. Typeset the LATEX-file:

latex sample

When typesetting is successful, the device independent file sample.dvi is generated.

3. Convert the dvi-file sample.dvi into PostScript code:

dvips sample

4. Preview the PostScript file sample.ps, e.g., by GSview:

5. On a Unix platform, you can convert the PostScript document sample.ps into a printable
PDF document as follows:

7

ps2pdf sample.ps

It creates the file sample.pdf.

6. You can avoid the intermediate PostScript generation. Just convert the DVI file immedi-
ately into a PDF document via the dvipdf command:

dvipdf sample

On a Windows PC, similar conversions from PostScript or DVI format to PDF format are
possible.

2.5 Numeric Quantities

Numeric quantities in PostScript are represented by integers or real numbers, with a lim-
ited number of decimals of accuracy — 5 digits, to be precise. The PostScript interpreter
Ghostscript and the previewer GSview both understand exponential notation such as
1.23E4 and 1e-2. Assignment of numeric values can be done with statements like this

/pi 3.14159265 def

which sets the variable pi to be 3.14159265. The /pi is the name of the variable. In the
definition and assignment you cannot use the name pi, but after a variable is defined in your
program, any occurrence of that variable will be replaced by the last value assigned to it. For
example, you may define variables deg = 180

π and rad = π
180 , which are useful in conversions

between degrees and radians, as follows:

/deg 180 pi div def
/rad pi 180 div def

The following program will draw an equilateral triangle with edges of size 2 cm.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: -2 -2 59 52
%%BeginProlog
% define and assign the scale
% note: 1 cm = 28.34645 points,
% 1 inch = 72 points.
/s 28.34645 def
%%EndProlog
s s scale
1 s div setlinewidth
newpath
0 0 moveto
2 0 rlineto
-1 3 sqrt rlineto
closepath
stroke
showpage
%%EOF

8

In the above example, the scale s has been stored in a single variable that can be used else-
where in the program in order that a change of the scale only requires a change in a single line
of the PostScript program. In this case, the statement s s scale scales up horizontal and ver-
tical units by a factor of 28.34645, which corresponds with a unit of 1 cm. Because the default
line width is 1 unit, lines would be drawn 1 cm wide. The statement 1 s div setlinewidth
resets the width of line to 1 point. Be warned, you cannot use 1/s setlinewidth, but must
stick to the division operator div.

You may already have noticed it, but PostScript uses post-fix notation of putting the operator
after its arguments. This convention is also called Reverse Polish Notation. Thus, 1 s div
means ‘1 divided by s’, the product of the integers 2 and 3 is denoted by 2 3 mul, and 3 sqrt
stands for ‘the square root of 3’.

EXERCISE 6
Create the following red arrow with length 4 inch and arrowhead length 1

inch against a light gray, rectangular background of size 5′′×1′′. The red color can be defined
by the setrgbcolor operator that expects three real numbers between 0 and 1, inclusively,
representing fractional intensity of red, green and blue, respectively.

EXERCISE 7
Create the following two pictures:

2.6 The Operand Stack

The PostScript programming language is based on stacks. A stack is a fixed data structure in
which objects are placed temporarily, one on top of another, and items are removed according
to the “last in, first out” principle.

EXERCISE 8
Do the following steps:

1. Start the AFPL Ghostscript interpreter and enter the statement

9

2 3

The command window will look like this:

AFPL Ghostscript 8.00 (2002-11-21)
Copyright (C) 2002 artofcode LLC, Benicia, CA. All rights reserved.
This software comes with NO WARRANTY: see the file PUBLIC for details.
GS>2 3
GS<2>

The <2> in the last line means that there are 2 items on the so-called operand stack.
Henceforth, we will call this simply the stack.

2. View the contents of the stack by entering the pstack operator. Note that first 2 is pushed
onto the stack. When 3 is placed on the stack, the number 2 is pushed to the next position
down, leaving 3 on top of the stack.

3. Enter the add operator. When the PostScript interpreter encounters this operator and
executes it as defined in the PostScript dictionary, two operands are taken off the stack
and the sum of the numbers is placed on top of the stack. Verify that indeed the stack
contains hereafter one item, viz. the number 5.

The effect of the statement 2 3 add on the stack is illustrated by the following diagram:

2 3 add

2 3 5
2

PostScript Stack of statement 2 3 add

The sub operator works in a similar manner, with the program line 3 2 sub having the
results diagrammed below. The numbers 3 and 2 are pushed on the stack. The sub operator
subtracts the top number on the stack from the number below it. Finally, the result of
subtraction is pushed on the stack.

3 2 sub

3 2 1
3

PostScript Stack of statement 3 2 sub

Henceforth, we will adopt the stack notation of ‘the blue book’ [Pos86]: the effects of an
operator on the stack is indicated by showing the stack’s initial condition (before the operator
is executed), the operator’s name, and then the contents of the stack after the operator was
executed. In this notation the example is written as: 3 2 add =⇒ 1.

10

2.7 Mathematical Operations and Functions

The complete list of arithmetic and mathematical operators in PostScript is given below.

Arithmetic and Mathematical Operators
Arguments Operator Left on Stack; Side Effects
x y add x + y
x y sub x− y
x y mul xy
x y div x/y
x y idiv the integral part of x/y
x y mod the remainder of x after division by y
x abs the absolute value of x
x neg −x
x ceiling the integer just above x
x floor the integer just below x
x round x rounded to nearest integer
x truncate x with fractional part chopped off
x sqrt square root of non-negative x
y x atan the polar argument of the point (x, y),

in degrees between 0 and 360
x cos cosx (x in degrees)
x sin sinx (x in degrees)
x y exp xy

x ln lnx
x log log x (base 10)

rand a random integer in the range 0 to 231 − 1

EXERCISE 9
Use Ghostscript to compute (1

2 + 1
2

√
3)2

EXERCISE 10
Use Ghostscript to verify that the following four PostScript statements

yield the same result:

2 2 mul 1 sub
2 dup mul 1 sub
1 2 2 mul exch sub

The second line introduces the dup operator that duplicates the top item on the stack. The
exch operator exchanges the top two items on the stack, i.e., x y exch =⇒ y x. So, the results
of the third line, 1 2 2 mul exch sub, can be diagrammed as follows:

1 2 2 mul exch sub

1 2 2 4 1 -3
1 2 1 4

1

11

You may wonder for what purpose the PostScript programming language contains the stack
operator exch. The main application is the removal of arguments of a PostScript procedure
from the stack. As an example, we define the arccosine function as follows: h x acos will leave
on the stack the polar argument (in degrees between 0◦ and 180◦) of the point (x,

√
h2 − x2).

Think of a triangle with hypotenuse h and horizontal side of length x. The implementation of
acos is based on the fact that atan is an existing function in PostScript, which also returns
its answer in degrees rather than radians.

GS>/acos {
/h exch def
/x exch def
h dup mul x dup mul sub sqrt x atan

} def

Here, the first line in de definition of acos takes care of the following at runtime: it exchanges
the top of the stack, say t, and the variable h, effectively builds up the definition /h t def,
and stores the value of t in the variable h. The second line in the definition does a similar
thing with the second item on the stack when the function is called and stores the value of
the second stack element in the variable x. The two variables x and h can be used in the
program: here, the expression arctan

(√
h2 − x2, x

)
is computed. Let us have a look at few

results to see if the function works properly.

GS>1 2 acos ==
60.0
GS>0.5 1 acos ==
60.0
GS>-1 2 acos ==
120.0
GS>3 sqrt neg 2 acos ==
150.0
GS>1 1 acos ==
0.0
GS>-1 1 acos ==
180.0

Here we have used the stack operator == that displays the top item on the stack and then
takes it off the stack.

EXERCISE 11
Use Ghostscript to define the cosine function that computes the

cosine of its argument in radians rather than degrees.

2.8 Operand Stack Manipulation Operators

PostScript has several operators to add, remove or rearrange items on the operand stack. The
complete list of operand stack manipulation operators is given below.4

4The symbol ` denotes the empty stack and it marks the bottom of the stack.

12

Operand Stack Manipulation Operators
Operator Meaning Effects on Stack
clear remove all stack items ` obj 1 · · · obj n clear =⇒ `
cleartomark remove all stack items down mark obj 1 · · · obj n cleartomark =⇒ −

through mark
copy duplicate top n stack items obj 1 · · · obj n n copy =⇒

obj 1 · · · obj n obj 1 · · · obj n

count count the stack items ` obj 1 · · · obj n count =⇒` obj 1 · · · obj n n
counttomark count all stack items down mark obj 1 · · · obj n counttomark =⇒

through mark mark obj 1 · · · obj n n
dup duplicate the top stack item obj dup =⇒ obj obj
exch exchange top two stack items obj 1 obj 2 exch =⇒ obj 2 obj 1

index push a copy of the n-th stack obj n · · · obj 0 n index =⇒
item on the stack obj n · · · obj 0 obj n

mark push mark on stack mark =⇒ mark
pop remove the top stack item obj pop =⇒ −
roll roll n stack items up j times obj n−1 · · · obj 0 n j roll =⇒

obj (j−1)mod n · · · obj 0 obj n−1 · · · obj j mod n

Because we will quite often use the roll operator, an illustrative example of its effect:

(a) (b) (c) (d) 3 1 roll =⇒ (a) (d) (b) (c)

(a) (b) (c) (d) 3 -1 roll =⇒ (a) (c) (d) (b)

2.9 If PostScript Interpreting Goes Wrong

If you make a mistake in the source file and the PostScript interpreter or viewer cannot process
your document without any trouble, a bunch of error statements appear. Each error message
consists of two elements:

• The Error name, e.g. stackunderflow.

• The OffendingCommand. This is the PostScript object that was being executed at the
time of the error In general, it takes time and experience to identify and correct errors
on the basis of the error messages.

The PostScript error message gives details about what happened, but may not tell you why.
This makes it cumbersome to understand the errors and to handle them. In practice, it never
pays to try hard to interpret the error messages of the PostScript interpreter

EXERCISE 12

1. Start the AFPL Ghostscript interpreter and deliberately make a mistake by entering
the following statement

0 moveto

The command window will look like this:

13

AFPL Ghostscript 8.14 (2004-02-20)
Copyright (C) 2004 artofcode LLC, Benicia, CA. All rights reserved.
This software comes with NO WARRANTY: see the file PUBLIC for details.
GS>0 moveto

Error: /stackunderflow in --moveto--
Operand stack

0
Execution stack:

%interp_exit .runexec2 --nostringval-- --nostringval--
--nostringval-- 2 %stopped_push --nostringval--
--nostringval-- %loop_continue 2 3 %oparray_pop
--nostringval-- --nostringval-- false 1 %stopped_push
--nostringval-- --nostringval-- --nostringval--
2 %stopped_push --nostringval--

Dictionary stack:
--dict:1112/1686(ro)(G)-- --dict:0/20(G)-- --dict:70/200(L)--

Current allocation mode is local
Last OS error: No such file or directory
Current file position is 9
GS<1>

Do you really understand the error message?

2. Recover from the error by clearing the stack with the clear statement and then enter the
next statement:

1 0 div

Do you understand the error message that will appear?

3. One of the tricks to get more insight in where an error occurs is the introduction of debug
statements. Create the file exercise12.ps containing the following lines of code:

%!PS-Adobe-3.0
0 0 moveto 10 0 lineto
(correct until here) ==
0 lineto
showpage

View this file with the PostScript previewer GSview and look at the text in the error
message window. Does this give you enough information about the location of the error?

3 Basic Graphical Primitives

In this chapter you will learn how to build up a picture from basic graphical primitives such
as lines and text objects.

14

3.1 Point

PostScript does not have a data type for a point. But you can render a point as a dot at the
specified location and with specified diameter via a simple trick: draw a line of zeroth length
starting at the requested point with a specified linewidth and with linecap set equal to
1, which means that the line segment (of length 0) ends with a circular caps with diameters
equal to the width of the line.

EXERCISE 13
Try to understand the following result:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 74 74
newpath 1 1 moveto 72 0 rlineto
0 72 rlineto -72 0 rlineto
closepath stroke
%
1 setlinecap
newpath 10 20 moveto 0 0 rlineto stroke
2 setlinewidth
newpath 20 30 moveto 0 0 rlineto stroke
4 setlinewidth
newpath 30 40 moveto 0 0 rlineto stroke
8 setlinewidth
newpath 40 50 moveto 0 0 rlineto stroke
newpath 50 60 moveto 0 0 rlineto stroke
showpage
%%EOF

If you really wish, you can implement points, coordinate pairs or vectors in a two-dimensional
space as arrays of length 2. Using the put and get operators to store and fetch array infor-
mation, respectively, you can easily implement vector calculus. The following example of a
Ghostscript session illustrates this.

• First we define a vector, say v, as an array and we define the procedures xcoord v
and ycoord v that will allow us to refer to the first and second coordinate of a vector,
respectively.

GS>% define the vector v
GS>/v [10 20] def
GS>% display the vector v
GS>v ==
[30 40]
GS>% define xcoord and ycoord
GS>/xcoord 0 get def
GS>/ycoord 1 get def

We verify that this works:

15

GS>v xcoord ==
30
GS>v ycoord ==
40

• Scalar multiplication can be defined as follows:

GS>/scalarmul {3 dict begin % c [a b] on stack
aload pop % c a b on stack
/b exch def
/a exch def
/c exch def
[c a mul c b mul]
end } def

GS>v ==
[30 40]
GS>2 v scalarmul ==
[60 80]

The procedure scalarmul needs some explanation: we want the variables that we use
in the procedure to be local to this procedure, so that they do not interfere other
variables with the same name outside the procedure. To do this, we add in the first
line 3 dict begin that sets up a mechanism of three local variables and we restore
the original environment when the end clause is encountered. The 3 in the statement
3 dict begin means that we reserve space for 3 local variables.

The second statement aload pop does the following: the aload operator takes an array
as its argument and places the individual elements of that array, and then the array itself,
on the stack. The pop operator pushed the top item off the stack. Thus, the combination
of these two operators replaces the array on top of the stack by the individual elements.

Our procedure scalarmul returns an array of length 2 on the stack.

• The scalar multiplication can also be defined without local variables, but the following
code will be less easy to understand. That is why we add comments that describe the
stack at each stage. The main advantage of this procedure is that it is more efficient:
computer timing reveals that the version without local variables is about three times
faster than the one that uses local variables.

GS>/scalarmul { % c [a b] on stack
aload pop % c a b
3 -1 roll % a b c
dup % a b c c
3 1 roll % a c b c
mul % a c bc
3 1 roll % bc a c
mul % bc ac
exch % ac bc
2 array astore % [ac bc] on stack

16

} def
GS>v ==
[30 40]
GS>2 v scalarmul ==
[60 80]

The statement 2 array astore takes two items and a 2-dimensional array off the stack
and places all of the items into an array, which is left on the stack.

EXERCISE 14
Write a procedure, say addvec, that adds two vectors. Make two versions

of your procedure: one with local variables and one without local variables.

EXERCISE 15

1. Create the following geometrical picture of an acute-angled triangle together with its three
medians in an Encapsulated PostScript file:5

2. Mark the vertices of the triangle and the intersection points of the medians with the sides
of the triangle and with each other with a dot, as shown in the picture below:

EXERCISE 16
Define the procedure dir command that gives a point on the unit circle.

For example, 30 dir should generate the point (0.86603,0.5)
(

= (1
2

√
3, 1

2)
)
. Use your dir

procedure to generate a regular pentagon, like in the picture below.

5The A-median of a triangle ABC is the line from A to the midpoint of the opposite edge BC.

17

3.2 Curve

3.2.1 Open and Closed Curves

PostScript can draw straight lines as well as curved ones. You have already seen that a
lineto statement draws a straight lines connecting the current point with the specified one.
An example

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: -1 -1 86 86
%%BeginProlog
/cm {28.34645 mul} def
%%EndProlog
newpath
0 0 moveto
2 cm 3 cm lineto
3 cm 2 cm lineto
stroke
showpage
%%EOF

Closing the above path is done either by inserting the statement 0 0 lineto or the statement
closepath before the stroke command. The difference between these two methods is that
the path extension with the starting point via a lineto command only has the optical effect
of closing the path. This means that only with the closepath extension it really becomes a
closed path. The difference is illustrated by the following two pictures, where we have made
the lines thicker with the statement 3 setlinewidth.

