Swilling, shooting and swallowing

1. Introduction

Stimulants like alcohol, caffeine and nicotine, lalgo hallucinogenic drugs like cannabis,
mushrooms and ecstasy do a lot to your body. Heevesting this is in itself, we will not dis-
cuss the damaging effects of such biologicallyvec8ubstances to the human body in this
lesson material. What will the lessons be about? @ention goes tpharmacokinetics, the
science field that deals with the extent and speedhich a body absorbs, distributes, and
eliminates substances. You will study simple matuwgal models that describe the time
course of the concentration of medicines and samiglin blood or urine. This will also give
you an impression of how a dosage regimen in tleertpdrug use is established and of the
risk of overmedication. Although the intake andackce of a pharmacon, i.e., the active in-
gredient of a therapeutic drug or a stimulanth® human body or the animal body is a con-
tinuous process, we will choose a discrete mathealapproach. In this way you can build
and simulate in the computer learning environmesdcdb 6 various mathematical models and
compare results from computer simulations with emiations measured in reality.

2. Mathematics under influence:
a linear model of alcohol clearance

The active ingredient of an alcoholic drank is atfiabut to make things easy we will use
mostly the generic name “alcohol” and speak of labt@learance in the human body. In the
first model we restrict ourselves to the eliminat@f alcohol from the body. For the moment
we will not take into account how alcohol gets itlte bloodstream and is further distributed
in the human body over the body water after consiompf an alcoholic drink. In other
words, we do as if alcohol is absorbed immediaireiy the body system after consumption
and distributes super-fast via the bloodstreamtiméadbody water.

The concentration of alcohol in the human body bandeter-
mined by measuring the concentration in a bloodpdarar by ana-
lyzing exhaled air with an breath-alcohol measunenuevice. The
blood alcohol concentration is abbreviated as BAC. Keep in mind'
that despite its name, the BAC is nothing else tihanalcohol con-
centration in the total body water. The concertratf alcohol in
exhaled air is coupled with the BAC via a matheoatformula. It
is this formula that is used in breath-alcohol nieasient devices to
indicate the measured BAC value (also referrestBAC level). To
the right you see a picture of the Drager AlcotsiO, the breath
analyzer that we have used in experiments to dadiat.

Exercise 1. Various units are used for BAC level. The most nwn unit is promille (%o):
BAC (in%,) = amount of ethanol (in grgm). .
amount of total body water (in lite
a) Why do we speak here abquromille (per 1000 parts)?
b) Fill out: BAC (in %,)=...xBAC (in mg/ mL).
c) Ethanol has a molecular weight of 46.08 g/mol.dieisce literaturemmol/ L is frequent-
ly used as unit of BAC. Fill ouBAC (in9%,) =...x BAC (inmmoJ L)

d) Driving under influence is a misdemeanor. At wh&@Blevel it is illegal in the Nether-
lands to drive a vehicle (also a bike or motorbikep engage in traffic? Find on the




Internet at what BAC level the driving license oflainken driver of a motor vehicle is
confiscated?

The picture to the right suggests that the amotiata-

hol entering the human body when drinking a glafss

beer is the same as the amount when drinking & gias
red wine or a glass containing a cocktail drink.eTh
measure of capacity of a glass fits to the sortinnfk.

Beer is in a large glass, wine in a medium sizeadghlnd

gin in a small glass. In this way standard beesgl

contains as much alcohol as a standard wine @malatd =
gin glass. Breezers are sold mostly in a bottla can. For a breezer there exists no standard

glass. A Dutch standard glass in the cateringstrgitfor alcoholic drinks contains about 12

mL ethanol. The liquid density of alcohol at a tergiure of 17C is equal to 0.79¢/mL.

Use these data to answer the following questions:

e) The volume of a standard glass of lager with antait percentage of 5 % is equal to 25
cL. How many grams of alcohol contains a stand#dsgfor this kind of beer? 3

f) How many standard glasses are in a beer can of 88tk an alcohol percentage =
of 5 %?

g) Henceforth we assume that a standards glass centbgirdefinition 10 gram
ethanol. Suppose that you buy a Bacardi Breezdr witn and fruit taste in a g
bottle with contents of 27.5 cL and an alcohol patage of 5.6 %. How manyg ==
grams of alcohol contains this bottle and with hoany standard glasses is this ==
equivalent? o

h) The alcohol percentage of gin is 35 %. Computevitiame capacity of a standard gin
glass.

We will build a simple mathematical model with whigou can easily determine the BAC
level after consumption of alcoholic drinks and paedict the time course of the BAC level.

Exercise 2. What factors could play a role in the maximal BA&wdl and in the time course
of the BAC level? Always indicate whether you exXpawariable to increase or decrease the
maximal BAC level, and whether you expect it toespep or slow down changes in alcohol
concentration.

Exercise 3. Assume that John, how unrealistic it may seermkdra whole

beer bottle of size 75 cL containing Kasteelbieori8l, a beer of quadruple = e

type with an extremely high alcohol percentagelo?d and originating from | S

the Belgian brewery of Honsebrouck, bottoms up, dehn empties the bee E@TE :

bottle in one draught. Also assume that the totabunt of alcohol at a -

certain moment, say at tinte= 0, is completely absorbed in the body.

a) Compute how many grams of ethanol are assumedmrieséohn’s body at =0.

b) Suppose that John’s weight is equal to 80 kg aatittte amount of body water (in liter) is
equal to 68 % of his weight (in kg). Compute the®Bkvel att =0.

c) Suppose that John’s BAC level decrease 0,15 %o @er. lirill out the BAC levels in the
table below:

t (in hours) 0 1 2 3 4 5
BAC (in %o)




d) Let C, denote John’s BAC level afterhours (1=0,1,2,..). Which phrase in the text in
corresponds with the recursive formulq =C__, —f and what value must be substituted
in the constanpg ?

e) What direct formula for the blood alcohol concetitmaC, can you write down? Is this
mathematical formula applicable for every integaiue ofn?

f) Suppose that you do not want to describe John’s BeM@r per hour, but per minute.
Again, you could write the recursive formd@a=C,_, —f, but now with timet in minutes.

What value of the elimination rafemust you take for John?

The BAC formula that you used in the previous eiserés based upon
BAC =BAC_, —pxt :5—[3xt,

where
D =the amount of alcohol consumed (in gram),

V =the volume of the body water into which the alcasalbsorbed and distributéa liter),
B =the elimination rate (in gram per liter per hour),

t =the time {(n hour) elapsed after consumption.
Note that the units used in the practical applcatdo matter, in contrast with the usual
approach in mathematics.

The Swedish physiologist Erik P. Widmark (1889-1pg&b-
lished the above BAC formula in 1932 in a somewdifferent
form. He postulated that the volume of the totatlypavater (in
liter) is a fractionr of the body weight (in kilogram). Thus, th
Widmark formula is:

D

rxG
whereG is the body weight (in kg) andis called the Widmark
factor (in L/kg). The Widmark factor is different for men an
women. In general, women have more bones en faityd, in
which alcohol does not dissolve, so that for thém Widmark
factor is lower. Reference values are:

r =0.68+ 0.085 Il kg (men),r = 0.56 0.055 L kg (wome

The elimination rate is also individual (for instan different for men and women, different
for occasional, social drinkers and alcoholics,-dgpendent, and so on.) and it depends on
circumstances (for example, drinking before orraftemeal). Its value is between 0.10 and
0.20 g [h™". The BAC formula exits for a long time and it #llsised in forensic science
and in ‘driving under the influence of alcohol’als in which expert withnesses are asked to
extrapolate blood alcohol concentration at a previime based on laboratory BAC results or
to predict a BAC based on a particular drinkingsce.

BAC =

—pxt (2.1)

Exercise4. What does..+0.085 mean in the formula =0.68+ 0.085 IL kg (mer?

Exercise 5. In exercise 2 you have thought some factor thatdcplay a role in the time
course of blood alcohol concentration. Which ofsthéactors do you encounter implicitly in
the Widmark formula and which one(s) not?



Exercise 6. Many people use for alcohol usage in traffic thikofeing rules of thumb: [1]
One glass of some alcoholic beverage is eliminated the human body in about 1 hour and
[2] The maximum number of glasses of alcoholic kisithat you may consume and still be
within legal limits is equal to two. Are these rsilef thumbs in agreement with the Widmark
formula?

Exercise 7. In this exercise we will approach the Widmark fotenin a different way. LeC,
be the blood alcohol concentration at tim&low look a small time stepit further. Assume

that the BAC decreases per time step with a fixadunt.
a) What is the relation betwedd,,, andC, ?

b) Show that the difference quotient ©f in this mathematical model is equal+f.

Exercise 8. Write down the Widmark formula for a person who smmedn standard glasses
of some alcoholic beverage. Use in your formula lditerd for the amount of alcohol (in
gram) in one standard glass. How could you adaigt fdirmula if you want to take into
account that it takes some time, say half an hbefpre the alcohol is absorbed from the
stomach into the total body water?

Use your own version of the Widmark formula fronemise 8 in the next exercise.

Exercise 9. John and Mary, who weigh both 75 kg, have somethingelebrate and both
drink in two hours time four glasses wine. Whatkpealue of the blood alcohol concentration
do you expect for each person, lacking more data?

