
A Bird's-Eye View of Gr�obner BasesAndr�e HeckCAN Expertise Center, email: heck@can.nlOctober 11, 1996AbstractIn this expository paper we give a short introduction to Gr�obner basis theory and its mainapplications. Quite a few books ([1, 3, 11, 17]) and overview articles ([2, 7, 8, 20, 27]) on Gr�obnerbasis theory already exist. This one di�ers in style and in choice of examples. The style isconcrete: examples illustrate the main techniques and the use of a computer algebra system,in our case Maple, is not shunned. Most examples are taken from the science literature andillustrate the Gr�obner basis techniques on real applications.1 IntroductionMany problems in science and engineering lead to systems of equations of the typef1(x1; x2; : : : ; xn) = 0f2(x1; x2; : : : ; xn) = 0...fm(x1; x2; : : : ; xn) = 0where f1; f2; : : : fm are polynomials in n unknowns. Then the main task is to solve the systemof polynomial equations, i.e., to �nd the set V (f1; f2; : : : ; fm) of common zeros. Some problemclasses with examples from existing literature are:� Steady state analysis of an ODE. Given an explicit system of ODEs with polynomialright-hand sides, the steady state is described by vanishing left-hand sides.{ Noonburg [28]: Modeling of neural networks.cx+ xy2 + xz2 � 1 = 0cy + yx2 + yz2 � 1 = 0cz + zx2 + zy2 � 1 = 0 (1)where c is a parameter taking only rational values.{ Feinberg [14]: Modeling of a chemical reaction system of type
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The steady state solutions are determined by��c1c2 + �c3 � �c1c5 + �c6 = 0��c1c2 + �c3 = 0�c1c2 � (� + 
 + �)c3 + �c25 = 0
c3 � �c4 = 02�c3 + 2�c4 � 2�c25 + �c6 � �c1c5 = 0�c1c5 � �c6 = 0 (2)� Geometrical descriptions. Think of variables representing coordinates, distances,and angles (embedded in trigonometric functions).{ van der Blij [5]: Molecular structure of cyclohexane. It is a special case of aregular hexagon in 3-space with sides of equal length (see Figure 1).
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Figure 1: A cyclohexane con�gurationLet x, y, z represent the squares of the lengths of the \long diagonals" of the cyclicstructure, a be the square of the length of a side, and let b be the length of the\short diagonals". Consider the determinantf(a; b; x; y) = �������������
0 1 1 1 1 11 0 a b x b1 a 0 a b y1 b a 0 a b1 x b a 0 a1 b y b a 0

�������������For cyclohexane (bond angle about 110:4�) you may approximate a = 1; b = 8=3.The system of polynomial equations for the general cyclic structure isf(a; b; x; y) = 0; f(a; b; y; z) = 0; f(a; b; z; x) = 0and we want to �nd the real solutions.{ Gonz�alez-L�opez/Recio [19]: Inverse kinematics of the ROMIN robot (see Fig-ure 2). � sin �1(l2 cos �2 + l3 cos �3)� x = 0cos �1(l2 cos �2 + l3 cos �3)� y = 0l2 sin �2 + l3 sin �3 � z = 0 (3)2
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Figure 2: projection of ROMIN robot on yz-plane.The task is to �nd for �xed lengths l2 and l3 of robot arms and for a given triple(a; b; c) the allowed values of joint angles �1 , �2 and �3. The equations are poly-nomial in terms of sines and cosines of the joint angles �1, �2, �3, and we may addtrigonometric identities such as cos2 �1 + sin2 �1 = 1.{ Heck [22]: Geodesy. x = (N + h) cos � cos �y = (N + h) cos � sin�z = (N(1� e2) + h) sin�N = aq 1� e2 sin2 �e = sa2 � b2a2 (4)The problem is to express the geodetic coordinates h (height), � (longitude), and� (latitude) of a point on or near the surface of the earth in terms of the geocentricCartesian coordinates x, y, and z. This problem can be transformed into a problemof polynomial equations and solved as such.� Truncated power series. An ansatz of a truncated power series substituted into anequation and the vanishing of coe�cients of corresponding powers often gives a solvablesystem of polynomial equations.{ K. Forsman [15]: Frequencies of periodic solutions of the van der Pol equationy00 � a(1� by2)y0 + y = 0through the method of harmonic balancing. The ansatzy(t) = 3Xk=�3 cke�ik!tleads to �c1!2 + abc21c3i! + c1 = 02abc1c23r! + abc21c3r! + 2abc1c23i! + abc31! � ac1! = 0�9c3r!2 + 3abc3ic23r! + 3abc33i! + 6abc21c3i! � 3ac3i! + c3r = 0�3abc33r! � 9c3i!2 � 3abc23ic3r! � 6abc21c3r! + 3ac3r! � abc31! + c3i = 0 (5)3



where c3 = c3r + c3i i and the equations c0 = c2 = 0 are left out.� Structural identi�ability of compartmental systems. Basic properties of com-partmental systems such as reachability, observability, and identi�ability are often trans-lated into properties of systems of polynomial equations.{ Heck [23]: Structural identi�ability of a 3-compartmental model of cadmiumtransfer through the human body. The model is shown in Figure 3 below.
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Figure 3: Cadmium transfer in the human body.The transfer-function method leads to the following polynomials in a02, a03, a12,a21, a23, a32: f1 = a32f2 = a21a32f3 = a02f4 = a02a03 + a02a21 + a02a23 + a03a32f5 = a02a03a21 + a02a21a23 + a03a21a32f6 = a02 + a03 + a12 + a21 + a23 + a32f7 = a02a03 + a02a21 + a02a23 + a03a12 + a03a21+a03a32 + a12a23 + a21a23 + a21a32 (6)Identi�ability testing is equivalent to solving the polynomial equationsfk(a02; a03; a12; a21; a23; a32) = fk(b02; b03; b12; b21; b23; b32)for k = 1; 2; : : : ; 7 and where we consider the a's as unknowns and the b's as formalparameters.Not only �nding the exact solutions of systems of polynomial equations is interesting.Without solving the system of equations, you can also answer questions such as� Is the system solvable?� Are there a �nite number of solutions and, if so, how many?4



