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Abstract
In this expository paper we give a short introduction to Grobner basis theory and its main
applications. Quite a few books ([1, 3, 11, 17]) and overview articles ([2, 7, 8, 20, 27]) on Grobner
basis theory already exist. This one differs in style and in choice of examples. The style is
concrete: examples illustrate the main techniques and the use of a computer algebra system,
in our case Maple, is not shunned. Most examples are taken from the science literature and
illustrate the Grobner basis techniques on real applications.

1 Introduction

Many problems in science and engineering lead to systems of equations of the type

fl(xlvx%"'vxn) =0
f?(xlvx%"'vxn) =0
fm(x1, 29, 2n) = 0

where f1, f2,... fin are polynomials in n» unknowns. Then the main task is to solve the system
of polynomial equations, i.e., to find the set V'(f1, fo,..., fin) of common zeros. Some problem
classes with examples from existing literature are:

e Steady state analysis of an ODE. Given an explicit system of ODEs with polynomial
right-hand sides, the steady state is described by vanishing left-hand sides.

— NOONBURG [28]: Modeling of neural networks.
cx+:ry2+:r22 -1 =
cy+yx2+yz2 -1 =
cztza’+z2yP -1 = 0 (1)
where ¢ is a parameter taking only rational values.
— FEINBERG [14]: Modeling of a chemical reaction system of type
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The steady state solutions are determined by

2kcy + 2€ecy — 2)\0?) +ncg — Ecics

—acicy + feg —Eeres g = 0
—acica + fBeg = 0

acice — (B+y+ K)es + /\cg =0
vyeg —ecy = 0

0

0

(2)
e Geometrical descriptions. Think of variables representing coordinates, distances,
and angles (embedded in trigonometric functions).

§eres —neg =

— VAN DER BLDJ [5]: Molecular structure of cyclohexane. It is a special case of a
regular hexagon in 3-space with sides of equal length (see Figure 1).

Figure 1: A cyclohexane configuration

Let x, y, z represent the squares of the lengths of the “long diagonals” of the cyclic
structure, a be the square of the length of a side, and let b be the length of the
“short diagonals”. Counsider the determinant
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For cyclohexane (bond angle about 110.4°) you may approximate a = 1,b = 8/3.
The system of polynomial equations for the general cyclic structure is

f(a7b7x7y):07 f(a/7b7y7z):07 f(G’?b?Z?x):O
and we want to find the real solutions.

— GONZALEZ-LOPEZ/RECIO [19]: Inverse kinematics of the ROMIN robot (see Fig-
ure 2).

—sinf(ly cos by +l3cosf3) —x =
cos By (lacos by +l3cosb3) —y =
lQ sin 92 + 13 sin 93 —z =0 (3)
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Figure 2: projection of ROMIN robot on yz-plane.

The task is to find for fixed lengths I, and l3 of robot arms and for a given triple
(a,b,c) the allowed values of joint angles 61 , 6 and #3. The equations are poly-
nomial in terms of sines and cosines of the joint angles 6, 62, 3, and we may add
trigonometric identities such as cos? 6y + sin® 6; = 1.

— Hecok [22]: Geodesy.

x = (N4 h)cos¢pcosA
y = (N +h)cos¢psinA
z = (N —¢€?)+h)sing
N - a
1 —e?sin? ¢
2 _ 12
. — a 2b (@)

The problem is to express the geodetic coordinates h (height), A (longitude), and
¢ (latitude) of a point on or near the surface of the earth in terms of the geocentric
Cartesian coordinates x, y, and z. This problem can be transformed into a problem
of polynomial equations and solved as such.

e Truncated power series. An ansatz of a truncated power series substituted into an
equation and the vanishing of coefficients of corresponding powers often gives a solvable
system of polynomial equations.

— K. FORSMAN [15]: Frequencies of periodic solutions of the van der Pol equation
y"—a(l=by*)y' +y =0

through the method of harmonic balancing. The ansatz

3
sy = 3 epe

k=-3
leads to
2 2 _
—cw” +abcjeziw +cl =
2abcy ciw + abcl czpw + 2aber chiw + abdiw — aciw =
—9¢sw? + 3ab03ic§rw + 3abc§iw + 6abc%03iw —3acziw +c3r =
—3abc3,w — 9cz;w?® — 3abck; ez w — 6abcicz,w + 3acz,w — abciw +c3; = 0 (5)



where ¢35 = 3, + ¢3;¢ and the equations ¢y = co = 0 are left out.

e Structural identifiability of compartmental systems. Basic properties of com-
partmental systems such as reachability, observability, and identifiability are often trans-
lated into properties of systems of polynomial equations.

— Heck [23]: Structural identifiability of a 3-compartmental model of cadmium
transfer through the human body. The model is shown in Figure 3 below.
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Figure 3: Cadmium transfer in the human body.

The transfer-function method leads to the following polynomials in ag2, aps, a12,
a1, @23, a32:

Ji = az

fo = aznaz

f3 = ap

fa = ao2a03 + ap2a21 + ap2az3 + apzasz

s = ao2a03a21 + ap2a21a23 + ag3a21a32

fe = ao2+ ap3+ a2+ as +as + asz

Jr = ao2a03 + apza21 + apza23 + apzaiz + agzazl

tap3azz + a12a23 + a21023 + 421032 (6)
Identifiability testing is equivalent to solving the polynomial equations

frl(aoz, aps, a1z, az1, azs, asz) = fr(boz, boz, b1z, ba1, bz, b32)

for k =1,2,...,7 and where we consider the a’s as unknowns and the b’s as formal
parameters.

Not only finding the exact solutions of systems of polynomial equations is interesting.
Without solving the system of equations, you can also answer questions such as

e [s the system solvable?

e Are there a finite number of solutions and, if so, how many?



e Do equivalent systems of equations exist that give more insight to their solutions?

Grobner basis theory is a systematic approach to answering such questions and to solving
polynomial equations. In subsequent sections we shall use above examples to illustrate the
theory and its applications.

2 Elementary Solution Methods

Let us consider

i = z—y—=z
fo = w+y-2°
fs = a®+y* -1 (7)

and let us try to find the set V(f1, f2, f3) of common zeros.

2.1 Heuristic Method
A heuristic approach may go as follows:

f1+f2—2x—z—z andfz fi=2y+z—2°

So, v = 3(2? +z) and y = 1(2? — 2).

Substltutlon in f3 gives the polynomial 1 22 —|— -1
Its solutions are z =1, z = —1, z—\/_z andz——\/_z

2.2 Gaussian Elimination-Like Method

Step 1. We choose x in the first polynomial as the first term suitable for eliminating terms
in other polynomials. We multiply the first polynomial by another polynomial and subtract
it from the second polynomial in order to eliminate the terms containing x. We do the same
for the third polynomial.

V(fi, for f3) =V(fi, fo— fi. fa— (@+y+2)f1) =V(e—y— 22y — 2> +2,29> + 2yz+ 2° - 1)

The resulting second and third polynomial have no terms that contain . Let us call the new
polynomials g1, g2, and g3, respectively.

Step 2. We choose the variable y in gy as the most important variable. Then we multiply g2
by another polynomial and subtract it from 2gs2 in order to eliminate the terms containing y.
We do the same for the third polynomial.

