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Swilling, shooting and swallowing  

1. Introduction  
Stimulants like alcohol, caffeine and nicotine, but also hallucinogenic drugs like cannabis, 
mushrooms and ecstasy do a lot to your body. How interesting this is in itself, we will not dis-
cuss the damaging effects of such biologically active substances to the human body in this 
lesson material. What will the lessons be about? Our attention goes to pharmacokinetics, the 
science field that deals with the extent and speed in which a body absorbs, distributes, and 
eliminates substances. You will study simple mathematical models that describe the time 
course of the concentration of medicines and stimulants in blood or urine. This will also give 
you an impression of how a dosage regimen in therapeutic drug use is established and of the 
risk of overmedication. Although the intake and clearance of a pharmacon, i.e., the active in-
gredient of a therapeutic drug or a stimulant, in the human body or the animal body is a con-
tinuous process, we will choose a discrete mathematical approach. In this way you can build 
and simulate in the computer learning environment Coach 6 various mathematical models and 
compare results from computer simulations with concentrations measured in reality. 

2. Mathematics under influence:  
a linear model of alcohol clearance 

The active ingredient of an alcoholic drank is ethanol, but to make things easy we will use 
mostly the generic name “alcohol” and speak of alcohol clearance in the human body. In the 
first model we restrict ourselves to the elimination of alcohol from the body. For the moment 
we will not take into account how alcohol gets into the bloodstream and is further distributed 
in the human body over the body water after consumption of an alcoholic drink. In other 
words, we do as if alcohol is absorbed immediately into the body system after consumption 
and distributes super-fast via the bloodstream into the body water.  

The concentration of alcohol in the human body can be deter-
mined by measuring the concentration in a blood sample or by ana-
lyzing exhaled air with an breath-alcohol measurement device. The 
blood alcohol concentration is abbreviated as BAC. Keep in mind 
that despite its name, the BAC is nothing else than the alcohol con-
centration in the total body water. The concentration of alcohol in 
exhaled air is coupled with the BAC via a mathematical formula. It 
is this formula that is used in breath-alcohol measurement devices to 
indicate the measured BAC value (also referred to as BAC level). To 
the right you see a picture of the Dräger Alcotest 6510, the breath 
analyzer that we have used in experiments to collect data. 
 
Exercise 1. Various units are used for BAC level. The most common unit is promille (‰):  

0
00

amount of ethanol (in gram)
BAC (in )

amount of total body water (in liter)
= . 

a) Why do we speak here about promille (per 1000 parts)? 
b) Fill out: 0

00BAC (in ) BAC (in mg mL)= ×… . 

c) Ethanol has a molecular weight of 46.08 g/mol. In science literature mmol L  is frequent-

ly used as unit of BAC. Fill out: 0
00BAC (in ) BAC (in mmol L)= ×…  

d) Driving under influence is a misdemeanor. At what BAC level it is illegal in the Nether-
lands to drive a vehicle (also a bike or motorbike) and engage in traffic? Find on the 
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Internet at what BAC level the driving license of a drunken driver of a motor vehicle is 
confiscated? 

The picture to the right suggests that the amount of alco-
hol entering the human body when drinking a glass of 
beer is the same as the amount when drinking a glass of 
red wine or a glass containing a cocktail drink. The 
measure of capacity of a glass fits to the sort of drink. 
Beer is in a large glass, wine in a medium sized glass and 
gin in a small glass. In this way standard beer glass 
contains as much alcohol as a standard wine or a standard 
gin glass. Breezers are sold mostly in a bottle or a can. For a breezer there exists no standard 
glass.  A Dutch standard glass in the catering industry for alcoholic drinks contains about 12 
mL ethanol. The liquid density of alcohol at a temperature of 17 °C is equal to 0.792g mL. 
Use these data to answer the following questions:  
e) The volume of a standard glass of lager with an alcohol percentage of 5 % is equal to 25 

cL. How many grams of alcohol contains a standard glass for this kind of beer?  
f) How many standard glasses are in a beer can of 33 cL with an alcohol percentage 

of 5 %?   
g) Henceforth we assume that a standards glass contains by definition 10 gram 

ethanol. Suppose that you buy a Bacardi Breezer with rum and fruit taste in a 
bottle with contents of 27.5 cL and an alcohol percentage of 5.6 %. How many 
grams of alcohol contains this bottle and with how many standard glasses is this 
equivalent?  

h) The alcohol percentage of gin is 35 %. Compute the volume capacity of a standard gin 
glass. 

 
We will build a simple mathematical model with which you can easily determine the BAC 

level after consumption of alcoholic drinks and can predict the time course of the BAC level.  
  
Exercise 2. What factors could play a role in the maximal BAC level  and in the time course 
of the BAC level? Always indicate whether you expect a variable to increase or decrease the 
maximal BAC level, and whether you expect it to speed up or slow down changes in alcohol 
concentration. 
  
Exercise 3. Assume that John, how unrealistic it may seem, drinks a whole 
beer bottle of size 75 cL containing Kasteelbier Blond, a beer of quadruple 
type with an extremely high alcohol percentage of 11 % and originating from 
the Belgian brewery of Honsebrouck, bottoms up, i.e., John empties the beer 
bottle in one draught. Also assume that the total amount of alcohol at a 
certain moment, say at time 0t = , is completely absorbed in the body. 
a) Compute how many grams of ethanol are assumed present in John’s body at 0t = . 
b) Suppose that John’s weight is equal to 80 kg and that the amount of body water (in liter) is 

equal to 68 % of his weight (in kg). Compute the BAC level at 0t = . 
c) Suppose that John’s BAC level decrease 0,15 ‰ per hour. Fill out the BAC levels in the 

table below:  

t (in hours) 0 1 2 3 4 5 
BAC (in ‰)       
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d) Let nC  denote John’s BAC level after n hours ( 0,1,2,n = … ). Which phrase in the text in 

corresponds with the recursive formula 1 βn nC C −= −  and what value must be substituted 

in the constant β ? 

e) What direct formula for the blood alcohol concentration nC  can you write down? Is this 
mathematical formula applicable for every integer value of n?   

f) Suppose that you do not want to describe John’s BAC lever per hour, but per minute. 
Again, you could write the recursive formula 1 βt tC C −= − , but now with time t in minutes. 

What value of the elimination rate β must you take for John? 
 
The BAC formula that you used in the previous exercise is based upon 

 t=0BAC BAC β t = β t
D

V
= − × − × , 

where 
the amount of alcohol consumed (in gram),

the volume of the body water into which the alcohol is absorbed and distributed (in liter),

β the elimination rate (in gram per liter per hour),

the time (

D

V

t

=
=
=
= in hour) elapsed after consumption.

 

Note that the units used in the practical application do matter, in contrast with the usual 
approach in mathematics. 

The Swedish physiologist Erik P. Widmark (1889-1945) pub-
lished the above BAC formula in 1932 in a somewhat different 
form. He postulated that the volume of the total body water (in 
liter) is a fraction r of the body weight (in kilogram). Thus, the 
Widmark formula is:   

 BAC β t
D

r G
= − ×

×
 (2.1) 

where G is the body weight (in kg) and r is called the Widmark 
factor  (in L kg ). The Widmark factor is different for men and 
women. In general, women have more bones en fatty tissue, in 
which alcohol does not dissolve, so that for them the Widmark 
factor is lower. Reference values are: 

0.68 0.085 L kg (men), 0.55 0.055 L kg (women),r r= ± = ±  
The elimination rate is also individual (for instance, different for men and women, different 
for occasional, social drinkers and alcoholics, age-dependent, and so on.) and it depends on 
circumstances (for example, drinking before or after a meal). Its value is between 0.10 and 
0.20 1 1g L h− −⋅ ⋅ . The BAC formula exits for a long time and it is still used in forensic science 
and in ‘driving under the influence of alcohol’ trials in which expert witnesses are asked to 
extrapolate blood alcohol concentration at a previous time based on laboratory BAC results or 
to predict a BAC based on a particular drinking scenario.  
 
Exercise 4. What does 0.085 ±…  mean in the formula 0.68 0.085 L kg (men)r = ± ?  
 
Exercise 5. In exercise 2 you have thought some factor that could play a role in the time 
course of blood alcohol concentration. Which of these factors do you encounter implicitly in 
the Widmark formula and which one(s) not?   
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Exercise 6.  Many people use for alcohol usage in traffic the following rules of thumb: [1] 
One glass of some alcoholic beverage is eliminated from the human body in about 1 hour and  
[2] The maximum number of glasses of alcoholic drinks that you may consume and still be 
within legal limits is equal to two. Are these rules of thumbs in agreement with the Widmark 
formula? 
 
Exercise 7. In this exercise we will approach the Widmark formula in a different way. Let tC  

be the blood alcohol concentration at time t. Now look a small time step t∆  further. Assume 
that the BAC decreases per time step with a fixed amount β. 
a) What is the relation between t tC +∆ and tC ? 

b) Show that the difference quotient of tC  in this mathematical model is equal to β− .  

 
Exercise 8. Write down the Widmark formula for a person who consumed n standard glasses 
of some alcoholic beverage. Use in your formula the letter d for the amount of alcohol (in 
gram) in one standard glass. How could you adapt this formula if you want to take into 
account that it takes some time, say half an hour, before the alcohol is absorbed from the 
stomach into the total body water? 
 
Use your own version of the Widmark formula from exercise 8 in the next exercise. 
 
Exercise 9. John and Mary, who weigh both 75 kg, have something to celebrate and both 
drink in two hours time four glasses wine. What peak value of the blood alcohol concentration 
do you expect for each person, lacking more data?   
 
Exercise 10. Seidl, Jensen and Alt (2000) have investigated how the Widmark factor depends 
on height and weight of the person drinking alcohol. They found the following formula: 

 
(men) 0.3161 0.004821 0.004632

(women) 0.3122 0.006446 0.004466

r W H

r W H

= − × + ×
= − × + ×

 (2.2) 

where H is the body height (in cm) and H the body weight (in kg). From the most recent 
Dutch Growth Study (1997) we know that the average height and weight of a 21 year-old man 
of Dutch origin are 184.0 cm and 75.28 kg, respectively, and that the average height and 
weight of a 21 year-old woman of Dutch origin are 170.6 cm and 64.85 kg, respectively.  
a) What Widmark factors would follow for Dutch persons according to the three scientists 

mentioned?   
b) Use the Widmark factors found in the previous item to compute after how many standard 

glasses the average Dutch male and female person aged 21 years reach by alcohol 
consumption a blood alcohol concentration of 0.5 ‰? 

c) Use a calculator, ‘normal body data’, and the Seidl formulas to make a reasonable case for  
the statement that a person drinking the same amount of alcohol reaches a lower peak 
value  of BAC when his or her body weight would be larger. 

 
We will now build a computer model with the modeling tool of Coach 6 for the Widmark 

model and so a number of simulations to better understand the rime course of blood alcohol 
concentration and to investigate some drinking scenarios. We do not only carry out computer 
simulation for fun: we also compare results of computer simulations with experimental data 
collected in real experiments of alcohol consumption and evaluate the mathematical models.  

 
Coach activity 11. The screen shot of a Coach 6 activity in Figure 1 shows on the left-hand 
side a table of measured BAC levels for a test subject after drinking 3 glasses of red wine in 
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one draught on an empty stomach early in the morning. Note: these are data measured in real-
ity and not numbers that have been made up. The corresponding diagram to the right suggests 
that it takes indeed half an hour before the alcohol is absorbed and distributed in the body. 

 

Figure 1. Table and graph of BAC measurements after drinking 3 glasses of red wine. 

a) Open the corresponding Coach 6 activity and remove the data of the first half hour. 
b) The remaining data could lie on a straight line. Use the menu item Function Fit to find the 

straight line that matches best the data points. Add this line to the diagram. 
c) What is the equation of the line found in part b)? 
d) What hypothetical BAC formula have you found with Function Fit? Is your answer in 

agreement with the Widmark formula, combined with the Seidl formula (2.2), when you 
know that the test subject has a body weight of 85 kg and a height of 180 cm?   

e) What elimination rate have you found with Function Fit and is this in agreement with 
reference values?  

f) Save your work in a Coach 6 result file. 
 