Exercise 10. Seidl, Jensen and Alt (2000) have investigated timawWidmark factor depends
on height and weight of the person drinking alcofibley found the following formula:
r(men) = 0.316% 0.0048ZW + 0.00468H 2.2)

r(women)= 0.3122 0.006446N + 0.004466

whereH is the body height (in cm) and the body weight (in kg). From the most recent

Dutch Growth Study (1997) we know that the averagight and weight of a 21 year-old man

of Dutch origin are 184.0 cm and 75.28 kg, respetti and that the average height and

weight of a 21 year-old woman of Dutch origin a5 cm and 64.85 kg, respectively.

a) What Widmark factors would follow for Dutch persoascording to the three scientists
mentioned?

b) Use the Widmark factors found in the previous itencompute after how many standard
glasses the average Dutch male and female persed 28 years reach by alcohol
consumption a blood alcohol concentration of 0.5 %0?

c) Use a calculator, ‘normal body data’, and the Skidhulas to make a reasonable case for
the statement that a person drinking the same anafualcohol reaches a lower peak
value of BAC when his or her body weight wouldléeer.

We will now build a computer model with the modelitool of Coach 6 for the Widmark
model and so a number of simulations to better rgtdied the rime course of blood alcohol
concentration and to investigate some drinking ades. We do not only carry out computer
simulation for fun: we also compare results of catep simulations with experimental data
collected in real experiments of alcohol consumptad evaluate the mathematical models.

Coach activity 11. The screen shot of a Coach 6 activity in Figurdndws on the left-hand
side a table of measured BAC levels for a testesutlgfter drinking 3 glasses of red wine in



one draught on an empty stomach early in the mgriiote: these are data measured in real-
ity and not numbers that have been made up. Thesmonding diagram to the right suggests
that it takes indeed half an hour before the alt@habsorbed and distributed in the body.

BAC measurements v R BAC measurements L
time BAC
(h) (o/00) g;g BAC {n/oo)
0.25 0.51= e
0.33 0.56 055 ° e,
042 0.53 ns0g  * .
0.45 .
0.50 0.57 0.40 *ee
0.58 0.57 035
0.30 e
067 0.26 e .,
0.75 0.35 0.20 Tte,s,,
0.92 0.49 D:Dﬁ...‘|....|...‘|....|..‘.|....|'.3.”l?(.)|
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1.00 045 =]

Figure 1. Table and graph of BAC measurements after drinRigtasses of red wine.

a) Open the corresponding Coach 6 activity and rentibeealata of the first half hour.

b) The remaining data could lie on a straight linee lttee menu iterfFunction Fit to find the
straight line that matches best the data pointsl. thd line to the diagram.

c) What is the equation of the line found in part b)?

d) What hypothetical BAC formula have you found wEkhnction Fit? Is your answer in
agreement with the Widmark formula, combined wiik Seidl formula (2.2), when you
know that the test subject has a body weight df8&nd a height of 180 cm?

e) What elimination rate have you found wiBunction Fit and is this in agreement with
reference values?

f) Save your work in a Coach 6 result file.

Coach activity 12. The screen shot of a Coach 6 activity in Figurdn@ns on the left-hand
side a graphical model for time course of BAC a#tlmohol consumption as described in the
previous Coach activity . The computer model repmésthe following difference equation:

BAC,,,, =BAC, -BxAt, BAC, :VB’ (2.3)

d
where
D =the amount of alcohol consumed (in gram),

V =the volume of the body water into which the alcakalbsorbed and distributéa liter),
B =the elimination rate (in gram per liter per hour),

t =the time {(n hour) elapsed after consumption.

In the graphical model you specify which quantitieshe mathematical model play a role
(distinguishing between parameters and state Masgbhow they depend on each other,
which formulas for quantities are used and whiclues parameters have. The graphical
model is automatically translated into a systemegfiations that is used in a computer -
simulation, i.e., in running the model. In our mbidethe blood alcohol concentration a state
variable that depends on timeBy default, the time variable does not explicéypear in the
graphical model, but only as icc=! in the icon bar. After clicking on this icon yoarc
change the name and the unit of the time variabhe doseD of consumed alcohol, the
volume of distributionV, and the elimination rat@ are parameters in the model: the two

handles on both sides of the circle in the parametn suggest that these variables have a
constant value during a simulation (unless theyraamually changed during a simulation



run). The initial concentration is the quotientdfandV,; we have introduces the auxiliary

variable BAC_0 for this purpose. The dashed armmmfBAC_0 to BAC indicates that this
auxiliary variable is used to specify the conceidraat timet = 0. The double arrow away
from the state variable BAC with a pointed arrowthie middle represents the rate of change
of BAC, so to say (a piece of) the difference gemtiof BAC. An outgoing arrow means that
the formula contributes negatively to the differemuotient. The rate of change of BAC is in
our simple model equal to the elimination réte
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Figure 2. Model and simulation of time course of BAC afteiniing 3 glasses of red wine.

Now that you know how to interpret the Coach 6 made~igure 2, you can try to build it

yourself:

a) Build the Coach 6 model of Figure 2, do a simulaémd plot the computed BAC against
time.

b) Even if you got in the previous part a straightlias graph of BAC versus time, the
diagram does not have to look like the right-hamt® ©f Figure 2. To ensure that the
graph hardly gets below the horizontal axis, yom &pecify in the model settings
(stopwatch icon) a stop condition and choose a lstina¢ step. As stop condition you
could choose BAC<0. In the same dialog window of model settings yam set the
starting time of the model at half an hour. Adjystir model if necessary.

c) Import from the result file that you created in thvious Coach activity the measured
BAC levels as background graph and try to find sodel parameters that the straight
line of your computer model matches well with theasurement data.

The assumptions used so far about absorption afhalcin the human body are
unrealistic. Two assumptions that we have used niow were:
1. alcohol is immediately absorbed and distributethentotal body water upon intake;
2. absorption and distribution is delayed for halfreour after consumption of an alcoholic
drink, but after this half hour it is instantly gent in the body fluids.
Already somewhat better works the assumption thextetis a certain time spdp, say of 30
minutes, in which the at timé¢=0 consumed amount of alcohol gets into the systemic
circulation of the human body with constant ratel$orption and is further distributed in the
total body water. We will adapt the computer manfethe previous Coach activity so that we
can run the model starting from time 0 on without being blushed with shame.

Coach activity 13.

a) Assuming an absorption and distribution of alcahahe human body over the total body
water, which has a volume of distributidfy, with constant speed during a time sggn
after consumption of a certain amouhbf alcohol, what must be this speed in the model
during this time interval?



b) What is actually the corresponding difference eiguaft you adapt the Widmark model?

c) Have a look again at the Widmark model implemerme@oach 6 for drinking 3 standard
glasses of red wine in one draught, early in thening on an empty stomach. But now
specify in the graphical computer model the absompof the alcohol into the systemic
circulation of the human body via a short perio@ (8inutes) of absorption and distribu-
tion at constant speed.

So you need in Coach 6 a function that takes samnsetant value during some time
interval and is equal to zero elsewhere. Such atifmum exists in Coach 6 and is called
Pulse. The graph oPulse(x; b; I; h) as a function of x (Note: Coach uses semicolons to
separate arguments of functions) looks as follows:
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Figure 3. Graph of the Coach functidrulse(x; b; I; h).

Use this function to build your new model. Hereaftaport the measured BAC levels
from the result file that you created in Coachvaistill as a background graph and try to
find suitable model parameters so that your computadel matches rather well with the
measured data.

d) Although the absorption and distribution of alcoilthe human body is already better
described in this new model, there remains oneshaytcoming of this model concerning
the absorption and distribution. By looking at ymemputed BAC curve, have you any
idea what shortcoming it could be?

Next you will model the results of an experimentwhich a test subject emptied eight
glasses of red wine, each glass with an estimatezlat of 14 gram alcohol, in one draught
every half hour. For the specification of the apsion and distribution of alcohol in the
human body you can do this similarly to the worktlre previous Coach activity, on the
understanding that theepeatedPulse function in Coach is very useful now. The graph of
RepeatedPulse(x; b; I; i; h) as a function of x looks as follows:
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Figure 4. Graph of the Coach functidRkepeatedPulse(x; b; [; i; h).

Coach activity 14.

a) Adapt your Coach model from the previous activitytihe experiment of a test subject
emptying at regular intervals a glass of some altiohdrink in one draught. Introduce as
new parameters in your model the number of glasseptied and the time interval
between consecutive drinks.

b) Import from the Coach 6 result file that belongdhe experiment with 8 glasses of wine
the measured BAC levels as background graph ano fijmd such model parameters that
your computed BAC curve matches reasonably weh wWie measurement data. Ensure at
least that the results computed in your model dedhieasured BAC levels after drinking
the final glass match well. The screen shot bel@y mspire you:



Ba % || BAC: model and measurement

SES IR EE]

1,6F BAC (i) f
; measured BAC (L)
interval (h) 15F

intake_rate {g/Lih)

number_of_drinks

E] BAC (g/L)

T {h)
rate (gilih)
v (L)

7elimmaﬁon,ra‘te faflih)
beta (g/Lin)

Solved by Euler =

Figure 5. Screen shot of the Widmark computer model for rmgabnsumption of 8
alcoholic drinks, with measured®#evels in the background graph.

c) Watson et al. (1980) have refined the Widmark fdemzoncerning the amount of total
body water in the human body. They have taken bgdy weight and body height into
account for the determination of the volume of ritisttion. They have presented the
following formulas amongst others:

0.8xV, (men) = 0.3628W - 0.1183AGE+ 20.(
0.8xV, (women) 0.2548W + 14.46,

whereW is the body weight in kg an8iGE is the age in years. Adapt the model built in

part b) to the usage of the Watson formulas forviblame of distributionV, . In order to

compare the measured BAC level with computer sitiarla, you must know that the test

subject was a 49 years old man.

d) Use the model of part c) to simulate the time cewfsBAC for some drinking scenarios:

[1] Consuming the same amount of alcoholic drinks kith sort or longer time intervals
between drinks.