Vg1, 92,93) = V(291 + 92, 92, 293 — (2y—|—z2 +2)g2) =V (2x — 22 — 2,2y p —I—z7z4 + 22— 2)

The new generators are in upper triangular form: The last polynomial is only in z, the second
one is only in y, z, and the first one is a polynomial in x,y, z (because of the special form of
the second generator we could actually reduce the first generator to a polynomial in x, z only;
in general this cannot be done).



2.3 Conclusion

The above methods have in common that they replace the original polynomials by nice poly-
nomials that have the same solution set :

Vie—-y—zaot+y—22 024+ - 1) =VQ2r—22—22y — 22+ 2,2 +22-2)
“Nice” means here that the set of common zeros can be more easily computed from the new

polynomials than from the original ones.

Let us go back to the Gaussian elimination-like method. During the elimination new
polynomials p are formed from pairs of old ones f,¢g by h = af 4+ 8g, where « is a polynomial
and 3 a scalar. h has the same common zeros as f and ¢ and V(f,g) = V(f,h) The set
I(f,g) of all linear combinations af + ¢, where « and [ are polynomials, is called the ideal
generated by f and g. The set of common zeros of the ideal I(f,g) equals the set of common
zeros of f and g, i.e. V(f,g9) = V(I(f,g)). So, all we do in the Gaussian elimination-like
method is to choose at each step f, g, a, and scalar 3 clever enough such that in the end the
new generators form a triangular system that can be easily solved

The Grobner basis is another nice set of generators of an ideal. Actually, the generators
computed above form a Grobner basis. In the next section we shall introduce Grobner bases
and give the basic algorithm for computing them.

3 Basics of the Grobner Basis Method

The mathematical ingredients of Grobner bases will be introduced step by step.

3.1 Term Ordering

In the Gaussian elimination-like method of the previous section we selected in each step the
term most suitable for further elimination of terms. We call such term the leading term
in a polynomial. The rule of choosing leading terms is an example of a term ordering. For
multivariate polynomials in @y, @9, ..., x, the pure lezicographic ordering is the linear ordering
determined by

21wy ' < g if and only if,
forsomel € {1,...n —1},ip = jp for all k < land i; < j;.
For example, in the pure lexicographic ordering of three variables with z < y < o we have

1 < z<z2<...<y<yz<y22<...
< y2-<y2z-<y222-<...-<x-<xz-<xz2-<...
< xy%:ry2<...<:r2<...

Another ordering is the total degree inverse lexicographic ordering defined by

ey < wptae?? -+ - x,/m if and only if
n n
either Z 1 < Zj;C
k=1 k=1

or Zik: ij and, for somel € {1,...n—1},4 < j;and iy = i for all k > [.
k=1 k=1



In this ordering, the total degree of a term (i.e. the sum of the exponents of the variables)
is the most important thing and terms of equal total degree are ordered using the so-called
inverse lexicographic ordering. In three variables with z <y < z:

1 < z<y=<x
< 2 <yz=<axz<yt <ay<a?
< 2P <y <x? <yt <ayz
< <y <af<ty<at<...
Other term orderings are possible in Grobner basis theory. The ordering < only has to be
admissible, i.e., satisfy

(i) 1 <tforevery termt#1
(i) s<t=s-u=<t-uforall termss,t,u

To each nonzero polynomial f we can associate the leading term:
It(f) = term that is maximal among those in f
The leading coefficient is defined as
le(f) = the coefficient of the leading term of f

The leading term of f is the product of the leading coefficient of f and the leading monomial
lm(f) of f:
1t(f) =lc(f) - Im(f)

An example in the pure lexicographic ordering z < y < «:

t(2y — 22 +2) =2y, le(2y—22+2)=2, ImQ2y—22+2)=y.

3.2 Polynomial Reduction and Normal Form

For nonzero polynomials f,g and polynomial f we say that f reduces to f modulo g and

denote it by f —, f if there exists a term ¢ in f that is divisible by the leading term of g¢

N t
and f = f — IOk Admissibility of the term ordering < guarantees that if the terms in

(9)

f and f are ordered from high to low terms, then the first terms in which these polynomials
differ are ¢ in f and some lower term in f

Some examples in the pure lexicographic ordering z < y < a:
2 2
T+y—2" —a_y_: 2y—2"—z

2
X
:E2+92—1 ——r—y—z $2+y2—1—;(x—y_2):Iy-i-ﬁvz-l-y?—l

vy +az+yt—1 —p_y—z rz+ 2yt +yz — 1
—p_y—z 2y2 + 2yz + 22 -1



In the last example, after two steps, a so-called normal form of xy + xz + y?> — 1 with respect
to x — y — z is obtained and no further reductions are possible. We denote it by

normalf(zy +zz +y> — Lo —y —2) = 24> + 2y + 22 — 1

Let G = g1,92,...,gm be a set of polynomials. A polynomial f reduces to f modulo G
if there exists a polynomial ¢; in G such that f —, f. A normal form normalf(f,G) of f
with respect to G is a polynomial obtained after a finite number of reductions which contains
no term anymore that is divisible by leading terms of polynomials of G. The normal form is
in general not unique: consider the pure lexicographic ordering of two variables « and y such
that y < x. Let g1 = 2%y — 1,92 = 2y* — 1 and f = 2?y?. Then f —, = f —yg1 = y and
[ —g¢=f —xg2 = x. After each step no more reductions are possible. Both = and y are
normal forms of f with respect to {g1,¢92}.

3.3 Characterization of a Grobner Basis

G is a Grobner basis (with respect to an admissible ordering) if and only if
normal forms modulo G are unique, i.e., for all f,g,h:

if g =normalf(f,G) and h = normalf(f, ), then g = h.
Alternatively,
G is a Grobner basis if and only if normalf(g, G) = 0 for all g in the ideal generated by G.

Essentially, these characterizations are not much more than definitions of a Grobner basis.
They do not give any clue of how to verify the property of normal forms or how to compute
such a basis. For this we have to introduce the concept of a S-polynomial: the S-polynomial
spoly(f, g) of polynomials f and g is defined by

spoly(f.9) = e (1t().10)) - (55 — 75 )

where lem(p, ¢) denotes the least common multiple of polynomials p and ¢. Alternatively, we
could define spoly(f,g) = a-f — [-¢g, where a and [ are chosen such that the leading terms
cancel in the difference and the degree of a b is minimal. Two examples in the lexicographic
ordering with y < x:

e For f=o—y—zand g =22 +9y?—1 we have spoly(f,¢g) =a-f—g = —ay —axz—y>+1.
e For f = 2%y —1 and g = yx? — 1 we have spoly(f,g) =y -f—x-g=x —y.
An algorithmic characterization of a Grobner basis is the following:

A finite set G of polynomials s a Grébner basis if and only if
normalf(spoly(f,¢),G) = 0b for all pairs (f,g) in G.

3.4 The Buchberger Algorithm

The following algorithm written in Algol-like pseudo code computes for a given finite set G
of polynomials a Grobner basis GB such that the ideal generated by GB equals the ideal
generated by G.



procedure groebnerBasis(G)
GB — @
B (_{(fvg)“cngGaf?ég}
while B # () do
(f,g) < select a pair in B
B — B\{(f,9)}
h «—— normalf( spoly(f,g), GB )
ifh=#£0
then GB — GBU{h}
B «— BU{(f.h)|f €GB}
fi
od
return(GB)
end

Buchberger ([6]) invented this algorithm and proved that it terminates with a Grébner basis
as final result.