3.2.2 Filled Shapes

The fill command paints the area inside the current path with the current color. If the path
consists of several disconnected subpaths, fill paints the insides of all subpaths, considered
together. Any subpaths that are open are implicitly closed before being filled. The nonzero
winding number rule is used to determine what points lie inside the path. It works as follows:
draw a ray from the point of interest in any direction and examine the places where a segment
of the path crosses the ray. Counting from 0, add 1 each time a path segment crosses the ray
from left to right and subtract 1 each time a segment crosses from right to left. After counting
all crossings, if the result is 0 then the point is outside the path; otherwise it is inside.

An alternative is the even-odd rule: draw a ray from the point of interest in any direction
and count the places where a segment of the path crosses the ray. If the number of crossings
is even, then the point is outside the path; otherwise it is inside.

18

EXERCISE 17
Explain the difference in filling of the following two pictures on the basis

of the given PostScript programs.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: -5 -5 90 90
%%BeginProlog
/cm {28.34645 mul} def
%%EndProlog
newpath
0 0 moveto
3 cm 0 rlineto
0 3 cm rlineto
-3 cm 0 rlineto
0 -3 cm rlineto
1 cm 1 cm moveto
0 1 cm rlineto
1 cm 0 rlineto
0 -1 cm rlineto
-1 cm 0 rlineto
gsave 1 0 0 setrgbcolor fill grestore
stroke
showpage
%%EOF

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: -5 -5 90 90
%%BeginProlog
/cm {28.34645 mul} def
%%EndProlog
newpath
0 0 moveto
3 cm 0 rlineto
0 3 cm rlineto
-3 cm 0 rlineto
0 -3 cm rlineto
1 cm 1 cm moveto
1 cm 0 rlineto
0 1 cm rlineto
-1 cm 0 rlineto
0 -1 cm rlineto
gsave 1 0 0 setrgbcolor fill grestore
stroke
showpage
%%EOF

The PostScript code in the previous exercise needs more explanation: we must still discuss for
what purpose the gsave and grestore operators are used here. What would have happened if

19

we had left these operators out of the program code? To answer this question it is important
to realize that after filling the current path, the fill operator clears it with an implicit
newpath operation. So, without the gsave and grestore operators, the operator stroke
would have nothing to stroke after the clearance of the current path with fill! Under these
circumstances we would have to build the path used for the filling a second time in order to
outline it. This would lead to ugly code as

newpath
0 0 moveto
3 cm 0 rlineto
0 3 cm rlineto
-3 cm 0 rlineto
0 -3 cm rlineto
1 cm 1 cm moveto
1 cm 0 rlineto
0 1 cm rlineto
-1 cm 0 rlineto
0 -1 cm rlineto
1 0 0 setrgbcolor
fill
0 0 moveto
3 cm 0 rlineto
0 3 cm rlineto
-3 cm 0 rlineto
0 -3 cm rlineto
1 cm 1 cm moveto
1 cm 0 rlineto
0 1 cm rlineto
-1 cm 0 rlineto
0 -1 cm rlineto
0 setgray
stroke

In order to eliminate redundancy, PostScript offers the programmer the opportunity to save
a copy of the current graphics state and come back to this copy at a later time. The graphics
state holds data about the current path, the current color and line width, the current user
coordinate system, and more. The gsave and restore operators save and retrieve the current
graphics state, respectively. In our example in the previous exercise, the gsave operator saves
a copy of the current graphics state on a graphics state stack. So, a copy of the current path
is set apart for later usage. Hereafter we choose a red color to fill the current path. The
grestore operator takes the most recently gsaved graphics state from the graphics state
stack. In our case, the path used for the filling is back again and can be stroked.

Let us summarize: after filling the current path, the fill operator clears it with an implicit
newpath operation. To preserve the current path across a fill operation, use the sequence

gsave
fill

grestore

20

The same holds for the stroke operator: after painting the current path, the stroke operator
clears it with an implicit newpath operation. To preserve the current path across a stroke
operation, use the sequence

gsave
stroke

grestore

EXERCISE 18
Make a procedure box that allows you to draw a white square box of user

specified width with a black outline at any given position and use it to create the following
picture.

3.2.3 Straight and Circular Line Segments

As we have seen many times before, the lineto and rlineto commands can be used to draw
straight line segments. But curved segments are possible as well, the simplest one being a
circular one. The following example gives you an idea how the arc operator works.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 80 196
newpath 40 160 36 10 50 arc stroke
newpath 40 116 36 50 10 arc stroke
newpath
40 42 moveto
40 42 36 10 50 arc
stroke
newpath
40 6 moveto
40 6 36 10 50 arc
closepath
stroke
showpage
%%EOF

The statement

x y r angle1 angle2 arc

appends a circular arc to the current path, possible preceded by a straight line segment. The
arc is centered at coordinates (x, y) in user pace, with radius r. The operands angle1 and

21

angle2 define the endpoints of the arc by specifying the angles of the vectors joining them to
the center of the arc. The angles are measured in degrees counter-clockwise from the positive
x axis of the current user coordinate system (see Figure 1).

(x,y)
angle

1

angle
2

current
point

first
endpoint

second
endpoint

Figure 1: The arc operator.

If angle2 is less than angle1, it is increased by multiples of 360 until it becomes greater
than or equal to angle1. No other adjustments are made to the tow angles. In the exam-
ple, the effect of the statement 40 116 36 50 10 arc will be the same as of the statement
40 116 36 10 50 arcn. The arcn operator (arc negative) is similar to arc, differing only
in that it constructs an arc in a clockwise direction instead of the default counter-clockwise
direction.

EXERCISE 19
Create the following pictures in Encapsulated PostScript files:

1.

2.

3.

There is a third operator for appending a circular arc to the current path, possibly preceded
by a straight line, viz. arct. It is mainly used for making bends in a path. The statement

x1 y1 x2 y2 r arct

appends the circular arc that is defined by a radius r and two tangent lines, drawn from the
current point (x0, y0) to (x1, y1) and from (x1, y1) to (x2, y2), as in Figure 2.

22

rcurrent
point

(x ,y)0 0 (x ,y)1 1

(x ,y)2 2

Figure 2: The arct operator.

EXERCISE 20
Create the following picture:

3.2.4 Cubic Bézier Line Segment

Two points can also be connected by a cubic Bézier curve, which needs, in order to be
determined, two intermediate control points in addition to the end points. The points on the
curved segment from points P0 to P3 with post control point P1 and pre control point P2 are
determined by the formula

P (t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3 ,

where t ∈ [0, 1]. Each point of the cubic Bézier line segment is a weighted average of the four
points P0, . . . , P3. This implies that this line segment will stay inside the convex hull of the
defining points. In Figure 3, the control points are drawn as open dots and connected to their
‘parent point’ (marked with a black dot) with gray line segments.

current pointP0

P1

P2

P3

Figure 3: The curveto operator.

The statement

x1 y1 x2 y2 x3 y3 curveto

23

makes a cubic Bézier segment starting at the current point P0 = (x0, y0) in the path to the
point P3 = (x3, y3) with post control point P1 = (x1, y1) and pre control point P2 = (x2, y2).
The curve moves from the starting point in the direction of the post control point, but
possibly bends after a while in another direction. The further away the post control point is,
the longer the curve keeps this direction. Similarly, the curve arrives at a point coming from
the direction of the pre control point. The further away the pre control point is, the earlier
the curve gets this direction. It is as if the control points pull their parent point in a certain
direction and the further away a control point is, the stronger it pulls. The examples in figure
below give you an idea of how cubic Bézier line segments may look like. We only show the
PostScript code that creates the top picture; the other pictures are created similarly.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 82 340
%%BeginProlog
/closedpoint {1.5 0 360 arc gsave
0 setgray fill grestore stroke} def

/openpoint {1.5 0 360 arc gsave
1 setgray fill grestore stroke} def

%%EndProlog
5 5 translate
% example 1
newpath % draw gray lines
0.6 setgray
0 300 moveto 0 330 lineto
72 300 moveto 42 300 lineto
stroke
% draw Bezier curve
0 setgray
newpath
0 300 moveto
0 330 42 300 72 300 curveto
stroke
% draw points
0 setgray
newpath
0 300 closedpoint 72 300 closedpoint
0 330 openpoint 42 300 openpoint
%
...
showpage
%%EOF

Let us summarize a few facts about a Bézier segment with end points P0 and P3, and with
control points P1 and P2.

• The curve starts at P0 straight in the direction of the post control point P1.

24

• The curve ends at P3, coming straight from the direction of the pre control point P2.

• The longer the line from a control point to its parent end point, the tighter the curve
sticks to that line.

• The whole cubic Bézier line segment is contained inside the convex hull of the defining
four points P0, . . . , P3.

EXERCISE 21
Draw the Yin-Yang symbol6 that looks like

3.3 Angle and Direction Vector

It is not difficult to define your own PostScript procedure, say angle, that takes a point,
interprets it as a vector, and computes the two-argument arctangent, i.e., gives the angle
corresponding with the vector. The definition of the inverse procedure, say dir, that generates
a point on the unit circle at a given angle with the horizontal axis is as easy.

EXERCISE 22
Verify that the implementation of a direction vector and the angle of a

vector can be made as follows:

/angle {exch atan} def
/dir {dup cos exch sin} def

In the example below we use these procedures to draw a bisector of a triangle. We will
assume that the following auxiliary procedures addvec and subvec for sum and difference
of two vectors are defined in the prolog of the PostScript code, as well as the procedure
scalarvec for a scalar product.

/addvec { % a b c d on stack
3 -1 roll % a c d b
add % a c b+d
3 1 roll % b+d a c
add % b+d a+c
exch % a+c b+d

} def
/subvec { % a b c d on stack
3 -1 roll % a c d b
sub neg % a c b-d
3 1 roll % b-d a c
sub % b-d a-c
exch % a-c b-d

} def

6See www.chinesefortunecalendar.com/YinYang.htm for details about the symbol.

25

/scalarvec{ % c a b on stack
3 -1 roll % a b c
dup % a b c c
3 1 roll % a c b c
mul % a c bc
3 1 roll % bc a c
mul % bc ac
exch % ac bc

} def

EXERCISE 23
Verify that the above procedures addvec, subvec, and scalarvec make

sense.

In the example of a bisector of an acute-angled triangle below we use the clip operator to
restrict the drawing area to the triangle. In general, this operator clips the drawing to the
region outlined by the current path. The nonzero winding number rule is used to determine
what points lie inside the current path.

A B

C %!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 155 95
%%BeginProlog
% ...
/s 28.34645 def
/A {0 0} def /B {5 0} def /C {2 3} def
/trianglepath {newpath A moveto B lineto
C lineto closepath} def

%%EndProlog
s dup scale 1 s div setlinewidth
12 s div 5 s div translate
% draw the triangle with vertices A, B, C
trianglepath stroke
gsave % clip drawing
trianglepath clip
% gamma is the bisector angle at C
/gamma {A C subvec angle 2 div

B C subvec angle 2 div add} def
newpath C moveto
10 gamma dir scalarvec rlineto stroke

grestore
% draw labels
/Times-Roman findfont 12 s div scalefont setfont
A 0.4 0 subvec moveto (A) show
B 0.1 0 addvec moveto (B) show
C -0.15 0.1 addvec moveto (C) show
showpage
%%EOF

26

In section 3.7 we will explain the way text has been added to the triangle. For the moment,
you can just mimic this labeling in the exercises below.

EXERCISE 24
Extend the above picture to the following geometric diagram, which

illustrates better that a bisector is actually drawn for the acute-angled triangle.7

A B

C

EXERCISE 25
Consider the triangle with vertices A = (0, 0), B = (3.75,−0.75), and

C = (1.5, 2.25). Create the following picture that illustrates all bisectors of the triangle ABC.

A

B

C

3.4 Arrow

PostScript has no built-in commands for drawing arrows. Program 4 in the cookbook section
of the blue book [Pos86] is a sample program for drawing arrows. Instead of using this program
we will discuss a simple program for drawing the arrowhead alone, taken from listing 3.4 in
the green book [Pos88]. Let us first have a look at our PostScript procedure arrowhead and
see how it works. Suppose that current point has coordinates (x0, y0), then the following call
of our procedure

s x1 y1 arrowhead

draws an arrowhead with the tip at point (x0, y0), coming from the direction of point (x1, y1),
and scaled by a factor s. The comments in the program code, which describe the stack at
each moment during execution of the procedure, illustrate this behavior. One thing to learn
from this is that the currentpoint operator places the coordinates of the current point on
the stack. The transformations rotate and scale change the current coordinate system. We
let arrowhead clear the current path with an newpath operation in order to avoid unwanted
side effects.

7You may use the fact that segment AB is horizontal in the computation of the intersection point of the
bisector and its opposite edge.

27

/arrowhead {% stack: s x1 y1, current point: x0 y0
gsave
currentpoint % s x1 y1 x0 y0
4 2 roll exch % s x0 y0 y1 x1
4 -1 roll exch % s y0 y1 x0 x1
sub 3 1 roll % s x1-x2 y0 y1
sub exch % s y0-y1 x1-x2
atan rotate % rotate over arctan((y0-y1)/(x1-x2))
dup scale % scale by factor s
-7 2 rlineto 1 -2 rlineto -1 -2 rlineto
closepath fill % fill arrowhead

grestore
newpath

} def

EXERCISE 26
Assuming that the above procedure arrowhead is present in the prolog,

verify the outcome of the following PostScript code.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 150 150
%%BeginProlog
/arrowhead {...} def
%%EndProlog
75 75 translate
newpath % draw axes
-72 0 moveto 144 0 rlineto
0 -72 moveto 0 144 rlineto
stroke
newpath % draw black arrows
0 0 moveto 36 18 lineto stroke
newpath 36 18 moveto 1 0 0 arrowhead
0 0 moveto 36 54 lineto stroke
newpath 36 54 moveto 3 0 0 arrowhead
0 0 moveto -36 -36 lineto stroke
newpath -36 -36 moveto 2 0 0 arrowhead
-18 18 moveto -18 54 lineto stroke
newpath -18 54 moveto 1.5 -18 18 arrowhead
-27 18 moveto -27 54 lineto stroke
newpath -27 18 moveto 1.5 -27 54 arrowhead
% draw gray arrowhead
0.7 setgray
36 54 moveto 3 -36 moveto 9 4 -36 arrowhead
showpage
%%EOF

28

3.5 Circle, Ellipse, Square, and Rectangle

You have already seen that you can draw a circular arc with center x, y, radius r, starting
angle angle1, and ending angle angle2 by the statement

x y angle1 angle2 arc

Program 3 in the cookbook section of the blue book [Pos86] is a sample program for drawing
elliptical arcs (there is no built-in PostScript operator for this purpose) from basic Post-
Script graphic primitives. This procedure, called ellipse, takes six operands: the x and y
coordinates of the center of the ellipse,8 the ‘radius’ of the ellipse in the horizontal direction,
the ‘radius’ of the ellipse in the vertical direction, the starting angle of the elliptical arc, and
the ending angle of the elliptical arc. The implementation is based on translation to the center
of the ellipse, scaling the coordinate system by the horizontal and vertical radius values, and
addition of a circular arc that is centered at the origin with a 1 unit radius to the current
path.

/ellipse {7 dict begin
/endangle exch def
/startangle exch def
/yradius exch def
/xradius exch def
/yC exch def
/xC exch def
/savematrix matrix currentmatrix def % save current transformation matrix
xC yC translate % translate to center of ellipse
xradius yradius scale % scale by radius values
0 0 1 startangle endangle arc % add arc to path
savematrix setmatrix % restore the transformation matrix

end
} def

The program code can only be fully understood once transformations have been discussed; at
that time we will come back to this example. Nevertheless we give an example that also illus-
trates why we cannot simply use gsave and grestore to make scaling a local operation. We
assume that the above procedure ellipse is present in the prolog of the PostScript program
on the next page.

There are two problems in the example with the use of gsave and grestore for drawing an
ellipse:

1. Non-uniform scaling will make the thickness of the elliptical arc not equal for each point
on the curve.

2. The arc segment that is added to the path is not saved.

These problems are resolved by saving the current transformation matrix and restoring it
explicitly after adding the elliptical arc to the path.

8the center of an ellipse is defined as the intersection point of the major and minor axes.