� Do equivalent systems of equations exist that give more insight to their solutions?Gr�obner basis theory is a systematic approach to answering such questions and to solvingpolynomial equations. In subsequent sections we shall use above examples to illustrate thetheory and its applications.2 Elementary Solution MethodsLet us consider f1 = x� y � zf2 = x+ y � z2f3 = x2 + y2 � 1 (7)and let us try to �nd the set V (f1; f2; f3) of common zeros.2.1 Heuristic MethodA heuristic approach may go as follows:f1 + f2 = 2x� z � z2 and f2 � f1 = 2y + z � z2So, x = 12(z2 + z) and y = 12(z2 � z).Substitution in f3 gives the polynomial 12z4 + 12z2 � 1.Its solutions are z = 1, z = �1, z = p2i, and z = �p2i.2.2 Gaussian Elimination-Like MethodStep 1. We choose x in the �rst polynomial as the �rst term suitable for eliminating termsin other polynomials. We multiply the �rst polynomial by another polynomial and subtractit from the second polynomial in order to eliminate the terms containing x. We do the samefor the third polynomial.V (f1; f2; f3) = V (f1; f2� f1; f3� (x+ y+ z)f1) = V (x� y� z; 2y� z2+ z; 2y2+2yz+ z2� 1)The resulting second and third polynomial have no terms that contain x. Let us call the newpolynomials g1, g2, and g3, respectively.Step 2. We choose the variable y in g2 as the most important variable. Then we multiply g2by another polynomial and subtract it from 2g2 in order to eliminate the terms containing y.We do the same for the third polynomial.V (g1; g2; g3) = V (2g1 + g2; g2; 2g3 � (2y+ z2+ z)g2) = V (2x� z2� z; 2y� z2+ z; z4+ z2� 2)The new generators are in upper triangular form: The last polynomial is only in z, the secondone is only in y; z, and the �rst one is a polynomial in x; y; z (because of the special form ofthe second generator we could actually reduce the �rst generator to a polynomial in x; z only;in general this cannot be done).
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2.3 ConclusionThe above methods have in common that they replace the original polynomials by nice poly-nomials that have the same solution set :V (x� y � z; x+ y � z2; x2 + y2 � 1) = V (2x� z2 � z; 2y � z2 + z; z4 + z2 � 2)\Nice" means here that the set of common zeros can be more easily computed from the newpolynomials than from the original ones.Let us go back to the Gaussian elimination-like method. During the elimination newpolynomials p are formed from pairs of old ones f; g by h = �f +�g, where � is a polynomialand � a scalar. h has the same common zeros as f and g and V (f; g) = V (f; h) The setI(f; g) of all linear combinations �f + �g, where � and � are polynomials, is called the idealgenerated by f and g. The set of common zeros of the ideal I(f; g) equals the set of commonzeros of f and g, i.e. V (f; g) = V (I(f; g)). So, all we do in the Gaussian elimination-likemethod is to choose at each step f; g; �, and scalar � clever enough such that in the end thenew generators form a triangular system that can be easily solvedThe Gr�obner basis is another nice set of generators of an ideal. Actually, the generatorscomputed above form a Gr�obner basis. In the next section we shall introduce Gr�obner basesand give the basic algorithm for computing them.3 Basics of the Gr�obner Basis MethodThe mathematical ingredients of Gr�obner bases will be introduced step by step.3.1 Term OrderingIn the Gaussian elimination-like method of the previous section we selected in each step theterm most suitable for further elimination of terms. We call such term the leading termin a polynomial. The rule of choosing leading terms is an example of a term ordering. Formultivariate polynomials in x1, x2, : : :, xn the pure lexicographic ordering is the linear orderingdetermined by x1i1x2i2 � � � xnin � x1j1x2j2 � � � xnjn if and only if;for some l 2 f1; : : : n� 1g; ik = jk for all k < l and il < jl :For example, in the pure lexicographic ordering of three variables with z � y � x we have1 � z � z2 � : : : � y � yz � yz2 � : : :� y2 � y2z � y2z2 � : : : � x � xz � xz2 � : : :� xy � xy2 � : : : � x2 � : : :Another ordering is the total degree inverse lexicographic ordering de�ned byx1i1x2i2 � � � xnin � x1j1x2j2 � � � xnjn if and only ifeither nXk=1 ik < nXk=1 jkor nXk=1 ik = nXk=1 jk and; for some l 2 f1; : : : n� 1g; il < jl and ik = ik for all k > l :6



In this ordering, the total degree of a term (i.e. the sum of the exponents of the variables)is the most important thing and terms of equal total degree are ordered using the so-calledinverse lexicographic ordering. In three variables with z � y � x:1 � z � y � x� z2 � yz � xz � y2 � xy � x2� z3 � yz2 � xz2 � y2z � xyz� x2z � y3 � xy2 � x2y � x3 � : : :Other term orderings are possible in Gr�obner basis theory. The ordering � only has to beadmissible, i.e., satisfy (i) 1 � t for every term t 6= 1(ii) s � t =) s � u � t � u for all terms s; t; uTo each nonzero polynomial f we can associate the leading term:lt(f) = term that is maximal among those in fThe leading coe�cient is de�ned aslc(f) = the coe�cient of the leading term of fThe leading term of f is the product of the leading coe�cient of f and the leading monomiallm(f) of f : lt(f) = lc(f) � lm(f)An example in the pure lexicographic ordering z � y � x:lt(2y � z2 + z) = 2y; lc(2y � z2 + z) = 2; lm(2y � z2 + z) = y:3.2 Polynomial Reduction and Normal FormFor nonzero polynomials f; g and polynomial ~f we say that f reduces to ~f modulo g anddenote it by f �!g ~f if there exists a term t in f that is divisible by the leading term of gand ~f = f � tlt(g) � g. Admissibility of the term ordering � guarantees that if the terms inf and ~f are ordered from high to low terms, then the �rst terms in which these polynomialsdi�er are t in f and some lower term in ~fSome examples in the pure lexicographic ordering z � y � x:x+ y � z2 �!x�y�z 2y � z2 � zx2 + y2 � 1 �!x�y�z x2 + y2 � 1� x2x (x� y � z) = xy + xz + y2 � 1xy + xz + y2 � 1 �!x�y�z xz + 2y2 + yz � 1�!x�y�z 2y2 + 2yz + z2 � 17



In the last example, after two steps, a so-called normal form of xy+ xz+ y2� 1 with respectto x� y � z is obtained and no further reductions are possible. We denote it bynormalf(xy + xz + y2 � 1; x� y � z) = 2y2 + 2yz + z2 � 1Let G = g1; g2; : : : ; gm be a set of polynomials. A polynomial f reduces to ~f modulo Gif there exists a polynomial gi in G such that f �!gi ~f . A normal form normalf(f;G) of fwith respect to G is a polynomial obtained after a �nite number of reductions which containsno term anymore that is divisible by leading terms of polynomials of G. The normal form isin general not unique: consider the pure lexicographic ordering of two variables x and y suchthat y � x. Let g1 = x2y � 1; g2 = xy2 � 1 and f = x2y2. Then f �!g1= f � yg1 = y andf �!g2= f � xg2 = x. After each step no more reductions are possible. Both x and y arenormal forms of f with respect to fg1; g2g.3.3 Characterization of a Gr�obner BasisG is a Gr�obner basis (with respect to an admissible ordering) if and only ifnormal forms modulo G are unique, i.e., for all f; g; h:if g = normalf(f;G) and h = normalf(f;G); then g = h:Alternatively,G is a Gr�obner basis if and only if normalf(g;G) = 0 for all g in the ideal generated by G:Essentially, these characterizations are not much more than de�nitions of a Gr�obner basis.They do not give any clue of how to verify the property of normal forms or how to computesuch a basis. For this we have to introduce the concept of a S-polynomial: the S-polynomialspoly(f; g) of polynomials f and g is de�ned byspoly(f; g) = lcm�lt(f); lt(g)� � � flt(f) � glt(g)� ;where lcm(p; q) denotes the least common multiple of polynomials p and q. Alternatively, wecould de�ne spoly(f; g) = � � f � � � g, where � and � are chosen such that the leading termscancel in the di�erence and the degree of a b is minimal. Two examples in the lexicographicordering with y � x:� For f = x�y�z and g = x2+y2�1 we have spoly(f; g) = x �f�g = �xy�xz�y2+1.� For f = x2y � 1 and g = yx2 � 1 we have spoly(f; g) = y � f � x � g = x� y.An algorithmic characterization of a Gr�obner basis is the following:A �nite set G of polynomials is a Gr�obner basis if and only ifnormalf(spoly(f; g); G) = 0b for all pairs (f; g) in G.3.4 The Buchberger AlgorithmThe following algorithm written in Algol-like pseudo code computes for a given �nite set Gof polynomials a Gr�obner basis GB such that the ideal generated by GB equals the idealgenerated by G. 8