[2] Drinking at a slower pace: 16 drinks every quaotean hour but also with half of the
amount per drink

[3] Use another drinking scenario that interests you.

(2.4)

3. Painless mathematics:
exponential model of the elimination of pain-alleviating drugs

The way a substance is administered to the humdy plays an important role in pharmaco-
kinetics. For example, the pain-alleviating drugrpione can be administered via various
routes to a patient: orally, sublingually, or rdigtgdvia a tablet or capsule), via injections
(subcutaneous, intramuscular or venous) or via rdasion. This has consequences for
absorption, distribution, and effect of the substam the body. In an oral administration of
morphine this substance must first pass the livarthis organ lets only a fraction pass to the
systemic circulation of the human body. In otherrd®p thebiological availability at oral
administration of morphine is small (about 40 %@rtainly in comparison with intravenous
bolus administration, i.e., a rapid intravenougdtipn, which has a biological availability of
almost 100 %. Figure 6 illustrates another examgbderoute how cocaine is used plays a big
role in the time course of the concentration of dlsive substance in the blood plasma. By
taking a shot and by smoking a high peak valuehef plasma concentration is already
reached after a few minutes, whereas oral admaisir only leads to an increase of plasma
concentration after half an hour and the peak visls®@metimes reached only after one hour.
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Figure 6. Time course of plasma levels of cocaine afterotexiroutes of administration.

In this section we will study a simple pharmacokimenodel for a single intravenous
bolus injection of a pain-alleviating drug. We thistamongst other things on the basis of data
obtained in a clinical study (Camu et al., 1988yt the pharmacokinetics of alfentanil, a
morphine-like painkiller and analgesic developed g@noduced by Janssen Pharmaceutica.
Figure 7 shows the table and the graph of the npt@asma levels measured in the tests
subjects in this study, who were given i2alfentanil per body weight (in kg) as bolus in 30
seconds into an antecubital vein. In Figure 7 & ahown a rather successful regression
curve of the plasma levels. How we obtained suafica mathematical description of the
measured data will be revealed in this section.
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Figure 7. Plasma level (C) after a bolus injection of algentand a regression curve.

LetC(t) be the plasma concentration of a drug at tiratter the drug was rapidly injected
into a vein and was rapidly distributed in the syst circulation, so fast that we may assume
that at timet =0 the maximum plasma concentration of the drug h&sady been reached.
Hereafter we measure the plasma level at reguteestt =0,h,2h,3,.., with fixed time
intervalh. LetC,_ be the measured plasma level of the drug aftéme intervals. We assume

that the rate of change with which the plasma leledreases in a certain time interval is
proportional to the plasma level at the beginnifithe particular time interval:

Cn+1h_ G =k [T, (3.1)
We speak ofirst-order kinetics with elimination rate k. It holds:
C,=C, [{1-kh)" 3.2)



Exercise 15. Verify the correctness of formula 3.2.

We rewrite formula 3.2:

C(nmh)=C, [1-kh)s™ =C, [ﬁ(l— k m)ﬁjn (3.3)

The reason to rewrite the formula in this form 3@l become clear in the next exercise.

Exercise 16.
a) Takek =1and check with a graphical calculator that for $malues ofh the expression

1
(1-h)" takes a value that is close to the number 0.36 78724
b) Takek =2 and check with a graphical calculator that for $malues ofh the expression

1
(d-2h)" (1 2h) takes a value that is close to the number 0.1358R5

c) Takek =0.5and check with a graphical calculator that for $malues ofh the expression

1
h

1
(1-0.50h)n takes a value that is close to the number 0.60EE30

d) Takek =-1 and check with a graphical calculator that for bwelues ofh the expression
1

(L+h)" takes a value that is close to the number 2.7182®81

1
Thus, for smallh it holds that(1-k[h)"can be taken equal to some numbeand that

formula 3.3 can be rewritten as

C(t) =G, [g', (3.4)
for a certain numbeay and timegd take from the sequend&h, zh,3,... But then we can use
this formula also for any value of tinheFor positivek it holds thatO < g <1. So it is a matter
of exponential decay of the plasma level, whergis the growth factor per time unit agj is

the initial plasma level. There exists a relati@iveen the growth factay and the elimi-
nation ratek. Without proof or motivation we postulate that

g=e* (3.5)
and
k=-In(g), (3.6)
where In is a function called th@tural logarithm and e= 2,71828182is called the base of
the natural logarithm. The natural logarithm is a mathematical functibat is available on
your graphical calculator, just like the exponelrfiiaction e*.

Coach activity 17. Equation 3.1 for the plasma level of a drug

that is administered at time=0 as an IV bolus injection can be WW// )
rewritten with a time stegt as follows:
C(t +at) -C(t) = -k T(t) @t (3.7)

for t =0, at, 2at, 3t,..

1C



a) Build a Coach model for this mathematical model asd it to compute plasma levels
during10 minutes, takingt =1 as time stepk =0,5min™* for the elimination rate and the
initial concentratiol©, =10 mg/ L(immediately after administration of the drug). tRiee
time course of the computed concentration.

b) Check in the equations mode that the generated w@mprogram corresponds with the
difference equation 3.7.

c) Decrease the time stepAb=0.1 and let the computed concentration be stored duhe
simulation after every 10 time steps. The graphthef time course of the computed
concentration differs from the one found in partdddw can you explain this?

d) Now take the time steft =0.0land draw the graph of the computed concentratiamag
time. Make an exponential function fit of the cortguli data, i.e., search for the most

suitable parameter values and b for which holds: computed concentratiomxb"™ .
Explain the link between the parameter values fowitld the small time step and both the

elimination rate and the initial concentration.
The half-life is the time interval in which the concentratiorh&@ved. For a growth factor

g you find the half-lifeT by solving the equatiog' :%. Then the concentration at tirhean

be written as follows:

C(t)=¢C, [@J@ (3.8)

Exercise 18. Verify the correctness of formula 3.8.

Henceforth we denote the half-life ast,,. So there exists a relation between the growth
factorg and the half-lifet,,. By the way, in the context of decrease of a dtiagtis also
calleddecay factor.

(1)
g—(zj . (3.9)

Exercise 19. Prove that from formula 3.9 follows
log, g = —i. (3.10)

1/2
For those who prefer a relation between decay faatd half-life in term of the logarithm
with base 10:
_log,,2__0.301

log,, 9 = (3.11)
t1/2 t1/2
There also exists a relation between the eliminatiek and the half-lifet, , :
In2 _ 0.693
t,=—=—. 3.12
el (3.12)

If you know from a substance the half-lifg,, then you can determine the value of the decay

factor with the formulas 3.10 and 3.11, and you es& formula 3.12 to compute the value of
the elimination raté.
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Coach activity 20. Propranolol is a beta-blocker this is
used amongst other this to reduce blood pressyren @e
Coach activity in which data from a study aboutspia

concentrations after intravenous administratiorpafpra- w
nolol (Fagan et al., 1982) have already been tald he g :
test subject was a health young man with a bodghtedf N

82 kg, who get a dose of 4.1 mg administered vieain
venous infusion with an infusion rate of 1 mg/mie set
time = 0 for the moment when the administration of pasp
nolol stops and we investigate the following dagasured Sir James Black, the scient

during some hours: who invented propraolol. In
_ 1988 he won the Nobel pri:
time | C of Medicine for this achieve-
h | pg/L ment, but even more for
1 8.25 pioneering work in pharma-
2 6.46 cology that lead to the bas
3 4.63 principles @ the science fielc
4 4.03 See also (Stapleton, 1997).
6 2.11
8 1.41

a) Make a diagram window in which the plasma leCeis plotted against time and save
what you have now in a result file (to be used aach activity 21).

b) Make a function fit that matches a model of expadiardecay Hint: in Coach, this
function fit is offered via the function tygé)=ab”x+c. Let Coach first make an estimate
of the parameter values and hereafter refine thernmediate result. Next set the
coefficientc to O and place the checkmark to indicate thatpghimmeter may not change
anymore but has to stay fixed in any further refieat. In this way you get the best
function fit of the formf(x)=ab”x. The screen shot below shows that the functiorafso
known asregression curve, matches well with the measured data and thatdheentra-
tion gets close to zero only after 24 hours.

plasma concentration of propranolol L

M)
10RFit of C {poily

time ih}

UII‘I5IIII1U“II15 T

c) Read from the Create/Edit dialog of a table or diagwindow the mathematical formula
of the regression curve and determine the decaygrfper hour and the initial concentra-
tion of propranolol.

d) Compute the half-life propranolol with a graphioalscientific calculator. Is your value in
agreement with the literature value of 2.8 h (Eveinal. 1973)?

e) Coach 6 has not yet a graphics option for logarithsnaling of axes. But as an alternative
for logarithmic paper you can draw the graph of ldgarithm of a quantitylog,, is de-
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noted in Coach 6 as log. Make a new table and go#gthe logarithm (with base 10) of
the plasma level versus time.

f) Determine the best straight line fit ofg,, C plotted against time.

g) The directional coefficient of the previously fousttaight line is equal tog,,g. Use

formula 3.11 and your calculator to compute thé-lif@. Is your value in agreement with
the value found in part d of the activity?
h) The straight-line regression curve lofg,,C intersects the-axis in y=1.027 (check!).