Let us see how the Buchberger algorithm goes for our example
fi=w—y—z, fi=a+y—2" fa=a"+y* -1
We choose the pure lexicographic ordering with z < y < .

L. GB « {f1, f2, f3}; B < {(f1, f2), (f1, f3), (f2, f3) };
select (f1, f2); B «— {(f1, f3), (f2, f3)}
spoly(f1, f2) = —2y — 2 + z? is already in normal form;
Jo— =2y — 2+ 2% GB — {f1, f2. 3, fa};
B — {(f17f3)7(f27f3)7(f17f4)7(f27f4)7(f37f4)}'

2. select (f1, f3); B «— B\{(f1, f3)};
spoly (f1, f3) = —xy —xz — y* + 18G5 —52t — 5
fs — —=52" =522+ 1; GB — {1, fo, f3, fa, [ };

B —— {(fa, f3), (f1, fa)s - (f35 fa), (f1s f5)s - o o5 (fas f5) )
3. select (f27f3); B «— B\{(fg,fg;)},

normalform 0

spoly(fa, f3) = vy — w2? — y? + 1 "205

4. select (f1, f4); B «— B\{(f1, f4)};
spoly(f1, f1) = 2y* + 2yz + w2z — a2

22—1—1;

normalform
2 B 0

5. all remaining pairs have S-polynomials whose normal form with respect to GB equals
zero.

6. GB={f17...,f5}={x—y—z,x+y—22,x2+y2—17—2y—z+22,—%z4—%z2+1}
is a Grobner basis.

The following Maple code implements the Buchberger algorithm:



groebnerBasis := proc( polys::list(polynom), vars::list(name) )

local B,GB,p,h,1,j,f;

with(grobner,normalf); with(grobner,spoly);

B := [ seq( seq( [polysl[i],polys[jl], i=1..j-1 ), j=2..nops(polys) ) 1;

GB := polys;
while not B=[] do
p := B[1];
B := B[2..-1];
h := normalf( spoly( p[1], p[2], vars, plex), GB, vars, plex );
if h <> 0

then GB := [op(GB),h];
B := [ op(B), seq( [f,h], £=GB ) 1;
fi;
od;
GB
end;

It is an almost direct translation of the pseudo code given before into the Maple language.
The Grobuner basis is not unique: {f1, f1, fs} = {o —y — 2, -2y — 2z + 22, —%z‘l — %z2 +1}
is also a Grobner basis. A reduced, monic Grobner basis G is a basis such that for all g in G

g = normalf(g7 G\{g}) and le(g)=1. This basis is unique. It is created from the computed
basis in the above Buchberger algorithm by the following two steps:

Step 1.

for g in GB do
if there exists a p € GB\ {g} such that lt(p) divides lt(g)
then remove ¢g from GB

fi
od

Step 2.

for g in GB do
g — normalf(g, GB\ {g})
1
A R
od

In our example: f5, and f3 are removed in step 1. fg def normalf(fy, {f1}) = — 122 -1z,

2 2
So, in step 2 we get that { f, —%f4, —2f5} ={x — %22 - %z,y - %zz - %2,24 + 2% — 2} is the

reduced, monic Grobner basis.

3.5 Improvements of Buchberger’s Algorithm

The basic Buchberger algorithm from the previous subsection leaves a lot of freedom in the
computational process:

e at the beginning a particular admissible ordering is chosen;

10



e at each step of the while-loop, a pair of polynomials in the current basis is selected.

e normal form reduction is in general not unique, so there may be different reduction
steps leading to different normal forms.

The choices made in the computational process are of great influence on the performance of
the algorithm, not on the final output, but on the complexity of the algorithm: number of
pairs to process, growth of the coefficients, in general time and space complexity. Therefore,
a lot of effort has been and is still being put into adapting the algorithm towards efficiency.
We mention the main improvements and other observations:

e Choice of admissible ordering

Experience shows that the total degree inverse lexicographic ordering is most efficient
ordering for Buchberger’s algorithm. For solving systems of equations however, the pure
lexicographic ordering is more useful. Luckily, for zero-dimensional systems, i.e. poly-
nomial systems with a finite set of solutions, the Faugere-Gianni-Lazard-Mora method
(abbreviated as FGLM-method, [13] can be applied to convert Grébner bases with re-
spect to any ordering by linear algebra methods into Grobner bases with respect to the
pure lexicographic ordering.

e Selection of pairs for the reduction process
Two well-known, heuristic strategies are:

— normal strategy ([7]). Choose a pair (f,g) such that the least common multiple of
the leading terms 1t(f) and 1t(g) is minimal in the current term ordering.

— sugar strategy ([18]). The pairs are ordered with respect to a phantom degree called
sugar and some tie-breaking algorithm.

The sugar strategy appears to be the winning strategy in many cases.

e Avoidance of useless computations of S-polynomials
The computation of an S-polynomial and the reduction to a normal form is a time- and
space-consuming step that must possibly be avoided in the algorithm. The following
criteria are used:

— Criterion 1: If polynomials f and g have disjoint leading terms, i.e. if It(f) and 1t(g)
have no variables in common (in other words, ged(1t(f),1t(¢g)) = 1), then spoly(f,¢g)
reduces to zero with respect to {f,g}. So, for such pairs the computation of the
S-polynomial and the reduction to normal form can be skipped in the Buchberger
algorithm.

— Criterion 2: If there are elements p, f, and ¢ in the current basis GB such that
lt(p) divides the least common multiple of 1t(f) and lt(g), and if the pairs (f,p)
and (g,p) have already been dealt with, i.e. (f,p) € B and (g,p) ¢ B, then the
pair (f,g) can be discarded.

e Use of polynomials in normal form.
In the computation of the reduced, monic Grobner basis via Buchberger’s algorithm we
brought the polynomials in the Grobner basis to monic normal form with respect to
each other only as a final step. Experience shows that it is better to do this at every
step in the algorithm.

11



e Removal of superfluous polynomials.

In the computation of the reduced, monic Grobuner basis via Buchberger’s algorithm
we removed superfluous polynomials in the Grobner basis after it has been computed.
It is possible to remove superfluous polynomials in the intermediate bases GB in the
following way: for ¢g,¢' € GB,g # ¢', if lt(g) divides lt(¢’), then ¢’ can be expressed
by ¢ and the S-polynomial spoly(g, ¢'). After you have reduced spoly(g, ¢') into normal
form, ¢’ as superfluous and all pairs (¢’,¢"”) can be deleted from B. Although ¢’ are
discarded you can still use it in the normal form algorithm.

e Normal form calculation.
As we have seen normal form computation in general does not give a unique result: in
each reduction step one has to choose the term to be eliminated and different choices may
lead to different normal forms. A good strategy in the Buchberger algorithm is always
to eliminate the largest term that can be eliminated in the normal form algorithm.