procedure groebnerBasis(G)GB  � GB  � f(f; g)jf; g 2 G; f 6= ggwhile B 6= ; do(f; g) � select a pair in BB  � B n f(f; g)gh  � normalf( spoly(f; g); GB )if h 6= 0then GB  � GB [ fhgB  � B [ f(f; h) j f 2 GBg�odreturn(GB)endBuchberger ([6]) invented this algorithm and proved that it terminates with a Gr�obner basisas �nal result.Let us see how the Buchberger algorithm goes for our examplef1 = x� y � z; f2 = x+ y � z2; f3 = x2 + y2 � 1We choose the pure lexicographic ordering with z � y � x.1. GB  � ff1; f2; f3g; B  � f(f1; f2); (f1; f3); (f2; f3)g;select (f1; f2); B  � f(f1; f3); (f2; f3)g;spoly(f1; f2) = �2y � z + z2 is already in normal form;f4  � �2y � z + z2; GB  � ff1; f2; f3; f4g;B  � f(f1; f3); (f2; f3); (f1; f4); (f2; f4); (f3; f4)g.2. select (f1; f3); B  � Bnf(f1; f3)g;spoly(f1; f3) = �xy � xz � y2 + 1 normalform�!GB �12z4 � 12z2 + 1;f5  � �12z4 � 12z2 + 1; GB  � ff1; f2; f3; f4; f5g;B  � f(f2; f3); (f1; f4); : : : ; (f3; f4); (f1; f5); : : : ; (f4; f5)g.3. select (f2; f3); B  � Bnf(f2; f3)g;spoly(f2; f3) = xy � xz2 � y2 + 1 normalform�!GB 0.4. select (f1; f4); B  � Bnf(f1; f4)g;spoly(f1; f4) = 2y2 + 2yz + xz � xz2 normalform�!GB 0.5. all remaining pairs have S-polynomials whose normal form with respect to GB equalszero.6. GB = ff1; : : : ; f5g = fx� y � z; x+ y � z2; x2 + y2 � 1;�2y � z + z2;�12z4 � 12z2 + 1gis a Gr�obner basis.The following Maple code implements the Buchberger algorithm:9



groebnerBasis := proc( polys::list(polynom), vars::list(name) )local B,GB,p,h,i,j,f;with(grobner,normalf); with(grobner,spoly);B := [ seq( seq( [polys[i],polys[j]], i=1..j-1 ), j=2..nops(polys) ) ];GB := polys;while not B=[] dop := B[1];B := B[2..-1];h := normalf( spoly( p[1], p[2], vars, plex), GB, vars, plex );if h <> 0then GB := [op(GB),h];B := [ op(B), seq( [f,h], f=GB ) ];fi;od;GBend;It is an almost direct translation of the pseudo code given before into the Maple language.The Gr�obner basis is not unique: ff1; f4; f5g = fx� y� z;�2y� z + z2;�12z4 � 12z2 +1gis also a Gr�obner basis. A reduced, monic Gr�obner basis G is a basis such that for all g in G:g = normalf�g;G n fgg� and lc(g)=1. This basis is unique. It is created from the computedbasis in the above Buchberger algorithm by the following two steps:Step 1.for g in GB doif there exists a p 2 GB n fgg such that lt(p) divides lt(g)then remove g from GB�odStep 2.for g in GB dog  � normalf�g;GB n fgg�g  � 1lc(g) god In our example: f2, and f3 are removed in step 1. f6 def= normalf(f1; ff4g) = x� 12z2� 12z;So, in step 2 we get that ff6;�12f4;�2f5g = fx� 12z2 � 12z; y � 12z2 � 12z; z4 + z2 � zg is thereduced, monic Gr�obner basis.3.5 Improvements of Buchberger's AlgorithmThe basic Buchberger algorithm from the previous subsection leaves a lot of freedom in thecomputational process:� at the beginning a particular admissible ordering is chosen;10



� at each step of the while-loop, a pair of polynomials in the current basis is selected.� normal form reduction is in general not unique, so there may be di�erent reductionsteps leading to di�erent normal forms.The choices made in the computational process are of great in
uence on the performance ofthe algorithm, not on the �nal output, but on the complexity of the algorithm: number ofpairs to process, growth of the coe�cients, in general time and space complexity. Therefore,a lot of e�ort has been and is still being put into adapting the algorithm towards e�ciency.We mention the main improvements and other observations:� Choice of admissible orderingExperience shows that the total degree inverse lexicographic ordering is most e�cientordering for Buchberger's algorithm. For solving systems of equations however, the purelexicographic ordering is more useful. Luckily, for zero-dimensional systems, i.e. poly-nomial systems with a �nite set of solutions, the Faug�ere-Gianni-Lazard-Mora method(abbreviated as FGLM-method, [13] can be applied to convert Gr�obner bases with re-spect to any ordering by linear algebra methods into Gr�obner bases with respect to thepure lexicographic ordering.� Selection of pairs for the reduction processTwo well-known, heuristic strategies are:{ normal strategy ([7]). Choose a pair (f; g) such that the least common multiple ofthe leading terms lt(f) and lt(g) is minimal in the current term ordering.{ sugar strategy ([18]). The pairs are ordered with respect to a phantom degree calledsugar and some tie-breaking algorithm.The sugar strategy appears to be the winning strategy in many cases.� Avoidance of useless computations of S-polynomialsThe computation of an S-polynomial and the reduction to a normal form is a time- andspace-consuming step that must possibly be avoided in the algorithm. The followingcriteria are used:{ Criterion 1: If polynomials f and g have disjoint leading terms, i.e. if lt(f) and lt(g)have no variables in common (in other words, gcd(lt(f); lt(g)) = 1), then spoly(f; g)reduces to zero with respect to ff; gg. So, for such pairs the computation of theS-polynomial and the reduction to normal form can be skipped in the Buchbergeralgorithm.{ Criterion 2: If there are elements p, f , and g in the current basis GB such thatlt(p) divides the least common multiple of lt(f) and lt(g), and if the pairs (f; p)and (g; p) have already been dealt with, i.e. (f; p) 62 B and (g; p) 62 B, then thepair (f; g) can be discarded.� Use of polynomials in normal form.In the computation of the reduced, monic Gr�obner basis via Buchberger's algorithm webrought the polynomials in the Gr�obner basis to monic normal form with respect toeach other only as a �nal step. Experience shows that it is better to do this at everystep in the algorithm. 11



� Removal of super
uous polynomials.In the computation of the reduced, monic Gr�obner basis via Buchberger's algorithmwe removed super
uous polynomials in the Gr�obner basis after it has been computed.It is possible to remove super
uous polynomials in the intermediate bases GB in thefollowing way: for g; g0 2 GB; g 6= g0, if lt(g) divides lt(g0), then g0 can be expressedby g and the S-polynomial spoly(g; g0). After you have reduced spoly(g; g0) into normalform, g0 as super
uous and all pairs (g0; g00) can be deleted from B. Although g0 arediscarded you can still use it in the normal form algorithm.� Normal form calculation.As we have seen normal form computation in general does not give a unique result: ineach reduction step one has to choose the term to be eliminated and di�erent choices maylead to di�erent normal forms. A good strategy in the Buchberger algorithm is alwaysto eliminate the largest term that can be eliminated in the normal form algorithm.The following pseudo code is a better Buchberger algorithm that uses the normal selectionstrategy and brings the polynomials in the initial basis in normal form with respect to eachother.procedure groebnerBasis(G)GB  � reduceAll(G)B  � f(f; g)jf; g 2 G with non-disjoint leading terms ; f 6= ggwhile B 6= ; do(f; g) � select a pair in B with minimal least common multiple of leading termsB  � B n f(f; g)gif there exists no p 2 GB such that (f; p) 62 B; (g; p) 62 B,and lt(p) divides lcm(lt(f); lt(g))then h  � normalf( spoly(f; g); GB )if h 6= 0then GB  � GB [ fhgB  � B [ f(f; h) j f 2 GBg��odreturn(GB)endprocedure reduceAll(F )F  � Sf2Fnf0gmakeMonic(f)while normalf�f; Fnffg� 6= f for some f 2 F doF  � Fnffgf  � normalf(f; F )if f 6= 0 then F  � F [ ffg �odreturn(F )end 12