Use this value to compute with your calculator ithigal concentration of propranonol. Is
your value in agreement with the value found irt paof the activity?

i) 4.1 mg propranolol has been administered to thestdgect. Suppose that this person has
5 liter blood. What initial concentration of propdol do you then expect in the systemic
circulation? Suppose that the concentration of ganoplol in the blood is equal to 85 %
the concentration of propranolol in the blood plasmwhat value of the plasma level (in
pg/L) would you expect immediately after the admtirsiSon of the drug has stopped,
under the assumption that no distribution in bodyew or tissues and no elimination takes
place during administration of the drug?

In the last two parts of the previous Coach agtigitbig contradiction seems to pop up:
the plasma level of the pharmacon seems to desudistantially from the concentration that
can be computed from a realistic estimate of thewnhof blood in which the substance
circulates. Like in the case of alcohol metabolistm must realize that a pharmacon after
being absorbed into the systemic circulation ighier distributed in the human body, for
instance in the total body water, in the fatty uss or in complexes formed with tissue
proteins. Thus, the volume in which the pharmacodistributed, theolume of distribution,
is much larger than that of the systemic circulat&one. The volume of distribution is the
apparentvolume V, of the bodily compartment in which the pharmacemlistributed such

that the initial concentratid®, of the pharmacon in the sampling compartment (istnsases
the blood plasma) for a given dd3ecan be computed by

C,=—. (3.13)

Pharmacologists also speak about the volume dfildision as the volume of the central
compartment that would be required to provide thgeoved dilution of the loading dose of a
pharmacon. The model that they use then is catiddair jargon arpen, one-compartment
model and is symbolized by the following picture:

central k
~| compariment & :_;

K

Figure 7. Graphical representation of an open one-compartmentl.
This picture resembles the graphical computer mimdEigure 8.
Coach activity 21.
a) Build the Coach 6 model of Figure 8, do a simulation and plot the computed concen-

tration against time. Try to preselect parametéwegsthat correspond with the time cour-
se of the propranolol concentration described éengirevious Coach activity.
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b) Import the graph of the measured concentrationaa&dyound graph from the result file
that you created in the previous Coach activity for find model parameters so that the
curve of your computer model matches the measuatdrdasonably well.

OU=00 \nlol: 28 =

D (mg) /*m

Co(mgly  C(mah
vd (I)

k (1/min)

C (mofl)y

Figure 8. Graphical model in Coach 6 of first-order pharmace#cs.

Once again: the volume of distributidg is a fictitious volume linked to the mathematical
model in use and that corresponds only in a feve ¢&s physiological meaning in terms of
anatomic space as the real volume of blood platote,body water, or an organ. The volume
of distribution is the apparent volume of the sangptompartment that must be considered in
computation or estimation of the amount of drugha body for the way in which the drug
has been administered. For example, when two dragdi\B are administered via an intrave-
nous bolus injection in an amount of 100 mg andntteasured initial concentrations are 10
mg/L and 1 mg/L, respectively, then the correspogdivolumes of distribution are
10 L and 100 L, respectively. In our example ofgvemolol we have estimated in initial con-
centration of 10.8.g/L for a dose of 4.1 mg on the basis of measurésnand under the
assumption that the model of exponential decayiepplhis corresponds with a volume of
distributionVy of almost 380 L. Such volume is incompatible vathuman body! Yet plenty
of such values for the volume of distribution oflag can be found in the literature and are
used in mathematical models. Fagan et al. (1982¢ lsdso measured the plasma level of
propranolol shortly after administration of the glrdien minutes after drug administration to
test subjects in the experiment a plasma level7dd fig/L was measured. This corresponds
with a volume of distribution of 241 L. This matcheetter the reference value of 253 L. An-
other pharmacon with such a large volume of distrdm is morphineVy is about 230 liter.

Coach activity 22. Fagan et al. (1982) have also measured the plasveh df propranolol
shortly after administration of the drug. More d&a the same test subject as in Coach
activity 20 have been collected and are listedhvinttible below (now with time in minutes).

time C
min pg/L
10| 17.00
20| 14.32
30| 12.37
60 8.25
120| 6.46
180| 4.63
240 4.08
360 2.11
480 1.41
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Open the corresponding Coach activity.

a)
b)

c)
d)

e)

f)

9)

Make a diagram window in which the plasma le@e$ plotted against time.

Zoom in on the time interval between 60 and 480uteéis. Make a function fit that
matches a model of exponential decay for the datieaye currently looking at.

Read from the Create/Edit dialog of a table or diagwindow the mathematical formula
of the regression curve and determine the decagrfaer minute.

Is your result in part ¢ in agreement with the gefactor per hour, that you determined
Coach activity 20 c.

Zoom out to the whole dataset: You see that th@maptial model does not match well
with the dataset as a whole. Try to make a funditahat matches a model of exponential
decay for the whole dataset (do not add the graphet diagram You will notice that this
does not work well.

Make a new table and graph of the logarithm (widlséb 10) of the plasma level versus
time. How can you see from this graph that the erptial decay model for the time
course of the plasma level after 10 minutes doésvodk well?

A mathematical model that describes better the tmerse of the plasma level for the
whole time interval in which data have been co#lddts a so-callediexponential model.
The time course of the plasma level is then notrilesd with one exponential function,

but with two function of this kind= = A x(g,)"™ + A,x(g,)"™. Often you can find suit-

able parameter values via thathod of peeling functions (also known ascurve strip-

ping). The steps are the following:

[1] For large values of time (after 1 hour in our cabe) concentration decays exponen-
tially. Determine for this time interval the dedaygtorg, and the constam;.

[2] Substract the regression curve found in step fthfthe measured values. This yields
a second dataset of residuals, with the contributfcthe exponential decay removed.

[3] The dataset of residuals found in step [2] cantsriurn be fitted to an exponential
decay model. This yields the decay fagpand constamn.

Try to make the biexponential model for the timerse of the plasma level after intrave-

nous drug administration based on your intermedidalt of part c in this activity.

In the previous Coach activity we have seen thathiexponential model for the time

course of a drug after an intravenous bolus imgectiescribes the elimination of the drug
better than the exponential decay model. The bieaptal function

whereg; areg, decay factors, actually describes twn

Ct)=Axg, +Axg,, (3.14)

processes: (1) the distribution of the pharmacomfr © central ke

the systemic circulation into the tissue compartimi .
or peripheral compartment and backwards (at a | M
rate, thus small value @) and (2) the elimination of T

= compartment —

the drug from the body (slowly, thus greater than k.. Kys

01), after the distribution of the drug in the bodgsh -
been settled. You can also consider it as a mbads|

consists of two compartments between which ¢ EE:LphaEnr?rlmnt
change of the drug takes places (see the figutheto P V.
right; parameters ik and le; determine the drug ex: <

W

change). In this lesson material we will not pursue
this further, but many-compartment models can gasil
be implemented in Coach 6.
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Coach activity 23. Cannabis is more and more applied for therape!
reasons and in particular for pain alleviation. HBoéive substance is alsi
known as THC. Open the corresponding Coach actimityhich the data
used in a study about elimination of THC from thenlam body (Naf,
2004) have already been tabulated. It concernstithe course of the
plasma level of THC for test subjects who got a daseintravenous
administration (to be precise, 0.088 THC per kg body weight).

time C
min | ng/mL
5| 2715
10 95.6
20 38.3
60 20.1
120 9.0
240 5.0
480 0.9

a) Build a Coach model for the biexponential modethaf time course of the plasma level of
THC that matches well with the measured datases$t Bescribe the time course of the
plasma level after 20 minutes with an exponentmiay model and hereafter take the first
two data point into account in the modeling process

b) Compute the half-life of each of the two phaseshm elimination process (distribution,
clearance) and compare your answers with thodeeafeisearcher: 2.47 and 54.0 minutes.