The following pseudo code is a better Buchberger algorithm that uses the normal selection
strategy and brings the polynomials in the initial basis in normal form with respect to each
other.

procedure groebnerBasis(G)
GB «—— reduceAll(G)
B — {(f,9)|f,9 € G with non-disjoint leading terms, f # g}
while B # () do
(f,g) < select a pair in B with minimal least common multiple of leading terms
B— B\{(f,9)}
if there exists no p € GB such that (f,p) € B, (g,p) € B,
and 1t(p) divides lem(1t(f),1t(g))
then i «— normalf( spoly(f,g), GB)
ifh#0
then GB «— GBU{h}
B — BU{(f,h)|f € GB}
fi
fi
od
return(GB)
end

procedure reduceAll(F)
F— Uyep {0y makeMonic(f)
while normalf(f, F\{f}) # f for some f € F do
Fe— F\{f}
f «— normalf(f, F)
if f#0then F — FU{f} fi
od

return(F)
end

12



These improvements have already a drastic effect on the computation of the reduced,
monic Grobner basis of our previous example {x —y —z, v +y — 22, 22 + 4% — 1} with respect to
the pure lexicographic ordering z < y < x. It turns out that bringing the original polynomials

into monic normal form with respect to each other already produces the requested Grobner

: 1 1 1 1
basis {x — §2% — 52,y — 322 — §2, 20 + 2% — 2}

More sophisticated improvements of the basic Buchberger algorithm can among others be
found in [7] (algorithm 6.3) and [3] (algorithm GROBNERNEW?2).
3.6 Programs for Computing Grobner Bases

Almost every modern computer algebra system contains an implementation of a Grobner
basis algorithm, some more advanced than others.

For example, the basic algorithm implemented in Mathematica (version 2.0 and later) is
poor in the sense that

e it only works for lexicographic ordering and for rational coefficients;
e apparently works fast enough only for small problems. (cf. [10])

A little bit more useful but still not too impressive is the grobner package in Maple (release
4.0 and later):

e it allows both pure lexicographic ordering and total degree inverse lexicographic order-
ing;

e coefficients may be polynomials with rational coefficients;
e some algorithmic improvements to the basic Grobner algorithm have been implemented;

e some utility functions are available. In the applications section we shall see the most
important ones;

o A factorization version of Buchberger’s algorithm can be used. In the applications
section we shall discuss this further.

For both Mathematica and Maple improved and extended Grobner bases are publicly
available ([9, 26, 25, 16, 21]).

The groebner package of Reduce (version 3.4 and later) goes further than the two general
purpose systems mentioned before:

e it can be used over a variety of different coefficient domains,

e it allows pure lexicographic, inverse lexicographic, total degree lexicographic, and total
degree inverse lexicographic term ordering s.

e some algorithmic improvements to the basic Grobner algorithm have been implemented
and you can influence the computation by setting different modes;

e in the zero-dimensional case, i.e. if the set of polynomials have only a finite set of
solutions, you can convert a basis from any ordering into a basis under pure lexicographic
ordering;

13



o A factorization version of Buchberger’s algorithm can be used.
Some non-commercial packages that allow Grobner basis computations are:

e Macaulay 1. This system is for computation in algebraic geometry and commutative
algebra and contains a fast Grobner basis implementation; its drawback is that it only
works for homogeneous polynomials and for polynomials rings over small prime fields.

o (B of J.-C. Faugere. Its purpose is to compute Grobner bases of polynomial ideals and
solve systems of polynomial equations quickly. Implementations of GB exist in Axziom
and in both C and C++.

e P0OSSO. This package, which is an acronym of POlynomial System SOlver, is devel-
oped in the POSSO Esprit project n.6846 and is meant to provide researchers with fast,
reliable software for computing Grobner bases with tools to get insight in and control
over the computational process. The C++ library of routines contains an implementa-
tion of Buchberger’s algorithm customizable by its user with respect to pair handling
strategies, normalization strategies, kind of reduction, policies for inserting new ele-
ments in the bases, etc. We refer to the WWW-site http://posso.dm.unipi.it for
more information.

4 Properties and Applications of Grobner Bases

We present the main properties of Grobner bases in the form of recipes without proof and
apply them if possible to one the examples in the introduction. The coefficient field is almost
always assumed to be an algebraically closed field with characteristic zero, say the complex
numbers. When we speak about a Grobner basis we shall always mean the unique reduced,
monic Grobner basis. All examples will be computed with Maple. We shall always assume
that the grobner package has been loaded via the command with(grobner). The main
procedure in this package is of course gbasis to compute a Grobner basis. In the examples
below we shall encounter other procedures of the grobner package.

4.1 Equivalence of Polynomial Equations

The system of polynomial equations fi(x1,...,x,) = 0,...... s fm(x1, ... xy) = 0 has the
same solutions as the system arising from any Grobner basis of f1,..., fm with respect to any
term ordering.

This is the main property. It can also be formulated as

Two sets of polynomials generate the same ideal if and only if their Grobner bases are equal
(any term ordering may be chosen).

The next Maple session shows the computation of the Grobner basis with respect to a
pure lexicographic ordering for the system of polynomial equations (2), which describes the
steady state of a chemical reaction.

> polys := [ -alphax*c[1]*c[2] + beta*c[3] - xi*c[1]l*c[5] + etaxc[6],
> -—alphaxc[1]*c[2] + betaxc[3], gamma*c[3] - epsilon*c[4],
> alphax*c[1]*c[2] - (betatgammatkappa)*c[3] + lambdaxc[5]"2,
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> 2xkappa*c[3] + 2xepsilon*c[4] - 2*lambda*c[5]°2 + etaxc[6] - xi*c[1]*c[5],
> xi*c[1]*c[5]-etax*xc[6] ]:

> reactionConstants := alpha, beta, gamma, epsilon, kappa, lambda, eta, xi:
> concentrations := c[1], c[2], c[3], c[4], c[5], c[6]:

> vars := [ reactionConstants, concentrations ]:

>

gbasis( polys, vars, plex );

[~Bes+aciey,ecq — yes, —Aes® +ye3 + Kes,nes — € cies)
The original set of polynomials and the Grobner basis have the same solutions.
> solve( {op("™)3}, {c[1],c[2],c[3],c[4]} );

for = v Acs? (= BAes*¢ o = Acs? L
Y+ K cs

Ce(vHR) T anc(y+k)
The conclusion is that the chemical reaction system has a two-dimensional solution space of
positive steady states.

4.2 Solvability of Polynomial Equations

The polynomial system of equations fi(x1,...,x,) =0,...... yfm(x1, ... xn) = 0 is solvable
if and only if the Grébner basis of f1,..., fm is not equal to {1}.

For example, this criterion allows to show that the polynomial system of equations
oy —1=0,2%y+y—1=0,22+y*-1=0
has no solutions.
> gbasis( [ x + x*y™2 - 1, x"2xy + y - 1, x"2 + y™2 - 11, [x,yl, tdeg );
1]

The procedure solvable in the grobner package uses this method to verify whether a system
is solvable or not.

4.3 Finite Solvability of Polynomial Equations

The polynomial system of equations fi(x1,...,2,) =0,...... yfm(®1, ... xn) =0 has a finite
number of solutions if and only if any Grobner basis of f1,..., fm has the following property:

For every variable x;, there exists a polynomial such that its leading term with
respect to the chosen term ordering is a power of x;.

Let us use this criterion to check whether system (1), which describes the steady state of
an ODE associated to a neural network, has finite solutions.