These improvements have already a drastic e�ect on the computation of the reduced,monic Gr�obner basis of our previous example fx�y�z; x+y�z2; x2+y2�1g with respect tothe pure lexicographic ordering z � y � x. It turns out that bringing the original polynomialsinto monic normal form with respect to each other already produces the requested Gr�obnerbasis fx� 12z2 � 12z; y � 12z2 � 12z; z4 + z2 � zg.More sophisticated improvements of the basic Buchberger algorithm can among others befound in [7] (algorithm 6.3) and [3] (algorithm GR�OBNERNEW2).3.6 Programs for Computing Gr�obner BasesAlmost every modern computer algebra system contains an implementation of a Gr�obnerbasis algorithm, some more advanced than others.For example, the basic algorithm implemented in Mathematica (version 2.0 and later) ispoor in the sense that� it only works for lexicographic ordering and for rational coe�cients;� apparently works fast enough only for small problems. (cf. [10])A little bit more useful but still not too impressive is the grobner package inMaple (release4.0 and later):� it allows both pure lexicographic ordering and total degree inverse lexicographic order-ing;� coe�cients may be polynomials with rational coe�cients;� some algorithmic improvements to the basic Gr�obner algorithm have been implemented;� some utility functions are available. In the applications section we shall see the mostimportant ones;� A factorization version of Buchberger's algorithm can be used. In the applicationssection we shall discuss this further.For both Mathematica and Maple improved and extended Gr�obner bases are publiclyavailable ([9, 26, 25, 16, 21]).The groebner package of Reduce (version 3.4 and later) goes further than the two generalpurpose systems mentioned before:� it can be used over a variety of di�erent coe�cient domains,� it allows pure lexicographic, inverse lexicographic, total degree lexicographic, and totaldegree inverse lexicographic term ordering s.� some algorithmic improvements to the basic Gr�obner algorithm have been implementedand you can in
uence the computation by setting di�erent modes;� in the zero-dimensional case, i.e. if the set of polynomials have only a �nite set ofsolutions, you can convert a basis from any ordering into a basis under pure lexicographicordering; 13



� A factorization version of Buchberger's algorithm can be used.Some non-commercial packages that allow Gr�obner basis computations are:� Macaulay 1 . This system is for computation in algebraic geometry and commutativealgebra and contains a fast Gr�obner basis implementation; its drawback is that it onlyworks for homogeneous polynomials and for polynomials rings over small prime �elds.� GB of J.-C. Faug�ere. Its purpose is to compute Gr�obner bases of polynomial ideals andsolve systems of polynomial equations quickly. Implementations of GB exist in Axiomand in both C and C++.� POSSO. This package, which is an acronym of POlynomial System SOlver, is devel-oped in the POSSO Esprit project n.6846 and is meant to provide researchers with fast,reliable software for computing Gr�obner bases with tools to get insight in and controlover the computational process. The C++ library of routines contains an implementa-tion of Buchberger's algorithm customizable by its user with respect to pair handlingstrategies, normalization strategies, kind of reduction, policies for inserting new ele-ments in the bases, etc. We refer to the WWW-site http://posso.dm.unipi.it formore information.4 Properties and Applications of Gr�obner BasesWe present the main properties of Gr�obner bases in the form of recipes without proof andapply them if possible to one the examples in the introduction. The coe�cient �eld is almostalways assumed to be an algebraically closed �eld with characteristic zero, say the complexnumbers. When we speak about a Gr�obner basis we shall always mean the unique reduced,monic Gr�obner basis. All examples will be computed with Maple. We shall always assumethat the grobner package has been loaded via the command with(grobner). The mainprocedure in this package is of course gbasis to compute a Gr�obner basis. In the examplesbelow we shall encounter other procedures of the grobner package.4.1 Equivalence of Polynomial EquationsThe system of polynomial equations f1(x1; : : : ; xn) = 0; : : : : : : ; fm(x1; : : : ; xn) = 0 has thesame solutions as the system arising from any Gr�obner basis of f1; : : : ; fm with respect to anyterm ordering.This is the main property. It can also be formulated asTwo sets of polynomials generate the same ideal if and only if their Gr�obner bases are equal(any term ordering may be chosen).The next Maple session shows the computation of the Gr�obner basis with respect to apure lexicographic ordering for the system of polynomial equations (2), which describes thesteady state of a chemical reaction.> polys := [ -alpha*c[1]*c[2] + beta*c[3] - xi*c[1]*c[5] + eta*c[6],> -alpha*c[1]*c[2] + beta*c[3], gamma*c[3] - epsilon*c[4],> alpha*c[1]*c[2] - (beta+gamma+kappa)*c[3] + lambda*c[5]^2,14



> 2*kappa*c[3] + 2*epsilon*c[4] - 2*lambda*c[5]^2 + eta*c[6] - xi*c[1]*c[5],> xi*c[1]*c[5]-eta*c[6] ]:> reactionConstants := alpha, beta, gamma, epsilon, kappa, lambda, eta, xi:> concentrations := c[1], c[2], c[3], c[4], c[5], c[6]:> vars := [ reactionConstants, concentrations ]:> gbasis( polys, vars, plex );[�� c3 + � c1c2; � c4 � 
 c3;�� c52 + 
 c3 + � c3; � c6 � � c1c5]The original set of polynomials and the Gr�obner basis have the same solutions.> solve( {op(")}, {c[1],c[2],c[3],c[4]} );fc4 = 
 � c52� (
 + �) ; c2 = � � c53�� � c6 (
 + �) ; c3 = � c52
 + �; c1 = � c6� c5 gThe conclusion is that the chemical reaction system has a two-dimensional solution space ofpositive steady states.4.2 Solvability of Polynomial EquationsThe polynomial system of equations f1(x1; : : : ; xn) = 0; : : : : : : ; fm(x1; : : : ; xn) = 0 is solvableif and only if the Gr�obner basis of f1; : : : ; fm is not equal to f1g.For example, this criterion allows to show that the polynomial system of equationsx+ xy2 � 1 = 0; x2y + y � 1 = 0; x2 + y2 � 1 = 0has no solutions.> gbasis( [ x + x*y^2 - 1, x^2*y + y - 1, x^2 + y^2 - 1 ], [x,y], tdeg );[1]The procedure solvable in the grobner package uses this method to verify whether a systemis solvable or not.4.3 Finite Solvability of Polynomial EquationsThe polynomial system of equations f1(x1; : : : ; xn) = 0; : : : : : : ; fm(x1; : : : ; xn) = 0 has a �nitenumber of solutions if and only if any Gr�obner basis of f1; : : : ; fm has the following property:For every variable xi, there exists a polynomial such that its leading term withrespect to the chosen term ordering is a power of xi.Let us use this criterion to check whether system (1), which describes the steady state ofan ODE associated to a neural network, has �nite solutions.> polys := [ c*x + x*y^2 + x*z^2 -1, c*y + y*x^2 + y*z^2 -1,> c*z + z*x^2 + z*y^2 -1 ]:> gbasis( polys, [c,x,y,z], plex ); 15