Coach activity 12. The screen shot of a Coach 6 activity in Figure 2 shows on the left-hand 
side a graphical model for time course of BAC after alcohol consumption as described in the 
previous Coach activity . The computer model represents the following difference equation: 

 0BAC BAC β , BAC ,t t t
d

D
t

V+∆ = − × ∆ =  (2.3) 

where  
the amount of alcohol consumed (in gram),

the volume of the body water into which the alcohol is absorbed and distributed (in liter),

β the elimination rate (in gram per liter per hour),

the time (

D

V

t

=
=
=
= in hour) elapsed after consumption.

 

In the graphical model you specify which quantities in the mathematical model play a role 
(distinguishing between parameters and state variables), how they depend on each other, 
which formulas for quantities are used and which values parameters have. The graphical 
model is automatically translated into a system of equations that is used in a computer -
simulation, i.e., in running the model. In our model is the blood alcohol concentration a state 
variable that depends on time t. By default, the time variable does not explicitly appear in the 
graphical model, but only as icon  in the icon bar. After clicking on this icon you can 
change the name and the unit of the time variable. The dose D of consumed alcohol, the 
volume of distribution dV  and the elimination rate β  are parameters in the model: the two 
handles on both sides of the circle in the parameter icon suggest that these variables have a 
constant value during a simulation (unless they are manually changed during a simulation 
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run). The initial concentration is the quotient of D and dV ; we have introduces the auxiliary 
variable BAC_0 for this purpose. The dashed arrow from BAC_0 to BAC indicates that this 
auxiliary variable is used to specify the concentration at time t = 0. The double arrow away 
from the state variable BAC with a pointed arrow in the middle represents the rate of change 
of BAC, so to say (a piece of) the difference quotient of BAC. An outgoing arrow means that 
the formula contributes negatively to the difference quotient. The rate of change of BAC is in 
our simple model equal to the elimination rate β . 

 

Figure 2. Model and simulation of time course of BAC after drinking 3 glasses of red wine. 

Now that you know how to interpret the Coach 6 model of Figure 2, you can try to build it 
yourself: 
a) Build the Coach 6 model of Figure 2, do a simulation and plot the computed BAC against 

time.  
b) Even if you got in the previous part a straight line as graph of BAC versus time, the 

diagram does not have to look like the right-hand side of Figure 2.  To ensure that the 
graph hardly gets below the horizontal axis, you can specify in the model settings 
(stopwatch icon) a stop condition and choose a small time step. As stop condition you 
could choose: BAC 0≤ . In the same dialog window of model settings you can set the 
starting time of the model at half an hour. Adjust your model if necessary.  

c) Import from the result file that you created in the previous Coach activity the measured 
BAC levels as background graph and try to find such model parameters that the straight 
line of your computer model matches well with the measurement data. 

 
The assumptions used so far about absorption of alcohol in the human body are 

unrealistic. Two assumptions that we have used until now were: 
1. alcohol is immediately absorbed and distributed in the total body water upon intake; 
2. absorption and distribution is delayed for half an hour after consumption of an alcoholic 

drink, but after this half hour it is instantly present in the body fluids. 
Already somewhat better works the assumption that there is a certain time span 0T , say of 30 

minutes, in which the at time 0t =  consumed amount of alcohol gets into the systemic 
circulation of the human body with constant rate of absorption and is further distributed in the 
total body water. We will adapt the computer model of the previous Coach activity so that we 
can run the model starting from time 0t =  on without being blushed with shame. 
 
Coach activity 13.  
a) Assuming an absorption and distribution of alcohol in the human body over the total body 

water, which has a volume of distribution dV , with constant speed during a time span 0T  

after consumption of a certain amount D of alcohol, what must be this speed in the model 
during this time interval?  
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b) What is actually the corresponding difference equation if you adapt the Widmark model?  
c) Have a look again at the Widmark model implemented in Coach 6 for drinking 3 standard 

glasses of red wine in one draught, early in the morning on an empty stomach. But now 
specify in the graphical computer model the absorption of the alcohol into the systemic 
circulation of the human body via a short period (30 minutes) of absorption and distribu-
tion at constant speed.  

So you need in Coach 6 a function that takes some constant value during some time 
interval and is equal to zero elsewhere. Such a function exists in Coach 6 and is called 
Pulse. The graph of Pulse(x; b; l; h) as a function of x (Note: Coach uses semicolons to 
separate arguments of functions) looks as follows: 

 

Figure 3. Graph of the Coach function Pulse(x; b; l; h). 

Use this function to build your new model. Hereafter import the measured BAC levels 
from the result file that you created in Coach activity 11 as a background graph and try to 
find suitable model parameters so that your computer model matches rather well with the 
measured data. 

d) Although the absorption and distribution of alcohol in the human body is already better 
described in this new model, there remains one big shortcoming of this model concerning 
the absorption and distribution. By looking at your computed BAC curve, have you any 
idea what shortcoming it could be?  

 
Next you will model the results of an experiment in which a test subject emptied eight 

glasses of red wine, each glass with an estimated amount of 14 gram alcohol, in one draught 
every half hour. For the specification of the absorption and distribution of alcohol in the 
human body you can do this similarly to the work in the previous Coach activity, on the 
understanding that the RepeatedPulse function in Coach is very useful now. The graph of 
RepeatedPulse(x; b; l; i; h) as a function of x looks as follows: 

 
Figure 4. Graph of the Coach function RepeatedPulse(x; b; l; i; h). 

 
Coach activity 14.  
a) Adapt your Coach model from the previous activity to the experiment of a test subject 

emptying at regular intervals a glass of some alcoholic drink in one draught. Introduce as 
new parameters in your model the number of glasses emptied and the time interval 
between consecutive drinks. 

b) Import from the Coach 6 result file that belongs to the experiment with 8 glasses of wine 
the measured BAC levels as background graph and try to find such model parameters that 
your computed BAC curve matches reasonably well with the measurement data. Ensure at 
least that the results computed in your model and the measured BAC levels after drinking 
the final glass match well. The screen shot below may inspire you: 
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Figure 5. Screen shot of the Widmark computer model for regular consumption of 8 
                 alcoholic drinks, with measured BAC levels in the background graph. 

c) Watson et al. (1980) have refined the Widmark formula concerning the amount of total 
body water in the human body. They have taken age, body weight and body height into 
account for the determination of the volume of distribution. They have presented the 
following formulas amongst others: 

 
0.8 (men) 0.3626 0.1183 20.03,

0.8 (women) 0.2549 14.46,
d

d

V W AGE

V W

× = × − × +
× = × +

 (2.4) 

where W is the body weight in kg and AGE is the age in years. Adapt the model built in 
part b) to the usage of the Watson formulas for the volume of distribution dV . In order to 

compare the measured BAC level with computer simulations, you must know that the test 
subject was a 49 years old man.   

d) Use the model of part c) to simulate the time course of BAC for some drinking scenarios: 
[1] Consuming the same amount of alcoholic drinks but with sort or longer time intervals 

between drinks.  
[2] Drinking at a slower pace: 16 drinks every quarter of an hour but also with half of the 

amount per drink 
[3] Use another drinking scenario that interests you.  

3. Painless mathematics:  
    exponential model of the elimination of pain-alleviating drugs 
The way a substance is administered to the human body plays an important role in pharmaco-
kinetics. For example, the pain-alleviating drug morphine can be administered via various 
routes to a patient: orally, sublingually, or rectally (via a tablet or capsule), via injections 
(subcutaneous, intramuscular or venous) or via an infusion. This has consequences for 
absorption, distribution, and effect of the substance in the body. In an oral administration of 
morphine this substance must first pass the liver, but this organ lets only a fraction pass to the 
systemic circulation of the human body. In other words, the biological availability at oral 
administration of morphine is small (about 40 %), certainly in comparison with intravenous 
bolus administration, i.e., a rapid intravenous injection, which has a biological availability of 
almost 100 %. Figure 6 illustrates another example: de route how cocaine is used plays a big 
role in the time course of the concentration of the active substance in the blood plasma. By 
taking a shot and by smoking a high peak value of the plasma concentration is already 
reached after a few minutes, whereas oral administration only leads to an increase of plasma 
concentration after half an hour and the peak value is sometimes reached only after one hour. 
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Figure 6. Time course of plasma levels of cocaine after various routes of administration. 

In this section we will study a simple pharmacokinetic model for a single intravenous 
bolus injection of a pain-alleviating drug. We do this amongst other things on the basis of data 
obtained in a clinical study  (Camu et al., 1982) about the pharmacokinetics of alfentanil, a 
morphine-like painkiller and analgesic developed and produced by Janssen Pharmaceutica. 
Figure 7 shows the table and the graph of the mean plasma levels measured in the tests 
subjects in this study, who were given 120 µg alfentanil per body weight (in kg) as bolus in 30 
seconds into an antecubital vein. In Figure 7 is also shown a rather successful regression 
curve of the plasma levels. How we obtained such a nice mathematical description of the 
measured data will be revealed in this section. 

 

Figure 7. Plasma level (C) after a bolus injection of alfentanil and a regression curve. 

Let ( )C t be the plasma concentration of a drug at time t after the drug was rapidly injected  
into a vein and was rapidly distributed in the systemic circulation, so fast that we may  assume 
that at time 0t =  the maximum plasma concentration of the drug has already been reached. 
Hereafter we measure the plasma level at regular times 0, ,2 ,3 ,t h h h= … , with fixed time 

interval h. Let nC be the measured plasma level of the drug after n time intervals. We assume 

that the rate of change with which the plasma level decreases in a certain time interval is 
proportional to the plasma level at the beginning of the particular time interval: 

 1n n
n

C C
k C

h
+ − = − ⋅  (3.1) 

We speak of first-order kinetics with elimination rate k. It holds:  

 ( )0 1
n

nC C k h= ⋅ − ⋅  (3.2) 
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Exercise 15. Verify the correctness of formula 3.2. 
 
We rewrite formula 3.2: 

 ( ) ( ) ( )
1 1

0 01 1
n h

n h
h hC n h C k h C k h

⋅
⋅ ⋅  ⋅ = ⋅ − ⋅ = ⋅ − ⋅ 

 
 (3.3) 

  
The reason to rewrite the formula in this form (3.3) will become clear in the next exercise.  
 
Exercise 16. 
a) Take 1k = and check with a graphical calculator that for small values of h the expression 

1

(1 )hh− takes a value that is close to the number 0.3678794412. 
b) Take 2k =  and check with a graphical calculator that for small values of h the expression 

1

(1 2 )hh− ( )
1

1 2 hh−
 takes a value that is close to the number 0.1353352832. 

c) Take 0.5k = and check with a graphical calculator that for small values of h the expression 

( )
1

1 0.5 hh− ⋅  takes a value that is close to the number 0.6065306597. 

d) Take 1k = −  and check with a graphical calculator that for small values of h the expression 
1

(1 )hh+  takes a value that is close to the number 2.718281828. 
 

Thus, for small h it holds that 
1

(1 )hk h− ⋅ can be taken equal to some number g and that 
formula 3.3 can be rewritten as 
 ( ) 0 ,tC t C g= ⋅  (3.4)  

for a certain number g and times t take from the sequence 0, ,2 ,3 ,h h h… . But then we can use 
this formula also for any value of  time t. For positive k it holds that 0 1g< < . So it is a matter 

of exponential decay of the plasma level, where g is the growth factor per time unit and 0C  is 

the initial plasma level. There exists a relation between the growth factor g and the elimi-
nation rate k. Without proof or motivation we postulate that  
 kg e−=  (3.5) 
and  
 ( )lnk g= − , (3.6) 

where ln is a function called the natural logarithm and e 2,718281828≈ is called the base of 
the natural logarithm. The natural logarithm is a mathematical function that is available on 
your graphical calculator, just like the exponential function xe .  
 