29

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 150 150
%%BeginProlog
/ellipse {...} def
%%EndProlog
75 75 translate
% draw axes
newpath
-72 0 moveto 144 0 rlineto
0 -72 moveto 0 144 rlineto
stroke
% draw ellipses
newpath 36 -36 27 18 0 360 ellipse stroke
newpath 36 36 18 27 30 270 ellipse stroke
newpath -36 36 18 27 0 360 ellipse fill
% wrong drawing of an ellipse
newpath
gsave
-36 -36 translate
3 1 scale
0 0 10 0 360 arc stroke

grestore
showpage
%%EOF

PostScript has built-in commands for drawing open or filled rectangles, viz., rectstroke and
rectfill. The following example illustrate the most common use of these painting operators.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 104 62
58 2 translate
% draw rectangles
newpath 6 2 36 54 rectstroke
newpath -54 2 54 36 rectfill
showpage
%%EOF

But again, if these operators were not present in PostScript, it would not have been too
difficult to construct them yourself from basic PostScript graphic primitives. In the next
exercise we will define another operator rectangle that constructs a rectangle with the
current point as lower left corner and that takes two arguments, viz., the width w and the
height h of the rectangle. So, the arguments are similar to the ones of rectstroke and
rectfill, but our procedure just constructs the rectangular path and does not paint it.

30

EXERCISE 27
Try to understand the outcome of the PostScript program on the right.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 150 150
%%BeginProlog
/rectangle {% stack: w h

% current point: x y
currentpoint % w h x y
moveto exch % h w
dup % h w w
3 1 roll % w h w
0 rlineto % w h
0 exch rlineto % w
neg 0 rlineto % -
closepath

} def
%%EndProlog
75 75 translate
% draw axes
newpath
-72 0 moveto 144 0 rlineto
0 -72 moveto 0 144 rlineto
stroke
% draw rectangles
newpath
9 -54 moveto 45 45 rectangle
18 9 moveto 36 54 rectangle
stroke
newpath -64 9 moveto 54 36 rectangle fill
newpath
gsave
9 1 scale
-0.7 -9 moveto
0 -27 rlineto
-7 0 rlineto
0 27 rlineto
closepath stroke

grestore
stroke
showpage
%%EOF

3.6 Commonly Used Path Construction Operators and Painting Operators

Below we list commonly used path construction operators and painting operators. Some of
these operators have not been discussed before and are underlined in the first column, but
their meaning is hopefully clear from the description in the tables.

31

Path Construction Operators
Operator Meaning Effects on Stack
arc append counter-clockwise an arc x y r a b arc =⇒ −

from angle a to angle b, center (x, y),
and radius r

arcn append clockwise an arc from x y r a b arcn =⇒ −
angle a to angle b, center (x, y),
and radius r

arct append a tangent arc defined by x1 y1 x2 y2 r arct =⇒ −
radius r and tangent lines from the
current point to (x1, y1) and (x2, y2)

clip clip drawing to the region outlined − clip =⇒ −
by the current path using the
nonzero winding number rule

closepath connect subpath back to starting point − closepath =⇒ −
currentpoint return coordinates of current point currentpoint =⇒ x y
curveto append cubic Bézier line segment x1 y1 x2 y2 x3 y3

with the current point and (x3, y3) curveto =⇒ −
as end points and with control points
(x1, y1) and (x2, y2)

eoclip clip drawing to the region outlined − eoclip =⇒ −
by the current path using the
even-odd rule

initclip set clipping path to device default − =⇒ −
lineto append straight line to (x, y) x y lineto =⇒ −
moveto set current point to (x, y) x y moveto =⇒ −
newpath initialize current path to be empty − newpath =⇒ −
pathbbbox return bounding box of current path − pathbbox =⇒

defined by coordinates of lower left llx lly urx ury

point and upper right point
rcurveto perform relative curveto dx1 dy1 dx2 dy2 dx3 dy3

operands are relative displacements rcurveto =⇒ −
from the current point (x0, y0) instead
of absolute coordinates, i.e.,
dx1 dy1 dx2 dy2 dx3 dy3 rcurveto is
the same as x0 + dx1 y0 + dy1 x0 + dx2

y0 + dy2 x0 + dx3 y0 + dy3 curveto
rectclip clip drawing to the region outlined x y w h rectclip =⇒ −

by the current rectangular path of
given width w and height h, and
with lower left corner (x, y)

rlineto perform relative lineto, i.e. dx dy rlineto =⇒ −
rmoveto perform relative moveto, i.e. dx dy moveto =⇒ −
setbbox set bounding box for current path llx lly urx ury

specifying the coordinates of the setbbox =⇒ −
lowerleft point and upper right point

strokepath replace current path with its outline − strokepath =⇒ −

32

Painting Operators
Operator Meaning Effects on Stack
eofill fill current path with current color − eofill =⇒ −

using the even-odd rule
fill fill current path with current color − fill =⇒ −

using the nonzero winding number rule
rectstroke draw the rectangular path x y w h rectstroke =⇒ −

of given width w and height h,
and with lower left corner (x, y)

rectfill fill the rectangular path x y w h rectfill =⇒ −
of given width w and height h,
and with lower left corner (x, y)

stroke draw line along current path − stroke =⇒ −

Recall that the operators stroke and fill destroy the current path; the behavior of the
eofill operator is identical to fill in this respect. All other painting operators listed above
do not alter the current path.

3.7 Text

In this section we will discuss ways to add text to a picture and how to import a mathematical
formula created by LATEX in a picture.

3.7.1 Simple PostScript Text

In exercises 23 to 25 on pages 26–27 you have already used the basic mechanism to put text
on a page. Here we will explain some basic methods.

Putting text on a page consists basically of three main steps:

1. Set up a font to use.

2. Set the current point to where the lower left corner of the text will be.

3. Give the string to print to the show operator.

Let us have a close look at the three steps. The process of specifying the desired font consists
of three steps:

1. Find the information describing the font in a dictionary called FontDirectory. For exam-
ple,

/Times-Roman findfont

looks up the name FontDirectory, retrieves the information about the Times Roman font,
and leaves it on the stack.

2. Set the size of the font with scalefont. The size is specified by the minimum vertical
separation necessary between lines of text. Thus,

33

font dictionary 12 scalefont

will scale the font such that successive lines of text are twelve points apart. A new font
dictionary will be the result of scalefont

3. Establish the scaled font as the current font, in which all text is to be printed. This is
done with the setfont operator, which takes the font dictionary off the stack and makes
it the current font.

Putting all things together, suppose that we want to start typesetting in Times Roman and
that we want it to be 12 points, then the following PostScript code would set up the correct
font:

/Times-Roman findfont % get the basic font
12 scalefont % scale the font to 12 points
setfont % make it the current font

Once you have set the current font and are ready to print something, you can use the moveto
operator to set the current point. Then place the text that you want to render on the stack as
a string by enclosing it by rounded brackets and call the show operator. The show operator
is the basic operator for printing strings of text. It takes a string and prints it out in the
current font and with the lower left corner at the current point. PostScript considers text just
like graphical objects and it allows transformations to be applied to it or different colorings
to be used. For example, running the following code

newpath
1 0 0 setrgbcolor
72 72 moveto
(Hello world!) show

right after the font selection code above, you would get the string Hello world! printed an
inch in from the lower left corner in a 12 point Times-Roman and in red.

The standard PostScript fonts that you can choose are listed below:

Times-Roman Times-Italic Times-Bold Times-BoldItalic
Helvetica Helvetica-Oblique Helvetica-Bold Helvetica-BoldOblique
Courier Courier-Oblique Courier-Bold Courier-BoldOblique
Symbol

The following example (on the next page) prints text in four different sizes of Times Roman. It
needs some explanation. The variable vpos is used to keep track of the current point’s vertical
position. The newline moves the current point down twenty-five points by descreasing vpos
and using it with a moveto. The showtext procedure takes three argument: the coordinates
of the lower left corner where the text should start and the requested font size. We use this
font size to compute the horizontal displacement between the printed word Times-Roman and
the number that stands for the size of the font. In order to print this font size, the number
must first be converted into a string. Here, the cvs operator is used for this purpose. It
takes two arguments off the stack: a string object and the object that must be converted into
text and that is stored in the string argument. cvs returns the string object on the stack so

34

that it can be printed with the show operator. The string object that we need on top of the
stack when we call the cvs operator is created by the string operator. We do this in the
prolog with the statement /temp 2 string, i.e., we store a string object of length two in the
variable temp, with each element initialized with the integer 0.

Times-Roman 5

Times-Roman 10

Times-Roman 15

Times-Roman 20

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 145 85
%%BeginProlog
/vpos 77 def % vertical position
/newline { /vpos vpos 25 sub def

2 vpos moveto} def
/temp 2 string def
/showtext {% stack: x, y, size
/Times-Roman findfont % x, y, size, font
exch dup 3 1 roll % x, y, size, font, size
scalefont setfont % x, y, size
3 1 roll % size, x, y
moveto (Times-Roman) show % size
dup % size size
3 div 0 rmoveto % size
temp cvs show

} def
%%EndProlog
% draw texts in different font sizes
newpath
2 vpos 5 showtext newline
2 vpos 10 showtext newline
2 vpos 15 showtext newline
2 vpos 20 showtext
showpage
%%EOF

In practice, when you put text on a page, you will use several fonts in one PostScript program.
Then it is convenient to define operators for choosing the font; see the following example.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 35 13
%%BeginProlog
/symbol10 {/Symbol findfont 10 scalefont
setfont} bind def

/symbol7 {/Symbol findfont 7 scalefont
setfont} bind def

%%EndProlog

35

(α1 + α2) newpath
2 5 moveto symbol10 (\050a) show
0 -3 rmoveto symbol7 (1) show
0 3 rmoveto symbol10 (+ a) show
0 -3 rmoveto symbol7 (2) show
0 3 rmoveto symbol10 (\051) show
%%EOF

The above example needs some explanation. In the first place, there is the last part bind def
in the font procedures. Without bind the code also works well. So what is the purpose of
using the operator bind? A short answer is: the effect of executing bind is to perform early
name binding, i.e., to replace executable operator names in a procedure by their values, so
that the procedure works more efficiently.

A second aspect in the application of the Symbol font is the character code, which is a bijection
between numeric codes and characters recognized by the computer system. For example, the
code \050 and \051 stand for the open and close round brackets, respectively. The standard
encoding for the alphanumeric fonts, such as Times, Helvetica, and Courier, is similar to the
ASCII standard and is a number in octal notation. If a character has a corresponding key
on a computer keyboard, you can simply use the key. In all other cases you must use the
character code. Thus, in the symbol font, the letters a and W will be printed as α and Ω,
respectively. The square root symbol, for example, has no key equivalent and must be entered
as \326 At the end of this chapter, we will list the encoding for the Symbol font.

We end this section with an example that illustrates that PostScript does not really distinguish
between graphical objects and textual objects. In the example, we scale the font and transform
the coordinate system as we wish; the numbers required for a nice display are found by trial
and error.

}}} 1
2

√3

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 70 55
%%BeginProlog
/cm {28.34645 mul} def
/mf {/Symbol findfont 10 scalefont
setfont} bind def

/s1 {/Symbol findfont 1.2 cm scalefont
setfont} bind def

/s2 {/Symbol findfont 2.4 cm scalefont
setfont} bind def

/s3 {/Symbol findfont 2.1 cm scalefont
setfont} bind def

%%EndProlog
5 20 translate
newpath % triangle
0 0 moveto 3 sqrt cm 0 rlineto
0 1 cm rlineto closepath stroke

36

newpath % the braces
49 5 moveto
gsave
0.5 1 scale s1 (\175) show

grestore
39 24 moveto
gsave
120 rotate 0.18 1 scale s2 (\175) show

grestore
9 -1 moveto
gsave
-90 rotate 0.25 1 scale s3 (\175) show

grestore
% the numbers
57 13 moveto mainfont (1) show
15 20 moveto mainfont (2) show
19 -18 moveto mainfont (\3263) show
showpage
%%EOF

Another example to illustrate that PostScript treats characters as path is the following out-
lining:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 166 35
/Helvetica-BoldOblique findfont
40 scalefont setfont
newpath
-2 3 moveto
(Outlined) true charpath
stroke
showpage
%%EOF

The actual path of the word outlined is appended to the current path by the charpath
operator. It takes two arguments: a string and a boolean. Use the boolean value true if you
want to stroke the outline and false if you intend to fill or clip.

EXERCISE 28
Create the following picture, which consists of an outlined word fill with

yellow.

EXERCISE 29
Create the following picture:

37

O a

b

x

y

(a, b)

(a
b)

3.7.2 Importing LATEX text

When it comes to complicated mathematical formulas and manual typesetting becomes a
burden, it is useful to create Encapsulated PostScript files for the formulas with LATEX and
import these files when needed. The only drawback of this is the size of the PostScript file
that is generated: in our example below, the file with the PostScript code of the formula
is 14KB, whereas most of the PostScript examples in this book only take about 1KB. In
Appendix 7 of the textbook Mathematical Illustrations of Bill Casselman [Cas05], the author
gives a detailed description of how to import LATEX text. Here we will only sketch the idea
and give a working example.

EXERCISE 30
Consider the formula

2x2 + 6x + 1
x(x + 1)2

and do the following steps:

1. The first difficulty is to create via LATEX an Encapsulated PostScript file that only contains
the code for printing the formula and nothing else. The first thing to do is avoiding a page
number. Create a LATEX document, say formula.tex with the following contents:

\documentclass[12]{article}
\begin{document}
\pagestyle{empty}
\Huge $\frac{2x^2+6x+1}{x(x+1)^2}$
\end{document}

2. Typeset the document formula.tex. This will provide you with the formula.dvi file.

3. Create the Encapsulated PostScript file formula.eps by applying the command

dvips -E formula.dvi -o formula.eps

Preview the file to check that it is as expected.

38

4. Open the file formula.eps to check that the bounding box information is present. In
our case, this is %%BoundingBox: 149 621 240 668. Without the -E option in the dvips
command in the previous step, the bounding box would have been such that a full page
with the formula in it were produced.

5. Create a PostScript file with the following contents.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 200 50
%%BeginProlog
% define and assign the scale
% note: 1 cm = 28.34645 points,
% 1 inch = 72 points.
/s 28.34645 def
/BeginImport {
save /SavedState exch def
count /OpStackSize exch def
/DictStackSize countdictstack def
/showpage {} def
0 setgray 0 setlinecap
1 setlinewidth 0 setlinejoin
10 setmiterlimit [] 0 setdash newpath
/languagelevel where
{pop languagelevel 1 ne
{false setstrokeadjust false setoverprint} if

} if
} bind def
/EndImport {
count OpStackSize sub
dup 0 gt { {pop} repeat} {pop} ifelse
countdictstack DictStackSize sub
dup 0 gt { {end} repeat} {pop} ifelse
SavedState restore

} bind def
%%EndProlog
s s scale
1 s div setlinewidth
newpath
0.07 0.07 moveto
gsave
1 s div 1 s div scale
/TimesRoman findfont 20 scalefont setfont
0 20 rmoveto (The formula:) show
currentpoint pop 0 translate
-149 -621 translate
BeginImport
(formula.eps) run

39

EndImport
stroke

grestore
showpage
%%EOF

The BeginImport and EndImport are taken literally from [Cas05]. BeginImport takes
care of turning off a possible showpage in the imported file and sets up a default graphics
state. EndImport restore the graphics state to what it was just before importing the
Encapsulated PostScript file. The line -149 -621 translate in the above code sets the
lower left corner of the imported image at the origin of the figure it is being imported to.
This origin has been translated in the line before in the horizontal direction such that the
imported formula will appear just after the introductory text. The run operator executes
the contents of the specified Encapsulated PostScript file as if the command in it where
written in the file to which the figure is imported. When the run operator encounters
%%EOF (end-of-file), it closed the file.

6. Preview the PostScript document that you created in the previous step. It should look like

The formula: 2x
2+6x+1

x(x+1)2

EXERCISE 31
Create a PostScript document in which you import the formula

f(x) =
ex

1 + e2x
,

the PostScript code of which is created via LATEX.

3.8 Symbol Encoding

The following table lists the character encoding for the Symbol font.

