
Applet Fundamentals

Table of Contents
................ 177Applet Fundamentals
................ 1776. Applet Fundamentals
................. 178Applet Life Cycle
................ 1786.1 Applet Life Cycle
.................. 178The Begin
................ 178Away for a Moment
.................. 179Back Again
.................. 179The End
............... 179A Minimal Appletviewer
................. 180Applet Graphics
................ 1806.2 Applet Graphics
................ 180Graphics in Applets
................. 180Graphics Object
................. 181Screen Refresh
................ 181paint method
............... 182update method
.................. 182Buffering
................. 182What it is?
............... 183How does it work?

i

6. Applet Fundamentals
In this chapter we revisit the topic of applets. The goal is to understand fully the mechanism behind
applets. What happens when the applet is loaded, or when the applet is scrolled away. Why is there no
main, but an init, why do you never explicitly call the paint routine?

The Life Cycle of an Applet
Applet Graphics

177

6.1 Applet Life Cycle
The life cycle of an applet is determined by methods that are automatically called at its birth, its death
and when it is momentarily away. We discuss below the details. To illustrate the life cycle calls, here
is an applet that displays all calls in both a text area and the java console.

1. The Begin
2. Away for a Moment
3. Back Again
4. The End
5. A Minimal Appletviewer

The Begin
An applet extends a panel, so it "is" a component of the AWT. But how come it runs as a program?

1. The browser starts a Java Virtual Machine (JVM) and gives it control over the part of the screen
that is specified width and height of the applet.

2. This JVM will do all things that belong to any java application, like starting the AWT-Input
handler and the garbage collector. (See User Threads).

3. Next it will create an instance of the applet as specified in the class file of the applet.
4. The JVM sees the window of the browser as a kind of a Java AWT frame, and adds the applet as

a panel to this frame.
5. As the main routine is in fact already running, there is an other method, init, for the initializa-

tion of the applet. It is called automatically by the JVM.
6. After the call to init, a call to start is done and then a call to the paint routine.

Away for a Moment
Once a browser has loaded an applet, this applet will stay running. Also when the applet is not visible,
it is still running in the background. This is even the case when you have clicked to other URLs. Only
when you quit the browser, the applet will exit as well.

178

The stop method is exactly meant to keep in control of the applet at these moments where the applet
becomes not visible. By implementing this method, you can stop computations or "threads" like
animations. In general you should stop parts of the programs that consume resources.

Back Again
Of course, once you can stop things, you should be able to restart them as well. For this purpose, there
is the start method. This method is also automatically called at the beginning, just after init.
When you ask the browser to reload a page containing the applet, it will call stop, immediately
followed by start.

The End
Just before exiting, so when the browser quits, the applet performs a call to the destroy method.
Here some clean-up code can be inserted, however this is in practice seldomly necessary. Please note
the difference with the stop method.

A Minimal Appletviewer
As we now have all ingredients that make up an applet, we can mimick the browser with a simple Java
application. The JDK appletviewer offers more functionality, but essentially does the same. So all we
have to do is to make a frame, and then perform the necessary calls to init, start, stop and destroy.
Here is the essential part of the code.

class AppletFramer extends Frame {

 Applet applet;

 AppletFramer (String appletname, int width, int height) {
 setLayout(new BorderLayout());
 try { // get the class from its name and instantiate it
 applet = (Applet) Class.forName(appletname).newInstance();
 } catch (Exception e) {
 System.out.println(e);
 }
 resize(width, height);
 add("Center", applet); // the applet is a panel
 applet.init();
 applet.start();
 show();
 }

 public boolean handleEvent (Event evt) {
 if (evt.id == Event.WINDOW_DESTROY) {
 applet.destroy();
 dispose();
 System.exit(0);
 } else if (evt.id == Event.WINDOW_ICONIFY) {
 applet.stop();
 } else if (evt.id == Event.WINDOW_DEICONIFY) {
 applet.start();
 }
 return super.handleEvent(evt);
 }
}

179

6.2 Applet Graphics
1. Graphics in Applets
2. Graphics Object
3. Screen Refresh

paint method
update method

4. Buffering

Graphics in Applets
The idea behind the graphics of an applet is that you paint the pixels of the rectangular part of the
screen that is controlled by the applet. As Java is an object-oriented language, a graphics object is
attached to the applet, and there is a paint method that will take care of the coloring of the pixels.

The pixels are counted downward and to the right and the upper left corner is the origin. This direc-
tion is convention in computer graphics, and is the same in which you read a book. Note it is not the
mathematical convention of graphics, where the origin is in the lower left corner.

Graphics Object
There is not only a graphics object for the applet, there is a graphics object attached to any component.
Often it is called the graphics context. It contains several instance variables, that determine the effect
of drawing routines like drawText and drawLine:

1. Color, with methods setColor and getColor
2. Font, with methods setFont and getFont
3. Clip region: this is a restriction of the area of pixels that are affected by the paint routine. Outside

the region the pixels will not change. Default clip region is the complete component, the associ-
ated methods are clipRect and getClipRect.

Most other methods of the Graphics class are graphics routines like drawLine, fillRect, and
drawText. Note that there is also a method drawImage for displaying any GIF- or JPEG images.
In xxx there is more on image loading.

There are two points to note:

The graphics object does not contain the lines, ovals, etc. as objects, neither does it contain the
pixels as objects. It just represents the screen area and paints it according to the paint routine.
After a paint call, it forgets about the state of pixels.
You implement the paint method for a generic Graphics object

 public void paint (Graphics g) { ... }

but you hardly ever explicitly call it for the graphics object that is attached to the applet in your
code (then it should read something like this.paint(getGraphics())). Instead the paint
method is called automatically by the Screen Updater of the applet when a screen refresh is
needed. This is an example of a "callback routine".