 
Coach activity 17.  Equation 3.1 for the plasma level of a drug  
that is administered at time 0t =  as an IV bolus injection can be 
rewritten with a time stept△ as follows:  
 ( ) ( )( )C t t C t k C t t+ − = − ⋅ ⋅△ △  (3.7) 

for 0, , 2 , 3 ,t t t t= △ △ △ …   



 11 

a) Build a Coach model for this mathematical model and use it to compute plasma levels 
during10 minutes, taking 1t∆ =  as time step, 10,5mink −=  for the elimination rate and the 

initial concentration 0 10 mg LC = (immediately after administration of the drug). Plot the 
time course of the computed concentration. 

b) Check in the equations mode that the generated computer program corresponds with the 
difference equation 3.7. 

c) Decrease the time step to 0.1t∆ =  and let the computed concentration be stored during the 
simulation after every 10 time steps. The graph of the time course of the computed 
concentration differs from the one found in part a). How can you explain this? 

d) Now take the time step 0.01t∆ = and draw the graph of the computed concentration against 
time. Make an exponential function fit of the computed data, i.e., search for the most 
suitable parameter values a and b for which holds: computed concentration timea b= × . 
Explain the link between the parameter values found with the small time step and both the 
elimination rate and the initial concentration. 
 
The half-life is the time interval in which the concentration is halved. For a growth factor 

g you find the half-life T by solving the equation
1

2
Tg = . Then the concentration at time t can 

be written as follows: 

 ( ) 0

1

2

t

T
C t C

 
 
  = ⋅ 

 
 (3.8) 

Exercise 18. Verify the correctness of formula 3.8. 
 
Henceforth we denote the half-life T as 1 2t . So there exists a relation between the growth 

factor g and the half-life 1 2t . By the way, in the context of decrease of a quantity g is also 

called decay factor. 

 
1 2

1

1

2

t
g  =  

 
. (3.9) 

 
Exercise 19. Prove that from formula 3.9 follows 

 2
1/ 2

1
log g

t
= − . (3.10) 

For those who prefer a relation between decay factor and half-life in term of the logarithm 
with base 10: 

 10
10

1/ 2 1/ 2

log 2 0.301
log g

t t
= − ≈ −  (3.11) 

There also exists a relation between the elimination rate k and the half-life 1 2t : 

 1 2

ln 2 0.693
t

k k
= ≈ . (3.12) 

If you know from a substance the half-life 1 2t , then you can determine the value of the decay  

factor with the formulas 3.10 and 3.11, and you can use formula 3.12 to compute the value of 
the elimination rate k. 
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Sir James Black, the scientist 
who invented propranolol. In 
1988 he won the Nobel prize 
of Medicine for this achieve-
ment, but even more for his 
pioneering work in pharma-
cology  that lead to the basic 
principles of the science field. 
See also (Stapleton, 1997). 

Coach activity 20.  Propranolol is a beta-blocker this is 
used amongst other this to reduce blood pressure. Open the 
Coach activity in which data from a study about plasma 
concentrations after intravenous administration of propra-
nolol (Fagan et al., 1982) have already been tabulated. The 
test subject was a health young man with a body weight of 
82 kg, who get a dose of 4.1 mg administered via intra-
venous infusion with an infusion rate of 1 mg/min. We set 
time = 0 for the moment when the administration of propra-
nolol stops and we investigate the following data measured 
during some hours:  

time C 
h µg/L 
1 8.25 
2 6.46 
3 4.63 
4 4.03 
6 2.11 
8 1.41 

a) Make a diagram window in which the plasma level C is plotted against time and save 
what you have now in a result file (to be used in Coach activity 21). 

b) Make a function fit that matches a model of exponential decay (Hint: in Coach, this 
function fit is offered via the function type f(x)=ab^x+c. Let Coach first make an estimate 
of the parameter values and hereafter refine the intermediate result. Next set the 
coefficient c to 0 and place the checkmark to indicate that this parameter may not change 
anymore but has to stay fixed in any further refinement. In this way you get the best 
function fit of the form f(x)=ab^x. The screen shot below shows that the function fit, also 
known as regression curve, matches well with the measured data and that the concentra-
tion gets close to zero only after 24 hours. 

 
c) Read from the Create/Edit dialog of a table or diagram window the mathematical formula 

of the regression curve and determine the decay factor per hour and the initial concentra-
tion of propranolol. 

d) Compute the half-life propranolol with a graphical or scientific calculator. Is your value in 
agreement with the literature value of 2.8 h (Evans et al. 1973)? 

e) Coach 6 has not yet a graphics option for logarithmic scaling of axes. But as an alternative 
for logarithmic paper you can draw the graph of the logarithm of a quantity: 10log  is de-
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noted in Coach 6 as log. Make a new table and graph of the logarithm (with base 10) of 
the plasma level versus time.  

f) Determine the best straight line fit of 10log C  plotted against time. 

g) The directional coefficient of the previously found straight line is equal to 10log g . Use 
formula 3.11 and your calculator to compute the half-life. Is your value in agreement with 
the value found in part d of the activity? 

h) The straight-line regression curve of 10log C intersects the y-axis in 1.027y ≈  (check!). 

Use this value to compute with your calculator the initial concentration of propranonol. Is 
your value in agreement with the value found in part c of the activity? 

i) 4.1 mg propranolol has been administered to the test subject. Suppose that this person has 
5 liter blood. What initial concentration of propranolol do you then expect in the systemic 
circulation? Suppose that the concentration of propranolol in the blood is equal to 85 % 
the concentration of propranolol in the blood plasma, what value of the plasma level (in 
µg/L) would you expect immediately after the administration of the drug has stopped, 
under the assumption that no distribution in body water or tissues and no elimination takes 
place during administration of the drug? 

 
In the last two parts of the previous Coach activity a big contradiction seems to pop up: 

the plasma level of the pharmacon seems to deviate substantially from the concentration that 
can be computed from a realistic estimate of the amount of blood in which the substance 
circulates. Like in the case of alcohol metabolism, you must realize that a pharmacon after 
being absorbed into the systemic circulation is further distributed in the human body, for 
instance in the total body water, in the fatty tissues, or in complexes formed with tissue 
proteins. Thus, the volume in which the pharmacon is distributed, the volume of distribution, 
is much larger than that of the systemic circulation alone. The volume of distribution is the 
apparent volume dV  of the bodily compartment in which the pharmacon is distributed such 

that the initial concentration0C of the pharmacon in the sampling compartment (in most cases 

the blood plasma) for a given dose D can be computed by 

 0
d

D
C

V
= . (3.13) 

Pharmacologists also speak about the volume of distribution as the volume of the central 
compartment that would be required to provide the observed dilution of the loading dose of a 
pharmacon. The model that they use then is called in their jargon an open, one-compartment 
model and is symbolized by the following picture: 

 
Figure 7. Graphical representation of an open one-compartment model. 

This picture resembles the graphical computer model in Figure 8. 
 
Coach activity 21.   
a) Build the Coach 6 model of Figure 8, do a simulation run and plot the computed concen-

tration against time. Try to preselect parameter values that correspond with the time cour-
se of the propranolol concentration described in the previous Coach activity.   



 14 

b) Import the graph of the measured concentration as background graph from the result file 
that you created in the previous Coach activity. Try to find model parameters so that the 
curve of your computer model matches the measured data reasonably well. 

 

Figure 8. Graphical model in Coach 6 of first-order pharmacokinetics. 

Once again: the volume of distribution Vd is a fictitious volume linked to the mathematical 
model in use and that corresponds only in a few case has physiological meaning in terms of 
anatomic space as the real volume of blood plasma, total body water, or an organ. The volume 
of distribution is the apparent volume of the sampling compartment that must be considered in 
computation or estimation of the amount of drug in the body for the way in which the drug 
has been administered. For example, when two drug A and B are administered via an intrave-
nous bolus injection in an amount of 100 mg and the measured initial concentrations are 10 
mg/L and 1 mg/L, respectively, then the corresponding volumes of distribution are  
10 L and 100 L, respectively. In our example of propranolol we have estimated in initial con-
centration of 10.8 µg/L for a dose of 4.1 mg on the basis of measurements and under the 
assumption that the model of exponential decay applies. This corresponds with a volume of 
distribution Vd of almost 380 L. Such volume is incompatible with a human body! Yet plenty 
of such values for the volume of distribution of a drug can be found in the literature and are 
used in mathematical models. Fagan et al. (1982) have also measured the plasma level of 
propranolol shortly after administration of the drug: ten minutes after drug administration to 
test subjects in the experiment a plasma level of 17.0 µg/L was measured. This corresponds 
with a volume of distribution of 241 L. This matches better the reference value of 253 L. An-
other pharmacon with such a large volume of distribution is morphine: Vd is about 230 liter. 
 
Coach activity 22. Fagan et al. (1982) have also measured the plasma level of propranolol 
shortly after administration of the drug. More data for the same test subject as in Coach 
activity 20 have been collected and are listed in the table below  (now with time in minutes).  

time C 
min µg/L 

10 17.00 
20 14.32 
30 12.37 
60 8.25 

120 6.46 
180 4.63 
240 4.03 
360 2.11 
480 1.41 
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Open the corresponding Coach activity. 
a) Make a diagram window in which the plasma level C is plotted against time. 
b) Zoom in on the time interval between 60 and 480 minutes. Make a function fit that 

matches a model of exponential decay for the data you are currently looking at.  
c) Read from the Create/Edit dialog of a table or diagram window the mathematical formula 

of the regression curve and determine the decay factor per minute.  
d) Is your result in part c in agreement with the decay factor per hour, that you determined 

Coach activity 20 c. 
e) Zoom out to the whole dataset: You see that the exponential model does not match well 

with the dataset as a whole. Try to make a function fit that matches a model of exponential 
decay for the whole dataset (do not add the graph to the diagram). You will notice that this 
does not work well. 

f) Make a new table and graph of the logarithm (with base 10) of the plasma level versus 
time. How can you see from this graph that the exponential decay model for the time 
course of the plasma level after 10 minutes does not work well? 

g) A mathematical model that describes better the time course of the plasma level for the 
whole time interval in which data have been collected is a so-called biexponential model. 
The time course of the plasma level is then not described with one exponential function, 

but with two function of this kind: ( ) ( )1 1 2 2

time time
C A g A g= × + × . Often you can find suit-

able parameter values via the method of peeling functions (also known as ‘curve strip-
ping’). The steps are the following:  
[1] For large values of time (after 1 hour in our case) the concentration decays exponen-

tially. Determine for this time interval the decay factor g2 and the constant A2. 
[2] Substract the regression curve found in step [1] from the measured values. This yields 

a second dataset of residuals, with the contribution of the exponential decay removed. 
[3] The dataset of residuals found in step [2] can on its turn be fitted to an exponential 

decay model. This yields the decay factor g1 and constant A1. 
Try to make the biexponential model for the time course of the plasma level after intrave-
nous drug administration based on your intermediate result of part c in this activity.  
 
In the previous Coach activity we have seen that the biexponential model for the time 

course of a drug after an intravenous bolus injection describes the elimination of the drug 
better than the exponential decay model. The biexponential function 
 1 1 2 2( ) t tC t A g A g= × + × , (3.14) 

where g1 are g2 decay factors, actually describes two 
processes: (1) the distribution of the pharmacon from 
the systemic circulation into the tissue compartment 
or peripheral compartment and backwards (at a fast 
rate, thus small value of g1) and (2) the elimination of 
the drug from the body (slowly, thus g2 greater than 
g1), after the distribution of the drug in the body has 
been settled. You can also consider it as a model that 
consists of two compartments between which ex-
change of the drug takes places (see the figure to the 
right; parameters k12 and k21 determine the drug ex-
change). In this lesson material we will not pursue 
this further, but many-compartment models can easily 
be implemented in Coach 6. 
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Coach activity 23. Cannabis is more and more applied for therapeutic 
reasons and in particular for pain alleviation. The active substance is also 
known as THC. Open the corresponding Coach activity in which the data 
used in a study about elimination of THC from the human body  (Näf, 
2004) have already been tabulated. It concerns the time course of the 
plasma level of THC for test subjects who got a dose via intravenous 
administration (to be precise, 0.053 µg THC per kg body weight).1  

time C 
min ng/mL 

5 271.5 
10 95.6 
20 38.3 
60 20.1 

120 9.0 
240 5.0 
480 0.9 

a) Build a Coach model for the biexponential model of the time course of the plasma level of 
THC that matches well with the measured dataset. First describe the time course of the 
plasma level after 20 minutes with an exponential decay model and hereafter take the first 
two data point into account in the modeling process. 

b) Compute the half-life of each of the two phases in the elimination process (distribution,  
clearance) and compare your answers with those of the researcher: 2.47 and 54.0 minutes.  