[cx+ xy2 + xz2 � 1; cy + yx2 + yz2 � 1; cz + zx2 + zy2 � 1;x3y � y3x� x+ y;�z3x+ z + zx3 � x;�yz3 + z + zy3 � y]Note that no power of c appears in the gr�obner basis. From the criterion it follows that thereis no �nite set of solutions. The procedure finite in the grobner package automates checkingof �nite solvability of polynomial equations via the above criterion.> finite( polys, {c,x,y,z} ); falseLet us use this procedure to check if a �nite number of solutions exist if we consider c asa parameter, i.e. in the Gr�obner basis computation coe�cients are considered as rationalfunctions in c.> finite( polys, {x,y,z} ): true4.4 Counting of Finite SolutionsSuppose that the system of polynomial equations f1(x1; : : : ; xn) = 0; : : : : : : ; fm(x1; : : : ; xn) = 0has a �nite number of solutions.The number of solutions (counted with multiplicities and solutions at in�nity)is equal to the cardinality of the set of monomials that are no multiples of theleading monomials of the polynomials in the Gr�obner basis (any term orderingmay be chosen).We apply this criterion on the previous example, with c considered as a parameter. Firstwe compute the leading monomials in the Gr�obner basis with respect to the total degreeinverse lexicographic ordering for which z � y � x.> polys := [ c*x + x*y^2 + x*z^2 - 1, c*y + y*x^2 + y*z^2 - 1,> c*z + z*x^2 + z*y^2 - 1 ]:> gbasis( polys, [x,y,z], tdeg ):> map( f -> op(2,leadmon(f,[x,y,z],tdeg)), " );[xy2; zx2; x4; yx2; z5; y2z2; yz4; y4; xz4; xz3y; zy3]So, the set of monomials that are no multiples of these leading monomials equalsf1; z; y; x; z2; yz; xz; y2; x2; xy; z3; yz2; xz2; y2z; y3; xy; z4gand has cardinality 17. So, according to the above criterion there are 17 �nite solutions. Ifyou would use the solve command in Maple to �nd all solutions of this system of polynomialequations you could easily verify that this is indeed the correct number of solutions.
16



4.5 Converting a System of Polynomial Equations into Triangular FormIf a system of polynomial equations f1(x1; : : : ; xn) = 0; : : : : : : ; fm(x1; : : : ; xn) = 0 has a �nitenumber of solutions then the Gr�obner basis of ff1; : : : ; fng with respect to the pure lexico-graphic ordering x1 � x2 � � � � � xn has the following upper triangular structure:g1(x1; x2; x3; : : : ; xn)...gp(x1; x2; x3; : : : ; xn)gp+1(x2; x3; : : : ; xn)...gq(x2; x3; : : : ; xn)gq+1(x3; : : : ; xn)... ... gr(xn)...gs(xn)Shape lemma. (cf. [4])If a system of polynomial equations f1(x1; : : : ; xn) = 0; : : : : : : ; fm(x1; : : : ; xn) = 0 has a �nitenumber of solutions, then the Gr�obner basis of ff1; : : : ; fng with respect to the pure lexico-graphic ordering x1 � x2 � � � � � xn, under some suitable assumptions veri�ed in most of thecases, has the following structure:nx1 � g1(xn); x2 � g2(xn); : : : ; xn�1 � gn�1(xn); gn(xn)o;where each gi is a univariate polynomial.The Gr�obner basis of system (7) with respect to the pure lexicographic ordering x � y � zhas been computed in x3.4: fx� 12z2 � 12z; y � 12z2 � 12z; z4 + z2 � zg: It clearly satis�es theshape lemma.As another illustration of the shape lemma we look at the polynomials (6), which de�ne asystem of polynomial equations that must be solved to verify structural identi�ability of thegiven 3-compartmental model for cadmium transfer in the human body. The following Maplesession does the work via the Gr�obner basis method.First we introduce short-hand notation for variables and create the polynomials.> sequence :=> seq(seq( a.i.j = a[i,j], i=0..3 ), j=0..3 ),> seq(seq( b.i.j = b[i,j], i=0..3 ), j=0..3 ),> seq(seq( t.i.j = t[i,j], i=0..3 ), j=0..3 ), c3 = c[3]:> (eval@subs)( S=sequence, 'macro(S)' ):> f[1] := a32;> f[2] := a21*a32;> f[3] := a02;> f[4] := a02*a03 + a02*a21+a02*a23 + a03*a32;17



> f[5] := a02*a03*a21 + a02*a21*a23 + a03*a21*a32;> f[6] := a02 + a03 + a12 + a21 + a23 + a32;> f[7] := a02*a03 + a02*a21 + a02*a23 + a03*a12 + a03*a21> + a03*a32 +a12*a23 + a21*a23 + a21*a32;f1 := a3; 2f2 := a2; 1 a3; 2f3 := a0; 2f4 := a0; 2 a0; 3 + a0; 2 a2; 1 + a0; 2 a2; 3 + a0; 3 a3; 2f5 := a0; 2 a0; 3 a2; 1 + a0; 2 a2; 1 a2; 3 + a0; 3 a2; 1 a3; 2f6 := a0; 2 + a0; 3 + a1; 2 + a2; 1 + a2; 3 + a3; 2f7 := a0; 2 a0; 3 + a0; 2 a2; 1 + a0; 2 a2; 3 + a0; 3 a1; 2 + a0; 3 a2; 1 + a0; 3 a3; 2 + a1; 2 a2; 3 + a2; 1 a2; 3+ a2; 1 a3; 2Identi�ability testing is equivalent to solving the polynomial equationsfk(a02; a03; a12; a21; a23; a32)� fk(b02; b03; b12; b21; b23; b32) = 0for k = 1; 2; : : : ; 7 and where we consider the a's as unknowns and the b's as formal parameters.Below, we create this list of polynomials and compute its Gr�obner basis with respect to thepure lexicographic ordering a12 � a21 � a23 � a32 � a02 � a03.> polys := [ seq( subs( { a12=b12, a21=b21, a23=b23, a32=b32,> a23=b23, a03=b03, a02=b02 }, f[i] ) - f[i], i=1..7 ) ]:> vars := [a12,a21,a23,a32,a02,a03]:> gbasis( polys, vars, plex );[b0; 2 a1; 2 � b0; 2 b1; 2 + b0; 3 b3; 2 � b3; 2 a0; 3; �b2; 1 + a2; 1;b0; 2 a2; 3 � b0; 2 b0; 3 � b0; 2 b2; 3 � b0; 3 b3; 2 + (b3; 2 + b0; ;2) a0; 3; a3; 2 � b3; 2; �b0; 2 + a0; 2;b0; 2 b0; 32 + b0; 32 b3; 2 � b0; 2 b0; 3 b2; 1 + b0; 2 b2; 3 b0; 3 � b0; 2 b0; 3 b1; 2+ (�2 b0; 3 b3; 2 � b0; 2 b0; 3 + b0; 2 b2; 1 + b0; 2 b1; 2 � b0; 2 b2; 3) a0; 3 + b3; 2 a0; 32]This Gr�obner basis has the form described by the shape lemma. It follows that� the 3-compartmental model is not structurally identi�able because there are two solu-tions and not just the trivial solution.� the parameters a02, a21, and 32 are identi�able because in each solution they are equalto b02, b21, b32, respectively.So, the Gr�obner basis method not only determines whether the compartmental model as awhole is structurally identi�able, but it also gives, in case of non-identi�ability, informationon which variables are identi�able and which not.18



