Applet Fundamentals

Table of Contents

|[Applet Fundamentald

|6. Applet Fundamentalq .
|[Applet LifeCycld .

[6.1 Applet Life Cyclg

[Away for aMoment| .
ack Again| .
he End
[A Minimal Appletviewer] .
|Applet Graphicy
[6.2 Applet Graphicg
|Graphicsin Applety .
|Graphics Object] .
L
:
[updat e method|
L
:

|[How does it work?

Ii

177
177
178
178
178
178
179
179
179
180
180
180
180
181
181
182
182
182
183

6. Applet Fundamentals

In this chapter we revisit the topic of applets. The goal isto understand fully the mechanism behind
applets. What happens when the applet isloaded, or when the applet is scrolled away. Why is there no
mai n, but ani ni t, why do you never explicitly call the pai nt routine?

e [TheLife Cycle of an Applei]
o |Applet Graphicq

177

6.1 Applet Life Cycle

Thelife cycle of an applet is determined by methods that are automatically called at its birth, its death
and when it is momentarily away. We discuss below the details. To illustrate the life cycle calls, here
isan applet that displays al callsin both atext area and the java console.

init A
start
stop
start
stop
start
l
- |-
1
2. |[Away for a Moment]
3. [Back Agai
4.
5. JA Minima Appletviewer|

The Begin
An applet extends apanel, so it "is" a component of the AWT. But how come it runs as a program?

1. The browser starts a Java Virtua Machine (JVM) and gives it control over the part of the screen
that is specified width and height of the applet.

2. ThisJVM will do al things that belong to any java application, like starting the AWT-Input

handler and the garbage collector. (See User Threads).

Next it will create an instance of the applet as specified in the class file of the applet.

4. The JVM sees the window of the browser as akind of a JJava AWT frame, and adds the applet as
apanel to thisframe.

5. Asthe main routineisin fact aready running, thereis an other method, i ni t, for theinitializa-
tion of the applet. It is called automatically by the VM.

6. After thecall toinit, acal tost art isdone and then acall to the pai nt routine.

w

Away for a Moment

Once a browser has loaded an applet, this applet will stay running. Also when the applet is not visible,
itistill running in the background. Thisis even the case when you have clicked to other URLS. Only
when you quit the browser, the applet will exit aswell.

178

The st op method is exactly meant to keep in control of the applet at these moments where the applet
becomes not visible. By implementing this method, you can stop computations or "threads" like
animations. In general you should stop parts of the programs that consume resources.

Back Again

Of course, once you can stop things, you should be able to restart them as well. For this purpose, there
isthest art method. This method is also automatically called at the beginning, just afteri ni t .
When you ask the browser to reload a page containing the applet, it will call stop, immediately
followed by start.

The End

Just before exiting, so when the browser quits, the applet performs a call to the dest r oy method.
Here some clean-up code can be inserted, however thisisin practice seldomly necessary. Please note
the difference with the stop method.

A Minimal Appletviewer

Aswe now have all ingredients that make up an applet, we can mimick the browser with asimple Java
application. The JDK appletviewer offers more functionality, but essentially does the same. So all we
have to do is to make a frame, and then perform the necessary callsto init, start, stop and destroy.

Here isthe essential part of the code.

cl ass Appl et Framer extends Frame {

Appl et appl et;

Appl et Franer (String appletname, int width, int height) {

set Layout (new Bor der Layout ());

try { // get the class fromits name and instantiate it
appl et = (Applet) d ass.forNanme(appl et nane). new nstance();

} catch (Exception e) {
Systemout.println(e);

}

resi ze(wi dth, height);

add("Center", applet); // the applet is a panel

applet.init();
applet.start();
show() ;

}

publ i c bool ean handl eEvent (Event evt) {

if (evt.id == Event.W NDOW DESTROY) {
appl et . destroy();
di spose();
Systemexit(0);

} elseif (evt.id == Event. W NDOW | CONI FY) {
appl et. stop();

} else if (evt.id == Event.W NDOW DElI CONI FY) {
applet.start();

}

return super. handl eEvent (evt);

179

6.2 Applet Graphics

1. |Graphicsin Applety
2. |Graphics Object]
3.
.
® |updat e method
4.