 
Scientists do not confine to exponential and biexponential models. In pharmacokinetical 

studies they often make use of a triexponential model for the time course of the plasma level 
of a pharmacon after intravenous administration, too. The tri-exponential function 
 1 1 2 2 3 3( ) t t tC t A g A g A g= × + × + × , (3.15)  

where g1, g2 en g3 are decay factors, actually describes three processes: (1) a fast distribution 
of the pharmacon from the systemic circulation into the peripheral compartment (leading to a 
rapid decay, thus small g1), (2) elimination (a slow decay, 
so g2 is greater than g1) when the distribution of the 
pharmacon in the body is in near equilibrium, and (3) a 
slow rate-determining exchange of the pharmacon 
between a deep tissue compartment and the central 
compartment (leading to a very slow decay, thus g3 
greater than g2). So, the mathematical model consists of 
three compartments between which there is continuously 
an exchange of the pharmacon: see the figure to the right, 
in which the parameters k12 and k21 determine the 
exchange of the drug between the central compartment 
and the ‘rapid’ tissue compartment, and in which parame-
ters k13 and k31 determine the exchange of the drug 
between the central compartment and the ‘slow’ deep 
tissue compartment. Such a model is for example quite 
often used in pharmacokinetic studies of anesthesia and 
pain-alleviating drugs. It is the last term in the triexponential function that is causing the 
effect that a pharmacon long after administration has stopped is still available in low 

                                                
1 The last two data have been estimated from a graph in the research report. 
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concentration in the human body through delivery from the deep tissue compartment. This 
may explain the prolonged side effects of anesthesia that some patients experience. In the next 
Coach activity you can apply the triexponential model to intravenous administration of the 
painkiller Alfentanil and compare your results with those found by researchers.  
 
Coach activity 24.  Open the corresponding Coach activity in which 
the data used in a study about elimination of alfentanil from the 
human body  (Camu et al., 1992) have already been tabulated.  

time C 
min ng/mL 

2 565.0 
5 399.0 

10 302.0 
15 229.0 
30 145.0 
45 106.0 
60 81.3 
90 48.7 

120 43.8 
180 26.8 
240 17.7 
300 12.4 

a) Make a diagram window in which the plasma level C is plotted against time. 
b) Make a second window with the logarithm of C, i.e., 10log C , plotted against time. 

c) In the graph of 10log C versus time you can recognize the three phases of the triexponential 

model because the time interval can be split into three pieces for which the data points 
each seem to lie on a straight line. Which pieces in the time domain can you choose best 
for this purpose? 

d) Select the piece of the time domain that corresponds with the last part of the alfentanil 
elimination from the body and find the best straight-line fit. The directional coefficient of 
this line is equal to the logarithm of the corresponding decay factor. Read from the 
Create/Edit dialog of the diagram window the value of 10 3log g  and compute then the 
value of g3. 

e) Compute the half-life of the last part of the elimination of alfentanil and compare your 
answer with the literature value of 94 ± 38 min.  

f) Select the same piece of the time domain as in part d and fit an exponential model for the 
data points in this time interval. What decay factor do you find in this way and is your 
answer in agreement with the value determined in part d. 

g) Subtract the exponential function that describes the last part of the elimination phase from 
the measured concentration. Fit an exponential model for the next part of the time domain 
that you determined in part c and determine the decay factor g2. 

h) Peel the second exponential function from the intermediate result and determine the third 
exponential function in the triexponential model. What value of the decay factor g1 have 
you found? 

i) Plot the graph of your triexponential model in the diagram with the measured data points. 
j) Compute with a graphical or scientific calculator the half-lives that correspond with g1, 

g2, and g3, and compare them with the literature values 3.5 ± 1.3 min, 16.8± 6.4 min en 
94 ± 38 min. 
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We return to the exponential model of the elimination of a pharmacon after an intravenous 
bolus injection in order to discuss more pharmacokinetic indicators. You encountered already 
the terms volume of distribution Vd, elimination rate k, growth factor and decay factor g, half-
life t1/2, and biological availability (often denoted with the character F). Two important indi-
cators that are still missing are clearance (Cl) and area under the curve (AUC). These phar-
macokinetic indicators for drugs can be found in information texts that are registered by 
organization like the Dutch ‘College ter Beoordeling van Geneesmiddelen’ and the United 
States Food and Drug Administration (FDA); See for example the websites www.cbg-meb.nl,  
www.geneesmiddelenrepertorium.nl, www.fda.gov, www.druglib.com, and www.drugs.com. 
Also Wikipedia contains such information for many substances.With the pharmacokinetic 
properties of a drug you can in principle compute plasma level-time curves and you are pre-
pared to determine dosage regimens.  

The total body clearance of a pharmacon, in short clearance and denoted as Cl, is defined 
as the ratio of the amount of pharmacon eliminated from the body per time unit and the 
plasma level C. So, the unit van clearance is volume per time unit (L/h, mL/min, etc.), but 
clearance is often tabulated as the volume per time unit per 70 kg body weight. In terms of 
decay of the amount Dt of the pharmacon in the human body clearance can be described as  

 CltD
C

t
− = ×△

△

. (3.16) 

For an exponential model of the time course of the plasma level after intravenous bolus injec-
tion holds (see formula 3.7): 

 
C

k C
t

= − ×△

△

. (3.17) 

The ratio of the amount Dt of the pharmacon present in the body and the plasma level C is by 
definition equal to the volume of distribution Vd. Thus formula (3.16) can be rewritten as 

 
1

Cl
d

C
C

V t
× = − ×△

△

. (3.18) 

For an open one-compartment model with first-order elimination kinetics the clearance can 
then be determined via: 
 Cl dk V= × , (3.19) 

where k is the elimination rate. This formula c be rewritten, using formula 3.12, in terms of 
half-life t1/2: 

 
1 2 1 2

ln 2 0,693
Cl d dV V

t t

×= ≈ . (3.20) 

The total body clearance is a measure for the speed with which a pharmacon is removed 
form the human body. How this process takes place does not play a role. In case one wants to 
include the elimination routes, one distinguished in general drug excretion in the urine via the 
kidneys (renal clearance) and biotransformation via the level followed by excretion in the 
bile (hepatic clearance)  

The mathematical model of the time course of the plasma level plays an important role in 
formula 3.19. For the open one-compartment model after an intravenous bolus injection one 
can prove that the area under the plasma level-time curve for an infinitely long process, abbre-

viated with AUC, is equal to 
d

D

k V×
. This relation between AUC, dose D and clearance Cl is a 

special case of the following relationship that we can apply for any form of drug administra-
tion: 

 AUC
Cl

F D×= , (3.21) 
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where F is the bioavailability of the drug (F = 1 for intravenous bolus administration), D is 
the administered dose and Cl represents the clearance. For first-order elimination kinetics you 
can write this as 

 AUC
d

F D

k V

×=
×

. (3.22) 

The last formula can also be used to determine the bioavailability of a drug for any form of 
administration. For example for oral administration, compare the area under the curve in an 
oral administration with the AUC after intravenous bolus administration of the same dose: 

 , i.v.oraal
oraal

i.v. , oraal

AUC

AUC
d

d

V
F

V
= × . (3.23) 

Of course you cannot measure plasma level for an infinite amount of time to determine the 
AUC. In first-order elimination kinetics you can estimate the AUC by the area under the 
measured plasma level-time curve and add to this the quotient of the last measured plasma 
level and the elimination rate. 
 

In the below exercises and Coach activities we assume an open one-compartment model 
with fist-order elimination kinetics. Or stated differently, we assume an exponential model 
after intravenous bolus administration. 

 
Exercise 25.  Suppose that an 80-kg person is given a single intravenous bolus injection of a 
drug at a dose of 60 mg. The volume of distribution of the drug is equal to 100 liter / 70 kg 
body weight and the clearance is equal to 775 ml / min / 70 kg body weight 
a) Compute the elimination rate (in min-1). 
b) Compute the half-life (in hr). 
c) Compute the plasma level (in ng / mL) after six hours. 
d) What will happen if an alternative drug with the same volume of distribution is given at 

the same dose, but the clearance of the new drug is larger? What will happen with the 
initial concentration and the half-life?  

e) What will happen if an alternative drug with the same clearance is given at the same dose, 
but the volume of distribution of the new drug is smaller? What will happen with the 
initial concentration and the half-life?  

 
Coach activity 26. Open the corresponding Coach activity in which the dataset used in a 
study about the time course of the serum concentration of the antibiotic drug ceftazidime 
(Demotes-Mainard et al., 1993) has already been tabulated. Each patient in this study suffered 
from chronical renal insufficiency and was given 1 gram via intravenous administration. On 
the basis of the measurements you will determine with Coach and a graphical or scientific 
calculator some pharmacokinetic indicators and you will set up a simple dosage regimen. 

time C 
h mg/L 

1 50 
2 45 
4 38 

24 21 
36 14 
48 11 
60 8 
72 4 
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a) Make a diagram window in which the serum level C is plotted against time and save what 
you have until now in a result file (to be used in Coach activity 27). 

b) Determine the decay factor g per hour. 
c) Determine the elimination rate k (in h-1). 
d) Determine the half-life t1/2 (in hours). 
e) Use the computer model to estimate the serum concentration immediately after the injec-

tion has been given. 
f) Estimate the area under the curve (AUC in mg·L-1·h). 
g) Determine the clearance Cl (in L/h). 
h) Determine the volume of distribution Vd (in L). 
i) Suppose that the threshold value for drug activity is equal to 10 mg/L. After how many 

hours must the next doe be administered according to your model? 
j) After 24 hour the serum concentration is according to the measurements equal to 21 mg/L. 

Suppose that you administer the drug intravenously at the double dose (2 g), how long 
will it take according to your model before the serum concentration has decreased to the 
value of 21 mg/L? 

 
Coach activity 27.   
a) Build the Coach 6 model of Figure 9, do a simulation run and plot the computed concen-

tration against time. Try to preselect parameter values that correspond with the time cour-
se of the ceftazidime concentration described in the previous Coach activity.   

b) Import the graph of the measured concentration as background graph from the result file 
that you created in the previous Coach activity. Try to find model parameters so that the 
curve of your computer model matches the measured data reasonably well. 

 
Figure 9. Graphical model of first-order elimination pharmacokinetics of ceftazidime. 

4. Painless mathematics:  
a model of repeated intravenous administration 

Instead of a single intravenous bolus injection of a drug that is 
rapidly distributed in the human body, we will investigate in this section the effect of multiple 
doses of a drug. We consider a series of bolus injections with the same dose and administered 
in regular time intervals. Henceforth we denote the dosing interval as τ. 
 

Let us first simulate a practical case in Coach 6: administration of intravenous bolus injec-
tions of ceftazidime in a regular multiple-dosage regimen to patients who suffer from renal 
insufficiency. The next two Coach functions can make the implementation of the regular 
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dosing interval in the computer model easier: Pulse and RepeatedPulse. Pulse is a function 
that takes a fixed value during a certain interval and is equal to zero elsewhere. The graph of 
Pulse(x; b; l; h) as a function of x (Note: Coach uses semicolons to separate arguments of 
functions) looks as follows: 

 

Figure 10. Graph of the Coach function Pulse(x; b; l; h). 

The graph of RepeatedPulse(x; b; l; i; h) as a function of x looks as follows: 

 
Figure 11. Graph of the Coach function RepeatedPulse(x; b; l; i; h). 