> polys := [ cxx + x*xy"2 + x*xz272 -1, c*y + y*x"2 + y*z"2 -1,
> c*z + zxx"2 + zxy~2 -1 ]:
> gbasis( polys, [c,x,y,z], plex );
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[cq;—l—xyZ + 2% — 1,cy—i—yx2 —I—yz2 - 1,cz+zx2 +zy2 -1,
m3y—y3x—x+y,—z3:p—l—z+z:p3—m,—yz3—|—z+2y3—y]
Note that no power of ¢ appears in the grobner basis. From the criterion it follows that there

is no finite set of solutions. The procedure finite in the grobner package automates checking
of finite solvability of polynomial equations via the above criterion.

> finite( polys, {c,x,y,z} );

false

Let us use this procedure to check if a finite number of solutions exist if we consider c as
a parameter, i.e. in the Grobner basis computation coefficients are considered as rational
functions in c.

> finite( polys, {x,y,z} ):

true

4.4 Counting of Finite Solutions

Suppose that the system of polynomial equations f1(x1,...,x,) =0,...... s (T, xy) =0
has a finite number of solutions.

The number of solutions (counted with multiplicities and solutions at infinity)
s equal to the cardinality of the set of monomials that are no multiples of the
leading monomials of the polynomials in the Grébner basis (any term ordering
may be chosen).

We apply this criterion on the previous example, with ¢ considered as a parameter. First
we compute the leading monomials in the Grobner basis with respect to the total degree
inverse lexicographic ordering for which z < y < .

> polys := [ c*x + x*y~2 + x*z"2 - 1, c*y + y*x"2 + y*z~2 - 1,
> cxz + zxx"2 + zxy"2 - 1 ]:

> gbasis( polys, [x,y,z], tdeg ):

> map( £ -> op(2,leadmon(f, [x,y,z],tdeg)), " );

So, the set of monomials that are no multiples of these leading monomials equals
{]‘7 Z? y7 x? 227 yz7 $Z7 y27 xZ? xy? 237 yzZ, xZZ, y227 y37 xy? 24}

and has cardinality 17. So, according to the above criterion there are 17 finite solutions. If
you would use the solve command in Maple to find all solutions of this system of polynomial
equations you could easily verify that this is indeed the correct number of solutions.

16



4.5 Converting a System of Polynomial Equations into Triangular Form

If a system of polynomial equations fi(x1,...,o,) =0,...... yfm(1, ... xn) =0 has a finite
number of solutions then the Grébner basis of {f1,..., fn} with respect to the pure lexico-
graphic ordering x1 = x2 = -+ = x, has the following upper triangular structure:

g1(z1, T, r3, ..., Tn)

gp(@1, T, T3, .-, Tn)

gp+1(:r2, L3y ooy xn)

gq($27 xr3, ..., -rn)

gq+1($3, ey xn)

gr(2n)

gs(xn)

Shape lemma. (cf. [4])

If a system of polynomial equations fi(x1,...,x,) =0,...... yfm(1, ... xn) =0 has a finite
number of solutions, then the Grobner basis of {fi,..., fn} with respect to the pure lexico-

graphic ordering x1 > xg3 > --- > x,, under some suitable assumptions verified in most of the
cases, has the following structure:

{11 —g1(xn), w2—g2(Tn), ooy Tu—1 = gn-1(Tn), gn(xn)}a

where each g; 1s a univariate polynomial.

The Grobner basis of system (7) with respect to the pure lexicographic ordering x = y > z
has been computed in §3.4: {x — %22 — %z,y — %z2 — %z, 2t 4+ 2% — 2}, It clearly satisfies the
shape lemma.

As another illustration of the shape lemma we look at the polynomials (6), which define a
system of polynomial equations that must be solved to verify structural identifiability of the
given 3-compartmental model for cadmium transfer in the human body. The following Maple
session does the work via the Grobner basis method.

First we introduce short-hand notation for variables and create the polynomials.

> sequence :=

> seq(seq( a.i.j = ali,j], i=0..3 ), j=0..3 ),

> seq(seq( b.i.j = bli,jl, i=0..3 ), j=0..3 ),

> seq(seq( t.i.j = t[i,j], i=0..3 ), j=0..3 ), c3 = c[3]:
> (eval@subs) ( S=sequence, ’macro(S)’ ):

> f[1] := a32;

> f[2] := a21x*a32;

> f[3] := a02;

> f[4] := a02%a03 + a02*a21+a02*a23 + a03*a32;
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> f[5]

a02*%al03*a2l1 + a02*a21*a23 + al03*a21*a32;

> f[6] := a02 + a03 + al2 + a2l + a23 + a32;
> f[7] := a02%a03 + a02*a21 + a02*a23 + a03*al2 + al03*a2l
> + al03%a32 +al2+*a23 + a21*a23 + a2l1*a32;

f1:=a3>

J2i=az 1032
f3:= o, 2
fa:=aop,20a0,3 +ap2a2 1+ ap 2 a3+ ap 3 a3, 2
f5 = ao,2 40,3 a2,1 + @, 2 a2,1 a2,3 + Qg,3 2,1 03,2

f6 :=ao,2 +ap3+ai2+ax1+az3+as>

Jr:=a9,2a0,3+ap2a2 1+ ap2az 3+ ap 3a1,2 + ap 3 a2 1+ ap3a3 2+ ay,2as 3+ az1as 3

+az 1a3,2
Identifiability testing is equivalent to solving the polynomial equations

Jr(aoz, ap3, a1z, a1, azs, azz) — fr(boz, bos, b12, bat, baz, bzz) = 0

fork =1,2,...,7and where we consider the a’s as unknowns and the b’s as formal parameters.
Below, we create this list of polynomials and compute its Grobner basis with respect to the
pure lexicographic ordering ajs > as; > azg > asz2 > apz > ap3.

> polys := [ seq( subs( { al2=b12, a21=b21, a23=b23, a32=b32,
>  a23=b23, a03=b03, a02=b02 }, f[il ) - £[i], i=1..7 ) 1:
> vars := [al2,a21,a23,a32,a02,a03]:

> gbasis( polys, vars, plex );

[bo,2a1,2 — bo,2b1,2 4+ bg 303 9 — b3 2ag,3, —b2 1 + a1,
bo,2a2,3 — g 2bo,3 — by 2023 —bo 3b324 (b3 2+ by, 2)ao,3, as 2 — b3 2, —bo 2 + ag,2,
bo.2bo.3° +bo.3% b3 2 — bp.2bo 3ba 1 + Do 2b23bo 3 — Do 2bo.3b1 2
+ (—2bo 33,2 —bo.2bo. 3+ Do 2b2 1+ bo2b1 2 — by aba3)ap. s+ b3 2ap 3’

This Grobner basis has the form described by the shape lemma. It follows that

e the 3-compartmental model is not structurally identifiable because there are two solu-
tions and not just the trivial solution.

e the parameters agz, a1, and 39 are identifiable because in each solution they are equal
to bgg, 6217 b327 respectively.

So, the Grobner basis method not only determines whether the compartmental model as a
whole is structurally identifiable, but it also gives, in case of non-identifiability, information
on which variables are identifiable and which not.

18



4.6 Finding a Univariate Polynomial

In the previous subsection we have seen that in the case of systems of polynomial equations
with finite solutions, the system can be brought into triangular form with respect to the
pure lexicographic ordering or under some assumptions into the form described by the shape
lemma. The last polynomial is univariate in the lowest variable.