40

 ! ∀ # ∃ % & ∋
() ∗ + , − . /
0 1 2 3 4 5 6 7
8 9 : ; < = > ?
≅ Α Β Χ ∆ Ε Φ Γ
Η Ι ϑ Κ Λ Μ Ν Ο
Π Θ Ρ Σ Τ Υ ς Ω
Ξ Ψ Ζ [∴] ⊥ _
 α β χ δ ε φ γ
η ι ϕ κ λ µ ν ο
π θ ρ σ τ υ ϖ ω
ξ ψ ζ { | } ∼

€ ϒ ′ ≤ ⁄ ∞ ƒ ♣
♦ ♥ ♠ ↔ ← ↑ → ↓
° ± ″ ≥ × ∝ ∂ •
÷ ≠ ≡ ≈ … ↵
ℵ ℑ ℜ ℘ ⊗ ⊕ ∅ ∩
∪ ⊃ ⊇ ⊄ ⊂ ⊆ ∈ ∉
∠ ∇ ∏ √ ⋅
¬ ∧ ∨ ⇔ ⇐ ⇑ ⇒ ⇓
◊ 〈 ∑

〉 ∫ ⌠ ⌡

0 1 2 3 4 5 6 7

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

\20x

\21x

\22x

\23x

\24x

\25x

\26x

\27x

\30x

\31x

\32x

\33x

\34x

\35x

\36x

\37x

octal

41

4 Style Directives

In this chapter we explain how you can alter the appearance of graphics primitives, e.g.,
allowing certain lines to be thicker and others to be dashed, using different colors, and shading
the interior of a closed path.

4.1 Dashing

Examples show you best how the specify a dash pattern when drawing a line or curve. We do
not show the complete code of producing the figure to the left, because it is clear the given
examples and the labels added in the picture how the code looks like.

 [] 0 setdash
 [15] 0 setdash
 [10] 0 setdash
 [5] 0 setdash
 [1] 0 setdash

 [10] 0 setdash
 [10] 4 setdash
 [10] 8 setdash
 [10] 12 setdash

 [6 3] 0 setdash
 [6 3 3] 0 setdash
 [6 3 3 3] 0 setdash

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 200 195
%%BeginProlog
/Times-Roman findfont 10 scalefont setfont
/vpos 180 def % vertical position
/newexample { stroke grestore

/vpos vpos 13 sub def
4 vpos moveto gsave} def

/drawline {105 0 rlineto} def
%%EndProlog
newpath
4 vpos moveto
% draw light gray borderlines
gsave 0.9 setgray

0 4 rmoveto 0 vpos neg rlineto
105 0 rmoveto 0 vpos rlineto stroke

grestore
% draw dashed lines
gsave
[] 0 setdash drawline ([] 0 setdash) show
newexample
[15] 0 setdash drawline ([15] 0 setdash) show
newexample
[10] 0 setdash drawline ([10] 0 setdash) show
newexample
[5] 0 setdash drawline ([5] 0 setdash) show
newexample
[1] 0 setdash drawline ([1] 0 setdash) show
stroke grestore
%
/vpos vpos 26 sub def
4 vpos moveto save
[10] 0 setdash drawline ([10] 0 setdash) show
newexample
[10] 4 setdash drawline ([10] 4 setdash) show
newexample
%
showpage
%%EOF

42

In general, the syntax for dashing is

[dash pattern] offset setdash

The dash pattern is a sequence of nonnegative numbers and not all of them may be zero. An
empty dash pattern denotes solid, unbroken lines. In a nonempty dash pattern, the numbers
represent the lengths of alternating dashes and gaps that make up the stroked line. The
stroke operator uses the elements of the dash pattern cyclicly, i.e., when it reaches the end
of the dash pattern, it continues from the beginning. Where the stroke operator is to start
when it prints the line is determined by the offset.

4.2 Coloring

In PostScript, colors can be described in any of a variety of color models, including grayscale,
RGB (red-green-blue), HSB (hue-saturation-brightness), and CMYK (cyan-magenta-yellow-
black). The operators for color specifications in the listed models are setgray, setrgbcolor,
sethsbcolor, and setcymkcolor, respectively. Below we will only discuss the gray and RGB
color model.

In the gray model, a gray level is specified by a real number in the range 0 to 1, with 0
denoting black and 1 denoting white. So, the statement

.75294118 setgray

sets the current color to a particular kind of gray.

In the RGB model, a color is represented as a triple (r, g, b). Each of r, g, and b must be a
number between 0 and 1, inclusively, representing fractional intensity of red, green, or blue,
respectively. The statement

1 0 0 setrgbcolor

sets the current color to red. The following color table lists some color encodings.

Color RGB specification
Name red green blue
black 0 0 0
blue 0 0 1
brown 0.647 0.165 0.165
cyan 0 1 1
green 0 1 0
magenta 1 0 1
orange 0.8 0.196 0.196
red 1 0 0
white 1 1 1
yellow 1 1 0

Let us draw one color chart:

43

0.0

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

r

g

RGB[r, g, 0]
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 225 225
%%BeginProlog
/u 16 def % 16 points per unit
/lw 1 u div def % default linewidth
/Times-Roman findfont 8 u div scalefont setfont
/display {dup 3 1 roll 10 exch exp mul round

10 3 -1 roll exp div} def
/str 10 string def
/n 10 def
/dp 2 def % display precision
%%EndProlog
u dup scale
lw setlinewidth
1.8 1.8 translate
%
0 1 n {
/i exch def
% draw horizontal labels
i 0.1 add -0.75 moveto
i n div dp display str cvs show
% draw vertical label
-1 i 0.25 add moveto
i n div dp display str cvs show
0 1 n {
/j exch def
gsave % draw filled rectangle
i n div j n div 0 setrgbcolor
newpath i j 1 1 rectfill
0 setgray
newpath i j 1 1 rectstroke

grestore
} for

} for
n 2 div -1.5 moveto (r) show
-1.5 n 2 div moveto (g) show
n 2 div 1 sub n 1.5 add moveto
(RGB[r, g, 0]) show
showpage
%%EOF

We want to mention two things about the above PostScript code. Firstly, PostScript has
no built-in methods to control the number of displayed decimal places of a floating-point
number. This is why we define our own display routine, which takes a real number and the
number of decimal places that are shown, with removal of trailing zeros. Secondly, we use a

44

repetition control structure, viz., a for loop. We will come to control structures of imperative
programming in Chapter 5. But to understand the above PostScript code, it suffices to know
that the following basic structure of the counted for loop

start stepsize finish {
/counter exch def
...

} for

means that a counter with initial value start is incremented at the end of each step in the
repetition by the value of stepsize until it passes the value of finish. Then the repetition
stops and the PostScript interpreter continues with what comes after the for part. Actu-
ally, the for loop involves a hidden and nameless variable with initial value start whose
value is put on the stack just before each step in the repetition. The statement of the form
/counter exch def takes this hidden variable off the stack and assigns it to the variable
counter. In the above PostScript code we have a nested counted for loop

EXERCISE 32

1. Verify that the above display procedure indeed displays a given real number in the spec-
ified number of decimal places (Hint: write down what the stack looks like at each step of
the computation).

2. Change the integer n from 10 into 4 and verify that the program still works correctly.

EXERCISE 33
Create the following graylevel chart:

EXERCISE 34
Using color charts, compare the linear conversion from color to gray,

defined by the function

(r, g, b) 7→ (r + g + b)
3

× (1, 1, 1)

with the following conversion formula used in black and white television:

(r, g, b) 7→ (0.30r + 0.59g + 0.11b)× (1, 1, 1) .

4.3 Joining Lines

In PostScript, lines are joined by default such that line joints are normally rounded. You can
influence the appearances of the lines by the operators setlinejoin and setlinecap, which
give the internal variables linejoin and linecap a value 0, 1 or 2, respectively. The default
values of these variables is 0. The pictures below show the possibilities.

45

butt: linecap=0

rounded: linecap=1

squared: linecap=2

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 180 60
%%BeginProlog
/line {newpath 0 0 moveto 72 0 lineto stroke} def
%%EndProlog
/Courier findfont 8 scalefont setfont
10 50 translate
10 setlinewidth 0 setlinecap 0 setgray line
1 setlinewidth 1 setgray line
0 setgray 82 -2 moveto (butt: linecap=0) show

0 -20 translate
10 setlinewidth 1 setlinecap 0 setgray line
1 setlinewidth 1 setgray line
0 setgray 82 -2 moveto (rounded: linecap=1) show

0 -20 translate
10 setlinewidth 2 setlinecap 0 setgray line
1 setlinewidth 1 setgray line
0 setgray 82 -2 moveto (squared: linecap=2) show
showpage
%%EOF

mitered: linejoin=0

rounded: linejoin=1

beveled: linejoin=2

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 165 185
%%BeginProlog
/angle {

newpath 0 0 moveto 36 36 lineto 36 0 lineto stroke
} def
%%EndProlog
/Courier findfont 8 scalefont setfont
10 130 translate
10 setlinewidth 0 setlinejoin 0 setgray angle
1 setlinewidth 0.8 setgray angle
0 setgray 56 0 moveto (beveled: linejoin=0) show

0 -60 translate
10 setlinewidth 1 setlinejoin 0 setgray angle
1 setlinewidth 0.8 setgray angle
0 setgray 56 0 moveto (rounded: linejoin=1) show

0 -60 translate
10 setlinewidth 2 setlinejoin 0 setgray angle
1 setlinewidth 0.8 setgray angle
0 setgray 56 0 moveto (mitered: linejoin=2) show
showpage
%%EOF

By setting the variable miterlimit, you can influence the mitering of joints. The next
example demonstrates that the value of this variable, a number greater than or equal to 0,
acts as a trigger.

46

miterlimit=1

miterlimit=1.414

miterlimit=1.415

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 175 175
%%BeginProlog
/angle {

newpath 0 0 moveto 36 36 lineto 72 0 lineto stroke
} def
%%EndProlog
/Courier findfont 8 scalefont setfont
10 130 translate
10 setlinewidth 1 setmiterlimit 0 setgray angle
1 setlinewidth 0.8 setgray angle
0 setgray 80 0 moveto (miterlimit=1) show
0 -60 translate
10 setlinewidth 1.414 setmiterlimit 0 setgray angle
1 setlinewidth 0.8 setgray angle
0 setgray 80 0 moveto (miterlimit=1.414) show
0 -60 translate
10 setlinewidth 1.415 setmiterlimit 0 setgray angle
1 setlinewidth 0.8 setgray angle
0 setgray 80 0 moveto (miterlimit=1.415) show
showpage
%%EOF

At any given corner, the miter length is the distance from the point at which the inner edges
of the strokes intersect to the point at which their outer edges intersect (see Figure 4). This
distance depends on the angle between the segments. If the ratio of the miter length to the
line width exceeds the specified miter limit, the stroke operator treats the corner as a beveled
join instead of a mitered join.

 miter
length

φ

line width

Figure 4: Mitter length.

The ratio of miter length to line width is directly related to the angle φ between the segment
by the following formula:

miterlength
linewidth

=
1

sin
(φ

2

)

Example miter limit values are:

• 1.414 cuts off miters at angles less than 90 degrees.

• 2.0 cuts off miters at angles less than 60 degrees.

• 10.0 cuts off miters at angles less than 11 degrees.

• 1.0 cuts off miters at any angle.

The default value of the miter limit is 10.0.

47

5 Control Structures

In this chapter we will look at two commonly used control structures of imperative pro-
gramming languages: condition and repetition. Unlike common programming languages, the
control constructs are specified by means of operators that take procedures as operands. By
the way, a PostScript procedure is nothing else than an executable array, i.e., an array whose
contents are to be executed by the PostScript interpreter. Let us exemplify the meaning of
this. If a series of objects is enclosed in braces, it is not immediately executed, but is stored
in an array and placed on the stack. Thus, the line 1 2 add causes the interpreter to add
the numbers and put the sum 3 on the stack, while the line {1 2 add} places the numbers
and the add in an array, which is then placed on the stack. As we have seen already in many
examples, an executable array is often preceded by a literal name (a name beginning with
a slash /) and followed by a def operator, which associates it with a name in the current
dictionary

5.1 Conditional Operations

In PostScript, there are two operators for building a conditional statement: if and ifelse.
The simplest form of a conditional statement is this:

condition
{ true clause }
if

where condition represents an object that leaves a boolean value (i.e., true or false) on the
stack. The if operator takes two operands: a boolean value and an executable array, denoted
here as true clause because if causes this procedure to be executed in case the boolean value
is equal to true. The next example of an if statement prints the stack at some step in the
PostScript program provided that the debug variable has been given the value true.9

/debug true def % debugging on
% ... some code
debug {pstack} if
% ... some more code

The most general conditional statement in PostScript uses the ifelse operator and has the
following form:

condition
{ true clause }
{ false clause }
ifelse

where condition represents a procedure that leaves a boolean value (i.e., true or false) on
the stack. The ifelse operator is used for branching: depending on some condition, one
procedure is executed or another. Nesting of conditional operations is allowed, but there is
no shortcut notation. For example, nesting of two basic ifelse operations looks as follows:

9Use the GhostScript interpreter to see the debugging printout and the PostScript picture in different
windows.

48

1st condition
{ 1st procedure }
{ 2nd condition

{ 2nd procedure }
{ 3rd procedure }
ifelse

}
ifelse

EXERCISE 35
Start the Ghostscript interpreter and enter the following statements:

/i -1 def
/j 1 def
i j gt {i}{j} ifelse

Which number do you expect on top of the stack? Verify your answer.

In the above exercise, the condition is a command sequence in PostScript that returns a
boolean value. In the sample code, the sequence i j gt puts true on the stack if i > j;
otherwise, the boolean value false will be put on the stack. The command sequence that
returns a boolean value and forms the condition can be built up with the following relational
and logical operators.

Relational Operators
Arguments Operator Meaning
any1 any2 eq test equal
any1 any2 ne test not equal
num1 num2 ge test greater than or equal (of numbers)

str1 str2 ge test lexically greater than or equal (of strings)
num1 num2 gt test greater than (of numbers)

str1 str2 gt test lexically greater than (of strings)
num1 num2 le test less than or equal (of numbers)

str1 str2 le test lexically less than or equal (of strings)
num1 num2 lt test less than (of numbers)

str1 str2 lt test lexically less than (of strings)

Logical Operators
Operator Meaning
and test if all conditions hold
not negation of condition
or test if one of many conditions hold
xor test exclusive or

These operators can be used to create your own test procedures. For example, the following
procedure checks whether a given integer is even. If yes, true is put on the stack; if not,
false is put on the stack.

/isEven {dup 2 idiv 2 mul eq} def

49

EXERCISE 36
Write a procedure that takes three number as arguments, considers them

as lengths of sides of a triangle, and decides whether such a triangle can be constructed. If
so, a sample triangle is drawn.

5.2 Repetition

In the construction of the color chart on page 45 you have already seen the counted for loop
of the form

start stepsize finish {
/counter exch def
...

} for

means that a counter with initial value start is incremented at the end of each step in the
repetition by the value of stepsize until it passes the value of finish. Then the repetition
stops and the PostScript interpreter continues with what comes after the for part. Actu-
ally, the for loop involves a hidden and nameless variable with initial value start whose
value is put on the stack just before each step in the repetition. The statement of the form
/counter exch def takes this hidden variable off the stack and assigns it to the variable
counter. Instead of revealing the hidden variable in the for, you can also ignore it in all
of the code of the loop text but the first line, in which you pop it off the stack. Nesting of
counted for loops is of course possible, but there are no abbreviations like in other program-
ming languages.

The counted for loop is an example of an unconditional repetition, in which a predetermined
set of actions are carried out. The simplest repetition structure of this type is however the
repeat loop of the the form

count {
...

} repeat

Here count is an integer. The lines of the procedure are repeated count times.

Below, we will give some examples of a counted for loop and a repeat loop.

A Bernoulli walk

A 1-dimensional Bernoulli walk is a random walk in which a person takes at regular time
intervals randomly a step to the left or to the right. Each step is assumed to be of the same
length and to be stochastically independent of the previous one. In the following diagram,
the position of the random walker (in number of steps to the right (positive value) or to the
left (negative value)) is plotted against the number of steps made since he or she left the
origin. We define the randstep operator to generate randomly a number 1 or -1. It uses
the rand operator that returns a random integer in the range 0 to 231 − 1, produced by a
pseudo-random number generator. Applying the modular arithmetic with modulus 2, we get
a random number 0 or 1. Multiplying this number by 2 and subtracting one convert the
number to -1 or 1.