4.6 Finding a Univariate PolynomialIn the previous subsection we have seen that in the case of systems of polynomial equationswith �nite solutions, the system can be brought into triangular form with respect to thepure lexicographic ordering or under some assumptions into the form described by the shapelemma. The last polynomial is univariate in the lowest variable.More often it is possible that the system of polynomials can be brought into a triangularform in which the last polynomial is univariate in the lowest variable in the chosen termordering. We shall illustrate this on the example from geodesy with the equations (4).An important problem in geodesy is to express the geodetic coordinates h (height), �(longitude), and � (latitude) of a point on or near the surface of the earth in terms of thegeocentric Cartesian coordinates x, y, and z. The longitude � can be found in a direct wayby dividing the second equation of (4) by the �rst one: tan � = yx . Squaring the �rst twoequations of (4) and adding them gives x2+ y2 = (N +h)2 cos2 �, where N is only dependingon �. The height h would be known once we have an expression for the latitude �. But thisturns out to be the most di�cult part.If you use the Solve procedure ofMathematica, the system answers that it cannot solve theproblem. If you submit the problem to Maple, the solve procedure does its job, but returnsa complicated answer that is not suitable for numeric processing. We shall use the Gr�obnerbasis method that tan� is a solution of a univariate fourth degree polynomial. Cardano'sformula provides then a closed form solution.First, we bring the original system of equations that contains a square root and trigono-metric functions into a system of polynomial equations. The square root has a de�ningpolynomial in sin� associated: S2 = 1� e2 sin2 �:We get rid of the trigonometric functions by considering them as formally independent vari-ables and adding well-known polynomial relations for them:cf = cos�; sf = sin�; tf = sin�cos�; cl = cos �; sl = sin�with relations cf 2 + sf 2 = 1; cl2 + sl2 = 1; cf tf = sfIt appears to be convenient to introduce d = (N+h)cf that satis�es the relation d2 = x2+y2.In this way, we come up with the following system of ten polynomials> sys := [ x - (N+h)*cf*cl, y - (N+h)*cf*sl,> z - (N*(1-e^2)+h)*sf, cf^2 + sf^2 - 1, cl^2 +sl^2 - 1, tf*cf - sf,> N*S - a, S^2 + e^2*sf^2 - 1, (N+h)*cf - d, d^2 - x^2 - y^2 ];sys := [x� (N + h) cf cl ; y � (N + h) cf sl ; z � (N (1� e2) + h) sf ; cf 2 + sf 2 � 1;cl2 + sl2 � 1; tf cf � sf ; N S � a; S2 + e2 sf 2 � 1; (N + h) cf � d; d2 � x2 � y2]We have 10 polynomial equations in 14 variables. We compute the Gr�obner basis with respectto the following pure lexicographical ordering of the variablestf � sf � cf � sl � cl � h � y � x � S � N:19



Note that we consider d, z, a, and e as formal parameters; this rules out points on the equatorplane and on the north{south axis. These cases must be treated separately.> vars := [N,S,x,y,h,cl,sl,cf,sf,tf]:> gsys := gbasis( sys, vars, plex ):The complete Gr�obner basis is too big to be presented here. Besides, we are only interestedin the univariate polynomial in tf, which is expected to be the last polynomial in the Gr�obnerbasis.> collect( gsys[-1], tf ); # get the polynomial in tf�z2 + 2 z d tf + (�z2 + e2 z2 � d2 + a2 e4) tf 2 + (�2 d z e2 + 2 z d) tf 3 + (�d2 + d2 e2) tf 4So, we end up indeed with a fourth degree polynomial in tan� which can be solved analytically.The same answer can be found by the procedure finduni of the grobner package. Thisprocedure uses the total degree ordering of variables to compute a Gr�obner basis and usesthis to construct the univariate polynomial (in the lowest variable) of least degree in the idealgenerated by the polynomials.We shall also illustrate the method of �nding a univariate polynomial for the system (5).This allows us to approximate frequencies of periodic solutions of the van der Pol equationy00 � a(1� by2)y0 + y = 0:We assume that the de�ning polynomials have been entered in Maple:sys := [�c1 !2 + a b c12 c3; i ! + c1;2 a b c1 c3; r2 ! + a b c12 c3; r ! + 2 a b c1 c3; i2 ! + a b c13 ! � a c1 !;�9 c3; r !2 + 3 a b c3; i c3; r2 ! + 3 a b c3; i3 ! + 6 a b c12 c3; i ! � 3 a c3; i ! + c3; r;�3 a b c3; r3 ! � 9 c3; i !2 � 3 a b c3; i2 c3; r ! � 6 a b c12 c3; r ! + 3 a c3; r ! � a b c13 !c3; i]To make computations simpler we discard solutions with c1 = 0 and divide the �rst polynomialby c1 and the second polynomial by ac1!.> sys[1] := expand( sys[1]/c[1] ):> sys[2] := sys[2] := expand( sys[2]/(a*c[1]*omega) ):> sys;[a b c3; i ! c1 � !2 + 1; b c12 + b c3; r c1 + 2 b c3; r2 + 2 b c3; i2 � 1;�9 c3; r !2 + 3 a b c3; i c3; r2 ! + 3 a b c3; i3 ! + 6 a b c12 c3; i ! � 3 a c3; i ! + c3; r;�3 a b c3; r3 ! � 9 c3; i !2 � 3 a b c3; i2 c3; r ! � 6 a b c12 c3; r ! + 3 a c3; r ! � a b c13 !+ c3; i]We choose the pure lexicographic ordering with c3r � c3i � c1 � ! and we compute theGr�obner basis with respect to this term ordering. We are interested in the last polynomial inthis basis. 20



> vars := [ c[3,r], c[3,i], c[1], omega ]:> gsys := gbasis(sys, vars, plex ):> collect( gsys[-1], omega );3249!10 + (549 a2 � 6213)!8 + (3754 � 567 a2)!6 + (159 a2 � 842)!4+ (�13 a2 + 53)!2 � 1It is a polynomial in !2 of �fth degree with one real solution for any positive a. The finduniprocedure of the grobner package would give the same result. The Taylor series of !2 abouta = 0 can easily be computed.> subs( omega=sqrt(w), " ):> omega^2 = series( RootOf(",w), a, 8 );!2 = 1� 18 a2 + 3256 a4 + 1512 a6 +O(a8)4.7 Decomposition of IdealsSuppose that during a Gr�obner basis computation in the intermediate set GB of generatorsthere appears a polynomial g that factorizes into two polynomials, say g = g1 � g2. Theng vanishes if either g1 or g2 vanishes. A common zero of GB is either a common zero ofGB1 = GB [ fg1g or of GB2 = GB [ fg2g. The Gr�obner basis for GB1 and GB2 canbe computed separately. This decomposition of the Gr�obner basis computation makes thealgorithm more e�cient and it gives more insight in the structure of the problem.The procedure gsolve of Maple's grobner package inspects all intermediate polynomials inthe Buchberger algorithm with respect to factorization and if possible forks the computation.Let us illustrate this �rst on system (1):> polys := [ c*x + x*y^2 + x*z^2 -1, c*y + y*x^2 + y*z^2 - 1,> c*z + z*x^2 + z*y^2 -1 ]:> gsolve( polys, [x,y,z] );[[�z + x; y � z; c z � 1 + 2 z3]; [�1 + 2 c z + c x+ 2 z3; y � z; 2 z4 + 3 c z2 � z + c2];[x+ y + z; y2 + c+ z2 + y z; 1 + z3 + c z]; [�c2 + (�c3 � 2) z + 4 c z2 + 2x� 2 c2 z3;�c2 + (�c3 � 2) z + 4 c z2 � 2 c2 z3 + 2 y; c2 z2 + 1 + 2 c z � 2 z3 + 2 c z4];[�z + x; �1 + 2 c z + 2 z3 + c y; 2 z4 + 3 c z2 � z + c2]]The above lists of polynomials de�ne systems of equations that are more easily solved thanthe original system of polynomial equations.An example where the decomposition of the Gr�obner basis computation gives more insightis the following study of the conformational geometry of cyclohexane. Actually we treat themore general case of a closed linkage system M6 in 3-space with sides of equal length. Moreprecisely, any pair of subsequent edges is at a �xed angle, but the plane through these edgesis not constrained. Figure 4 shows M6 for right joint angles.A picture of cylohexane can be found at URL http://www.inria.fr/safir/DEMO/cyclohex/.At this location you can also start a Maple demonstration of various geometries of themolecule. The (twisted) chair and boat con�gurations can be computed and can visuallybe played with. Below we look the computational part.21
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Figure 4: Closed linkage system M6.Let x, y, z represent the squares of the lengths of the \long diagonals" of the cyclicstructure, a be the square of the length of a side, and let b be the square of length ofthe \short diagonals". The geometric restrictions can be formulated in algebraic terms asvanishing of the following three determinants.> array( [ [0,1,1,1,1,1], [1,0,a,b,x,b], [1,a,0,a,b,y],> [1,b,a,0,a,b], [1,x,b,a,0,a], [1,b,y,b,a,0] ] );266666664 0 1 1 1 1 11 0 a b x b1 a 0 a b y1 b a 0 a b1 x b a 0 a1 b y b a 0
377777775> f[1] := collect( linalg[det]("), [x,y,z], distributed, factor );f1 := (�4 a2 � 4 b a� 4 b2)x y � 2 (b� a)3 y + (b+ a) (7 b � a) (b � a)2 + (2 a + 2 b) y x2+ (2 a+ 2 b)x y2 � y2 x2 � (b� a)2 y2 � 2 (b� a)3 x� (b� a)2 x2Cyclic permutation gives the other two de�ning polynomials.> f[2] := subs( {x=y,y=z}, f[1] ):> f[3] := subs( {y=z,z=x}, f[2] ):Of course there are restrictions on values of a, b, x, y, and z: 0 � b � 4a and x, y, z arebetween (b�a)2a and a+ 2b. Let us now compute the decomposed Gr�obner basis.> sys := gsolve( [f[1],f[2],f[3]], [z,y,x] ):> nops(sys); 4There are 4 sets of Gr�obner bases. The �rst three describe discrete geometries as specialcases. For example,> sys[1]; 22