 
Coach activity 28.   
a) Build the Coach 6 model of Figure 9, in case you have not done yet the corresponding 

activity, and do a simulation run using the following realistic parameter values for cefta-
zidime: D = 1000 mg, Vd = 20.6 L and k = 0.0337 h-1. 

b) Adapt your model so that it mimics the one in Figure 12 and do a simulation run with a 
dosing  interval τ equal to 24 hours. Take the number of bolus injections equal to 10 and 
plot the serum level-time graph for 300 hours. The instantaneous increase of serum level 
after each intravenous bolus administration is implemented via the RepeatedPulse 
function and the drug administration is brought to a stop via a conditional program 
structure. The computer code that does the job (in case the time step dt is small enough) 
looks as follows: 

If t >= (number_of_injections-1)*tau Then 
  intake_rate := 0 
Else 
  intake_rate := RepeatedPulse(t; -dt; dt; tau; C0/dt) 
EndIf 

 

  
Figure 12. Graphical model of repeated intravenous administration of ceftazidime. 

 
Answer the next questions by using the simulation tool in the menu of the model window. 
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c) What do you notice in the serum level-time graph?    
d) What happens when you halve the dosing interval τ ? 
e) What happens when you double the dosing interval τ ? 
f) What happens when you choose the dosing interval τ equal to the half-life t1/2? 
g) What happens when you start with an initial concentration of 100 mg/L? (for example, 

because you change the dosage regimen.) 
h) How would the serum-level-time curve look like if the 3rd bolus injection is forgotten and 

compensated by a double dose in the 4th injection?  
 

Figure 12 illustrates that with a repeated administration of a pharmacon, with equal doses 
given at equal time intervals, the blood concentration fluctuates after some time between two 
levels, the so-called peak level and trough level. What a physician often wants to achieve at 
prescription of a medicine is that  
o the peak level remains under the minimum toxic concentration (MTC), 
o the trough level is above the minimum effective concentration (MEC, a threshold level for 

drug activity), and that 
o the therapeutic window (range of concentration between MEC and MTC) is reached as 

fast as possible. 
Mathematical models can help to find the best dosage regimen. The following exercises will 
illustrate this. 
 
Exercise 29. Let us look at a theoretical example in which we can easily compute the change 
of drug concentrations. Let us assume that the dosing interval is equal to the half-life of the 
pharmacon, i.e., 1 2τ t= . Let nC  be the plasma level immediately after administration of the 

( )th
1n +  intravenous bolus injection and the rapid distribution of the pharmacon in the body. 

The dose that is given with each injection is assumed to have the effect that the plasma level 
is increased with the initial concentration C0.  

a) Verify that 1 0

3

2
C C=  and 2 0

7

4
C C= . 

b) Explain that that the concentration1nC +  depends in the following way on the value of nC : 

1 0

1

2n nC C C+ = + , for all n. 

c) What is the plasma level after 5 doses? 

d) Prove:
2

0

1 1 1
1

2 2 2

n

nC C
      = + + + +             

⋯  

e) Prove: 0

1
2

2

n

nC C
  = −     

. 

f) For large value of n the plasma level fluctuates between a minimum and maximum level 
in the period between two doses. Which trough and peak level do we mean here? 

 
Let us now look at the general case. 
 
Exercise 30. We take an arbitrarily selected value for the dosing interval τ and we use the 
exponential model with decay factor g for the drug elimination. We define τf g= . Again, nC  

is the plasma level immediately after administration of the( )th
1n + intravenous bolus injection. 
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a) Verify that ( )1 0 1C C f= +  and ( )2
2 0 1C C f f= + + . 

b) Explain that that the concentration1nC +  depends in the following way on the value of nC : 

1 0n nC f C C+ = ⋅ + , for all n. 

c) Prove: ( )2
0 1 n

nC C f f f= + + + +⋯ . 

d) Prove:
1

0

1

1

n

n

f
C C

f

+−= ⋅
−

. 

e) In the limit case of an infinite number of doses the blood concentration reaches a range in 
which it fluctuates between two levels, the so-called peak level and trough level, in the 
period between consecutive doses. Determine explicit mathematical formulas for these 
concentrations? We denote the peak level as maxC  and the trough level as minC . 

f) Suppose that the first given dose is chosen such that the plasma level at time 0t =  is 
immediately equal tomaxC . Prove that the plasma level immediately after each injection is 

equal to maxC . This suggests that for any initial blood concentration a so-called steady state 

is reached. 
g) Prove that during steady state the following holds:  

 1 2

τ

max

min

2
tC

C

 
 
 
 =  (4.1) 

h) What happens with the fluctuations in the concentration when the dosing interval is de-
creased? 

 
The logarithmic mean2 of the peak and trough level in steady state is called the steady 

state concentration Css. It can be proved mathematically that the steady state concentration is 
equal to the mean plasma level in a doing interval during steady state and that the steady state 
concentration can be determined by the following formula: 

 
τ Clss

D
C =

⋅
, (4.2) 

where D is the dose of the pharmacon given per intravenous bolus injection, τ is the dosing 
interval, and Cl is the clearance of the pharmacon. From this formula is immediately clear that  
the steady state concentration is doubled when you double the dose D or halve the dosing 
interval. The time at which steady state is reached is about 4 or 5 half-lives and does not 
depend on the dosage or the dosing frequency.  

Formula (4.1) enables us to estimate the maximum dosing interval τmax for a pharmacon of 
which the therapeutic window, i.e., MTC and MEC, is known:  

 
max

1 2

τ

max

min

2
tCMTC

MEC C

 
 
 
 ≥ = , 

or in other words 

 
10

max 1 2
10

log
τ

log 2

MTC

MEC
t

 
 
 = ⋅  (4.3) 

τmax is the maximum dosing interval for which the drug concentration stays within the 
therapeutic window, but the dosage regimen may not be practical with real patients. Dosing 

                                                
2 The logarithmic mean of two values A and B is defined as( ) ( )lnB A B A−  
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frequencies are often once a day, twice a day, or three times per day, and then only during 
daytime, perhaps around meals, to minimize the inconvenience for patients.  
 
Exercise 31. A new medicine in this exercise has a volume of distribution 41.7 LdV = , body 

clearance Cl 3.4L / h= , and a therapeutic window of 10-20 mg/L . 
a) Estimate the steady state concentration on the basis of the therapeutic window in. 

b) Determine the dosing speed
τ

D
 necessary to reach the steady state concentration of part a. 

c) Estimate what maximum dosing interval τ is allowed.  
d) What is according to you a dosing frequency that works in practice and what is then the 

required dosage? 
e) Compute the peak and trough level that corresponds with this dosing frequency and dose. 
f) What initial dose must be given so that the steady state is immediately reached? 

5. Painless mathematics:  
    a model of intravenous infusion 

Coach activity 32. In Exercise 31 you have investigated the pharma-
cokinetics of a new medicine that is administered via repeated 
intravenous bolus injections. Pharmacokinetic parameters were: 
volume of distribution 41LdV = , clearance Cl 3.4L / h= , and a therapeutic window of 10-20 

mg/L. From these data you have computed the steady state concentration and hopefully found 
that it is equal to 14.4 mg/L, you determined the elimination rate constant k as 10.0815hk −=  

and the half-life as 1 2 8.5ht = , and you may have concluded that a repeated dose of 400 mg is 

required every 8 hours. 
a) Build a computer model like the one shown below with which you can run a simulation of 

a repetitive dosage regimen of 12 injections. 
b) You can also administer the drug via intravenous infusion. This type of drug 

administration can be considered as a repeated dosage regimen via intravenous bolus 
injection with a high dosing frequency but with a small dose each time. Compare the 
simulation run part a) with a simulation run in which the dosing interval and the dose are 
chosen 100 times smaller and the number of injections is 100 times larger (So: dosing 
interval = 0.08 h, dose D = 4 mg and the number of injections = 1200). Is the steady state 
concentration that is reached in this way in agreement with the theoretical value of 14.4 
mg/L? 

 
Figure 13. Graphical model that describes the time course of the concentration after intra-
venous infusion via a repeated administration with high dosing frequency and small dose. 
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Obviously, a better approach is to describe the pharmacokinetic process with a model in 
which intake of the drug at constant speed is combined with first-order elimination kinetics.  

We begin with a description of a discrete model. Let ( )A t and ( )C t be the amount and con-

centration of a drug, respectively, at time t. We assume that the infusion starts at time 0t =  
with a constant infusion rateinfR (mass/time, e.g. µg/min). We measure the plasma level at 

regular times 0, , 2 ,3 ,t h h h= … , with fixed time interval h. Let nA  and nC  be the measured 
amount and concentration of the drug, respectively, after n time intervals. We also assume 
that that the rate with which the drug concentration decreases in a time interval is proportional 
to the concentration at the start of the time interval. Recalling that the constant of proportion-
ality is in fact the clearance Cl, we obtain the following equations: 

 1
inf Cln n

n

A A
R C

h
+ − = − ⋅  (5.1) 

and 

 1
inf

n n
n

A A
R k A

h
+ − = − ⋅  (5.2) 

where k is the elimination rate is. The clearance Cl and the elimination rate k are related to 
each other via the volume of distribution Vd in the equationCl dk V= ⋅ . 

 
Exercise 33.  
a) Using formula (5.1), reason why the amount of the drug in the body initially increases and 

hereafter flattens to a constant value. When the amount of drug in the body remains nearly 
constant we speak about a steady state. 

b) Give the direct mathematical formula for the concentration ssC of the drug when the 
steady state has been reached. 

 
Exercise 34.  

Define inf
n n

R
B A

k
= − .  

a) Prove that the value of 1nB +  depends in the following way on the value ofnB : 

1n n
n

B B
k B

h
+ − = − ⋅ , for all n. 

b) Find the direct mathematical formula fornB . 

c) What mathematical formula can you write down fornA ? 

d) Prove that the height of the steady state level is only determined by the infusion rate and 
the body clearance of the pharmacon. 

e) Prove that in case the time step is chosen very small and we thus investigate in reality a 

continuous process the time course of the concentration is given by ( )( ) 1 t
ssC t C g= ⋅ − . 

f) After how much time (with half-life as time unit) has the plasma level reached 87.5% of 
the steady state value? 

g) From what quantities does the time that it takes to reach the steady state depend mostly?  
h) What loading dose can you give at the beginning of an intravenous infusion so that the 

steady state concentration is reached immediately? 
 
Coach activity 35. Build in Coach a model for an intravenous infusion of a pharmacon, for 
which the infusion time is finite but long enough so that steady state is reached. Take the 
infusion rate equal to 20 mg/h, the volume of distribution equal to 10L and the elimination 
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rate equal to 0.2 h-1. Do a simulation run on the basis of these parameters and plot the graph of 
concentration against time. Investigate what happens with the results of your computer model 
when you vary pharmacokinetic parameters such as clearance, infusion rate and elimination 
rates and check each time if the result of a simulation is in agreement with your expectations. 
 
Exercise 36. A physician want to administer a drug via intravenous infusion to a patient with 
a body weight of 80 kg. According to professional literature is the concentration for which the 
activity of the pharmacon is optimal equal to 14 mg/L, is the half-life of the drug 2 hours, and 
is the volume of distribution equal to 1.25 L per kg body weight. The drug is available as a 
solution with concentration 150 mg/mL. 
a) What is the infusion rate (in mg/h) that is required to reach the optimal concentration? 
b) What is the infusion rate (in mL/h) if the available solution is used? 
c) What loading dose do you advise to the physician?  

6. Mind-expanding mathematics:  
    a simple model of oral administration  
Until now we have hardly paid any attention to the way the intake of a 
pharmacon into the body takes place; we have only looked at administration via an 
intravenous bolus injection, in single or multiple dosage regimens, and via intravenous 
infusion. However, most medicines are administered differently. The oral administration, i.e., 
swallowing of tablets and pills or drinking of a medicinal drink, is the most common 
administration of a pharmacon. The drug first enters the stomach. After some delay the 
pharmacon enters the gastrointestinal (GI) tract; the delay is visible in the plasma level-time 
graph because there is an initial lag period (tlag) after oral administration that occurs before 
drug concentration is measurable in plasma (due to stomach-emptying time and intestinal 
motility). From the small intestine the pharmacon gets through a diffusion process via the 
portal vein into the liver. The absorption process follows in this step predominantly first-order 
kinetics because of passive diffusion. The liver lets only a fraction of the amount of drug pass 
untransformed into the systemic circulation of the body. Via the general blood circulation the 
pharmacon is further distributed in the human body and can have its therapeutic effect.  