More often it is possible that the system of polynomials can be brought into a triangular
form in which the last polynomial is univariate in the lowest variable in the chosen term
ordering. We shall illustrate this on the example from geodesy with the equations (4).

An important problem in geodesy is to express the geodetic coordinates h (height), A
(longitude), and ¢ (latitude) of a point on or near the surface of the earth in terms of the
geocentric Cartesian coordinates x, y, and z. The longitude A can be found in a direct way
by dividing the second equation of (4) by the first one: tan A\ = £. Squaring the first two
equations of (4) and adding them gives 22 +y% = (N + h)? cos? ¢, where N is only depending
on ¢. The height h would be known once we have an expression for the latitude ¢. But this
turns out to be the most difficult part.

If you use the Solve procedure of Mathematica, the system answers that it cannot solve the
problem. If you submit the problem to Maple, the solve procedure does its job, but returns
a complicated answer that is not suitable for numeric processing. We shall use the Grobner
basis method that tan ¢ is a solution of a univariate fourth degree polynomial. Cardano’s
formula provides then a closed form solution.

First, we bring the original system of equations that contains a square root and trigono-
metric functions into a system of polynomial equations. The square root has a defining
polynomial in sin ¢ associated:

S§% =1 — e?sin? ¢.

We get rid of the trigonometric functions by considering them as formally independent vari-
ables and adding well-known polynomial relations for them:

sin ¢

cos ¢’

cf =cos¢p, sf =sing, tf =

cl =cos )\, sl =sinA
with relations
cf? +sft=1, cP+sl*=1, cftf =sf

It appears to be convenient to introduce d = (N +h)cf that satisfies the relation d* = 22 +y2.
In this way, we come up with the following system of ten polynomials

> sys := [ x = (N+h)*cfxcl, y - (N+h)*cfx*sl,
> z - (N*(1-e"2)+h)*sf, cf"2 + sf 2 - 1, c1°2 +s1°2 - 1, tfxcf - sf,
> N*S - a, S72 + e"2%sf"2 - 1, (N+h)*cf - d, 4°2 - x"2 - y™2 ];

sys =[x —(N+h)cf clyy — (N +h)cf sl, 2 — (N (1 =€) + h) f, of* + sf* — 1,
P+ sl =1, tfcf —sf, NS—a, S*+e*sf> —1, (N +h)cf —d, d*> —2* — %

We have 10 polynomial equations in 14 variables. We compute the Grobner basis with respect
to the following pure lexicographical ordering of the variables

tf <sf <cf <sl<cl<h<y<xz<S5<N.
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Note that we consider d, z, a, and e as formal parameters; this rules out points on the equator
plane and on the north—south axis. These cases must be treated separately.

> vars := [N,S,x,y,h,cl,sl,cf,sf,tf]:
> gsys :

gbasis( sys, vars, plex ):

The complete Grobner basis is too big to be presented here. Besides, we are only interested
in the univariate polynomial in tf, which is expected to be the last polynomial in the Grobner
basis.

> collect( gsys[-1], tf ); # get the polynomial in tf

—p2zdtf + (=24 -t et (=2dz et +22d) tf? 4+ (—d? + d? €?) tf?

So, we end up indeed with a fourth degree polynomial in tan ¢ which can be solved analytically.
The same answer can be found by the procedure finduni of the grobner package. This
procedure uses the total degree ordering of variables to compute a Grobner basis and uses
this to construct the univariate polynomial (in the lowest variable) of least degree in the ideal
generated by the polynomials.

We shall also illustrate the method of finding a univariate polynomial for the system (5).
This allows us to approximate frequencies of periodic solutions of the van der Pol equation

" —all=by’)y +y=0.
We assume that the defining polynomials have been entered in Maple:

sys == [—c1 w2+ abe? 3w+ c1,
2abcy 03,T2w+ab01203,rw+2ab01 03,i2w—l—abcl3w— aclw,
—903)7,(4)2 +3ab03,¢03,r2w+3ab03)i3w+6ab01203)¢w —3acsiw+cs

3

—3abces ., w—903,iw2 —3ab03,i203)rw—6ab01263)rw+3a03,rw—abcl3w03,i]

To make computations simpler we discard solutions with ¢; = 0 and divide the first polynomial
by ¢; and the second polynomial by acyw.

> sys[1] := expand( sys[1]/c[1] ):
> sys[2] := sys[2] := expand( sys[2]/(a*xc[l]*omega) ):
> sys;

[abes ;wer — w41, b +bcs 01 +2b03,r2+2603‘i2 -1,
—903,,,(4}2+3a603‘i03‘r2w+3ab03,i3w+6a601203,iw—3a03‘iw+03,r7
—3a603‘r3w—903‘iw2 —3ab03,i203,rw—6a601263,rw+3a03‘rw—abcl3w
+ ¢3,4]

We choose the pure lexicographic ordering with ¢3, > ¢3; > ¢1 > w and we compute the
Grobner basis with respect to this term ordering. We are interested in the last polynomial in
this basis.
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> vars := [ c[3,r], c[3,i], c[1], omega ]:
> gsys := gbasis(sys, vars, plex ):
> collect( gsys[-1], omega );

3249 W' + (549 a* — 6213) w® + (3754 — 567 a?) W° + (159 a* — 842) w!
+(=13a* +53)w? — 1

It is a polynomial in w? of fifth degree with one real solution for any positive a. The finduni
procedure of the grobner package would give the same result. The Taylor series of w? about
a = 0 can easily be computed.

> subs( omega=sqrt(w), " ):
> omega”2 = series( Root0f(",w), a, 8 );
1

3 1

2 2 4 6 8

G=1-Zd+ adt == d®+ 0
3¢ T 56 Tep @ TOW)

4.7 Decomposition of Ideals

Suppose that during a Grobner basis computation in the intermediate set GB of generators
there appears a polynomial ¢ that factorizes into two polynomials, say ¢ = g1 - g2. Then
g vanishes if either g1 or g9 vanishes. A common zero of GB is either a common zero of
GB; = GB U {¢1} or of GBy = GB U {g2}. The Grobuner basis for GB; and GB;y can
be computed separately. This decomposition of the Grobner basis computation makes the
algorithm more efficient and it gives more insight in the structure of the problem.

The procedure gsolve of Maple’s grobner package inspects all intermediate polynomials in
the Buchberger algorithm with respect to factorization and if possible forks the computation.
Let us illustrate this first on system (1):
> polys := [ c*x + x*y~2 + x*z"2 -1, cxy + y*x"2 + y*z"2 - 1,
> cxz + zxx"2 + zxy"2 -1 ]:
> gsolve( polys, [x,y,z] );

24z, y—2zc2—-1+223, [-1+2cz+cx+22% y—2 22" +3c2% — 2+,
[t+y+z, 8 +e+224yz, 14+ 2342, [P+ (= =2)z24+4c2? + 20— 22 23,
A4 (= =2z +4c? =228 +2y, AP+ 1+2c2—-22° +2¢2Y,
[—z4+m, —1+2cz+222 +cy, 228 +3c¢22 — 2 + 7

The above lists of polynomials define systems of equations that are more easily solved than
the original system of polynomial equations.