50

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 190 190
%%BeginProlog
/u 3 def % 3 points per unit
/lw 1 u div def
/oneOrZero 2 rand 2 mod mul 1 sub def
/n 60 def
%%EndProlog
u dup scale
lw setlinewidth
1 30 translate
%
newpath
0 0 moveto
n { 1 oneOrZero rlineto} repeat
stroke
showpage
%%EOF

A Regular Polygon
Regular polygons are easily drawn via a repeat loop. In the program below we assume that
one of the vertices of the n-gon is (0, 1), which implies that we can take a starting angle α0

of 90 degrees. If we set α = 360/n, then the other vertices will be
(
cos(α0 + α), sin(α0 + α)

)
,(

cos(α0 + 2α), sin(α0 + 2α)
)
, and so on.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 76 76
%%BeginProlog
/u 36 def % unit: 0.5 inch
/lw 1 u div def
/n 6 def
/da 360 n div def % angle increment
/a 90 def % initial angle
%%EndProlog
u dup scale
lw setlinewidth
1.05 1.05 translate
newpath
0 1 moveto
n 1 sub {/a a da add def % increase angle

a cos a sin lineto % draw line
} repeat
closepath
stroke
showpage
%%EOF

51

The graph of a function

In this example we plot the graph of the function

f(x) = x5 − 5x3 − x2 + 4x + 2

on the interval (−2.4, 2.4); we restrict the vertical range to the interval (−4.8, 4.8). First we
give a simple implementation that illustrates the idea of drawing a function. The graph of
the function is drawn in red and tick marks on the axes indicate the unit scaling.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 75 150
%%BeginProlog
/u 14.173225 def % unit: 0.5 cm
/lw1 1 u div def
/lw2 0.7 u div def
/f { % the function f(x)

1 dict begin
/x exch def
x 5 exp % x^5
x 3 exp -5 mul add % -5x^3
x 2 exp sub % -x^2
x 4 mul add % +4x
2 add % +2
end } bind def

/n 100 def
%%EndProlog
u dup scale
lw1 setlinewidth
2 setlinejoin % beveled joins
% translate origin
2.5 4.9 translate
% draw axes
lw2 setlinewidth
newpath
-2.4 0 moveto 2.4 0 lineto
0 -4.8 moveto 0 4.8 lineto
stroke
% draw ticks
newpath
-2 1 2 {/i exch def

i 0 moveto 0 0.1 rlineto
} for
-4 1 4 {/i exch def

0 i moveto 0.1 0 rlineto
} for
stroke
% draw graph
lw1 setlinewidth
1 0 0 setrgbcolor
newpath

52

/x -2.08 def
/dx 4.29 n div def
x x f moveto
n {
/x x dx add def
x x f lineto
} repeat
stroke
showpage
%%EOF

Let us comment on the above code: In the definition of the function f(x) we make the variable
x local to the procedure via the 1 dict begin ... end construct. Furthermore, we use the
bind for efficiency reasons. The comments in the PostScript code makes it for the reader
more easy to verify that the intended function is indeed defined.

The heart of the code is the last part:

/x -2.08 def
/dx 4.29 n div def
x x f moveto
n {
/x x dx add def
x x f lineto

} repeat

First we choose the smallest x value (-2.08) and the length (4.29) of the domain that we will
actually use for drawing the graph. The numbers are chosen such that the graph fits in the
vertical range −4.8 . . . 4.8. If n is the number straight line segments that are used to graph
the function f , then the step size will be length of domain / n. After moving to the starting
point

(−2.08, f(−2.08)
)
, we cross in n steps to the end point

(
2.21, f(2.21)

)
. At each step in

the repeat loop, we draw a straight line from the current point
(
x, f(x)

)
to the next point(

x + dx, f(x + dx)
)
. If the number of segments (n) is large enough, the graph of the function

will look smooth and you will not really see that it is actually built up from small straight
line segments. We use beveled joins (2 setlinejoin) to make breaks between segments less
sharp.

In fact, the graph of a function is a polygonal approximation to it. In practice, the graphical
result will be often quite acceptable provided that you can choose a sufficiently large number
of segments. Remaining drawback is that the picture created in this way is not scalable: if the
approximation looks smooth at one scale, it may not look good at another. The only remedy
to this is the use of curve segments that join smoothly. The cubic Bézier approximation of
the graph of a function is a good solution, but as we will see, it only works if you know
the derivative of your function or can approximate it well enough. The only change that we
basically make to PostScript code is that we draw cubic Bézier segments between the points
that we use to build up the graph. The control points are determined as follows: suppose
that

P0 =
(
x, f(x)

)

53

and
P3 =

(
x + dx, f(x + dx)

)

are the end points of our small Bézier curve. Then set the post and pre control points as

P1 =
(
x +

1
3

dx, f(x) +
1
3
f ′(x) dx

)

and
P2 =

(
x +

2
3

dx, f(x + dx)− 1
3
f ′(x + dx) dx

)

so that the direction of the cubic Bézier curve with end points P0 and P3, post control point
P1, and pre control point P2 equals the direction of the graph of the function f at the end
points. All Bézier segments together build up a smooth approximation of the graph of our
function.

The changes to the above PostScript code that will produce a cubic Bézier approximation of
the graph of the function

f(x) = x5 − 5x3 − x2 + 4x + 2

are: the introduction of the derivative of f

/f’ { % the function f’(x)
1 dict begin
/x exch def
x 4 exp 5 mul % 5x^4
x 2 exp -15 mul add % -15x^2
x 2 mul sub % -2x
4 add % +4

end } bind def

and the change in the repeat loop to cubic Bézier segments

x x f moveto % P0
/f’x x f’ def
n {
x dx 3 div add
x f dx 3 div f’x mul add % P1
/x x dx add def
/f’x x f’ def
x dx 3 div sub
x f dx 3 div f’x mul sub % P2
x x f % P3
curveto

} repeat

To see the difference between the polygon approximation and the cubic Bézier approximation,
we choose a small number of segment, viz., n = 8, and draw both approximations in one
picture. Believe it or not, but the cubic Bézier approximation shown in the picture below can
hardly be distinguished from the real graph on the given domain, range, and scaling.

54

The graph of the function f(x) = x5 − 5x3 − x2 + 4x + 2 can be produced in a more general
way. Below we will give an idea how to do this. We deliberately choose different scaling of
the axes. We also put much effort in automatic placing of the labels near the tick marks and
in making the code working properly for any horizontal and vertical ranges that contain 0,
provided that the bounding box of the picture is chose large enough to contain the diagram.
This complicates the code, but makes it more general. In the code listing below, we repeatedly
show the picture that is created, so that you can compare PostScript code with the result.
Of course, the PostScript code will generate only one picture.

x

y

-2 -1 1 2

-4

-3

-2

-1

1

2

3

4

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 150 150
%%BeginProlog
/u 14.173225 def % unit: 0.5 cm
/lw1 1 u div def
/lw2 0.7 u div def
/f1 {

/Times-Roman findfont 10 u div scalefont setfont
} bind def
/f2 {

/Times-Italic findfont 12 u div scalefont setfont
} bind def
/str 2 string def
/sx 0.5 def % scale factors for x, y
/sy 1 def
/f { % the function f(x)

1 dict begin
/x exch def
x 5 exp % x^5
x 3 exp -5 mul add % -5x^3
x 2 exp sub % -x^2
x 4 mul add % +4x
2 add % +2
end

} bind def

55

x

y

-2 -1 1 2

-4

-3

-2

-1

1

2

3

4

/f’ {1 dict begin % the function f’(x)
/x exch def
x 4 exp 5 mul % 5x^4
x 2 exp -15 mul add % -15x^2
x 2 mul sub % -2x
4 add end % +4

} bind def
/scoord {% scales coordinates

% stack: x y
exch sx div % y x/sx
exch sy div % x/sx y/sy

} bind def
/x0 -2.4 def % set x range that
/x1 2.4 def % contains 0
/y0 -4.8 def % set yrange that
/y1 4.8 def % contains 0
/n 10 def
%%EndProlog
u dup scale lw1 setlinewidth
% translate origin
x0 sx div neg 0.5 add
y0 sy div neg 0.5 add translate
% draw axes
lw2 setlinewidth
newpath
x0 0 scoord moveto x1 0 scoord lineto
0 y0 scoord moveto 0 y1 scoord lineto
stroke
x1 sx div 0.4 sub 0.2 moveto f2 (x) show
0.1 sx div y1 sy div 0.4 sub moveto f2 (y) show
% draw ticks
newpath
/start x0 ceiling cvi def
/finish x1 floor cvi def
start 1 finish {/i exch def

i 0 scoord moveto 0 0.1 rlineto
i 0 ne {-0.2 -0.75 rmoveto f1 i str cvs show} if

} for
/start y0 ceiling cvi def
/finish y1 floor cvi def
start 1 finish {/i exch def

0 i scoord moveto 0.1 0 rlineto
i 0 lt {-0.8 -0.2 rmoveto f1 i str cvs show} if
i 0 gt {-0.6 -0.2 rmoveto f1 i str cvs show} if

} for
stroke
% restrict drawing area
x0 y0 scoord moveto x1 y0 scoord lineto
x1 y1 scoord lineto x0 y1 scoord lineto
closepath clip
% draw graph

56

x

y

-2 -1 1 2

-4

-3

-2

-1

1

2

3

4

lw1 setlinewidth 1 0 0 setrgbcolor
/x x0 def
/dx x1 x0 sub n div def
newpath
x x f scoord moveto % P0
/f’x x f’ def
n {

x dx 3 div add
x f dx 3 div f’x mul add scoord % P1
/x x dx add def
x dx 3 div sub
/f’x x f’ def
x f dx 3 div f’x mul sub scoord % P2
x x f scoord % P3
curveto

} repeat
stroke
showpage
%%EOF

The really new things in the above PostScript code are:

1. Variables are introduced for the scale factors (sx, sy), and for the start and end of axes
(x0, x1, y0, y1). Just by changing the values of these variable you can select a new domain
or range, or choose a different scaling.

2. The diagram is clipped to the rectangular area with lower left corner (x0, y0) and upper
right corner (x0, y0). In this way we take care of function values outside our vertical range.

3. The origin of the coordinate system is translated such that the drawing area will be placed
in the lower left corner.

4. Scaling is done via the scoord operator. This has the advantage that we can define points
with respect to the normal coordinate system and hereafter transform them to positions
in the scaled coordinate system.10

5. Tick marks and text labels are automatically placed in the diagram with respect to the
given domain and range. String conversion via the cvs operator is used to create a string
representation of a given integer. For this purpose, the auxiliary variable str is defined to
contain words consisting of at most two symbols. Drawback of automatic labeling is that
the graph may go through a label. Therefore, an ad hoc style of labeling is not a bad idea.

EXERCISE 37
Verify that the above code keeps generating nice diagrams when the

horizontal and vertical ranges are changed and when the scaling is changed (provided that
the bounding box is large enough to contain the complete picture).

Especially through the last example of drawing the graph of a mathematical function we have
drifted away from our topic: the control structure called repetition. There are still more forms
of repetition in PostScript to discuss.

10By the way, use of the scale operator with different horizontal and vertical scaling has the disadvantage
that it also changes the line width in a non-uniform way.

57

Another popular type of repetition is the conditional loop. PostScript does not have a pre-
or post conditional loop (in many imperative programming language called a while loop and
until loop, respectively) built in. You must create one by an endless loop and an explicit
jump outside this loop. First the endless loop: this is created by

{ loop text } loop

To terminate such a loop when a boolean condition becomes true, use the exit operator:11

condition {exit} if

When the boolean expression evaluates to true, then the PostScript interpreter encounters
the exit operator and exits the current loop. One thing you must keep in mind is that any
objects pushed on the stack during execution of the loop remain after the loop is exited. The
PostScript version of a until loop is

{ loop text
condition {exit} if

} loop

If it is more convenient to exit the loop when an expression becomes false, then the test must
appear at the beginning of the loop. Thus, the PostScript version of a while loop is:

{ condition {exit} if
loop text

} loop

Below, we use the loop operator the create a star shaped figure. In the program we assume
that one of the vertices of the n-star is (cosα0, sinα0), where α0 is the starting angle in
degrees. If we set α = 720/n, then the other vertices will be

(
cos(α0 + α), sin(α0 + α)

)
,(

cos(α0 + 2α), sin(α0 + 2α)
)
, and so on. α0 and n can be changed to get a different shape.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 76 76
%%BeginProlog
/u 36 def % unit: 0.5 inch
/n 5 def % choose an odd number
/da 720 n div def % angle increment
/a0 90 def % initial angle
%%EndProlog
u dup scale 1 u div setlinewidth
1.05 1.05 translate newpath
a0 cos a0 sin moveto /a a0 def
n {a 720 a0 add gt {exit} if % test

/a a da add def % increase angle
a cos a sin lineto % draw line

} loop
closepath stroke
showpage
%%EOF

11An alternative operator for leaving a loop is the stop operator, which works in this context the same as
the exit operator.

58

Another application of the conditional loop You can combine a counted for loop and a
conditional loop. For example,

start stepsize finish {
/counter exch def
condition {exit} if
...

} for

is the PostScript equivalent of a combination of a for and while loop.

The fourth kind of repetition, viz., the forall operator, only works for arrays. Recall that
an array is denoted in PostScript by a sequence of objects placed between square brackets.
We used implemented the graphical primitive point as an array of two numbers [x, y]. A
polygon is a sequence of points P0, P1, . . . , Pn−1, called its vertices. It is natural to implement
a polygon as an array of points [P0, P1, . . . , Pn−1].

EXERCISE 38
Below we draw a polygon and its vertices.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 120 112
%%BeginProlog
/u 54 def % unit: 0.5 inch
/lw 1 u div def
/point {2 lw mul 0 360 arc
gsave 0 setgray fill grestore stroke

} bind def
/makepolygon {2 dict begin
/vertices exch def
/n vertices length def
n 1 gt {
vertices 0 get aload pop moveto
vertices 1 n 1 sub getinterval
{ aload pop lineto} forall

} if
end} bind def
/drawvertices {
{aload pop point newpath} forall

} bind def
/vertices [[0 1] [234 cos 234 sin]
[18 cos 18 sin] [162 cos 162 sin]
[306 cos 306 sin]] def

%%EndProlog
u dup scale 1.1 0.95 translate
lw setlinewidth 2 setlinejoin
newpath vertices makepolygon closepath stroke
vertices drawvertices
%%EOF

59

Try to understand the above PostScript code using the following hints about arrays in
PostScript :

• The numbering of elements of arrays starts at 0.

• If a is an array, then a length returns the number of elements of the array.

• If a is an array, then a i get returns the ith element on the stack.

• You create an array on the stack by entering [, a few items, then].

• If a is an array, then a aload, pushes all elements of the array on the stack plus the
array itself. For example, after [1 2] aload the top of the stack looks like 1 2 [1 2].

• You create a subarray of a given array a via the getinterval operator. Besides the
array, the getinterval needs as argument the index to start at and the number of
items to take. For example, [0 2 4 6 8] 1 3 getinterval returns [2 4 6] on the
stack.

• If a is an array, then a { ... } forall executes the procedure { ... } for each ele-
ment of the array a.

The following table summarizes the various forms of control operators in PostScript .

Control Operators
Operator Calling Sequence Meaning
for start increment finish { proc } for execute proc with a counter running from

start to finish by steps of increment
forall array { proc } forall execute proc for each element of array
if bool { proc } if execute proc if bool is true
ifelse bool { proc1 } { proc2 } ifelse execute proc1 if bool is true, proc2 if false
loop { proc } loop execute proc an indefinite number of times
repeat count { proc } repeat execute proc count times

EXERCISE 39
Create the following coordinate system:

EXERCISE 40
Create the following piece of millimeter paper. Write your code such

that you can easily generate graph paper of any number of horizontal and vertical units.

60

EXERCISE 41
Create the following piece of logarithmic paper. Write your code such

that you can easily generate graph paper of any number of horizontal boxes of unit size and
any number of vertical cycles.

1

2

3

4

5

6

7

8

9

10
1

2

3

4

5

6

7

8

9

10
2

61

EXERCISE 42
Create the following piece of double logarithmic paper. Write your code

such that you can easily generate graph paper of any number of horizontal and vertical cycles.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

10
1

2 3 4 5 6 7 8 9

10
1

2 3 4 5 6 7 8 9

10
2

10
2

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10
1

2

3

4

5

6

7

8

9

10
1

2

3

4

5

6

7

8

9

10
2

10
2

62

EXERCISE 43
A graph is bipartite when its vertices can be partitioned into two disjoint

sets A and B such that each of its edges has one endpoint in A and the other in B. The most
famous bipartite graph is K3,3 show below to the left. Write a program that draws the Kn,n

graph for any natural number n > 1. Show that your program indeed creates the graph K5,5,
which is shown below to the right.

a1 b1a1 b1a1 b1

a2 b2a2 b2a2 b2

a3 b3a3 b3a3 b3

a1 b1a1 b1a1 b1a1 b1a1 b1

a2 b2a2 b2a2 b2a2 b2a2 b2

a3 b3a3 b3a3 b3a3 b3a3 b3

a4 b4a4 b4a4 b4a4 b4a4 b4

a5 b5a5 b5a5 b5a5 b5a5 b5

EXERCISE 44

1. Try to understand how the polygon approximation of the graph of the function x 7→ √
x

on the interval (0,2) is obtained in the following PostScript program.