Graphicsin Applets

The idea behind the graphics of an applet isthat you paint the pixels of the rectangular part of the
screen that is controlled by the applet. As Javais an object-oriented language, a graphics object is
attached to the applet, and thereisapai nt method that will take care of the coloring of the pixels.

The pixels are counted downward and to the right and the upper left corner isthe origin. This direc-
tion is convention in computer graphics, and is the same in which you read abook. Note it is not the
mathematical convention of graphics, where the origin isin the lower left corner.

Graphics Object

There isnot only a graphics object for the applet, there is a graphics object attached to any component.
Often it is called the graphics context. It contains several instance variables, that determine the effect
of drawing routines like dr awText and dr awLi ne:

1. Color, with methods set Col or and get Col or

2. Font, with methods set Font and get Font

3. Clipregion: thisisarestriction of the area of pixelsthat are affected by the paint routine. Outside
the region the pixels will not change. Default clip region is the complete component, the associ-
ated methodsarecl i pRect andget d i pRect .

Most other methods of the Graphics class are graphicsroutineslikedr awLi ne, fi | | Rect , and
dr awText . Note that thereis also amethod dr awi mage for displaying any GIF- or JPEG images.
In xxx there is more on image |oading.

There are two points to note:

® The graphics object does not contain the lines, ovals, etc. as objects, neither doesit contain the
pixels as objects. It just represents the screen area and paints it according to the paint routine.
After apaint cal, it forgets about the state of pixels.

® Youimplement the paint method for a generic Graphics object

public void paint (Gaphics g) { ... }

but you hardly ever explicitly call it for the graphics object that is attached to the applet in your
code (then it should read something liket hi s. pai nt (get G aphi cs())). Instead the paint
method is called automatically by the Screen Updater of the applet when a screen refreshis
needed. Thisis an example of a"callback routine".

180

Screen Refresh

The paint routine is not only called when the applet starts, it can be useful when the screen needs a
refresh afterwards. We distinguish two types of causes for screen refreshes:

e from within the applet (when e.g. abutton is pressed, or an animation runs), which calls the
updat e method and

e from the outside (when e.g. the user scrolls, or another window is moved on top), which resultsin
acal to the pai nt method.

Similar to the life cycle applet, we can log the paint and update callsin atext area to see when they are
exactly done.

paint A
paint
paint
paint
paint
paint

E::m repaint|

El

= [

pai nt method

The pai nt routineis used when arefresh is demanded by an action coming from the outside. The
screen areais erased, colored with the background color, and the paint routine performs all its steps.
This al happens automatically for instance when the browser moves to an other page, and back to the
page with applet, or when the window isiconified, and deiconified again. To be more precise, the
action concerning the window generates an event, and the event dispatcher of the applet reacts with a
call to paint.

Note that in the Xeyes applet below, the behaviour with respect to outside actionsis good, but the

internal events coming from the movements of the mouse cause some flickering. The codeisin
Eyes.java

181

updat e method

When the action that requires a screen refresh comes from within the applet, amore subtle way is
possible. Instead of a complete redrawing of the screen, you can specify precisely which pixels should
be redrawn. For this goal, you can implement the method updat e(Gr aphi cs g) . However, the
default implementation of update consists of a complete erase of the screen, followed by a paint call.

Similar to the paint routine, you will seldomly call the update directly. If you need arefresh, say
because a button was pressed, you add ar epai nt () method to your code for the action. Thiswill
generate an event, and the event dispatcher will call update as soon asitsturn isthere. If many repaint
calls arrive at the event dispatcher in a short timeinterval, they all can be collapsed, and then only one
update call is done. This favours efficiency, but implies that you have to program the update method
quite carefully.