Scientists do not confine to exponential and bievgmdial models. In pharmacokinetical
studies they often make use of a triexponentialghéal the time course of the plasma level
of a pharmacon after intravenous administration, Tthe tri-exponential function

C(t)=Axg, +A,xg, +Axg], (3.15)
whereg;, g, engs are decay factors, actually describes three psesegl) a fast distribution
of the pharmacon from the systemic circulation i@ peripheral compartment (leading to a
rapid decay, thus smail), (2) elimination (a slow decay

so g, is greater thary) when the distribution of the ggﬁnp giinusm
pharmacon in the body is in near equilibrium, a8p g P V3
slow rate-determining exchange of the pharmac

between a deep tissue compartment and the cel K5
compartment (leading to a very slow decay, tlgds '

greater thargy). So, the mathematical model consists

o central
V. .
= compartment
V.
1

three compartments between which there is contiglyol ke
an exchange of the pharmacon: see the figure taght
in which the parametersik and lk; determine the

exchange of the drug between the central compattn

s ) _ K Kyn
and the ‘rapid’ tissue compartment, and in whictapze- 21 '
ters ks and k; determine the exchange of the dru W
between the central compartment and the ‘slow’ de peripheral
. . compartment
tissue compartment. Such a model is for exampléq v,

often used in pharmacokinetic studies of anesthasi
pain-alleviating drugs. It is the last term in ttieexponential function that is causing the
effect that a pharmacon long after administratias Istopped is still available in low

! The last two data have been estimated from a grefite research report.
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concentration in the human body through delivepnirthe deep tissue compartment. This
may explain the prolonged side effects of anesthisit some patients experience. In the next
Coach activity you can apply the triexponential mlotb intravenous administration of the
painkiller Alfentanil and compare your results wittose found by researchers.

Coach activity 24. Open the corresponding Coach activity in which

\
the data used in a study about elimination of afieih from the @\b
(LO ey

human body (Camu et al., 1992) have already kemunidted. JZNT

time C -
min | ng/mL
2| 565.0
5| 399.0
10| 302.0
15| 229.0
30| 145.0
45| 106.0
60 81.3
90 48.7
120 43.8
180 26.8
240 17.7
300 12.4

a)
b)
c)

d)

f)

9)

h)

i)
)

Make a diagram window in which the plasma le@e$ plotted against time.
Make a second window with the logarithm@fi.e.,log,,C, plotted against time.

In the graph dlbg,,C versus time you can recognize the three phasdsedfiexponential

model because the time interval can be split inted pieces for which the data points
each seem to lie on a straight line. Which piecethé time domain can you choose best
for this purpose?

Select the piece of the time domain that correspamith the last part of the alfentanil
elimination from the body and find the best strailyle fit. The directional coefficient of
this line is equal to the logarithm of the corresgiog decay factor. Read from the
Create/Edit dialog of the diagram window the vabfelog,, g, and compute then the

value of g.

Compute the half-life of the last part of the elaiion of alfentanil and compare your
answer with the literature value of 94 + 38 min.

Select the same piece of the time domain as indoartd fit an exponential model for the
data points in this time interval. What decay faato you find in this way and is your
answer in agreement with the value determined ihga

Subtract the exponential function that describeddist part of the elimination phase from
the measured concentration. Fit an exponential irfod¢he next part of the time domain
that you determined in part c and determine thayléactor g.

Peel the second exponential function from the mestiate result and determine the third
exponential function in the triexponential modelh&Y value of the decay factoy bave
you found?

Plot the graph of your triexponential model in thagram with the measured data points.
Compute with a graphical or scientific calculatbe thalf-lives that correspond with g1,
g2, and g3, and compare them with the literatutees3.5 £ 1.3 min, 16.8+ 6.4 min en
94 + 38 min.
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We return to the exponential model of the elimioatf a pharmacon after an intravenous
bolus injection in order to discuss more pharmavetic indicators. You encountered already
the termsvolume of distribution Vg, elimination rate k, growth factor anddecay factor g, half-
life t1,, andbiological availability (often denoted with the charactey. Two important indi-
cators that are still missing ackearance (Cl) andarea under the curve (AUC). These phar-
macokinetic indicators for drugs can be found ifoimation texts that are registered by
organization like the Dutch ‘College ter Beoordgliman Geneesmiddelen’ and the United
States Food and Drug Administration (FDA); Seedxample the websitegww.cbg-meb.n|
www.geneesmiddelenrepertorium.mww.fda.govy www.druglib.com andwww.drugs.com
Also Wikipedia contains such information for manybstances.With the pharmacokinetic
properties of a drug you can in principle compusesma level-time curves and you are pre-
pared to determine dosage regimens.

The total body clearance of a pharmacon, in shedrance and denoted as Cl, is defined
as the ratio of the amount of pharmacon elimindtech the body per time unit and the
plasma levelC. So, the unit van clearance is volume per time (lih, mL/min, etc.), but
clearance is often tabulated as the volume per timeper 70 kg body weight. In terms of
decay of the amourd; of the pharmacon in the human body clearance eatebcribed as

_2B _cixe. (3.16)

at
For an exponential model of the time course ofpflasma level after intravenous bolus injec-
tion holds (see formula 3.7):

2C_ yxc. (3.17)

al
The ratio of the amouri; of the pharmacon present in the body and the @dswelC is by
definition equal to the volume of distributidf. Thus formula (3.16) can be rewritten as

i><£=—CI><C. (3.18)
V, at
For an open one-compartment model with first-orelénination kinetics the clearance can
then be determined via:

Cl=kxV,, (3.19)
wherek is the elimination rate. This formula ¢ be rewnfteising formula 3.12, in terms of
half-life ty/o:

_V,;xIn2 _ 0,693/,

t]/z t1/2

The total body clearance is a measure for the spddwhich a pharmacon is removed
form the human body. How this process takes plaes diot play a role. In case one wants to
include the elimination routes, one distinguishedéneral drug excretion in the urine via the
kidneys (enal clearance) and biotransformation via the level followed byceetion in the
bile (hepatic clearance)

The mathematical model of the time course of themkalevel plays an important role in
formula 3.19. For the open one-compartment model @n intravenous bolus injection one
can prove that the area under the plasma leveld¢umee for an infinitely long process, abbre-

Cl

(3.20)

viated with AUC, is equal tekLV' This relation between AUC, doBeand clearance Cl is a
X
d
special case of the following relationship that eea apply for any form of drug administra-
tion:
FxD
Cl

AUC =

, (3.21)
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whereF is the bioavailability of the drudg=(= 1 for intravenous bolus administratioB),is
the administered dose and Cl represents the clear&or first-order elimination kinetics you
can write this as
auc=r*P (3.22)
kxV,
The last formula can also be used to determine itheevailability of a drug for any form of
administration. For example for oral administraticompare the area under the curve in an

oral administration with the AUC after intravendaus administration of the same dose:

V, .
I:oraal = AUCoraaI x S ) (323)
AUCi.v. Vd, oraal

Of course you cannot measure plasma level for ainiten amount of time to determine the

AUC. In first-order elimination kinetics you cantiesate the AUC by the area under the
measured plasma level-time curve and add to tl@sgtiotient of the last measured plasma
level and the elimination rate.

In the below exercises and Coach activities weragsan open one-compartment model
with fist-order elimination kinetics. Or stated feifently, we assume an exponential model
after intravenous bolus administration.

Exercise 25. Suppose that an 80-kg person is given a singlavatrous bolus injection of a
drug at a dose of 60 mg. The volume of distributddrihe drug is equal to 100 lité70 kg
body weight and the clearance is equal to 776mmh/ 70 kg body weight

a) Compute the elimination rate (in nin

b) Compute the half-life (in hr).

c) Compute the plasma level (in fhigpL) after six hours.

d) What will happen if an alternative drug with them@avolume of distribution is given at
the same dose, but the clearance of the new driagger? What will happen with the
initial concentration and the half-life?

e) What will happen if an alternative drug with thergaclearance is given at the same dose,
but the volume of distribution of the new drug madler? What will happen with the
initial concentration and the half-life?

Coach activity 26. Open the corresponding Coach activity in which dagaset used in a

study about the time course of the serum concéorradf the antibiotic drug ceftazidime

(Demotes-Mainard et al., 1993) has already beenldtdd. Each patient in this study suffered
from chronical renal insufficiency and was givemgram via intravenous administration. On
the basis of the measurements you will determirté Wioach and a graphical or scientific
calculator some pharmacokinetic indicators andwiluset up a simple dosage regimen.

time C

h mg/L
1 50

2 45

4 38

24 21
36 14
48 11
60 8
72 4
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a) Make a diagram window in which the serum le@gk plotted against time and save what
you have until now in a result file (to be usedCimach activity 27).

b) Determine the decay factgmper hour.

c) Determine the elimination rate(in h™).

d) Determine the half-lifé;; (in hours).

e) Use the computer model to estimate the serum caratiem immediately after the injec-
tion has been given.

f) Estimate the area under the curve (AUC in ritghl.

g) Determine the clearance CI (in L/h).

h) Determine the volume of distributiory (in L).

i) Suppose that the threshold value for drug actigtequal to 10 mg/L. After how many
hours must the next doe be administered accordiggur model?

j) After 24 hour the serum concentration is accordinthe measurements equal to 21 mg/L.
Suppose that you administer the drug intravenoaslthe double dose (2 g), how long
will it take according to your model before thewsarconcentration has decreased to the
value of 21 mg/L?