As soon as the absorbed pharmacon is distributed in the body it also undergoes the process 
of elimination. At the beginning the drug entry into the systemic circulation exceeds drug 
removal by distribution to tissues, metabolism, and excretion, and consequently the plasma 
level rises. At maximum plasma level the drug entry and removal are the same. After a while, 
when the absorption comes to the end, drug removal is the dominating process; the drug 
concentration decreases in the course of time. The graph below (Figure 14) illustrated the 
typical shape of the concentration-time curve for an orally administered drug. 

In the Dutch pharmacological literature, the bioavailability is defined as the fraction of the 
administered pharmacon that enters unchanged into the systemic circulation. Bioavailability is 
in formulas mostly denoted by the capital character F. Besides the fraction of the pharmacon 
that appears in the systemic circulation, the absorption rate plays a role in the therapeutic 
quality of a drug. The American definition of bioavailability takes both the rate and extent to 
which the pharmacon is absorbed and becomes available in the systemic circulation into 
account. Then the term absolute bioavailability is reserved for the fraction of the pharmacon 
absorbed. A low bioavailability of a pharmacon may be caused by poor solvability of the drug 
in water (leading to incomplete dissolution of the substance), by dissociation of the drug in 
the gastro-intestinal tract, by incomplete absorption because of inadequate administration, by 
‘first-pass metabolism’ in the liver (i.e., biotransformation after first or multiple passes 
through the liver), by interaction with other substances in the body (e.g., other drugs), and so 
on. The bioavailability of a pharmacon that is sensitive to fast biotransformation during 
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passage through the surface of the intestinal mucosa and passage through the liver will be 
low. For example, 60 to 80 % of an oral dose of the beta-blocker propranolol will be blocked 
during the first pass through the liver. 

To determine the bioavailability of a pharmacon one usually takes the time course of the 
concentration in the blood, serum or plasma as starting point and in particular the area under 
the concentration-time curve (AUC, ‘area under the curve’). The area under the curve from 
zero until infinity is a much-used measure for the biological activity of a drug. The formula 
used for a one-compartment model is: 

 
AUC Cl

F
D

×= , (6.1) 

where D is the administered dose and Cl is the clearance of the pharmacon. 
As measures of the absorption rate of a pharmacon one usually takes the peak value of the 

plasma level maxC  and the time maxt it takes to reach the peak value (see Figure 14). 

 
Figure 14. Hypothetical concentration-time graph after oral administration of a pharmacon. 

 
Henceforth in this section we will assume an open one-compartment model with first-

order kinetics for both the absorption and elimination process, with absorption rate constant 

ak  and elimination rate constant k for the drug. This means that we can use again the pharma-

cokinetic indicators that were introduced in the sections about intravenous bolus administra-
tion and intravenous infusion. Under the condition that the absorption rate constant is greater 
than the elimination rate constant, he time course a the plasma level of a pharmacon can be 
described mathematically by a biexponential function, with one term for absorption and an-
other one for elimination: 

 ( )( ) t ta
a

d a

kF D
C t g g

V k k

⋅= ⋅ ⋅ −
−

, (6.2) 

where ag  is the growth factor for absorption and g is the decay factor for elimination (for 

further information: 10ln 2.301 logk g g= − ≈ − ×  en 10ln 2.301 loga a ak g g= − ≈ − × ). We will 

not really use this formula to model measured data via regression, but it underpins the 
function fit of data with two exponential functions via the method of peeling functions (also 
known as curve stripping), just as we have done in Exercises 22 and 23. Mathematical 
formulas for the peak value of the plasma levelmaxC and the time maxt  it takes to reach this 

peak value can be derived, but is beyond our grasp: 
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a
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d

kF D
C

V k

−⋅  = ⋅ 
 

 (6.3) 
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 (6.4) 

The time for peak drug concentration depends in this mathematical model only on  the 
absorption rate constant and the elimination rate constant, or in other words on the growth 
factor for absorption and the decay factor for elimination. Furthermore, the peak drug concen-
tration depends on the bioavailability, the administered dose and the volume of distribution. 
More precisely, the formula for the peak drug concentration implies that the peak value is 
proportional to the administered dose and the bioavailability and inversely proportional to the 
volume of distribution. When absorption is (almost) completed, formula 6.2 for the plasma 
concentration gives almost the same results as the formula for exponential decay. 

To be honest, we do not really need formulas 6.2 to 6.4 because we have a powerful 
alternative at our disposal: a discrete dynamical model that can be easily implemented in 
Coach. The graphical representation of the one-compartment model for oral administration of 
a drug following first-order absorption and elimination kinetics is displayed in Figure 15: 

 
Figure 15. Graphical model of oral drug administration following first-order kinetics. 

The above picture represents the following: The pharmacon is absorbed from the gastro-
intestinal tract (GI tract) and partly enters via the liver into the systemic circulation.  For the 
decrease of the amount of pharmacon in solution in the GI tract we use an exponential model 
with decay rate constant ak . Thus:  

 GI tract
GI tracta

A
k A

t
= − ⋅

△

△

, (6.5) 

where GI tractA is the amount of pharmacon in the GI tract. The velocity with which it enters the 

systemic circulation has oppositie sign and only a fraction F of the pharmacon passes the GI 
tract and the liver. The formula for the absorption component of the rate of change of the 
amount of  pharmacon in the central compartment is equal to the following: 

 central compartment
GI tract

absorption

a

A
F k A

t

 
= ⋅ ⋅ 

 

△

△

 (6.6) 

The first-order elimination kinetics is described mathematically by the following formula: 

 central comparment
central compartment

elimination

A
k A

t

 
= − ⋅ 

 

△

△

 (6.7) 

Adding formulas 6.6 and 6.7 leads to a formula for the rate of change of the pharmacon in the 
conetral compartment and, in combination with formula 6.5, to two coupled equations that 
describe mathematically the rate of change of the pharmacon in the GI tract and the central 
component: 

 

GI tract
GI tract

central compartment
GI tract central compartment

a

a

A
k A

t
A

F k A k A
t

 = − ⋅

 = ⋅ ⋅ − ⋅


△

△

△

△

 (6.8) 

Division by the volume of distribution dV of the central compartment gives the system of 

equations in terms of the amount of pharmacon in the GI tract and the plasma level C: 
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A corresponding graphical computer model in Coach 6 is shown in Figure 16. In this compu-
ter model, the plasma level of a pharmacon has been computed for the following pharmaco-
kinetic parameters: oral dose = 500 mg, 11.0 hak −= , 10.2 hk −= , 10 LdV = , and 0.5F = . 

 
Coach activity 37.   
a) Build the Coach 6 model of Figure 16, do a simulation run for the above parameter values 

and plot the computed concentration against time.  
b) Investigate the influence of some parameter choice on the peak drug concentration and the 

time it takes to reach the peak value. 

 

Figure 16. Graphical computer model and simulation of oral drug administration. 

 
In the following Coach activities we will look at some concrete examples of pharmaco-

kinetic models and computer simulations coming from scientific studies. In this way you get 
an impression of what can be learned from clinical studies. 
 
Coach activity 38. Let us first practice with the method of peeling functions to verify that the 
model for oral drug administration shown in Figure 16 leads to a biexponential function for 
the plasma level. 
a) Build the Coach 6 model of Figure 16, do a simulation run for the above parameter values 

and plot the computed concentration against time.   
b) Zoom in on the right part of the concentration-time curve, when absorption is almost 

finished, and make a function fit of the curve using an exponential function. In other 
words, fit the selected part of the graph with a function of the form xy a b= ⋅ . Determine 
the elimination rate constant k from the calculated value of b. 

c) Subtract the exponential function that describes the last part of the elimination phase from 
the concentration. Fit an exponential model for the resulting curve and determine the 
growth factor ga and corresponding absorption rateak . 

d) Add the function fits found in the previous parts of the activity to obtain a biexponential 
approximation of the time course of the drug concentration after oral administration. 
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Coach activity 39. Tetracycline HCl is an antibiotic that is 
mainly used to cure bacterial infection diseases, but in combi-
nation with other drugs also for treatment of acne. Open the 
Coach activity in which data from a study about serum 
concentrations after oral drug administration of 250 mg after 
breakfast (Wagner, 1967) have already been tabulated.  

time C 
h µg/mL 
1 0.7 
2 1.2 
3 1.4 
4 1.4 
6 1.1 
8 0.8 
10 0.6 
12 0.5 
16 0.3 

a) Approximate the plasma concentration with a biexponential function using the method of 
peeling functions and determine in this way the absorption rate constant and the 
elimination rate constant. Also determine the half-life of the pharmacon. 

b) Determine with the results of part a) and with formule 6.4 the time at which the peak drug 
concentration is reached. Is your answer in agreement with the concentration-time curve? 

c) The biexponential function that you obtained via the curve-stripping method in part a) is 
not necessarily the best regression curve with a biexponential function, but it forms the 
starting point for other methods to find more appropriate parameter values. Shah (1976) 
has found the following function fit ( ) 2.817 0.8617 3.559 0.4888t tC t = × − ×  for the above 
data set. Draw the graph of this function in the diagram window and compare it with the 
approximation that you found in part a).  

d) Estimate the AUC (recall: AUC ≈ area under the measured curve + the last measurement 
of the concentration divided by the elimination rate constant). 

e) Taking a biovailability of 70%, determine the volume of distribution and the clearance of 
the orally administered pharmacon using formula 6.1 and the result found in part b).  

f) Using the approximation found in part a), estimate the lag time (lagt ) and approximate the 

serum concentration with a biexponential function of the form 

( )lag lag( ) t t t ta
a

d a

kF D
C t g g

V k k
− −⋅= ⋅ ⋅ −

−
. 

 
Coach activity 40. Build the Coach 6 model of Figure 16 and do a simulation run for 
parameter values that match well with the measured data for oral administration of 
tetracycline HCL given in the previous activity (hint: also think of the lag time tlag). 
 

Coach activity 41. Let us study again the pharmacokinetics of the beta-blocker propranolol 
(see activities 20-22), but this time for oral administration. Open the corresponding Coach 
activity in which data from a study about plasma concentrations after simultaneous oral and 
intravenous drug administration (Olanoff et al., 1986) have already been tabulated. The test 
subject was a healthy young man with a body weight of 82 kg, who received an oral dose of 
80 mg.  
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time C 
h µg/L 
0.5 9.15 

1 44.82 
1.5 56.29 

2 51.33 
3 36.43 
5 22.89 
7 13.06 
9 7.21 

a) Approximate the plasma concentration with a biexponential function and determine the 
absorption and elimination rate constants. Compute the half-life of the orally administered 
pharmacon, too. 

b) Determine with the results of part a) the time at which the peak drug concentration is 
reached. Is your answer in agreement with the concentration-time curve? 

c) Estimate the AUC. 
d) Taking a bioavailability of 60%, determine the volume of distribution and the clearance of 

the orally administered pharmacon.  
 
Coach activity 42. Build a Coach 6 model based on oral administration with first-order 
pharmacokinetics and do a simulation run for parameter values that match well with the 
measured data for administration of propranolol given in the previous activity. 
 