%%BoundingBox: 0 0 140 100
%%BeginProlog
/u 28.343452 def % unit: 1 cm
/lw1 1 u div def /lw2 1.5 u div def
/xmin 0 def /xmax 4 def
/ymin 0 def /ymax 2 def
/dx 0.01 def % stepsize
%%EndProlog
u dup scale 0.75 1 translate
2 setlinejoin 2 setlinecap
lw1 setlinewidth
newpath % make axes
xmin 0 moveto xmax 0 lineto
0 ymin moveto 0 ymax lineto
stroke
0 0 1 setrgbcolor
lw2 setlinewidth 1 setlinecap
/x xmin def
newpath % make graph
x x sqrt moveto
{/x x dx add def x xmax 0.0001 add gt {exit} if
x x sqrt lineto } loop

stroke
showpage
%%EOF

63

2. Add tick marks, axes labels and text so that your picture looks like

0 1 2 3 4
0

1

2

x

y
y = √x

EXERCISE 45

1. Create a polygon approximation of the graph of the function x 7→ sinx on the interval
(−2π, 2π) that looks like the following picture. How many line segments do you need for
making a faithful representation of the sine graph on the interval (−2π, 2π)?
Try to make your code general enough so that it is easy to adapt the PostScript program
to draw a graph for any domain mπ, nπ), for nonnegative integer m and natural number
n (ignoring the labels, which you may set manually).

-1

1

−2π −π π 2π

y = sin x

2. Change your polygon approximation into a cubic Bézier approximation. How many Bézier
segments are required for a faithful representation of the sine graph on the interval (−2π, 2π)?
Is this change worth the effort?

EXERCISE 46
Draw a polygon approximation of the graph of the function x 7→ tanx

that looks like the following picture.

−2π −π 0 π 2π

−4

−3

−2

−1

1

2

3

4

tan x

64

EXERCISE 47
Draw a polygon approximation of the graph of the function x 7→ ex

1 + x
from 0 to 6 with the vertical axis in a logarithmic scale (in other words, create a logplot of the
function). Your picture must look similar to the figure below. Also put some effort in making
your code so general that you can easily change the horizontal range or choose another power
of 10 as vertical range.

x

y

0 1 2 3 4 5 6

5

10

50

100

1

graph of
 1 + x
_____e x

EXERCISE 48
Create the picture below, which has a shaded area enclosed by the hori-

zontal axis and the graph of the function f(x) = 1/x.

x

y

EXERCISE 49
Create the picture below, which illustrates the upper and lower Riemann

sum for the area enclosed by the horizontal axis and the graph of the function f(x) = 4− x2.

65

6 Coordinate Transformations

In many examples we already used coordinate transformation like translation and scaling to
place the origin of our coordinate system at another location and to use another unit of scale
for drawing a picture. In this chapter we will go into details of coordinate transformations.

PostScript distinguishes the device coordinate system and the user coordinate system (also
called user space). The device may be a computer display or a printer. When you write a
PostScript program, you only have to think about the user coordinate system except in a
few rare cases. The operands of path operators are always coordinates in user space, which
are then automatically transformed into device coordinates by the PostScript interpreter.
Initially the user space origin is locate at the lower-left corner, with the positive x axis
extending horizontally to the right and the positive y axis extending vertically upward. The
length of the unit along both x and y axis is 1/72 inch. We refer to this default unit as
a ‘PostScript point’ (or shortly, ‘point’) to distinguish it from the ‘classical printer’s point’,
which is 1/72.27 of an inch.12 The coordinate system just described is the default user space.
We adopt the convention used in [Cas05] and refer to this coordinate system as the page. A
coordinate system can be defined with respect to the page by stating:

• The length of the units along each axis (scale).

• The location of the origin (translate).

• The orientation of the x and y axes (rotate).

In the above listing we have put between brackets the name of the operator that takes care
of the coordinate transformation. To understand the working of coordinate transformation
operators it is convenient to think of coordinate frames and to imagine the effect of transfor-
mations on a coordinate frame. The following sequence of picture illustrates that

• scale modifies the unit lengths independently along the current x and y axes, leaving
the origin location and the orientation unchanged.

• translate moves the origin of the user space to a new position with respect to the
current coordinate system, leaving the orientation and the unit lengths unchanged.

• rotate turns the user space axes about the current user space origin by some angle,
leaving the origin location and the unit lengths unchanged.

original figure scaled by 1.5 translated by [1,1] rotated by 30°

12This illustrates the difference that can exist between device and user coordinates. For example, a high-
resolution printer may have a unit like 1/2400 of an inch.

66

In short, coordinate transformation affect the current frame in the way you expect. For
example, 1.5 1.5 scale scales the current frame by a factor of 1.5, 1 1 translate translates
the current frame origin one unit left and upward, and so on. Drawing commands take effect
relative to the current frame as can be seen in the following example of a star shaped picture.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 85 75
%%BeginProlog
/side {72 0 lineto

currentpoint translate
144 rotate

} bind def
%%EndProlog
newpath
5 30 translate 0 0 moveto
4 { side } repeat closepath
stroke
showpage
%%EOF

With the gsave and grestore commands you can temporarily change the coordinate system.
The following example with rotated text illustrates this.

1 5 10 15 20 25
102

104

106

108

1010

1012

1014

1016

1018

nu
m

be
r

of
 b

ac
te

ria

time in days

cooled at 4 °C

cooled at 0 °C

We only show the code that generates to purple line with label. You can easily figure out
how the rest of the picture has been created.

67

% ...
% draw line with rotated text label
newpath
0.7490 0.4 0.9843 setrgbcolor
0 1 moveto 25 9.75 lineto 12 4 moveto
gsave
8.75 25 atan rotate fh0 (cooled at 0) show
fs (\260) show fh0 (C) show

grestore
stroke

The operators scale, translate and rotate can be combined, or concatenated, to yield
a single transformation with the same effect as the sequential application of the original
operators. For example, a rotation of the coordinate system counter-clockwise around the
point (a, b) by angle θ can be performed by first translating the coordinate system by the
vector (a, b), then rotating around (0, 0) by θ, and finally by translating the system by the
vector (−a,−b). To understand better how transformations work in PostScript, let us work
out this example in more detail.

When PostScript starts up, the origin of the current coordinate frame is (0, 0) and the user
coordinates (x0, y0) of some fixed point P are the same as the page coordinates (xpage , ypage)

of this point. Let us identify a point (x, y) with the 3-dimensional column vector13

x
y
1

,

then we have

xpage

ypage

1

 =

1 0 0
0 1 0
0 0 1

x0

y0

1

If we perform a b translate, i.e., if we translate the coordinate frame by the vector (a, b),
we find ourselves with new coordinates (x1, y1) of the point P . The page coordinates of the
new origin are (a, b), but the page coordinates of the point P have not changed. Thus,

(x0, y0) = (x1, y1) + (a, b)

or

xpage

ypage

1

 =

1 0 a
0 1 b
0 0 1

x1

y1

1

 .

If we now perform θ rotate, the origin does not change and we find ourselves with new
coordinates (x2, y2) of the point P . They are related with the previous coordinates by

(x2, y2) = (x1 cos θ + y1 sin θ,−x1 sin θ + y1 cos θ)

or
(x1, y1) = (x2 cos θ − y2 sin θ, x2 sin θ + y2 cos θ) .

13In computer graphics and in PostScript it is customary to use row vectors. We use the mathematical
notation of column vectors. All our results can be converted into computer graphics notation by transposing
matrices and vectors.

68

In matrix notation, we get

x1

y1

1

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

x2

y2

1

and thus

xpage

ypage

1

 =

1 0 a
0 1 b
0 0 1

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

x2

y2

1

 .

If we now perform −a −b translate, i.e., if we translate the coordinate frame by the vector
(−a,−b), we find ourselves with new coordinates (x3, y3) of the point P . They are related
with the previous coordinates by

(x2, y2) = (x3, y3)− (a, b) .

In matrix notation, we get

x2

y2

1

 =

1 0 −a
0 1 −b
0 0 1

x3

y3

1

and thus

xpage

ypage

1

 =

1 0 a
0 1 b
0 0 1

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

1 0 −a
0 1 −b
0 0 1

x3

y3

1

 .

What we see, is that each of the coordinate transformations is described analytically by a
matrix:

rotate around origin by (θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , translate by (a, b) =

1 0 a
0 1 b
0 0 1

 .

A concatenation of coordinate transformations corresponds with a multiplication of the cor-
responding matrices. Thus if a point has coordinates (x, y) in a coordinate system that is
rotated counter-clockwise around the point (a, b) by angle θ, then its coordinates (xpage , ypage)
in the current page are given by

(xpage , ypage) = (x cos θ − y sin θ + a(1− cos θ) + b sin θ,

x sin θ + y cos θ + b(1− cos θ)− a sin θ) .

or in matrix notation by

xpage

ypage

1

 =

cos θ − sin θ a(1− cos θ) + b sin θ
sin θ cos θ b(1− cos θ)− a sin θ)

0 0 1

x
y
1

 .

As a matter of fact, any coordinate transformation that we have seen until now can be
described by an affine matrix T that has the form

T =

Txx Txy Tx

Tyx Tyy Ty

0 0 1

 .

69

The corresponding change from user space coordinates (x, y) to page coordinates (xpage , ypage)
is given by

xpage

ypage

1

 =

Txx Txy Tx

Tyx Tyy Ty

0 0 1

x
y
1

or
(xpage , ypage) = (Txxx + Txyy + Tx, Tyxx + Tyyy + Ty).

This mapping is completely determined by the sextuple (Tx, Ty, Txx, Txy, Tyx, Tyy) and this is
the way PostScript stores information about affine coordinate transformations.

The matrix formulation of a coordinate transformation suggest that there are other transfor-
mations that we have not considered yet, e.g., the transformation

(xpage , ypage) = (a x− b y, b x + a y)

or

xpage

ypage

1

 =

a −b 0
b a 0
0 0 1

x
y
1

This transformation is called zscaling. The effect of this mapping is to rotate and scale so
as to map (1, 0) into (a, b). This transformation can also be thought of as multiplication of
complex numbers as the following example illustrates.

0 1

z

w

zw %!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 95 170
%%BeginProlog
/u 30 def % 30 points per unit
/lw1 1 u div def
/lw2 0.6 u div def
/fh {

/Times-Roman findfont 10 u div scalefont setfont
} bind def

/fi {
/Times-Italic findfont 10 u div scalefont setfont
} bind def

/zscale {% stack: x y a b
% output: a*x-b*y b*x+a*y

4 dict begin
/b exch def
/a exch def
/y exch def
/x exch def
a x mul b y mul sub b x mul a y mul add

end} def
/z {2 1} def
/w {1.75 1.5} def
/zw {z w zscale } def
%%EndProlog

70

0 1

z

w

zw 17 17 translate
u dup scale
lw1 setlinewidth
newpath
% draw lines
-0.5 0 moveto 2.5 0 lineto
0 -0.5 moveto 0 5 lineto
0 0 moveto 1 0 lineto z lineto closepath
0 0 moveto w lineto zw lineto closepath
-0.3 -0.35 moveto fh (0) show
0.9 -0.35 moveto fh (1) show
z exch 0.15 add exch moveto fi (z) show
w exch 0.15 add exch moveto fi (w) show
zw exch 0.15 add exch moveto fi (zw) show
stroke
% draw arcs
lw2 setlinewidth
/argz z exch atan def
/argw w exch atan def
newpath 0 0 0.4 0 argz arc stroke
newpath 0 0 0.4 argw argw argz add arc stroke
/angle z exch 1 sub atan def
newpath 1 0 0.2 angle 180 arc stroke
newpath 1 0 0.15 angle 180 arc stroke
newpath w 0.2 argw angle add argw 180 add arc stroke
newpath w 0.15 argw angle add argw 180 add arc stroke
showpage
%%EOF

An alternative definition of the zscale is: specify the sixtuple (Txx, Tyx, Txy, Tyy, Tx, Ty) that
defines the affine coordinate transformation T and provide this sixtuple as argument to the
transform operator, together with the coordinates of the point that must be transformed.
The code is as follows:

/zscale {% stack: x y a b
% output: a*x-b*y b*x+a*y

4 dict begin
/b exch def
/a exch def
/y exch def
/x exch def
x y [a b b neg a 0 0] transform

end} def

EXERCISE 50

1. Verify that a scaling transformation is described by an affine matrix of the form

a 0 0
0 b 0
0 0 1

 .

71

2. Determine the matrix that describes zooming with fixed point (a, b) and zoom factor c.

EXERCISE 51
Characterize the transformation (xpage , ypage) = (x + a y, y)

The zscale operator that we defined in the above example is just an operator that maps
one point into another. It does not affect the current coordinate system. A change of the
coordinate system can only be performed by a change of the current transformation matrix
or CTM, which contains the current affine transformation from user space to device space. If
you want to apply the affine transformation

T =

Txx Txy Tx

Tyx Tyy Ty

0 0 1

then you must enter the statement

(Txx, Tyx, Txy, Tyy, Tx, Ty) concat

The CTM is multiplied by T , with the effect that the transformation from user space to device
space is adjusted to the new situation. The default CTM can always got back by entering

matrix defaultmatrix setmatrix

Let us illustrate a slanted coordinate system:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 210 84
%%BeginProlog
/u 20 def % 20 point per unit
/lw1 0.5 u div def
/lw2 0.7 u div def
%
/grid {4 dict begin % m x n grid

/n exch def
/m exch def
lw1 setlinewidth
0 1 n 1 sub {/i exch def

0 1 m 1 sub {/j exch def
newpath
gsave
.88235 0.97647 0.97647 setrgbcolor
i j 1 1 rectfill

grestore
.36040 0.97647 0.97647 setrgbcolor
i j 1 1 rectstroke

} for
} for

72

newpath
lw2 setlinewidth 0 setgray
1 0 moveto 0 m rlineto
0 1 moveto n 0 rlineto
stroke

end } bind def
%%EndProlog
u dup scale
lw2 setlinewidth
0.1 0.1 translate
4 4 grid
5.5 0 translate
[1 0 0.2 1 0 0] concat
4 4 grid
showpage
%%EOF

EXERCISE 52

1. Enter in the Ghostscript interpreter the following statement

matrix currentmatrix ==

to find out what is the default coordinate transformation from user space to device space,
i.e., to your computer display.

2. Enter the following statement

matrix defaultmatrix ==

to find out what is the default coordinate transformation from the page to the device space.
Why is this transformation the same as the answer to the previous subquestion?

3. Reflect your coordinate system in the line thought the origin and the point (2, 1). Check
that the CTM has changed. Also verify with the statement matrix defaultmatrix ==
that the default matrix is not affected (that is why it is called the ‘default CTM’).

4. Enter the following statement

matrix defaultmatrix setmatrix

and verify that you are back in the initial state.

EXERCISE 53
Using transformations, construct the following picture:

73

EXERCISE 54
Using transformations, construct the following picture (Hint: our colors

are (b, 1, 1) in the HSB color scheme, where b is a number between zero and one).

EXERCISE 55
Using transformations, construct Escher’s impossible triangle:

Hint: identify the base element shown to
the right in the picture and find out how
Escher’s impossible triangle can built up
from copies of the base element. 5

4

3
2

1

EXERCISE 56
Using transformations, construct the following ‘golden picture’. Follow-

ing the curve from the lower left corner, the path moves through neighboring squares that
have as a ratio of size φ : 1, where φ is the golden ratio (φ = 1

2(1 +
√

5) ≈ 1.618034).

74

7 Procedures

In the examples so far we have already used many procedures that we defined ourselves. In
this chapter we will teach you the tricks of the programming trade

7.1 Defining Procedure

The most common form of a procedure or operator definition is:

name { procedure body } def

The def operator takes two arguments: an object that must evaluate to a name14 and an
object that consist of a collection of instructions in a executable array. All the PostScript
interpreter does is to make an association between these objects in the current dictionary.