As afirst example we take the movement of the eyes as in the paint method, but now in the update
method. We "forget” that the screen is now not redrawn from scratch. The code is UpdatedEyesl.java

T¢

As a second example we take a correct implementation. Now the update first colors the old position of
the black spots white again. Note that in the beginning the black spots are not there, asin the paint
only the white irises are drawn. The codeisin UpdatedEyes.java.

Buffering
What it is?

The flickering effect that you seen when a series of paint callsis done, can also be reduced in another
way. It is called buffering, or double buffering to distinguish from a hardware buffer for the video. The
ideaisto build up an off-screen image, and then map it to the screen with asingledr awl nage. A
complete erase of the picture is prevented, all pixels get the right color immediately, and the flickering

182

is much reduced.

The advantage is that is quite simple to use, you just insert some standard code, and adapt the paint
and update routines in a standard way. There is a disadvantage which can be relevant if the applet is
time critical: with buffering you still draw a complete image. So it might be more efficient to restrict
to the part that isreally changing. Y ou can do this for instance with help of the clip region, or you can
only update the part of the off-screen image that is really changing. Or you can use a clever combina-
tion of these approaches.

As example we take again the Xeyes. Note that in the beginning the black spots are not there, asin the
paint only the white irises are drawn. The code isin BufferedEyes.java.

How doesit work?

1. First create a so-called off-screen image and attach a graphics object to it.

public class BufferedEyes extends Applet {

Di nrensi on of f Di nension = this.size();
I mge of fl mage = createl mage(of f Di nensi on. wi dt h, of f Di nensi on. hei ght);
Graphi cs of f G aphi cs = of flI nage. get Graphi cs();

}

Note that in the BufferdEyes example, the declaration and the instantiation are separate, which
makes it more dynamic as the size of the applet might change.

2. Now rewrite the update as to work only on the graphics object of the off-screen image. However,
we start with a screen erase.

public void update (G aphics g) {

of f Graphi cs. set Col or (get Background());
of fGraphics.fill Rect (0, 0, offDinmension.w dth, offD nension.height);

of f Graphi cs. set Col or (Col or. white);

of f Graphics.fill Oval (100, 100, 100, 100);

of f Graphics.fill Oval (210, 100, 100, 100);

of f Graphi cs. set Col or (Col or. bl ack);

of fGraphics.fillOval ((int)(Ix-8), (int)(ly-8), 16, 16);

183

of fGraphics.fillOval ((int)(rx-8), (int)(ry-8), 16, 16);

g. drawl mage(of fI nage, 0, 0, this);
}

3. Add acall to drawlmage in the update method to map the off-screen image to the screen.
public void update (G aphics g) {

of f Graphi cs. set Col or (get Background());
of fGraphics.fillRect(0, 0, offDi mension.w dth, offDi mension.height);

of f Graphi cs. set Col or (Col or. white);

of f Gaphics. fill Oval (100, 100, 100, 100);

of f Gaphics. fill Oval (210, 100, 100, 100);

of f Graphi cs. set Col or (Col or. bl ack) ;

of fGraphics.fillOval ((int)(Ix-8), (int)(ly-8), 16, 16);
of fGraphics.fillOval ((int)(rx-8), (int)(ry-8), 16, 16);

g.drawl mage(of fI nage, 0, 0, this);
}

4. Adapt paint asto work with the update implementation.

public void paint (Gaphics g) {
updat e(9) ;
}

Exercise: why do we work here with the update method, and not with the paint method?

184

	6. Applet Fundamentals
	6.1 Applet Life Cycle
	The Begin
	Away for a Moment
	Back Again
	The End
	A Minimal Appletviewer

	6.2 Applet Graphics
	Graphics in Applets
	Graphics Object
	Screen Refresh
	
	paint method
	update method

	Buffering
	
	What it is?
	How does it work?