Coach activity 43. Theophylline is a drug that is used for patients suffering from COPD and 
asthma. Open the corresponding Coach activity in which data from a study about plasma 
concentrations after oral administration of 320 mg theophylline (Pinheiro & Bates, 1995) have 
already been tabulated. The bioavailability of theophylline is almost 100 %. The therapeutic 
window for orally administered theophylline is 8 – 20 mg/L.  

time C 
h mg/L 

0.00 0.00 
0.25 4.86 
0.57 7.24 
1.12 8.00 
2.02 6.81 
3.82 5.87 
5.10 5.22 
7.03 4.45 
9.05 3.62 

12.12 2.69 
24.37 0.86 

a) Approximate the plasma level with a biexponential function and determine the absorption 
and elimination rate constants. What is the half-life of propranolol after oral administra-
tion? 

b) Determine with the results of part a) the time at which the peak drug concentration is 
reached. Is your answer in agreement with the concentration-time curve? 

c) Estimate the AUC. 
d) Determine the volume of distribution and the clearance.  
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Coach activity 44.   
a) Build a Coach 6 model based on oral administration with first-order pharmacokinetics and 

do a simulation run for parameter values that match well with the measured data for 
administration of theophylline given in the previous activity. 

b) Adjust your computer model in such way that it model regular oral administration of 
theophylline three times per day, every eight hours. 

c) Suppose that the patient forgets once to take a pill. What advice do you give to the patient: 
swallow the next time 2 pills or proceed with the therapy as if nothing has happened. 

 
Coach activity 45. Hollister et al. (1981) have studied the pharmacokinetics in the human 
body of the active substance in Cannabis, called1∆ -tetrahydrocannabinol (in short: 1∆ -THC, 
THC), for various ways of drug administration. In the figure below (taken from Agurell et 
al.,1986) is shown the time course of the concentration after oral administration of 20 mg 1∆ -
THC. In the diagram you can also see that the strongest feeling of ‘being high’ (on a scale 
from 0 tot 10) only occurs one to two hours after peak drug concentration. The tabulated 
concentration values have been obtained by reading the graph as best as possible.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) Use the method of peeling function to describe the distribution and elimination of THC 
mathematically with a biexponential function. 

b) What value for the elimination rate constant did you find in part a) (or were you able to 
calculate on the basis of your result). How does your value compare with the literature 
value of 0.235 h-1. What is the corresponding half-life? 

c) Approximate the difference between the measured concentration and the biexponential 
approximation of the distribution and elimination phase with an exponential function. Use 
this to describe the measured concentration with a triexponential function of the form 

2 2 3 3 1 1
t t ta g a g a g× + × − × , 

where the last term corresponds with the absorption phase. 
d) Estimate the lag time tlag , using the result found in part  c),  and compare it with the litera-

ture value of about 25 minutes. 
  
Coach activity 46. Willis et al. (1979) have studied the pharmacokinetics in the human body 
of dicloflenac (sodium), a pharmacon for alleviating menstruation pain, for various ways of 
drug administration. Open the corresponding Coach activity in which data from this study 
about plasma concentrations after oral administration of 50 mg have already been tabulated. 
They are mean normalized values of 7 female students of medicine.  

time C 
h µg/L 
0.5 2.8 

1 5.5 
1.5 4.4 

2 3.8 
2.5 3.1 

3 2.6 
4 2.1 
5 1.8 
6 1.4 
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time C 
h µg/mL 
1.5 0 
2.0 0.046 
2.5 2.014 
3.0 0.694 
3.5 0.257 
4.0 0.137 
4.5 0.089 
5.0 0.053 
5.5 0.035 
6.0 0.025 
6.5 0.012 
7.0 0.008 
8.0 0.005 
9.0 0.002 

a) Use the method of peeling function to describe the distribution and elimination of 
diclofenac mathematically with a biexponential function. 

b) What value for the elimination rate constant did you find in part a) (or were you able to 
calculate on the basis of your result). How does your value compare with the literature 
value of 0.66 h-1. What is the corresponding half-life? 

c) Approximate the difference between the measured concentration and the biexponential 
approximation of the distribution and elimination phase with an exponential function. Use 
this to describe the measured concentration with a triexponential function of the form 

 2 2 3 3 1 1
t t ta g a g a g× + × − × , 

where the last term corresponds with the absorption phase. 
e) Estimate the lag time tlag , using the result found in part  c),  and compare it with the litera-

ture value of about 1.9 hours. 
f) Estimate the AUC and compare it with the literature value of 1,67 µg·mL-1·h. 
a) The bioavailability of diclofenac is equal to 50% beause of first-pass metabolism in the 

liver. Determine the volume of distribution and the clearance. Compare your answer for 
clearance with the literature value of 263 ± 56 mL/min. 

 
Coach activity 47. Like amphetamine, methamphetamine is sometimes sold under the name 
of speed. Methamfetamine is the same as methylamphetamine and is also called yaba, crystal 
(meth) or ice. Methamphetamine works for about 12 hours. Its user feels him/herself 
temporarily indefatigable and euphoric. When the pharmacon has lost its effect a crash 
follows: the users feels depressed and tired. The effect of methamphetamine is stronger and 
more addictive than that of amphetamine. Use of the drug may cause brain damage. Open the 
corresponding Coach activity in which data from a study (Cook, 1991) about plasma 
concentrations after oral administration of 0.250 mg/kg body weight (on average 21 mg) have 
already been tabulated.  

time C 
h µg/L 
0.5 0.5 
1.0 15.5 
1.5 30.0 
2.0 35.5 
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2.5 36.0 
3.0 38.5 
3.5 34.5 
4.0 35.5 
5.0 33.5 
6.0 32.0 
8.0 29.0 

Make a graphical computer model that describes this dataset with an open, one-compartment 
model for which first-order kinetics applies for absorption, distribution and elimination. First 
find appropriate parameter values via regression and compare your results with the following 
literature values of a biexponential model: tlag = 0.524 h, absorption rate constant ka= 1.083 h-1, 
elimination rate constant k = 0.0680 h-1, half-life t1/2 = 3.1 h, clearance Cl = 496 mL/min, 
Cmax=39.8 µg/L and tmax = 3.1 h.  Schepers et al. (2003) report the following values of 
pharmacokinetic indicators: tlag = 1.1±0.5 h, t1/2 = 11.1±7.2 h, Cl = 33.5±15.9 L/h, AUC = 
468.1±151.8, Cmax = 32.4±7.7 µg/L and tmax = 7.5±3.4 h. Build hereafter the graphical model, 
run a simulation and check whether the computer model matches well with the dataset. 
 
Coach activity 48. Ecstacy or XTC, with the chemical substance 
name MDMA, belongs to the family of amphetamines, but it has 
next to its energizing effect also a psychotomatic effect. XTC is 
primarily used during weekends and feasts. MDMA was synthesized 
for the first time in 1898 by the firm Merck Pharmaceuticals as side 
product in the synthesis of another chemical substance and patented 
in 1914. Subsequently, the drug was forgotten until the early 
seventies, when ecstacy ‘resurfaced’ for psychotherapeutic purposes. 
But this usage is not popular anymore because of negative side effects. In the early eighties a 
new musical style emerged in the dance club Warehouse in Chicago. Some musicians 
swallowed XTC pills and started in this way the use of ecstacy for recreational purposes. In 
November 1988, XTC was put on the list of hard drugs in the opium act. Since then the 
popularity of XTC has only grown: in 2001 13% of young adults in the age between 20 and 
24 years had at least once used ecstacy and in some groups (early school leavers, frequent 
visitors of bars, clubs and feast) percentages were in 2003 between 35 and 50 % (van Laar et 
al., 2006). The Netherlands is an important country for the production and distribution of 
ecstasy. By the way, the interest in therapeutic usage of ecstasy, for example with patients in 
advanced stage of cancer disease, has increased again. Longstanding and frequent use of 
ecstacy or any other party drug that contains MDMA in combination with other substances 
has negative effects like depressions, psychoses, serious brain damage (in particular loss of 
memory), liver and/or kidney damage (Jager, 2006). Open the corresponding Coach activity 
in which data from a study (Mas et al., 1999) about plasma concentrations after oral admini-
stration of 125 mg MDMA have already been tabulated.  

time C 
h µg/L 

0.25 0.0 
0.5 19.2 

0.75 74.6 
1.0 125.0 
1.5 200.0 
2.0 223.1 
3.0 215.4 
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4.0 192.3 
6.0 157.7 
8.0 130.8 

10.0 115.4 
24.0 38.5 

Make a graphical computer model that describes this dataset with an open, one-compartment 
model for which first-order kinetics applies for absorption, distribution and elimination. First 
find appropriate parameter values via regression and compare your results with the following 
literature values of a biexponential model: absorption rate constant ka =  2.125 ± 1.100 h-1, 
elimination rate constant k = 0.0923 ± 0.043 h-1, half-life t1/2 = 8.73 ± 3.29 h, lag time tlag = 
0,42 h, area under the curve AUC(0-24h) = 2623.7 ± 572.9 µg·L-1·h, AUC(0- ∞) = 3190.7 ± 
1953.2 µg·L-1·h, peak plasma level Cmax = 236.4 ± 58.0 µg/L and tmax = 2.4 ± 0.98 h. Assume 
a bioavailablity of 84% (Yang et al, 2006; Cone & Huestis, 2007) for the calculation of the 
clearance and volume of distribution. Build hereafter the graphical model, run a simulation 
and check whether the computer model matches well with the dataset.  

7. Mathematics under influence:  
    more realistic models of intake and clearance of alcohol  
In the second section you became familiar with a linear model for the intake and clearance of 
alcohol in the human body, viz., the Widmark model. The formula for the blood alcohol 
concentration (BAC) that corresponds with the simplest version of this model in which only 
elimination is modeled is equal to  

 t=0BAC BAC β t = β t,
d

D

V
= − × − ×  (7.1) 

 

 t=0BAC BAC β t = β t
D

V
= − × − × , 

where 
the amount of alcohol consumed (in gram),

the volume of the body water into which the alcohol is absorbed and distributed (in liter),

β the elimination rate (in gram per liter per hour),

the time (

D

V

t

=
=
=
= in hour) elapsed after consumption.

 

Widmark postulated that Vd is equal to the product r W⋅ , where W is the body weight and r is 
the so-called Widmark factor. The Widmark factor is individual and depends primarily of the 
body composition. Reference values are for men 0.68 (with standard deviation 0.085) and for 
women 0.55 (with standard deviation 0.055). The lower value for women can be explained 
because they have in general a larger percentage of fatty tissue than men and thus less body 
water into which alcohol can dissolve.  

In Exercise 13 you have taken absorption into account in the Widmark model: you have 
investigated how the assumption that there exist a certain time span T0, of say 30 minutes, in 
which the at time t = 0 consumed amount of alcohol is absorbed with constant absorption rate 
into the central blood circulation en further distributed in the total body water works in 
practice. Maybe you have not obtained a result similar to the one shown in the screen shot 
below. The measured data come form a real experiment in which a test subject drank 3 
standard glasses of an alcoholic beverage in one draught early in the morning on an empty 
stomach. 
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Figure 17. Linear model of intake and clearance of alcohol in the human body. 

In this simple mathematical model two weak point catch the eye: (1) The abrupt transition 
from intake to elimination of alcohol in the human body and (2) the unrealistic behavior of the 
model curve that could lead in principle to negative BAC levels and does not match well with 
measurements of low BAC levels. The first minus can we  take away by incorporating the 
absorption of alcohol into the systemic circulation via a model of exponential decay from the 
gastrointestinal tract. For taking away the second minus we must switch to more realistic, 
nonlinear models. This is what we will do in this section. 