An example where the decomposition of the Grobner basis computation gives more insight
is the following study of the conformational geometry of cyclohexane. Actually we treat the
more general case of a closed linkage system Mg in 3-space with sides of equal length. More
precisely, any pair of subsequent edges is at a fixed angle, but the plane through these edges
is not constrained. Figure 4 shows Mg for right joint angles.

A picture of cylohexane can be found at URL http://www.inria.fr/safir/DEM0/cyclohex/.
At this location you can also start a Maple demonstration of various geometries of the
molecule. The (twisted) chair and boat configurations can be computed and can visually
be played with. Below we look the computational part.
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Figure 4: Closed linkage system Msg.

Let x, y, z represent the squares of the lengths of the “long diagonals” of the cyclic
structure, a be the square of the length of a side, and let b be the square of length of
the “short diagonals”. The geometric restrictions can be formulated in algebraic terms as
vanishing of the following three determinants.

> array( [ [0,1,1,1,1,1], [1,0,a,b,x,b], [1,a,0,a,b,y],
> (1,b,2,0,a,b], [1,x,b,a,0,a], [1,b,y,b,a,0] ] );

0 1 1 1 1 1}
1 0 a b = b
1 a 0 a b y
1 b a 0 a b
1 2 b a 0 a
| 1 bybaOJ

> f[1] := collect( linalgldet]l("), [x,y,zl, distributed, factor );

fii=(—4a® —4ba—4b) vy —2(0b—a)y+ (b+a)(Tb—a)(b—a)* + (2a +2b) yx*
+2a+20)xy? —yPat—(b—a)y?—2(0b—a)Px— (b—a)?a?

Cyclic permutation gives the other two defining polynomials.

> f[2] := subs( {x=y,y=z}, f[1] ):

> £[3] := subs( {y=z,z=x}, £[2] ):

Of course there are restrictions on values of a, b, x, y, and z: 0 < b < 4a and z, y, z are
N2 . .

between aa> and a + 2b. Let us now compute the decomposed Grobner basis.

> sys := gsolve( [f[1],f[2],£f[31], [z,y,x] ):
> nops(sys);

4

There are 4 sets of Grobner bases. The first three describe discrete geometries as special
cases. For example,

> sysl[1];
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[b*a—ba®>+b* +a* +22a+ (b +ba—2d*)z,y—b—a, —a—b+ ]
This is the special case that © = y = a + b; solutions for z are:

> solve( sys[1], z );

b2 —2ba+ a?
a

b+ a,

The fourth set does not have a finite set of solutions as can be seen from its form:

> sys[4];

lyz+302 +6ba+3a®+(—2a—2b)x+(—2a—2b)y+za+ay+(—2a—2b)z,—2d°
+20° — 602 a+6ba’+ (4ba+4a® +4b%)x+ (—2a —2b)a* + (b —2ba +d?)y
+(=2a-2b)zax+ya’+ (-2a—-2b)ay+ 22+ (b* —2ba+a*)z,(b* — 2ba + a*) y*
+at =70 4607 a’ +8b0a—8ba® + (—2a® +20° — 602 a+6ba’)x
+(0? =2ba+a®) 2t + Pt +(—2a—-2b)axy? + (4ba+4a* +40)zy
+(=2a—2b)ya® +(-2a>+ 20> —6b>a+6ba’)y]
The solution set will depend on one parameter and describes the situation where there is one
degree of freedom. This freedom comes actually from the symmetry of the molecule. Once
this is broken, there are only at most 16 discrete configurations. In order to get a better view
on the situation, we introduce symmetric coordinates
s=x+y+z, t=zy+yz+zxr, p=uxy=z.
We add these defining polynomials to the fourth basis and compute the Grobner basis with
respect to the ordering z >y >x >p>1 > s.

> polys := [ op(sys[4]), s-x-y-z, t-x*y-y*z-z*x, p-x*y*z ]:

> gsys := gbasis( polys, [z,y,x,p,t,s], plex );

gsys == [-s+z2+y+ax, —3b° —6ba—3a’+ (2a+2b)s+a’—ys—axs+ay+y’
203 20> +6b%a—6ba® + 23+ (2ba —a® —b*) s+ (2a +2b)xs —a’s
+(=3b% —6ba —3a*)w, 2a®> —2b° +6b*a—6ba’* + (2ba — a® — b*) s +p,
302 +6ba+3a”+ (—2a—2b)s+1

From the last two basis elements we can express p and ¢ in terms of s.

> solve( { gsys[4], gsys[5] }, {t,p} ):

> map( collect, ", s, factor);

(p=0b-a)’s+20b-a) t=(2a+2b)s—3(b+a)?}
The third basis element gives x as a root of a third degree polynomial in s.
> collect( gsys[3], [x,s], recursive, factor );
2 —a? s+ ((2a+2b)s—30b+a))ar—(b—a)s—2(b—a)?
Once x is known in terms of s then the first two basis elements can be used to determine y

and z.
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4.8 An Example From Robotics

The study of the inverse kinematics of the ROMIN manipulator ([19]) shall be used to give
an idea how helpful Grobner bases are for this kind of work. The system of equations is as
follows:

—sin#y(ly cos by + l3cos63) —x =
cos 0y (ly cos by +l3cosb3) —y =
losinfly + l3sinf3 —z = 0 (8)

where [y and [3 denote the length of the first and second arm and the robot 61, 65, 03 represent
rotation angles around the base and the robot arms. With these equations, the angles should
be computed given a position (z,y, z) of the tip of the robot. Actually we are satisfied if we
can find the cosines or sines of these angles. There are two ways of converting the equations
into polynomial form.

e A rational parametrization of trigonometric functions is used:

1— ¢ 2t;
Z27 inf; = Z27
1+ ¢ 1+t

(3

cos0; =

for i = 1,2,3. When you use these rational expressions make sure that you multiply the
equations with products of (1 +#3), (1+t3), and (1 + ¢2) so that polynomial equations
arise. In our case, we get three polynomials in lo, (3,2, v, 2,t1,t2,t3 from which we
could solve t1,t3, and t3 by computing the decomposed Grobner basis with respect to
lexicographic ordering « > y > z > t3 > t3 > t;. Drawback of this method is that joint
angles of 180 degrees are not possible in this parametrization and joint angles close to
180 degrees give awkwardly large numerical values.

e The cosines and sines are considered as variables and trigonometric relations are added
in the format of polynomial equations. For the ROMIN manipulator you get:

—81(1262 + 1363) — X 0
01(1262 + 1363) -y = 0
1282+l383—z = 0
Atsi-1 = 0
2 2 _
02 + 82 -1 = 0
A+s2-1 = 0 (9)

where s; = sinf;, ¢; = cosf; for « = 1,2,3. The set of defining polynomials can
now be converted into a Grobner basis with respect to the pure lexicographic ordering
S1 > €1 > S92 = C9 > s3 > c3. We consider ly,[3,x,y, 2z as parameters.