7.2 Parameter Passing

Unlike many imperative programming languages, there is in PostScript no procedure decla-
ration to give names to input and output parameters. A PostScript procedure or operator
passes information through the operand stack. In general, an operator takes all of its operands
off the stack and returns its computed value(s) on the stack. In the following example, the
procedure randpoint generates randomly a point within the given boundaries of region and
with a random color.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 120 120
%%BeginProlog
/u 28.34645 def % unit: 1 cm
/point {1.5 u div 0 360 arc gsave fill grestore stroke} def
/randnum {% stack: l r

% output: random number between l and r
dup 3 1 roll sub % stack: r l-r
rand 1000 mod 1000 div mul add

} bind def %
%
/randpoint {% stack: l r b u

% output random point in region [l,r] x [b,u]
% in random color

/savecolor { currentrgbcolor } def
0 1 randnum 0 1 randnum 0 1 randnum setrgbcolor
randnum 3 1 roll randnum % random point on stack
gsave newpath 1.5 u div 0 360 arc fill grestore
savecolor setrgbcolor

} bind def
%%EndProlog
%%Page: 1 1
u dup scale 0.1 0.1 translate
500 {0 4 0 4 randpoint} repeat
showpage
%%EOF

14Here we are sure to start with a name because of slash, but (name) cvn would do equally well.

75

It is possible to test the type of parameters via the type operator. For example, our procedure
randnum can be made more robust by checking that the arguments l and r are real numbers
such that l < r. In the program below, we introduce local variables to make the code more
readable, but we could have stuck to the pure operator based programming style.

/randnum {% stack: l r
% output: random number between l and r

2 dict begin
/r exch def
/l exch def
r type /realtype eq r type /integertype eq or
l type /realtype eq r type /integertype eq or and
l r lt and {
r l r sub rand 1000 mod 1000 div mul add }
{ 0 } ifelse %

end } bind def

The trick is to ask the type of the object via the type operator and compare the answer
with known types. A minor complication is that the type checking is based on internal
representation and not in mathematical terms. For example, 0 has integertype and not
realtype. This makes it a bit more work to test whether a parameter is a number.
The possible names that the tye operator may return are listed below:

arraytype filetype integertype nulltype realtype
booleantype fonttype marktype operatortype savetype
dicttype gstatetype nametype packedarraytype stringtype

In practice, it is only worth to do type checking if you intend to reuse the procedure in
many other programs and store it in a file, say procs.inc, that you then can include in
PostScript file with the statement (procs.inc) run.

7.3 Local variables

To avoid name conflicts it is wise to make variables that you use only inside a procedure
local to that procedure. PostScript provides a dictionary mechanism for this purpose. In
the example of the procedure randnum in the previous section, we have a local dictionary
with initial capacity for two items, which has been created by the statement 2 dict. The
begin operator pushes the dictionary on the so-called dictionary stack, making it the current
dictionary and installing it as the first dictionary to use for name lookup. The end takes the
current dictionary off the dictionary stack and makes the dictionary below it on the stack the
current dictionary.

7.4 Recursion

A procedure is defined recursively if in its definition, it makes a call to itself. Recursive
definition of a procedure is possible in PostScript, but it is inherently stack-based. The
reason why is illustrated by the following PostScript program that computes the factorial of
a natural number. Recall that n factorial, n!, is defined for natural numbers n by

n! = n× (n− 1)× · · · × 3× 2× 1

76

/! { 1 dict begin
/n exch def
n 1 eq {
1

}{
n n 1 sub ! mul

} ifelse
end } bind def

The code is correct, but only if n is not too large. For large vales of n you get an error
message about a dictionary stack overflow. At each call of the ! operator you place a local
dictionary on the dictionary stack because of the 1 dic begin statement. Only when the
end command is reached, the local dictionary is taken off the stack. But the dictionary stack
has limited size and this is exactly the problem with our PostScript code.

As we have just seen, recursive definition of a procedure is possible in PostScript, but it
is inherently stack-based. You can either use the dictionary stack or the operand stack for
storing intermediate results until the recursion is unwound back to the original invocation
level. The trick to avoid stack overflow as much as possible is to avoid open dictionaries
across the recursive procedure calls. We will introduce both methods in computing factorials
and Lucas numbers.

Recursion Using the Operand Stack

The following PostScript program for computing factorials is taken from the blue book [Pos86].
We add comments to show what is on the stack during execution.

/fac { % stack: n
dup % n n
1 gt { % check n>1; % n
dup % n n
1 sub fac % n (n-1)!
mul % n*(n-1)!

} if
} bind def

This procedure duplicates the number on the stack and if it is greater than 1, it is multiplied
by the result of calling fac with its numeric predecessor. If then number is less or equal than
1, then no action is taken and the function returns with that number. You can easily check
that the statement 5 fac indeed leaves the value 120 on the stack.

The Lucas numbers Ln are defined by the following linear recurrence

L1 = 1, F2 = 3, and Ln = Ln−1 + Ln−2, forn > 2 .

The PostScript program for computing Lucas number on the basis of the recursion formula
is as follows:

/L { % stack: n
dup 2 gt { % n

77

1 sub dup % n-1 n-1
1 sub L % n-1 L(n-2)
exch L % L(n-2) L(n-1)
add % L(n-2)+L(n-1)

}{
2 eq {3} {1} ifelse

} ifelse
} bind def

This procedure first duplicates the given number on the stack. If it is greater than 2, we
subtract 1, duplicate this number, subtract 1 from the top element of the stack, apply the
procedure L to the two items on top of the stack and add the result. If the number is equal
to 2, then we put 3 on the stack; otherwise we put 1 on the stack. You can easily check that
the statement 6 L indeed leaves the value 18 on the stack.

Recursion Using the Dictionary Stack

The PostScript program:

/factorial {
save
2 dict begin
saveobj exch def
/n exch def
n 1 gt {

n n 1 sub factorial mul
}{

n
} ifelse
saveobj

end
restore

} bind def

If you want to store the procedure’s argument in a dictionary, you must create a new dictionary
and push it on the dictionary stack each time the function is called, to maintain the name local
to that instance of the procedure. In this example, the memory allocated by the dictionary is
reclaimed by save and restore, putting each save object into the recursion dictionary until
it is needed.

The Lucas numbers can be computed in PostScript as follows:

/Lucas {
save
2 dict begin
/saveobj exch def
/n exch def
n 2 gt {

n 1 sub Lucas n 2 sub Lucas add

78

}{
n 2 eq {3} {1} ifelse

} ifelse
saveobj

end
restore

} bind def

Both methods of implementing recursive procedures work equally well. It is more a matter
of personal taste which one prefers to use.

A Graphical Example

Let us end the section on recursion with a graphical example: the computation of a Pythagorean
tree. The picture for a recursion depth of 14 levels is:

The PostScript program:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 300 215
%%BeginProlog
/u 28.34568 def % unit: cm
/size 1.8 def
/branchrotation 50 def %
/thinning 0.7 def
/shortening 0.8 def
/width 0.4 def% starting line width
/min {2 copy gt {exch pop}{pop} ifelse }def
/randdeviate {rand 1000 mod 1000 div mul} bind def
/colortable [[0.013 0.750 0.028]

[0.109 0.937 0.118]
[0.085 0.727 0.092]

79

[0.070 0.602 0.076]
[0.055 0.469 0.059]
[0.046 0.395 0.050]
[0.033 0.281 0.035]
[0.469 0.196 0.059]
[0.500 0.210 0.063]
[0.547 0.229 0.069]
[0.562 0.236 0.071]

] def
/tree{
save
3 dict begin % stack: n
/saveobj exch def
/n exch def
n 0 gt {
newpath
gsave
0 0 moveto
colortable n 1 sub 10 min get aload pop setrgbcolor
width setlinewidth
0 size rlineto
currentpoint currentpoint % store current point twice
stroke

grestore
%%%%% draw right branch from current point
newpath
gsave
translate
thinning shortening scale
-10 branchrotation randdeviate sub rotate
0 0 n 1 sub tree
stroke

grestore
%%%%% draw left branch from current point
newpath
gsave
translate
thinning shortening scale
10 branchrotation randdeviate add rotate
n 1 sub tree
stroke

grestore
} if

saveobj
end
restore

} bind def

80

%%EndProlog
150 8 translate
u dup scale
1 setlinecap
14 tree
showpage
%%EOF

The only issue that you must keep in mind when using recursion is the danger of running
out of space for the dictionary stack or operands stack during execution of the recursive
computation. In this example, trying to draw the Pythagorean tree with a recursion depth
of 15 levels fails because of stack overflow.

EXERCISE 57
The Koch snowflake is constructed as follows: start with an equilateral

triangle. Break each edge into four straight pieces by adding a bump a shown below.

You can then repeat the process of breaking a line segment into four pieces of length one-fourth
of the segment that is broken up. Below you see the next iteration.

Write a PostScript program that can compute the picture after n iterations. After four
iterations, the Koch snowflake should like like

81

EXERCISE 58
A Hilbert curve consists of 4 rotated and translated copies of a basis

element connected by three straight lines. H0 is a dot. The base element of the Hilbert curve
Hn of order n is Hn, for n = 1, 2, Below H1 and H2 are drawn:

1. Write a PostScript program that draws the Hilbert curve Hn of order n. After three
iterations, your curve should look like

2. When you not only rotate and translate the base element, but also scale it to an appropriate
smaller scale that makes the overall picture of constant size, then you get a space filling
curve. Such curves are known as Peano curves. Adapt your program for drawing Hilbert
curves such that it can be used to create the following picture (a scaled Hilbert curve of
order 6):

8 More Examples

The examples in this chapter are meant to give you an idea of the strength of PostScript for
making nice mathematical illustrations in exactly the way that you want them to look like.

82

8.1 Planar curves

When a parametrization of a plane curve is given, then it is straightforward to draw a polygon
approximation of the curve. The algorithm is as follows: suppose that the parameter interval is
given by (t0, t1) and that we want to draw a curve P (t). First, we set a step size h = (t1−t0)/n
so that we cross in n steps from t0 to t1. We choose n large enough so that the straight lines
connecting the neighboring points of P (t0), P (t0 + h), P (t0 + 2h), . . . , P (t0 + nh) = P (t1)
together build up a curve that looks smooth to the eye.

A concrete example of a parameterized curve is the following Lissajous figure, which is defined
in parameterized form by t 7→ (

sin(p t), sin(q t)
)
, for relatively prime numbers p and q. Here

we take p = 3, q = 2

%%BoundingBox: 0 0 180 180
%%BeginProlog
/u 72 def % unit: 1 inch
/lw1 1 u div def
/lw2 0.7 u div def
/n 360 def % number of line segments
/t0 0 def /t1 360 def
/p 3 def /q 2 def
/X {p mul sin} bind def % sin(p*t)
/Y {q mul sin} bind def % sin(q*t)
%%EndProlog
90 90 translate
u dup scale
lw2 setlinewidth 2 setlinejoin
% draw axes
newpath
-1.2 0 moveto 1.2 0 lineto
0 -1.2 moveto 0 1.2 lineto
stroke
newpath % polygon approximation of curve
lw1 setlinewidth 1 0 0 setrgbcolor
/dt t1 t0 sub n div def
/t t0 def
t X t Y moveto
n {
/t t dt add def
t X t Y lineto

} repeat
stroke
showpage
%%EOF

As you see, if n is large enough, then the polygon approximation of the curve is smooth. In
practice, you do not often have to use a cubic Bézeir approximation for a nice graph. If the

83

derivatives of the coordinate functions x(t) and y(t) are known, it is not much work to build
up the Bézier approximation. The control points are determined as follows: suppose that

P0,i =
(
x(ti), y(ti)

)

and
P0,i+1 =

(
x(ti+1), y(ti+1)

)

are the end points of the ith cubic Bézier line segment, where ti+1 = ti + dt, then

P1,i =
(
x(ti) +

1
3
x′(ti) dt, y(ti) +

1
3
y′(ti) dt

)

and
P2,i =

(
x(ti+1)− 1

3
x′(ti+1) dt, y(ti+1)− 1

3
y′(ti+1) dt

)

The PostScript code is shown below and the example shows that 15 cubic Bézier segments
suffice to present a faithful graph of the Lissajous figure. But we cannot stress it too much,
a polygon approximation is in most practical cases more than good enough if you choose a
step size that is small enough.

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 180 180
%%BeginProlog
/u 72 def % unit: 1 inch
/lw1 1 u div def
/lw2 0.7 u div def
/n 15 def % number of line segments
/t0 0 def /t1 360 def
/p 3 def /q 2 def
/X {p mul sin} bind def % sin(p*t)
/Y {q mul sin} bind def % sin(q*t)
% Note: sin and cos use degrees in Postscript
/X’ {p mul cos p mul 3.14159 mul 180 div} bind def
/Y’ {q mul cos q mul 3.14159 mul 180 div} bind def
%%EndProlog
90 90 translate
u dup scale
lw2 setlinewidth 2 setlinejoin
newpath %%%%% draw axes
-1.2 0 moveto 1.2 0 lineto
0 -1.2 moveto 0 1.2 lineto
stroke
newpath % Bezier approximation of curve
lw1 setlinewidth 1 0 0 setrgbcolor
/dt t1 t0 sub n div def
/dt3 dt 3 div def
/t t0 def
t X t Y moveto % P0
/X’t t X’ def
/Y’t t Y’ def

84

n {
t X dt3 X’t mul add
t Y dt3 Y’t mul add % P1
/t t dt add def
/X’t t X’ def
/Y’t t Y’ def
t X dt3 X’t mul sub
t Y dt3 Y’t mul sub % P2
t X t Y % P3
curveto

} repeat
stroke
showpage
%%EOF

When the curve is specified via polar coordinates, the creation of the graph is as easy as in
the Cartesian coordinates. The following picture of the Folium, defined by the polar equation
r = cosφ(4 sin2 φ−1), illustrates this. It is basically a parameterized curve φ 7→ (r cosφ, r sinφ),
where r = cosφ(4 sin2 φ− 1) is a function of the parameter φ

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 180 180
%%BeginProlog
/u 72 def % unit: 1 inch
/lw1 1 u div def /lw2 0.7 u div def
/n 180 def %%%% number of line segments
/pi 3.1415062 def
/deg {180 pi div mul} bind def
/r {dup deg cos exch

deg sin dup mul 4 mul 1 sub mul} bind def
/X {dup r exch deg cos mul} bind def
/Y {dup r exch deg sin mul} bind def
%%EndProlog
90 90 translate
u dup scale
lw2 setlinewidth 2 setlinejoin
newpath %%%%% draw axes
-1.2 0 moveto 1.2 0 lineto
0 -1.2 moveto 0 1.2 lineto
stroke
newpath %%%%% Bezier approximation of curve
lw1 setlinewidth
1 0 0 setrgbcolor
/dphi 2 pi mul n div def % step size
/phi 0 def
phi X phi Y moveto

85

n {
/phi phi dphi add def
phi X phi Y lineto

} repeat
stroke
showpage
%%EOF

A curve might also be a solution curve of a system of differential equations. As an example
we take the van der Pol equation

x′(t) = y(t) ,

y′(t) = −x(t) + µ
(
1− x(t)2

)
y(t) ,

where µ is the relaxation parameter. In the example below, we take values µ = 0.8, x(0) = 0,
y(0) = 0.1 and approximate the solution curve by Euler’s method. It works as follows:
suppose that we already have computer part of the curve and that

(
x(t), y(t)

)
is the last

computed point at time t. At time t + dt the coordinates of the point of the solution curve
are approximated by

x(t + dt) ≈ x(t) + x′(t) dt ,

y(t + dt) ≈ y(t) + y′(t) dt .

In other words,

x(t + dt) ≈ x(t) + y(t) dt ,

y(t + dt) ≈ y(t) +
(
−x(t) + µ

(
1− x(t)2

))
dt .

For small step size dt, the error is small. First the plot of x(t) and y(t) against time:

10 20 25

-2
-1
0
1
2

t

y

x

We omit the PostScript code because it is similar to the one for plotting the parameterized
curve t 7→ (

x(t), y(t)
)
.