7.1. First-order absorption kinetics 
We assume that alcohol is absorbed via the gastrointestinal tract and gets via the portal vein 
through the liver into the systemic circulation.  For the decrease of alcohol from the 
gastrointestinal tract we use an exponential decay model with elimination rate ak . Thus:  

 GI tract
GI tracta

A
k A

t
= − ⋅△

△

, (7.2) 

where GI tractA is the amount of alcohol in the gastrointestinal tract. The rate of change with 

which the alcohol gets into the systemic circulation has opposite sign and we assume that all 
alcohol passes the gastrointestinal tract and the lever unchanged. In terms of a mathematical 
formula, the absorption component of the rate of change of the amount of alcohol in the 
central compartment, which consists of the systemic circulation and the highly perfused 
tissues, is equal to 

 central compartment
GI tract

absorption

a

A
k A

t

 
= ⋅ 

 

△

△

 (7.3) 
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The zero-order elimination kinetics according to the Widmark model is expressed in mathe-
matical language as: 

 central compartment

elimination

A
b

t

 
= − 

 

△

△

, (7.4) 

where b is a constant. Adding (7.3) and (7.4) gives the formula for the rate of change of the 
amount o alcohol in the central compartment and, together with formula (7.2), a set of 
equations that describe together the rate of change of the amount of alcohol in the 
gastrointestinal tract and the central compartment: 

 

GI tract
GI tract

central compartment
GI tract

a

a

A
k A

t
A

k A b
t

 = − ⋅

 = ⋅ −


△

△

△

△

 (7.5) 

Division by the volume of distribution Vd of the central compartment leads to the following 
set of equations for the amount of alcohol in the gastrointestinal tract and the blood alcohol 
concentration: 

 

GI tract
GI tract

GI tract

BAC
β

a

a

d

A
k A

t
k

A
t V

 = − ×

 = × −


△

△

△

△

 (7.6) 

Here β is the elimination rate. A corresponding graphical computer model in Coach 6 is 
shown in Figure 18. In this example, BAC is computed using the following pharmacokinetic 
parameters:  

dose = 30 g, 16 hak −= , 1β 0.2 h−= , 44 LV = . 

It is still about the experiment in which a test subject empties three glasses of red wine in one 
draught early in the morning on an empty stomach. 

 

      Figure 18. Computer  model and simulation of alcohol metabolism with first-order 
absorption kinetics and zero-order elimination kinetics.    

This model gets simpler if you consider the quotient of the amount of alcohol in the gastro-
intestinal tract and the volume of distribution Vd. Let us call this the concentration CGI tract. The 
set of equation is then rewritten as: 
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GI tract
GI tract

GI tract
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β

a

a

C
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 = − ×

 = × −


△

△
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△

 (7.7) 

Now the rate of change of CGI tract is opposite to the absorption component of the rate of 
change of BAC. This fits the following graphical description of a compartmental model: 

 

Figure 19. Two-compartment model of alcohol metabolism. 

Figure 20 shows an implementation of this two-compartment model in Coach 6, together with 
the result of a simulation with measured data in the background. As initial value of CGI tract we 
choose the quotient of the amount of alcohol consumed and the volume of distribution.  

 

Figure 20. Coach implementation of a two-compartment model of alcohol metabolism. 

Coach activity 49. In this activity you use the measured BAC levels of the experiment in 
which a test person empties three standard glasses of red wine in one draught early in the 
morning on an empty stomach. You model the intake and clearance of alcohol in Coach 6 
with a model of first-order absorption kinetics and zero-order elimination kinetics. 
a) Build the graphical model of Figure 18 and do a simulation with parameter values that fit 

the imported measurement data in the background (A Coach result file with measured 
BAC levels is made available for this purpose). 

b) Build the graphical model of Figure 20 and do a simulation with parameter values that fit 
the imported measurement data in the background (A Coach result file with measured 
BAC levels is made available for this purpose). 

 
In the next Coach activity you will use measured data from an experiment in which a test 

subject empties three standard glasses of red wine in one draught early in the morning on an 
empty stomach: one at the start of the experiment, one after 40 minutes, and the third drink 50 
minutes later. The intake and clearance of alcohol is described with a model of first-order ab-
sorption kinetics and zero-order elimination kinetics. Each consumption of an alcoholic drink 
has an immediate effect on the value of the state variable CGI tract in the mathematical model.  

Unit now we have implemented sudden changes in Coach 6 via the Pulse function and via 
the RepeatedPulse function (see Coach activity13 and 14). But when the sudden changes in 
the state variables can be counted on the finger of one hand, then is an implementation via 
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discrete events the easiest approach. In the graphical modeling tool of Coach 6 exists an icon, 
viz., a rhomb with a thunderbolt inside, that represents an event and in which arrows indicate 
which state variables change because of the occurrence of the event and on which variables 
these changes depend. Look at Figure 21 below in which a screen shot of a graphical model 
and results of a simulation with real data in the background are visible. Behind each events 
icon is a piece of computer code hidden that describes exactly what should change in the 
simulation as soon as the event occurs. In the modeled alcohol experiment there are two 
discrete events: consumption of a drink after forty and after ninety minutes. In both cases the 
concentration CGI tract must suddenly be increased with the quotient of the amount of alcohol 
present in the glass and the volume of distribution. The computer code for the event drink_2 is 
for example: 

Once (t>40) Do 
  C := C + C_per_drink 
EndDo 

 

 

Figure 21. Graphical model of intake and clearance of alcohol via discrete events. 

 
Coach activity 50. Build the graphical model of Figure 21 and do a simulation with 
parameter values that fit the imported measurement data in the background (A Coach result 
file with measured BAC levels is made available for this purpose). Much better results than 
shown in Figure 21 cannot be achieved: the measured BAC levels are closely after intake of 
alcohol always greater than the simulation results. The main reason is that the mathematical 
model used is in fact too simple is to describe all effect of alcohol kinetics well. For this one 
needs amongst other things more compartments in the mathematical model (see Heck, 2007).  

7.2. Nonlinear kinetics of alcohol clearance 
In the Widmark model it is assumed that the elimination rate is constant. Of course this cannot 
be the whole story because then the blood alcohol concentration would be negative after some 
time. In reality this cannot happen and we have avoided this in our computer models by 
introducing a stop condition of ending the simulation when the blood alcohol concentration 
becomes smaller or equal to zero. Figures 20 and 21 show that the BAC after intake of 
alcohol seems to decrease at high BAC levels with a constant rate, but not anymore when 
BAC level get small. Thus we have two reasons for improving the mathematical model with 
respect to elimination. We will investigate three models. 

7.2.1. A combination of zero-order and first-order elimination kinetics 
An exponential decay of BAC after alcohol consumption, as we have applied in previous sec-
tions on pharmacokinetics, does not lead to a satisfying model because BAC measurements 
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really show that the rate of change is nearly constant at high BAC levels and does not follow 
an exponential decay course. A simple adaptation of the Widmark model is switch to an ex-
ponential model only when the blood alcohol concentration gets less than some threshold 
value. An important issue to take into account in this case is to make sure that the BAC curve 
constructed is as smooth as possible. 
 
Coach activity 51. In this activity you use the measured BAC levels of the experiment in 
which a test person empties three standard glasses of red wine in one draught early in the 
morning on an empty stomach. You model the intake of alcohol with a model of first-order 
absorption kinetics. You model the clearance of alcohol with a model of first-order elimina-
tion kinetics in case the BAC level is less than or equal to the threshold value δ and with  
zero-order elimination kinetics given by the following equations: 

 

GI tract
GI tract

GI tract

GI tract

β if BACBAC
BAC if BAC

a

a

a

C
k C

t
k C

k C kt

δ
δ

 = − ×

 × − >
 =  × − × ≤ 

△

△

△

△

 (7.8) 

where ka is the absorption rate, k is the first-order elimination rate for BAC levels less than or 
equal to the threshold value δ and β is the zero-order elimination rate in case BAC is greater 
than the threshold δ. 
a) Prove that for a given zero-order elimination rate β and a given threshold value δ you only 

get a smooth BAC curve if you choose the first-order elimination rate equal to 
β

δ
. (Hint: 

smoothness means that the rate of change of BAC according to linear Widmark model and 
the rate of change of BAC according to the model of exponential decay are equal to each 
other when the BAC level is equal to the threshold value δ). 

b) Build a graphical model with combined zero-order and first-order elimination kinetics and 
do a simulation with parameter values that fit the imported measurement data in the 
background (A Coach result file with measured BAC levels is made available for this 
purpose). To inspire you and to show that such a model is also realizable we show below a 
screen shot coming from a simulation based on this mathematical model.  

 

7.2.2. The Wagner model  
You may of course ask whether the rate of change of BAC cannot be described in a satisfying 
way with a single mathematical function. The graph of such a function should look like a 
straight line through the origin for small values and approach some constant value.  A rational 



 41 

function of the form ( )
a x

f x
b x

⋅=
+

, with positive parameter values for a and b satisfies these 

criteria. Wagner has described a model that predicts in this way the blood alcohol 
concentration for the first time in 1972. Just like the Widmark model it is in fact an open one-
compartment model, but the difference is that the elimination of alcohol is described by the 
so-called Michaelis-Menten kinetics. This means that after alcohol absorption, the change in 
the blood alcohol concentration is given by the following formula:  

 max BACBAC

t BACd
m

v
V

k

⋅⋅ = −
+

△

△

, (7.9) 

where dV  is the volume of distribution, mk  is thee Michaelis-Menten constant andmaxv is the 

maximum elimination rate. In the common terminology of pharmacokinetics we deal with a 
models in which the clearance Cl is given by the following rational expression: 

 max

BACm

v
Cl

k
=

+
. (7.10) 

When the BAC level is high, then the elimination rate is almost equal to the maximum 
elimination ratemaxv (about 140 mg/min) and the graph of BAC against time is nearly a straight 

line. The curvature of the BAC curve is clearly visible when the BAC level reaches half of the 
maximum elimination rate. At that moment BAC is equal to km and this value is mostly 
between 5 and 50 mg/L. 
 
Coach activity 52. Apply the Wagner model to the measurements in the experiment in which 
a test person empties three standard glasses of red wine in one draught early in the morning on 
an empty stomach. Assume first-order absorption kinetics.  

7.2.3. The Pieters model 
Pieters et al. (1990) modeled alcohol clearance in humans with a semi-physiological three-
compartment model. Their model considers the central compartment, in which alcohol is 
metabolized following Michaelis-Menten kinetics, the stomach and the small intestine. The 
alcohol goes into the stomach first, hereafter into the small intestine, and finally from there it 
is absorbed into the bloodstream and rapidly distributed in the central compartment. For the 
last two mentioned compartments they specify first-order absorption kinetics. The scheme 
below illustrates the model. 
 

 

Figure 22. Scheme for the Pieters model of alcohol intake and clearance.  
 

The model equations are: 

3 max1 1 2 1
1 1 2 2 2 2 32 2

1 1 3

, , ,
1 1 m

C vC k C k
C C k C k C C

t a C t a C t k C
= − ⋅ = ⋅ − ⋅ = ⋅ − ⋅

+ ⋅ + ⋅ +
△△ △

△ △ △

 

with initial conditions 
 [ ] [ ]1 2 3 0(0), (0), (0) ,0,0 ,C C C C=  
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where C0 = D0 / V, the initial amount of alcohol D0, divided by the volume of distribution V of 
the central compartment, and where C1, C2, and C3 are the alcohol concentrations in the 
stomach, small intestine and central compartment, respectively, related to the volume of 
distribution of the third compartment. Suitable parameter values for an experiment in which a 
test subject drank 28,5 g alcohol early in the morning on an empty stomach are tabulated 
below (Pieter et al., 1990): 

  Average values 
parameter unit male female 

maxv  1 1g l h− −⋅ ⋅  0.470 0.480 

mk  1g l−⋅  0.380 0.405 

0C  1g l−⋅  0.455 0.703 

1k  1h−  5.55 4.96 

2k  1h−  7.05 4.96 

a 2 2l g−⋅  0.42 0.75 

Table 1.  Parameter values for the Pieters 3-compartment model. 

The first differential equation in the Pieters 3-compartment model, which models emptying of 
the stomach, does not represent a simple first-order process, but a feedback control is built-in 
that depends on the instantaneous concentration in the stomach, C1. The parameter a in the 
quadratic term of the denominator determines whether gastric emptying is faster (negative a) 
or slower (positive a) than the first order rate k1 under normal conditions. So, the effect of an 
empty or full stomach on alcohol clearance can be taken into account mathematically (Wedel 
et al., 1991). By the way, food promotes alcohol clearance, even when alcohol intake takes 
place via an intravenous infusion (Hahn et al., 1994). The Pieters model cannot explain this.  
 
Coach activity 53. Apply the Pieters model to the measurements in the experiment in which a 
test person empties three standard glasses of red wine in one draught early in the morning on 
an empty stomach. Also draw the graphs of the computed alcohol concentrations in the 
stomach and the small intestine.  
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