> polys := [ -s[1] * (1[2]*c[2] + 1[3]*c[3]1) - x,

> c[1] * (1[2]1*c[2] + 1[31*c[31) - vy,

> 1[2]*s[2] + 1[3]*s[3] - z,

> cf1]1"2 + s[1]1°2 - 1, c[2]"2 + s[2]"2 - 1,
> cl[3]"2 + s[3]1"2 - 1 1;
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polys :=[—s1 (lacoa+1l3¢c3) —x, c1(lacg +13¢3) —y, lasy + 1383 — 2, 1’ + 512 — 1,
622 + 822 — 1, 632 + 832 — 1]

> gbasis( polys, [c[3],s[3],c[2],s[2],c[1],s[1]], plex );

[2l3xcs+2212 59251 + (:Jc2 + oy + 132 — 2% - l22)31, ly 89+ 1383 — 2,
—2zlysgs1+ 2l wey + (=132 + 22 + 22 + 42+ 1,2) 51,
(41222 + 41,22 + 41,2 2%) 892 — 21227 =212 2 + L + It + 24 — 215242
+222y2 —I—x4—|—y4 — 222132 422222 +2x2y2 + 21,222 = 2132 22 — 2132 1,2
+ (4l 2132 —4ly 23 —dzlya® —dzlyy? —4210%) sy, ys1 + ey,
—2? + (2% +y?) 517
The Grobner basis is in triangular form. So, in principle the inverse kinematics problem
is solved. However, the key problem is whether for numerical values of the parameters
the above basis stays a Grobner basis. If so, everything is ok. In the example we are
considering, if we choose Iy # 0,13 # 0,22 +y? # 0, then the above set is still a Grobner

basis. This specialization problem can be avoided by using so-called comprehensive
Grobner bases ([29]).

4.9 Implicitization of Parametric Objects

Counsider the parametric equations

ry = fl(t17t27"'7tm)
T2 = f?(t17t27"'7tm)
T, = fn(tl,tQ, e ,tm)
where f1, fa,... fn are polynomials in m unknowns. The question is to eliminate the t’s and
find polynomial equations in x1,...,z, that define the parametric object. More precisely, we
search for polynomials ¢i,..., g in the unknowns x1,...,x, such that for all ay,...,ay:
gi(at,...,a,) = ... = grlay,...,a,) = 01if and only if

a1 = f1(b1y .-y bm)y oy an = fr(b1, ..., by) for some by, ..., by,.

Implicitization algorithm

Take the pure lexicographic ordering determined by t1 = ... = tp, = X1 = ... = X
and compute the Grébner basis GB of {x1 — fi(ti,...,tm)s--. Ty — fulti,...,tm)}. Then
{91,-.-,9r} = {9 € GB] ¢is a polynomials in x1,...,x, only}.

An example: Enneper’s minimal surface defined by

1 15 1 , 1 1, 1, 1, 1,
=—5— - —st = ——t+ =t — =s5"t,z = —5° — =t".
T 23 68 +28 N 5 +6 28 4 23 5

The surface looks as follows:
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Figure 5: Enneper’s minimal surface.

> polys := [x-s/2+s"3/6-s*t"2/2, y+t/2-t"3/6+t*s"2/2, z-s"2/2+t"2/2];

1 11 1 1 1
P sstt y+ot— -t otst r— st ot

1 oLy ]
oYys (= |\r — — S — S
poty 2 2" 76" T3 2 2

2 6

Next we compute the Grobner basis with respect to the pure lexicographic ordering defined
by s =t > x>y > 2. We do not show the result here but after quite some computing time
a Grobner basis is obtained with only one polynomial in the coordinates x,y,z. This is the
one shown below.

> GB := gbasis( polys, [s,t,x,y,z], plex ):
> collect( GB[-1], z, factor );

—1024 2% 4+ 4608 2" + 3456 (z — y) (v +y) 2% + (=5184 + 15552 2% + 15552 y%) 2°
+ 12960 (z — y) (@ + y) 2% + (25272 5% 2% — 3888 2% + 4860 y* + 4860 2* — 388842) 23
+ 8748 (x —y) (x +y) (2® + 9?) 22 =729 (x — 9)? (x +y)> 2 + 1458 (x — y)3 (= + y)?

4.10 Invertibility of Polynomial Mappings

The Jacobian conjecture states that a polynomial mapping has an inverse which is itself a
polynomial mapping if and only if the determinant of the jacobian of the mapping is nonzero.
In an attempt of proving the conjecture the following criterion of invertibility has been found

([12]):

Let f1,..., fn be the coordinate functions of a polynomial mapping in the variables x1,. .., Ty,.
Let y1,...,yn be new indeterminates and let < be an admissible ordering such that y1 < y2 <
coe R Yp < T1 < X3 < ... < Yn. Then the mapping is invertible if and only if the Grobner

basis of y1 — f1,92 — f2,. -+ Yn — [n has the form x1 — g1,22 — g2,.. ., Tn — Gn- 91,92, 9n
are the coordinate functions of the inverse mapping.

We take the example from [24]:

(z,y,2) — (@t +2(y+2)a® + (y+2)222 + (y+ Do+ +yz, 28 + (y+2)2’ +y,x +y + 2)
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>F = [ x74 + 2x(y+z)*x"3 + (y+2)"2*%x"2 + (y+l)*x + y~2 + y*z,
> X"3 + (y+z)*x"2 + y, x +y + 2z ];

F=F'"+2(+2)*+(y+ 222 +(y+ Do+’ +yz, 22+ (y+2)2> +y, o+ y + 2]
> gbasis( [ X - F[11, Y - F[2], Zz - F[3] 1, [x,y,z,X,Y,Z], plex );

(0= X+ZY, y+Z X2 Y +23Y?22°Y X, Y- 2ZY -Z3Y? 422 Y X+ X - Z X*—Z+ 2]
So, the mapping has inverse
(X,Y,Z) — (X=2Y,Y = X?Z42XY 2> -Y? 23, - X Y+ Z+Y Z+X*Z-2XY Z*>+Y*Z3).

It turns out that verification of the result by composition of mappings takes more time then
the Grobner basis computation of the inverse mapping.

4.11 Simplification of Expressions

For a reduced monic Grobner basis, the normal form of a polynomial is unique: it is a
“canonical form” in the sense that two polynomials are equivalent when their normal forms
are equal. This can be used to simplify mathematical expressions with respect to polynomial
relations. An example from the Dutch Mathematics Olympiad of 1991, which is described in
detail in [24], section 14.7.

Let a, b, c be real numbers such that
a+b+c=3 dd+0P+cF=9 P+ + =24
Compute a* + b* + ¢*.

> siderels := [ at+b+c=3, a"2+b"2+c"2=9, a~3+b~3+c”~3=24 ]:
> polys := map( lhs - rhs, siderels );

polys :={a+b+c—3,a* +0* +c*—9,a®> + 0>+ — 24}

Next, we compute the Grobner basis of these polynomials with respect to the pure lexico-
graphic ordering a > b > c.

> G := gbasis( polys, [a,b,c], plex );

G:=[a+b+c—3,0+c-3b-3c+be,1 -3¢ +¢7]
The normal form of a* + b* + ¢* turns out to be 69.

normalf( a”4+b~4+c~4, G, [a,b,c], plex );

69

So, this number is the answer to the question. In Maple, this method is actually carried out
when simplification with respect to side relations is requested.

> simplify( a"4+b~4+c”4, siderels, [a,b,c] );
69
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5

Conclusion

This expository paper introduced Grobner basis theory as a rich, systematic approach to
solving many problems in polynomial theory. We presented the Buchberger algorithm and
improvements of it. Finally, we looked at many applications.
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