-2 -1 1 2

-2

-1

0

1

2

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 150 150
%%BeginProlog
/u 28.34645 def % unit: 1 cm
/lw1 1 u div def /lw2 0.7 u div def
/f1 {
/Times-Roman findfont 8 u div scalefont setfont

} bind def
/f2 {
/Times-Italic findfont 8 u div scalefont setfont

} bind def

86

/n 3000 def % number of line segments
/dt 0.01 def
/mu 0.8 def
%%EndProlog
% x(t) and y(t) vs. t
75 75 translate
u dup scale
lw2 setlinewidth 2 setlinejoin
% draw axes
newpath
-2.6 0 moveto 2.6 0 lineto
0 -2.6 moveto 0 2.6 lineto
-2 1 2 { /i exch def
i 0 moveto 0 0.1 rlineto

} for
-2 1 2 { /i exch def
0 i moveto 0.1 0 rlineto

} for
stroke
% draw labels
-2.3 -0.25 moveto f1 (-2) show
-1.13 -0.25 moveto f1 (-1) show
0.95 -0.25 moveto f1 (1) show
2.07 -0.25 moveto f1 (2) show
-0.25 -1.95 moveto f1 (-2) show
-0.25 -1.1 moveto f1 (-1) show
-0.17 -0.25 moveto f1 (0) show
-0.17 0.9 moveto f1 (1) show
-0.17 1.77 moveto f1 (2) show
% approximation of x(t) and y(t)
newpath
lw1 setlinewidth 1 0 0 setrgbcolor
/t 0 def /x 0 def /y 0.1 def
x y moveto % initial position
n {
/x’ y def % x’ = y, y’=-x+mu*(1-x^2)*y
/y’ x neg mu 1 x x mul sub mul y mul add def
/x x x’ dt mul add def
/y y y’ dt mul add def
/t t dt add def
x y lineto

} repeat
stroke
showpage
%%EOF

87

8.2 The Lorenz Butterfly

We do not have to restrict ourselves to planar curves. As an example we take the Lozenz
butterfly, a curve in 3-dimensional space that is projected on a 2-dimensional image plane.
The Lorenz attractor is described by the differential equations

x′ = σ (y − x), y′ − ρx− y − x z, z′ = x y − β z,

with x, y, z real functions of time t, and with β, ρ, and σ positive constants. We choose
the standard values σ = 10, ρ = 28, and β = 8/3. We take as initial values x(0) = 12.5,
y(0) = −17.4, and z(0) = 26.

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 105 150
%%BeginProlog
/u 2.834645 0.5 mul def % unit: 0.5 mm
/lw1 0.7 u div def /lw2 0.4 u div def
/n 20000 def % number of line segments
/dt 0.001 def
/Xr [-1 0] def
/Yr [0.7 -0.7] def
/Zr [0 1] def
/project { 3 dict begin % stack x y z
/z exch def /y exch def /x exch def
x Xr 0 get mul y Yr 0 get mul add z Zr 0 get mul add
x Xr 1 get mul y Yr 1 get mul add z Zr 1 get mul add

end } bind def
%%EndProlog
% t -> x(t), y(t), z(t)
50 35 translate
u dup scale
lw2 setlinewidth 2 setlinejoin
% draw reference frame
gsave
newpath
30 30 scale lw2 30 div setlinewidth
0 0 moveto Xr aload pop lineto
0 0 moveto Yr aload pop lineto
0 0 moveto Zr aload pop lineto
stroke

grestore
% approximation of x(t), y(t), z(t)
newpath
lw1 setlinewidth 1 0 0 setrgbcolor
/t 0 def /x -12.5 def /y -17.4 def /z 26 def
x y z project moveto % initial position

88

n { % x’=10(y-x), y’=28x-xz-y, z’=xy-8z/3
/x’ 10 y x sub mul def %
/y’ 28 x mul x z mul sub y sub def
/z’ x y mul 8 div 3 z mul sub def
/x x x’ dt mul add def
/y y y’ dt mul add def
/z z z’ dt mul add def
/t t dt add def
x y z project lineto

} repeat
stroke
showpage
%%EOF

8.3 A Surface Plot

You can draw surface plots from basic principles. We give one example: the surface z =
cos(xy).

X

Y

Z

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 300 250
%%BeginProlog
/u 28.34645 def % unit: 1cm
/pi 3.1415927 def
/cosine {pi div 180 mul cos} bind def
/f {mul cosine} bind def % f(x,y) = cos(x*y)
%

89

/xp 3 def /yp 3 def /zp 10 def /bf 100 def
/Xr [-0.7 -0.7] def /Yr [1 0] def /Zr [0 1] def
%
/project { 3 dict begin % stack x y z
/z exch def /y exch def /x exch def
x Xr 0 get mul y Yr 0 get mul add z Zr 0 get mul add
x Xr 1 get mul y Yr 1 get mul add z Zr 1 get mul add

end } bind def
%
% numerical derivatives by central differences
/xderiv {3 dict begin % stack: x y

/y exch def /x exch def /h 0.01 def
x h add y f x h sub y f sub 2 div h div

end } bind def
/yderiv {3 dict begin % stack: x y

/y exch def /x exch def /h 0.01 def
x y h add f x y h sub f sub 2 div h div

end } bind def
%
% compute brightness factor at a point
/brightnessfactor {8 dict begin % stack: x y z

/z exch def /y exch def /x exch def
/dfdx x y xderiv def /dfdy x y yderiv def
/ca zp z sub dfdy yp y sub mul sub dfdx xp x sub mul sub def
/cb 1 dfdx dup mul add dfdy dup mul add sqrt def
/cc z zp sub dup mul y yp sub dup mul add x xp sub dup mul add sqrt def
bf ca mul cb div cc div cc div cc div

end } bind def
%
/nx 100 def /ny 100 def % grid size
/xmin -3 def /xmax 3 def /ymin -3 def /ymax 3 def
%%EndProlog
150 105 translate u dup scale
% compute colors and draw patches
0 setlinewidth 1 0 0 setrgbcolor
/dx xmax xmin sub nx div def
/dy ymax ymin sub ny div def
0 1 nx 1 sub {/i exch def
/xt xmin i dx mul add def
0 1 ny 1 sub {/j exch def
/yt ymin j dy mul add def
/zt xt yt f def
newpath
xt yt zt brightnessfactor dup 0 setrgbcolor
xt yt zt project moveto
xt yt dy add 2 copy f project lineto
xt dx add yt dy add 2 copy f project lineto

90

xt dx add yt 2 copy f project lineto
closepath
fill

} for
} for
stroke
1 u div setlinewidth
% draw reference frame
gsave
newpath
5 5 scale 1 u div 5 div setlinewidth
0 0 moveto Xr aload pop lineto
0 0 moveto Yr aload pop lineto
0 0 moveto Zr aload pop lineto
stroke

grestore
% labels
/Times-Roman findfont 12 u div scalefont setfont
-3 -3.5 moveto (X) show
4.5 -0.5 moveto (Y) show
0.25 4.5 moveto (Z) show
showpage
%%EOF

8.4 Iterated Functions

The following diagrams are standard in the theory of iterative processes:

• The cobweb-graph of applying the cosine function iteratively.

0.5 1
0.5

1

91

• The bifurcation diagram of the logistic function, i.e., of f(x) = rx(1− x) for 0 < r < 4.

2.9 3.4 3.9
0

0.5

1

r

or
bi

t

The code that produced these diagrams is shown below.

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 250 250
%%BeginProlog
/u 432 def % unit: 6 inch
/lw1 1 u div def /lw2 0.7 u div def
/f1 {/Times-Roman findfont 10 u div scalefont setfont} bind def
/pi 3.1415927 def
/cosine {pi div 180 mul cos} bind def
/f {mul cosine} bind def % f(x,y) = cos(x*y)
/xmin 0.5 def /xmax 1 def
/ymin xmin def /ymax xmax def
/dx 0.02 def
%%EndProlog
u dup scale
% drawaxes
0.05 xmin sub 0.05 ymin sub translate
lw1 setlinewidth

92

xmin ymin moveto xmax ymin lineto
xmin ymin moveto xmin ymax lineto
stroke
% labels near axes
xmin ymin 0.03 sub moveto f1 xmin 4 string cvs show
xmax 0.01 sub ymin 0.03 sub moveto f1 xmax 4 string cvs show
xmin 0.04 sub ymin moveto f1 ymin 4 string cvs show
xmin 0.02 sub ymax 0.03 sub moveto f1 ymax 4 string cvs show
% draw identity graph
newpath
lw2 setlinewidth 0.7 setgray
xmin ymin moveto xmax ymax lineto
stroke
% draw cosine graph
newpath
lw2 setlinewidth 1 0 0 setrgbcolor
/x xmin def
x x cosine moveto
{/x x dx add def
x xmax 0.001 add gt {exit} if
x x cosine lineto
} loop
stroke
% compute and draw orbit
newpath
lw2 setlinewidth 0 0 1 setrgbcolor
/initial 1 def % first some initial iterations
/x 1.0 def % the starting point
/orbitlength 15 def
1 1 initial {
/x x cosine def

} for
x x cosine moveto
currentpoint
gsave newpath 0.006 0 360 arc fill grestore
1 1 orbitlength {
/x x cosine def
x x lineto x x cosine lineto

} for
stroke
showpage
%%EOF

93

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 400 400
%%BeginProlog
/u 283.4645 def % unit: 10 cm
/lw1 1 u div def /lw2 0.7 u div def
/f1 {/Times-Roman findfont 12 u div scalefont setfont} bind def
/f2 {/Times-Italic findfont 12 u div scalefont setfont} bind def
/n 175 def
/rmin 2.9 def /rmax 3.9 def
/dr rmax rmin sub n div def
%%EndProlog
u dup scale
% drawaxes
0.1 rmin sub 0.1 translate
lw1 setlinewidth
rmin 0 moveto rmax 0.05 add 0 lineto
rmin 0 moveto rmin 1.05 lineto
% ticks and labels near axes
/rmid rmax rmin add 2 div def
rmid 0 moveto 0 0.02 rlineto
rmax 0 moveto 0 0.02 rlineto
rmin 0.5 moveto 0.02 0 rlineto
rmin 1 moveto 0.02 0 rlineto
stroke
rmin 0.02 sub -0.05 moveto f1 rmin 4 string cvs show
rmid 0.02 sub -0.05 moveto f1 rmid 4 string cvs show
rmax 0.02 sub -0.05 moveto f1 rmax 4 string cvs show
rmin 0.04 sub 0 moveto f1 (0) show
rmin 0.06 sub 0.49 moveto f1 (0.5) show
rmin 0.04 sub 0.99 moveto f1 (1) show
rmid rmax add 2 div -0.05 moveto f2 (r) show
gsave rmin 0.7 translate 90 rotate 0 0.02 moveto f2 (orbit) show grestore
% draw bifurcation diagram
/r rmin def /dr rmax rmin sub n div def
n {
/x 0.5 def % our starting point
75 { % initial iterations

/x r x mul 1 x sub mul def % x := r*x*(1-x)
} repeat
150 {% the next 150 iterations

/x r x mul 1 x sub mul def % x := r*x*(1-x)
newpath r x 0.5 u div 0 360 arc fill

} repeat
/r r dr add def

} repeat
showpage
%%EOF

94

8.5 Marking Angles and Lines

In geometric pictures, line segments of equal length are often marked by an equal number
of ticks and equal angles are often marked the same, too. In the following example, the
procedures tickmark, markangle, and markrightangle mark lines and angles. We put effort
in making our procedures markangle, and markrightangle independent of the order in which
the non-common points of the angle are specified.

A B

C

D

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 115 150
%%BeginProlog
/u 28.34645 def % unit: 1cm
/lw1 1 u div def /lw2 0.5 u div def
/f1 {/Times-Roman findfont 12 u div scalefont setfont} bind def
/f2 {/Times-Italic findfont 12 u div scalefont setfont} bind def
/angleradius 0.4 def /angledelta 0.05 def /marksize 0.2 def
/angle {exch atan} def
%
/markangle {4 dict begin % stack: P common Q n

/n exch def /Q exch def /common exch def /P exch def
P common Q angleradius drawangle
n 1 gt {P common Q angleradius angledelta add drawangle } if
n 2 gt {P common Q angleradius angledelta sub drawangle } if
n 3 gt {P common Q angleradius 2 angledelta mul add drawangle } if

end } bind def
/drawangle {7 dict begin % a c b r

/r exch def /b exch def /c exch def /a exch def
/beta b 0 get c 0 get sub b 1 get c 1 get sub angle def
/alpha a 0 get c 0 get sub a 1 get c 1 get sub angle def
/phi beta alpha sub def
gsave
lw2 setlinewidth
c aload pop translate
alpha rotate
phi 0 gt {

phi 180 lt {
newpath 0 0 r 0 phi arc stroke
}{
/phi phi 360 sub def

95

newpath 0 0 r 0 phi arcn stroke
} ifelse
}{
phi -180 lt {
/phi phi 360 add def
newpath 0 0 r 0 phi arc stroke
}{
newpath 0 0 r 0 phi arcn stroke

} ifelse

} ifelse
grestore

end } bind def
%
/markrightangle {6 dict begin % stack: a c b

/b exch def /c exch def /a exch def
/beta b 0 get c 0 get sub b 1 get c 1 get sub angle def
/alpha a 0 get c 0 get sub a 1 get c 1 get sub angle def
/phi beta alpha sub def
gsave
lw2 setlinewidth
c aload pop translate marksize dup scale
alpha rotate
phi 0 gt {

phi 180 lt {
newpath 1 0 moveto 0 1 rlineto -1 0 rlineto stroke
}{
newpath 1 0 moveto 0 -1 rlineto -1 0 rlineto stroke

} ifelse
}{
phi -180 lt {

newpath 1 0 moveto 0 1 rlineto -1 0 rlineto stroke
}{
newpath 1 0 moveto 0 -1 rlineto -1 0 rlineto stroke

} ifelse
} ifelse

grestore
end } bind def
%
/tickmark { 5 dict begin % stack: a b n

/n exch def /b exch def /a exch def
/phi b 0 get a 0 get sub b 1 get a 1 get sub angle def
/s a 0 get b 0 get sub dup mul a 1 get b 1 get sub dup mul add sqrt 2 div def
gsave
lw2 setlinewidth
a aload pop translate phi rotate
n 1 eq {

newpath s 0 moveto 0 marksize neg rlineto 0 2 marksize mul rlineto stroke
} if
n 2 eq {

newpath
s marksize 4 div sub 0 moveto 0 marksize neg rlineto 0 2 marksize mul rlineto
s marksize 4 div add 0 moveto 0 marksize neg rlineto 0 2 marksize mul rlineto

96

stroke
} if
n 3 eq {

newpath
s marksize 2 div sub 0 moveto 0 marksize neg rlineto 0 2 marksize mul rlineto
s 0 moveto 0 marksize neg rlineto 0 2 marksize mul rlineto stroke
s marksize 2 div add 0 moveto 0 marksize neg rlineto 0 2 marksize mul rlineto
stroke

} if
n 4 ge {

newpath
s marksize 3 mul 4 div sub 0 moveto 0 marksize neg rlineto 0 2 marksize mul rlineto
s marksize 4 div sub 0 moveto 0 marksize neg rlineto 0 2 marksize mul rlineto
s marksize 4 div add 0 moveto 0 marksize neg rlineto 0 2 marksize mul rlineto
s marksize 3 mul 4 div add 0 moveto 0 marksize neg rlineto 0 2 marksize mul rlineto
stroke

} if
grestore

end } bind def
%%EndProlog
u dup scale
0.5 0.5 translate
lw1 setlinewidth
% points of triangle ABC and base point D
/A [0 0] def
/B [3 0] def
/C [1.5 4] def
/D [1.5 0] def
A 0 get 0.3 sub A 1 get 0.4 sub moveto f1 (A) show
B 0 get 0.05 add B 1 get 0.4 sub moveto f1 (B) show
C 0 get 0.15 sub C 1 get 0.2 add moveto f1 (C) show
D 0 get 0.15 sub D 1 get 0.4 sub moveto f1 (D) show
% labeling
newpath
A aload pop moveto
B aload pop lineto
C aload pop lineto
closepath
C aload pop moveto
D aload pop lineto
stroke
% annotation
A D 1 tickmark
B D 1 tickmark
A C 2 tickmark
B C 2 tickmark
C A B 2 markangle
A B C 2 markangle
B C A 1 markangle
C D B markrightangle
showpage
%%EOF

97

References

[Cas05] Casselman, B. Mathematical Illustrations, Cambridge University Press, 2005. Down-
loadable at
www.math.ubc.ca/~cass/graphics/manual/

[Pos99] PostScript Language Reference Manual, Adobe Systems, 3rd printing, 1999. Known
informally as ‘the red book’. Downloadable at
www-cdf.fnal.gov/offline/PostScript/PLRM3.pdf

[Pos88] PostScript Language Program Design, Adobe Systems, 1st printing, 1988. Known
informally as ‘the green book’. Downloadable at
www-cdf.fnal.gov/offline/PostScript/GREENBK.PDF

[Pos86] PostScript Language Tutorial and Cookbook, Adobe Systems, 2nd printing, 1986.
Known informally as ‘the blue book’. Downloadable at
www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF

98