[�b2 a� b a2 + b3 + a3 + z2 a+ (�b2 + b a� 2 a2) z; y � b� a; �a� b+ x]This is the special case that x = y = a+ b; solutions for z are:> solve( sys[1], z ); b+ a; b2 � 2 b a+ a2aThe fourth set does not have a �nite set of solutions as can be seen from its form:> sys[4];[y z + 3 b2 + 6 b a+ 3 a2 + (�2 a� 2 b)x+ (�2 a� 2 b) y + z x+ x y + (�2 a� 2 b) z;�2 a3+ 2 b3 � 6 b2 a+ 6 b a2 + (4 b a+ 4 a2 + 4 b2)x+ (�2 a� 2 b)x2 + (b2 � 2 b a+ a2) y+ (�2 a� 2 b) z x+ y x2 + (�2 a� 2 b)x y + z x2 + (b2 � 2 b a+ a2) z; (b2 � 2 b a+ a2) y2+ a4 � 7 b4 + 6 b2 a2 + 8 b3 a� 8 b a3 + (�2 a3 + 2 b3 � 6 b2 a+ 6 b a2)x+ (b2 � 2 b a+ a2)x2 + y2 x2 + (�2 a� 2 b)x y2 + (4 b a + 4 a2 + 4 b2)x y+ (�2 a� 2 b) y x2 + (�2 a3 + 2 b3 � 6 b2 a+ 6 b a2) y]The solution set will depend on one parameter and describes the situation where there is onedegree of freedom. This freedom comes actually from the symmetry of the molecule. Oncethis is broken, there are only at most 16 discrete con�gurations. In order to get a better viewon the situation, we introduce symmetric coordinatess = x+ y + z; t = xy + yz + zx; p = xyz:We add these de�ning polynomials to the fourth basis and compute the Gr�obner basis withrespect to the ordering z � y � x � p � t � s.> polys := [ op(sys[4]), s-x-y-z, t-x*y-y*z-z*x, p-x*y*z ]:> gsys := gbasis( polys, [z,y,x,p,t,s], plex );gsys := [�s+ z + y + x; �3 b2 � 6 b a� 3 a2 + (2 a+ 2 b) s+ x2 � y s� x s+ x y + y2;2 a3 � 2 b3 + 6 b2 a� 6 b a2 + x3 + (2 b a� a2 � b2) s+ (2 a + 2 b)x s � x2 s+ (�3 b2 � 6 b a� 3 a2)x; 2 a3 � 2 b3 + 6 b2 a� 6 b a2 + (2 b a� a2 � b2) s+ p;3 b2 + 6 b a+ 3 a2 + (�2 a� 2 b) s+ t]From the last two basis elements we can express p and t in terms of s.> solve( { gsys[4], gsys[5] }, {t,p} ):> map( collect, ", s, factor);fp = (b� a)2 s+ 2 (b � a)3; t = (2 a+ 2 b) s� 3 (b+ a)2gThe third basis element gives x as a root of a third degree polynomial in s.> collect( gsys[3], [x,s], recursive, factor );x3 � x2 s+ ((2 a + 2 b) s� 3 (b+ a)2)x� (b� a)2 s� 2 (b � a)3Once x is known in terms of s then the �rst two basis elements can be used to determine yand z. 23



4.8 An Example From RoboticsThe study of the inverse kinematics of the ROMIN manipulator ([19]) shall be used to givean idea how helpful Gr�obner bases are for this kind of work. The system of equations is asfollows: � sin �1(l2 cos �2 + l3 cos �3)� x = 0cos �1(l2 cos �2 + l3 cos �3)� y = 0l2 sin �2 + l3 sin �3 � z = 0 (8)where l2 and l3 denote the length of the �rst and second arm and the robot �1, �2, �3 representrotation angles around the base and the robot arms. With these equations, the angles shouldbe computed given a position (x; y; z) of the tip of the robot. Actually we are satis�ed if wecan �nd the cosines or sines of these angles. There are two ways of converting the equationsinto polynomial form.� A rational parametrization of trigonometric functions is used:cos �i = 1� t2i1 + t2i ; sin �i = 2ti1 + t2i ;for i = 1; 2; 3. When you use these rational expressions make sure that you multiply theequations with products of (1 + t21), (1 + t22), and (1 + t23) so that polynomial equationsarise. In our case, we get three polynomials in l2; l3; x; y; z; t1; t2; t3 from which wecould solve t1,t2, and t3 by computing the decomposed Gr�obner basis with respect tolexicographic ordering x � y � z � t3 � t2 � t1: Drawback of this method is that jointangles of 180 degrees are not possible in this parametrization and joint angles close to180 degrees give awkwardly large numerical values.� The cosines and sines are considered as variables and trigonometric relations are addedin the format of polynomial equations. For the ROMIN manipulator you get:�s1(l2c2 + l3c3)� x = 0c1(l2c2 + l3c3)� y = 0l2s2 + l3s3 � z = 0c21 + s21 � 1 = 0c22 + s22 � 1 = 0c24 + s23 � 1 = 0 (9)where si = sin �i; ci = cos �i for i = 1; 2; 3. The set of de�ning polynomials cannow be converted into a Gr�obner basis with respect to the pure lexicographic orderings1 � c1 � s2 � c2 � s3 � c3. We consider l2; l3; x; y; z as parameters.> polys := [ -s[1] * (l[2]*c[2] + l[3]*c[3]) - x,> c[1] * (l[2]*c[2] + l[3]*c[3]) - y,> l[2]*s[2] + l[3]*s[3] - z,> c[1]^2 + s[1]^2 - 1, c[2]^2 + s[2]^2 - 1,> c[3]^2 + s[3]^2 - 1 ];24