180

Screen Refresh
The paint routine is not only called when the applet starts, it can be useful when the screen needs a
refresh afterwards. We distinguish two types of causes for screen refreshes:

from within the applet (when e.g. a button is pressed, or an animation runs), which calls the
update method and
from the outside (when e.g. the user scrolls, or another window is moved on top), which results in
a call to the paint method.

Similar to the life cycle applet, we can log the paint and update calls in a text area to see when they are
exactly done.

paint method

The paint routine is used when a refresh is demanded by an action coming from the outside. The
screen area is erased, colored with the background color, and the paint routine performs all its steps.
This all happens automatically for instance when the browser moves to an other page, and back to the
page with applet, or when the window is iconified, and deiconified again. To be more precise, the
action concerning the window generates an event, and the event dispatcher of the applet reacts with a
call to paint.

Note that in the Xeyes applet below, the behaviour with respect to outside actions is good, but the
internal events coming from the movements of the mouse cause some flickering. The code is in
Eyes.java

181

update method

When the action that requires a screen refresh comes from within the applet, a more subtle way is
possible. Instead of a complete redrawing of the screen, you can specify precisely which pixels should
be redrawn. For this goal, you can implement the method update(Graphics g). However, the
default implementation of update consists of a complete erase of the screen, followed by a paint call.

Similar to the paint routine, you will seldomly call the update directly. If you need a refresh, say
because a button was pressed, you add a repaint() method to your code for the action. This will
generate an event, and the event dispatcher will call update as soon as its turn is there. If many repaint
calls arrive at the event dispatcher in a short time interval, they all can be collapsed, and then only one
update call is done. This favours efficiency, but implies that you have to program the update method
quite carefully.

As a first example we take the movement of the eyes as in the paint method, but now in the update
method. We "forget" that the screen is now not redrawn from scratch. The code is UpdatedEyes1.java

As a second example we take a correct implementation. Now the update first colors the old position of
the black spots white again. Note that in the beginning the black spots are not there, as in the paint
only the white irises are drawn. The code is in UpdatedEyes.java.

Buffering

What it is?

The flickering effect that you seen when a series of paint calls is done, can also be reduced in another
way. It is called buffering, or double buffering to distinguish from a hardware buffer for the video. The
idea is to build up an off-screen image, and then map it to the screen with a single drawImage. A
complete erase of the picture is prevented, all pixels get the right color immediately, and the flickering

182

is much reduced.

The advantage is that is quite simple to use, you just insert some standard code, and adapt the paint
and update routines in a standard way. There is a disadvantage which can be relevant if the applet is
time critical: with buffering you still draw a complete image. So it might be more efficient to restrict
to the part that is really changing. You can do this for instance with help of the clip region, or you can
only update the part of the off-screen image that is really changing. Or you can use a clever combina-
tion of these approaches.

As example we take again the Xeyes. Note that in the beginning the black spots are not there, as in the
paint only the white irises are drawn. The code is in BufferedEyes.java.

How does it work?

1. First create a so-called off-screen image and attach a graphics object to it.

public class BufferedEyes extends Applet {

 ...

 Dimension offDimension = this.size();
 Image offImage = createImage(offDimension.width, offDimension.height);
 Graphics offGraphics = offImage.getGraphics();

 ...
}

Note that in the BufferdEyes example, the declaration and the instantiation are separate, which
makes it more dynamic as the size of the applet might change.

2. Now rewrite the update as to work only on the graphics object of the off-screen image. However,
we start with a screen erase.

public void update (Graphics g) {

 offGraphics.setColor(getBackground());
 offGraphics.fillRect(0, 0, offDimension.width, offDimension.height);

 offGraphics.setColor(Color.white);
 offGraphics.fillOval(100, 100, 100, 100);
 offGraphics.fillOval(210, 100, 100, 100);
 offGraphics.setColor(Color.black);
 offGraphics.fillOval((int)(lx-8), (int)(ly-8), 16, 16);

183

 offGraphics.fillOval((int)(rx-8), (int)(ry-8), 16, 16);

 g.drawImage(offImage, 0, 0, this);
}

3. Add a call to drawImage in the update method to map the off-screen image to the screen.

public void update (Graphics g) {

 offGraphics.setColor(getBackground());
 offGraphics.fillRect(0, 0, offDimension.width, offDimension.height);

 offGraphics.setColor(Color.white);
 offGraphics.fillOval(100, 100, 100, 100);
 offGraphics.fillOval(210, 100, 100, 100);
 offGraphics.setColor(Color.black);
 offGraphics.fillOval((int)(lx-8), (int)(ly-8), 16, 16);
 offGraphics.fillOval((int)(rx-8), (int)(ry-8), 16, 16);

 g.drawImage(offImage, 0, 0, this);
}

4. Adapt paint as to work with the update implementation.

public void paint (Graphics g) {
 update(g);
}

Exercise: why do we work here with the update method, and not with the paint method?

184

	6. Applet Fundamentals
	6.1 Applet Life Cycle
	The Begin
	Away for a Moment
	Back Again
	The End
	A Minimal Appletviewer

	6.2 Applet Graphics
	Graphics in Applets
	Graphics Object
	Screen Refresh
	
	paint method
	update method

	Buffering
	
	What it is?
	How does it work?