Coach activity 27.

a) Build the Coach 6 model of Figure 9, do a simulation and plot the computed concen-
tration against time. Try to preselect parametemeskthat correspond with the time cour-
se of the ceftazidime concentration described enpifevious Coach activity.

b) Import the graph of the measured concentrationaa&dyound graph from the result file
that you created in the previous Coach activity forfind model parameters so that the
curve of your computer model matches the measwatdrdasonably well.

c ° mx

D=ooLalol: @B E |

F c_model (moiLy
Pyneasured_C {moily

>

CO (mg/l) C(mg/L) 2|

vd (L)
k (1/hn)

paa b b bev v Lo v b s Ly T30
10 20 30 40 a0 1] 70 a0
Solved by Euler

Figure 9. Graphical model of first-order elimination pharmhicetics of ceftazidime.

4. Painless mathematics: P

. .. . & Ty
a model of repeated intravenous administration

Instead of a single intravenous bolus injectionaoflrug that is

rapidly distributed in the human body, we will irséigate in this section the effect of multiple

doses of a drug. We consider a series of bolustiojgs with the same dose and administered

in regular time intervals. Henceforth we denotedbsing interval as.

1y

Let us first simulate a practical case in Coachdninistration of intravenous bolus injec-
tions of ceftazidime in a regular multiple-dosaggimen to patients who suffer from renal
insufficiency. The next two Coach functions can mdke implementation of the regular
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dosing interval in the computer model easkaitse andRepeatedPulse. Pulse is a function
that takes a fixed value during a certain inteevad is equal to zero elsewhere. The graph of
Pulse(x; b; I; h) as a function of x (Note: Coach uses semicolonsefmarate arguments of

functions) looks as follows:
|

|h

b ¥ —=

Figure 10. Graph of the Coach functidrulse(x; b; [; h).
The graph oRepeatedPulse(x; b; [; i; h) as a function of x looks as follows:

|h

&} ¥ ——
B S
I

Figure 11. Graph of the Coach functidRepeatedPulse(x; b; |; i; h).

Coach activity 28.

a) Build the Coach 6 model of Figure 9, in case youehaot done yet the corresponding
activity, and do a simulation run using the follogyirealistic parameter values for cefta-
zidime:D = 1000 mgVy = 20.6 L andk = 0.0337 H.

b) Adapt your model so that it mimics the one in Feggd2 and do a simulation run with a
dosing interval equal to 24 hours. Take the number of bolus ilgastequal to 10 and
plot the serum level-time graph for 300 hours. Tisantaneous increase of serum level
after each intravenous bolus administration is enmmnted via theRepeatedPulse
function and the drug administration is broughtatostop via a conditional program
structure. The computer code that does the jolsgse the time step dt is small enough)
looks as follows:

If t >= (nunber_of _injections-1)*tau Then

i ntake_rate =0
El se

i ntake_rate := RepeatedPul se(t; -dt; dt; tau; CO/dt)
Endl f

S EINFIEIEEEEE]

tau (h) numbier_of_injections

{x
D {ma) D/_\

] >
0 (mg/) intake_rate ¢ (mg/L)
sd (1)

k(1/h]

4 sof Cimogil)

v Lo L L L Ll
0 a0 100 150 200 260 300

Solved by Euler

Figure 12. Graphical model of repeated intravenous administatf ceftazidime.

Answer the next questions by using the simulato in the menu of the model window.
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¢) What do you notice in the serum level-time graph?

d) What happens when you halve the dosing interval

e) What happens when you double the dosing intaral

f) What happens when you choose the dosing interegual to the half-life;,?

g) What happens when you start with an initial conagittn of 100 mg/L? (for example,
because you change the dosage regimen.)

h) How would the serum-level-time curve look like fifet 3rd bolus injection is forgotten and
compensated by a double dose in the 4th injection?

Figure 12 illustrates that with a repeated adnmaigin of a pharmacon, with equal doses
given at equal time intervals, the blood concemratiuctuates after some time between two
levels, the so-calledeak level andtrough level. What a physician often wants to achieve at
prescription of a medicine is that
0 the peak level remains under the minimum toxic eoi@tion (MTC),

o0 the trough level is above the minimum effective@amration (MEC, a threshold level for
drug activity), and that

o the therapeutic window (range of concentration leetwMEC and MTC) is reached as
fast as possible.

Mathematical models can help to find the best desagimen. The following exercises will

illustrate this.

Exercise 29. Let us look at a theoretical example in which we easily compute the change
of drug concentrations. Let us assume that the dasterval is equal to the half-life of the
pharmacon, i.e.z =t,,. Let C, be the plasma level immediately after administratf the

(n+1)th intravenous bolus injection and the rapid distiitiu of the pharmacon in the body.

The dose that is given with each injection is asglitnehave the effect that the plasma level
is increased with the initial concentratiGa

a) Verify thatC, :gCO andC, :271C°'

b) Explain that that the concentratidp, depends in the following way on the value@f:

C :lcn +C,, for alln.
2

n+l

c) What is the plasma level after 5 doses?

d) ProveC, =C, [1+(1j +(EJZ +...+(_1jnj
2 2 2

e) ProveC, :CO(Z—(EJHJ.
2

f) For large value oh the plasma level fluctuates between a minimumraagimum level
in the period between two doses. Which trough aakpevel do we mean here?

Let us now look at the general case.

Exercise 30. We take an arbitrarily selected value for the dgsimtervalt and we use the
exponential model with decay factgrfor the drug elimination. We defirfe= g*. Again,C,

is the plasma level immediately after administraid the(n+1)th intravenous bolus injection.
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a) Verify thatC, =C,(1+ f) andC, =C, (1+ f + f?).

b) Explain that that the concentratiop, depends in the following way on the value@f.
C,.. = fIC, +C,, foralln.

c) ProveC, =CO(1+ f+f2+...+ f").

_ f n+l

1-f

e) In the limit case of an infinite number of doses Hiood concentration reaches a range in
which it fluctuates between two levels, the soezhpeak level andtrough level, in the
period between consecutive doses. Determine ekpliathematical formulas for these
concentrations? We denote the peak level gs and the trough level &, .

f) Suppose that the first given dose is chosen suahttie plasma level at time=0 is
immediately equal t6,__, . Prove that the plasma level immediately aftehaagection is
equal taC,__, . This suggests that for any initial blood concetibn a so-calledteady state

is reached.
g) Prove that during steady state the following holds:

d) ProveC, =C,

Cone _
max = ¥ 4.1
Cmin ( )
h) What happens with the fluctuations in the conceiamawhen the dosing interval is de-
creased?

The logarithmic mednof the peak and trough level in steady state ieaahe steady
state concentration Cs. It can be proved mathematically that the stedale sconcentration is
equal to the mean plasma level in a doing inteduaing steady state and that the steady state
concentration can be determined by the followingniaa:

D

T[Tl
whereD is the dose of the pharmacon given per intravemalss injectiont is the dosing
interval, and Cl is the clearance of the pharmaEommn this formula is immediately clear that
the steady state concentration is doubled whendguble the dos® or halve the dosing
interval. The time at which steady state is reacisedbout 4 or 5 half-lives and does not
depend on the dosage or the dosing frequency.

Formula (4.1) enables us to estimate the maximusingantervaltmax for a pharmacon of
which the therapeutic window, i.e., MTC and MECki®wn:

MTC _ Cp _ 2[;‘]

C.= (4.2)

MEC C,,
or in other words
l0g (MTCJ
10| =~
Ty =ty ——MEC) 4.3)
log,, 2

Tmax IS the maximum dosing interval for which the drogncentration stays within the
therapeutic window, but the dosage regimen maybeopractical with real patients. Dosing

? The logarithmic mean of two valuésandB is defined a§B - A)/In(B/A)
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frequencies are often once a day, twice a dayhreettimes per day, and then only during
daytime, perhaps around meals, to minimize thenwenience for patients.

Exercise 31. A new medicine in this exercise has a volume ofrithistionV, =41.7L, body

clearanceCl=3.4L/h, and a therapeutic window of 10-20 mg/L .
a) Estimate the steady state concentration on the bésie therapeutic window in.

. . D .
b) Determine the dosing speéd necessary to reach the steady state concentrdtfmart a.
T

c) Estimate what maximum dosing intervak allowed.

d) What is according to you a dosing frequency thatk&én practice and what is then the
required dosage?

e) Compute the peak and trough level that correspuiittisthis dosing frequency and dose.

f) What initial dose must be given so that the stesdie is immediately reached?

5. Painless mathematics:
a model of intravenous infusion

Coach activity 32. In Exercise 31 you have investigated the phar
cokinetics of a new medicine that is administerad vepeated
intravenous bolus injections. Pharmacokinetic patens were:
volume of distributioW, =41L, clearanceCl=3.4L/h, and a therapeutic window of 10-20
mg/L. From these data you have computed the steiadly concentration and hopefully found
that it is equal to 14.4 mg/L, you determined thmi@ation rate constark as k =0.0815h*
and the half-life as,, =8.5h, and you may have concluded that a repeated dek#ang is

required every 8 hours.

a) Build a computer model like the one shown belowhwihich you can run a simulation of
a repetitive dosage regimen of 12 injections.

b) You can also administer the drug via intravenoufusion. This type of drug
administration can be considered as a repeatedydasmimen via intravenous bolus
injection with a high dosing frequency but with madl dose each time. Compare the
simulation run part a) with a simulation run in wiithe dosing interval and the dose are
chosen 100 times smaller and the number of injestis 100 times larger (So: dosing
interval = 0.08 h, dose D = 4 mg and the numbenjettions = 1200). Is the steady state
concentration that is reached in this way in agesgmvith the theoretical value of 14.4
mg/L?

e T ] ==
] < I \» - | Wy, t C
=0 o[\|ulol:2EBE . o | wnens

C (mgil) =
tau (h) number_of_injzctions 0 72.64 14.88=

O 18 7265 1497

72,66 14.95
7267 14.94
e * :
0 (gl intake_rate C{mgll)
wd (1)
k{1h)

7268 1493
72.69 1492
72,70 14.90
7271 14.89
7272 1483
72,73 14.97
72.74 14.95
7oL 14,945

)
T

Salved by Euler

Figure 13. Graphical model that describes the time coursé®icbncentration after intra-
venous infusion via a repeated administration Wwigh dosing frequency and small dose.
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Obviously, a better approach is to describe therrpheokinetic process with a model in
which intake of the drug at constant speed is coetbvith first-order elimination kinetics.