polys := [�s1 (l2 c2 + l3 c3)� x; c1 (l2 c2 + l3 c3)� y; l2 s2 + l3 s3 � z; c12 + s12 � 1;c22 + s22 � 1; c32 + s32 � 1]> gbasis( polys, [c[3],s[3],c[2],s[2],c[1],s[1]], plex );[2 l3 x c3 + 2 z l2 s2 s1 + (x2 + y2 + l32 � z2 � l22) s1; l2 s2 + l3 s3 � z;�2 z l2 s2 s1 + 2 l2 x c2 + (�l32 + z2 + x2 + y2 + l22) s1;(4 l22 x2 + 4 l22 y2 + 4 l22 z2) s22 � 2 l22 x2 � 2 l22 y2 + l24 + l34 + z4 � 2 l32 y2+ 2 z2 y2 + x4 + y4 � 2x2 l32 + 2x2 z2 + 2x2 y2 + 2 l22 z2 � 2 l32 z2 � 2 l32 l22+ (4 l2 z l32 � 4 l2 z3 � 4 z l2 x2 � 4 z l2 y2 � 4 z l23) s2; y s1 + x c1;�x2 + (x2 + y2) s12]The Gr�obner basis is in triangular form. So, in principle the inverse kinematics problemis solved. However, the key problem is whether for numerical values of the parametersthe above basis stays a Gr�obner basis. If so, everything is ok. In the example we areconsidering, if we choose l2 6= 0; l3 6= 0; x2+y2 6= 0, then the above set is still a Gr�obnerbasis. This specialization problem can be avoided by using so-called comprehensiveGr�obner bases ([29]).4.9 Implicitization of Parametric ObjectsConsider the parametric equationsx1 = f1(t1; t2; : : : ; tm)x2 = f2(t1; t2; : : : ; tm)...xn = fn(t1; t2; : : : ; tm)where f1; f2; : : : fn are polynomials in m unknowns. The question is to eliminate the t's and�nd polynomial equations in x1; : : : ; xn that de�ne the parametric object. More precisely, wesearch for polynomials g1; : : : ; gk in the unknowns x1; : : : ; xn such that for all a1; : : : ; an:g1(a1; : : : ; an) = : : : = gk(a1; : : : ; an) = 0 if and only ifa1 = f1(b1; : : : ; bm); : : : ; an = fn(b1; : : : ; bm) for some b1; : : : ; bm:Implicitization algorithmTake the pure lexicographic ordering determined by t1 � : : : � tm � x1 � : : : � xnand compute the Gr�obner basis GB of fx1 � f1(t1; : : : ; tm); : : : ; xn � fn(t1; : : : ; tm)g. Thenfg1; : : : ; gkg = fg 2 GB j g is a polynomials in x1; : : : ; xn onlyg.An example: Enneper's minimal surface de�ned byx = 12s� 16s3 + 12st2; y = �12 t+ 16 t3 � 12s2t; z = 12s2 � 12 t2:The surface looks as follows: 25
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Figure 5: Enneper's minimal surface.> polys := [x-s/2+s^3/6-s*t^2/2, y+t/2-t^3/6+t*s^2/2, z-s^2/2+t^2/2];polys := [x� 12 s+ 16 s3 � 12 s t2; y + 12 t� 16 t3 + 12 t s2; z � 12 s2 + 12 t2]Next we compute the Gr�obner basis with respect to the pure lexicographic ordering de�nedby s � t � x � y � z. We do not show the result here but after quite some computing timea Gr�obner basis is obtained with only one polynomial in the coordinates x; y; z. This is theone shown below.> GB := gbasis( polys, [s,t,x,y,z], plex ):> collect( GB[-1], z, factor );�1024 z9 + 4608 z7 + 3456 (x � y) (x+ y) z6 + (�5184 + 15552x2 + 15552 y2) z5+ 12960 (x � y) (x+ y) z4 + (25272 y2 x2 � 3888x2 + 4860 y4 + 4860x4 � 3888 y2) z3+ 8748 (x � y) (x+ y) (x2 + y2) z2 � 729 (x � y)2 (x+ y)2 z + 1458 (x � y)3 (x+ y)34.10 Invertibility of Polynomial MappingsThe Jacobian conjecture states that a polynomial mapping has an inverse which is itself apolynomial mapping if and only if the determinant of the jacobian of the mapping is nonzero.In an attempt of proving the conjecture the following criterion of invertibility has been found([12]):Let f1; : : : ; fn be the coordinate functions of a polynomial mapping in the variables x1; : : : ; xn.Let y1; : : : ; yn be new indeterminates and let � be an admissible ordering such that y1 � y2 �: : : � yn � x1 � x2 � : : : � yn. Then the mapping is invertible if and only if the Gr�obnerbasis of y1 � f1; y2 � f2; : : : ; yn � fn has the form x1 � g1; x2 � g2; : : : ; xn � gn. g1; g2; : : : ; gnare the coordinate functions of the inverse mapping.We take the example from [24]:(x; y; z) 7�! (x4 + 2(y + z)x3 + (y + z)2x2 + (y+ 1)x+ y2 + yz; x3 + (y + z)x2 + y; x+ y+ z)26



> F := [ x^4 + 2*(y+z)*x^3 + (y+z)^2*x^2 + (y+1)*x + y^2 + y*z,> x^3 + (y+z)*x^2 + y, x + y + z ];F := [x4 + 2 (y + z)x3 + (y + z)2 x2 + (y + 1)x+ y2 + y z; x3 + (y + z)x2 + y; x+ y + z]> gbasis( [ X - F[1], Y - F[2], Z - F[3] ], [x,y,z,X,Y,Z], plex );[x�X+Z Y; y+Z X2�Y +Z3 Y 2�2Z2 Y X; Y �Z Y �Z3 Y 2+2Z2 Y X+X�Z X2�Z+z ]So, the mapping has inverse(X;Y;Z) 7�! (X�ZY; Y �X2Z+2XY Z2�Y 2Z3;�X�Y +Z+Y Z+X2Z�2XY Z2+Y 2Z3):It turns out that veri�cation of the result by composition of mappings takes more time thenthe Gr�obner basis computation of the inverse mapping.4.11 Simpli�cation of ExpressionsFor a reduced monic Gr�obner basis, the normal form of a polynomial is unique: it is a\canonical form" in the sense that two polynomials are equivalent when their normal formsare equal. This can be used to simplify mathematical expressions with respect to polynomialrelations. An example from the Dutch Mathematics Olympiad of 1991, which is described indetail in [24], section 14.7.Let a; b; c be real numbers such thata+ b+ c = 3; a2 + b2 + c2 = 9; a3 + b3 + c3 = 24:Compute a4 + b4 + c4.> siderels := [ a+b+c=3, a^2+b^2+c^2=9, a^3+b^3+c^3=24 ]:> polys := map( lhs - rhs, siderels );polys := f a+ b+ c� 3; a2 + b2 + c2 � 9; a3 + b3 + c3 � 24 gNext, we compute the Gr�obner basis of these polynomials with respect to the pure lexico-graphic ordering a � b � c.> G := gbasis( polys, [a,b,c], plex );G := [ a+ b+ c� 3; b2 + c2 � 3 b� 3 c+ b c; 1 � 3 c2 + c3 ]The normal form of a4 + b4 + c4 turns out to be 69.normalf( a^4+b^4+c^4, G, [a,b,c], plex );69So, this number is the answer to the question. In Maple, this method is actually carried outwhen simpli�cation with respect to side relations is requested.> simplify( a^4+b^4+c^4, siderels, [a,b,c] );6927
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