We begin with a description of a discrete modet.Afg) andC (t) be the amount and con-

centration of a drug, respectively, at titméVe assume that the infusion starts at tinred
with a constant infusion rak, (mass/time, e.gug/min). We measure the plasma level at

regular timest =0,h,2h,3,.., with fixed time intervah. Let A, and C, be the measured
amount and concentration of the drug, respectivadfgr n time intervals. We also assume
that that the rate with which the drug concentratiecreases in a time interval is proportional
to the concentration at the start of the time wakrRecalling that the constant of proportion-
ality is in fact the clearance ClI, we obtain thioieing equations:

A=t =R, -CIT, (5.1)

and

A|+1h_ A, =R, —kIA (5.2)

wherek is the elimination rate is. The clearance Cl| dmal élimination ratdk are related to
each other via the volume of distributiggin the equation Gk k [V, .

Exercise 33.

a) Using formula (5.1), reason why the amount of thegdn the body initially increases and
hereafter flattens to a constant value. When theuatnof drug in the body remains nearly
constant we speak about a steady state.

b) Give the direct mathematical formula for the concation Cof the drug when the

steady state has been reached.

Exercise 34.
DefineB, = %— A .

a) Prove that the value &,, depends in the following way on the valueBof

w?‘@“ , for alln.

b) Find the direct mathematical formula .
¢) What mathematical formula can you write down#Ap?

d) Prove that the height of the steady state levehlg determined by the infusion rate and
the body clearance of the pharmacon.
e) Prove that in case the time step is chosen veryl emd we thus investigate in reality a

continuous process the time course of the condentres given byC(t) = Cg [ﬁl— g‘) .

f) After how much time (with half-life as time unit) ht#tse plasma level reached 87.5% of
the steady state value?

g) From what quantities does the time that it takeg&ch the steady state depend mostly?

h) What loading dose can you give at the beginningrointravenous infusion so that the
steady state concentration is reached immediately?

Coach activity 35. Build in Coach a model for an intravenous infusioragbharmacon, for

which the infusion time is finite but long enough that steady state is reached. Take the
infusion rate equal to 20 mg/h, the volume of disttidn equal to 10L and the elimination
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rate equal to 0.2°h Do a simulation run on the basis of these paramatetplot the graph of
concentration against time. Investigate what happetisthe results of your computer model
when you vary pharmacokinetic parameters such as ctegrarfusion rate and elimination
rates and check each time if the result of a simulasi@am agreement with your expectations.

Exercise 36. A physician want to administer a drug via intravenimfigsion to a patient with

a body weight of 80 kg. According to professionarkiture is the concentration for which the
activity of the pharmacon is optimal equal to 14 Imgg the half-life of the drug 2 hours, and
is the volume of distribution equal to 1.25 L perhbady weight. The drug is available as a
solution with concentration 150 mg/mL.

a) What is the infusion rate (in mg/h) that is requiredetach the optimal concentration?

b) What is the infusion rate (in mL/h) if the availabldusion is used?
¢) What loading dose do you advise to the physician?

6. Mind-expanding mathematics:
a simple model of oral administration

Until now we have hardly paid any attention to theyvthe intake of a :
pharmacon into the body takes place; we have onbked at admlnlstratlon via an
intravenous bolus injection, in single or multiplesdge regimens, and via intravenous
infusion. However, most medicines are administeiéfdréntly. Theoral administration, i.e.,
swallowing of tablets and pills or drinking of a ma&dal drink, is the most common
administration of a pharmacon. The drug first enters stoenach. After some delay the
pharmacon enters the gastrointestinal (Gl) tract; thaydsl visible in the plasma level-time
graph because there is an initial lag perig) (after oral administration that occurs before
drug concentration is measurable in plasma (due tmastb-emptying time and intestinal
motility). From the small intestine the pharmacon gatreugh a diffusion process via the
portal vein into the liver. The absorption process fefian this step predominantly first-order
kinetics because of passive diffusion. The lives latly a fraction of the amount of drug pass
untransformed into the systemic circulation of theyhdda the general blood circulation the
pharmacon is further distributed in the human bodyaardhave its therapeutic effect.

As soon as the absorbed pharmacon is distributdwibady it also undergoes the process
of elimination. At the beginning the drug entry irttte systemic circulation exceeds drug
removal by distribution to tissues, metabolism, ardretion, and consequently the plasma
level rises. At maximum plasma level the drug entry @moval are the same. After a while,
when the absorption comes to the end, drug removtieisdominating process; the drug
concentration decreases in the course of time. Taphgbelow (Figure 14) illustrated the
typical shape of the concentration-time curve for afiyosaministered drug.

In the Dutch pharmacological literature, thieavailability is defined as the fraction of the
administered pharmacon that enters unchanged insy#temic circulation. Bioavailability is
in formulas mostly denoted by the capital charaEteBesides the fraction of the pharmacon
that appears in the systemic circulation, the absorptate plays a role in the therapeutic
quality of a drug. The American definition of bioavailiéty takes both the rate and extent to
which the pharmacon is absorbed and becomes availablee systemic circulation into
account. Then the terabsolute bioavailability is reserved for the fraction of the pharmacon
absorbed. A low bioavailability of a pharmacon mayhased by poor solvability of the drug
in water (leading to incomplete dissolution of théstance), by dissociation of the drug in
the gastro-intestinal tract, by incomplete absorptiecabise of inadequate administration, by
‘first-pass metabolism’ in the liver (i.e., biotransforinat after first or multiple passes
through the liver), by interaction with other substanioethe body (e.g., other drugs), and so
on. The bioavailability of a pharmacon that is sewesito fast biotransformation during
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passage through the surface of the intestinal mucodgpassage through the liver will be
low. For example, 60 to 80 % of an oral dose of thta-béocker propranolol will be blocked
during the first pass through the liver.

To determine the bioavailability of a pharmacon oseally takes the time course of the
concentration in the blood, serum or plasma as stapiigt and in particular the area under
the concentration-time curve (AUC, ‘area under the curvdig area under the curve from
zero until infinity is a much-used measure for the dgatal activity of a drug. The formula
used for a one-compartment model is:

F =AUC><CI’ (6.1)
D
whereD is the administered dose and Cl is the clearahtdeegharmacon.

As measures of the absorption rate of a pharmagerusually takes the peak value of the

plasma levelC_,, and the timg, . it takes to reach the peak value (see Figure 14).

10~

[DRUG]

HOURS AFTER DRUG ADMINISTRATION
Figure 14. Hypothetical concentration-time graph after orahadstration of a pharmacon.

Henceforth in this section we will assume an opar-compartment model with first-
order kinetics for both the absorption and elimimatprocess, with absorption rate constant
k, and elimination rate constakfor the drug. This means that we can use agaipltaema-
cokinetic indicators that were introduced in thetges about intravenous bolus administra-
tion and intravenous infusion. Under the conditibat the absorption rate constant is greater
than the elimination rate constant, he time coarske plasma level of a pharmacon can be
described mathematically by a biexponential fungtiwith one term for absorption and an-
other one for elimination:

F[D

Vd
where g, is the growth factor for absorption agds the decay factor for elimination (for
further information:k =-Ing =-2.301x log,g en k, =-Ing, =-2.301x log, g,). We will

not really use this formula to model measured dasaregression, but it underpins the
function fit of data with two exponential functionga themethod of peeling functions (also
known ascurve stripping), just as we have done in Exercises 22 and 23hd&maatical
formulas for the peak value of the plasma I€gland the timet, , it takes to reach this

peak value can be derived, but is beyond our grasp:

_k
FID [Eﬁjk'ka (6.3)
V, Lk

cH=

K o
e med): ©2

Cmax =
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Ky
B 2.301x Iogo(j
tmax=ln(ka) n(k) _ | x|n[ﬁj—- k (6.4)
k, —k k, —k k k, —k

The time for peak drug concentration depends is thathematical model only on the
absorption rate constant and the elimination ratestant, or in other words on the growth
factor for absorption and the decay factor for elation. Furthermore, the peak drug concen-
tration depends on the bioavailability, the adntensd dose and the volume of distribution.
More precisely, the formula for the peak drug coricion implies that the peak value is
proportional to the administered dose and the Ribability and inversely proportional to the
volume of distribution. When absorption is (almostmpleted, formula 6.2 for the plasma
concentration gives almost the same results afthaila for exponential decay.

To be honest, we do not really need formulas 6.8.fbbecause we have a powerful
alternative at our disposal: a discrete dynamicatleh that can be easily implemented in
Coach. The graphical representation of the one-eotmgnt model for oral administration of
a drug following first-order absorption and elimiioa kinetics is displayed in Figure 15:

k central k
: compartment N
absorption F. v, elimination

Figure 15. Graphical model of oral drug administration follmgifirst-order kinetics.

The above picture represents the following: Therplagon is absorbed from the gastro-
intestinal tract (Gl tract) and partly enters i@ fiver into the systemic circulation. For the
decrease of the amount of pharmacon in solutidghenGl tract we use an exponential model
with decay rate consta, . Thus:

= _ka |}bltracw (65)

whereA, ,,..iS the amount of pharmacon in the Gl tract. Th@eigy with which it enters the

systemic circulation has oppositie sign and onfyaation F of the pharmacon passes the Gl
tract and the liver. The formula for the absorptmmponent of the rate of change of the
amount of pharmacon in the central compartmeegjigl to the following:

A Abl tract
at

[Mﬂ =F Dka |}bnract (66)
A absorption
The first-order elimination kinetics is describedthrematically by the following formula:
2 Aena
(wa—:OWj = _k |Ae‘nll‘éﬂ compartmer (67)
A elimination

Adding formulas 6.6 and 6.7 leads to a formulatfer rate of change of the pharmacon in the
conetral compartment and, in combination with folan@.5, to two coupled equations that
describe mathematically the rate of change of thermacon in the Gl tract and the central
component:

A ract —
Ai;; L= _ka D%I tract
(6.8)

M‘: F K, CAg yrae — K LA

‘central Compar‘(mer
at

Division by the volume of distributiov, of the central compartment gives the system of
equations in terms of the amount of pharmaconenGhtract and the plasma lev&l
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et = =k, X Ay ract
at

aC _ Fxk,
-~ = x A -kxC
At Vd | tract

A corresponding graphical computer model in Coads $hown in Figure 16. In this compu-
ter model, the plasma level of a pharmacon has besmputed for the following pharmaco-

kinetic parameters: oral dose = 500 rkg=1.0 h™*, k=0.2h™,V, =10L, andF =0.5.

(6.9)

Coach activity 37.

a) Build the Coach 6 model of Figure 16, do a simolatiun for the above parameter values
and plot the computed concentration against time.

b) Investigate the influence of some parameter choicthe peak drug concentration and the
time it takes to reach the peak value.

T e [ _E
oD=00|\alas 2 HE M

A_GI_fract (mg) outilow
[~

E C(mgimby

k_a (1/h)

8
7 |
. ; k
. ; :
. 3 » 4 .
instroom C (mg/mL) 2 .
q 2.30 16.73
ok

Vd ..zl.HA...ElH‘é‘..1\0“‘1\2‘..1hu‘1éu‘1\8‘”2\0 2.35 1668
k (1/h) 240 1663

Solved by Euler

Figure 16. Graphical computer model and simulation of oralgdadministration.

In the following Coach activities we will look abme concrete examples of pharmaco-
kinetic models and computer simulations coming freetentific studies. In this way you get
an impression of what can be learned from clinstadlies.

Coach activity 38. Let us first practice with the method of peelingdtions to verify that the

model for oral drug administration shown in Figli@ leads to a biexponential function for

the plasma level.

a) Build the Coach 6 model of Figure 16, do a simolatiun for the above parameter values
and plot the computed concentration against time.

b) Zoom in on the right part of the concentration-ticurve, when absorption is almost
finished, and make a function fit of the curve gsin exponential function. In other

words, fit the selected part of the graph with action of the forny =a*. Determine
the elimination rate constakfrom the calculated value bf

c) Subtract the exponential function that describeddist part of the elimination phase from
the concentration. Fit an exponential model for thsulting curve and determine the
growth factor gand corresponding absorption rate

d) Add the function fits found in the previous parfstloe activity to obtain a biexponential
approximation of the time course of the drug cotegion after oral administration.
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Coach activity 39. Tetracycline HCI is an antibiotic that i§ ———

mainly used to cure bacterial infection diseases,ifo combi- | ==t

nation with other drugs also for treatment of acBeen the | pocmi o mmcin o
Coach activity in which data from a study aboutuser|iwibstn. "~
concentrations after oral drug administration 06 2Bg after arn ERETUIERRRASIOLT
breakfast (Wagner, 1967) have already been taloulate
time C
h pg/mL
1 0.7
2 1.2
3 1.4
4 1.4
6 1.1
8 0.8
10 0.6
12 0.5
16 0.3

a) Approximate the plasma concentration with a biexgndial function using the method of
peeling functions and determine in this way the ogltion rate constant and the
elimination rate constant. Also determine the Higdfof the pharmacon.

b) Determine with the results of part a) and with falen6.4 the time at which the peak drug
concentration is reached. Is your answer in agreemih the concentration-time curve?

c) The biexponential function that you obtained via tturve-stripping method in part a) is
not necessarily the best regression curve witheapainential function, but it forms the
starting point for other methods to find more ajpi@te parameter values. Shah (1976)
has found the following function fi€(t) =2.817x 0.8617- 3.559 0.48¢ for the above
data set. Draw the graph of this function in thegdahm window and compare it with the
approximation that you found in part a).

d) Estimate the AUC (recall: AU area under the measured curve + the last measoreme
of the concentration divided by the eliminatiorerabnstant).

e) Taking a biovailability of 70%, determine the volarof distribution and the clearance of
the orally administered pharmacon using formulaatd the result found in part b).

f) Using the approximation found in part a), estinthtlag time {,,) and approximate the

serum concentration with a biexponential functibthe form

FDD k t-, t-t
Ct - a lag __ lag .
©=" -G 4o -a™)

Coach activity 40. Build the Coach 6 model of Figure 16 and do a satioh run for
parameter values that match well with the measwtath for oral administration of
tetracycline HCL given in the previous activityrihialso think of the lag timi,g).

Coach activity 41. Let us study again the pharmacokinetics of the-bkteker propranolol
(see activities 20-22), but this time for oral adisiration. Open the corresponding Coach
activity in which data from a study about plasmaaantrations after simultaneous oral and
intravenous drug administration (Olanoff et al.8@Phave already been tabulated. The test
subject was a healthy young man with a body wea§l&82 kg, who received an oral dose of
80 mg.
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a)

b)

c)
d)

time C

h pg/L

0.5 9.15
1| 44.82

15| 56.29
2| 51.33
3| 36.43
5| 22.89
7| 13.06
9 7.21

Approximate the plasma concentration with a biexgial function and determine the
absorption and elimination rate constants. Comthéehalf-life of the orally administered

pharmacon, too.

Determine with the results of part a) the time dtiolh the peak drug concentration is
reached. Is your answer in agreement with the adraigon-time curve?

Estimate the AUC.

Taking a bioavailability of 60%, determine the vole of distribution and the clearance of
the orally administered pharmacon.

Coach activity 42. Build a Coach 6 model based on oral administratiotin first-order
pharmacokinetics and do a simulation run for patamealues that match well with the
measured data for administration of propranoloégiin the previous activity.

Coach activity 43. Theophylline is a drug that is used for patient$esing from COPD and
asthma. Open the corresponding Coach activity ifchvidata from a study about plasma
concentrations after oral administration of 320timgpphylline (Pinheiro & Bates, 1995) have
already been tabulated. The bioavailability of giiedline is almost 100 %. The therapeutic
window for orally administered theophylline is 6 mg/L.

a)

b)

C)
d)

time C

h mg/L
0.00 0.00
0.25 4.86
0.57 7.24
1.12 8.00
2.02 6.81
3.82 5.87
5.10 5.22
7.03 4.45
9.05 3.62
12.12 2.69
24.37 0.86

Approximate the plasma level with a biexponentiaidtion and determine the absorption
and elimination rate constants. What is the hédf-tif propranolol after oral administra-
tion?

Determine with the results of part a) the time diolh the peak drug concentration is
reached. Is your answer in agreement with the adraigon-time curve?

Estimate the AUC.

Determine the volume of distribution and the cleama
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Coach activity 44.
a) Build a Coach 6 model based on oral administratigh first-order pharmacokinetics and

do a simulation run for parameter values that mateii with the measured data for
administration of theophylline given in the prevsaactivity.

b) Adjust your computer model in such way that it modkgular oral administration of
theophylline three times per day, every eight hours

c) Suppose that the patient forgets once to takd.aMiiat advice do you give to the patient:
swallow the next time 2 pills or proceed with therapy as if nothing has happened.

Coach activity 45. Hollister et al. (1981) have studied the pharmaoetics in the human
body of the active substance in Cannabis, callei@trahydrocannabinol (in shorf'-THC,
THC), for various ways of drug administration. metfigure below (taken from Agurell et
al.,1986) is shown the time course of the concéintrafter oral administration of 20 my'-
THC. In the diagram you can also see that the g&sinfeeling of ‘being high’ (on a scale
from O tot 10) only occurs one to two hours aftealp drug concentration. The tabulated
concentration values have been obtained by reddengraph as best as possible.

0
——A-THC levels

b R — Rated "high” -9 time C

A ; -8 h ug/L
LA L; 5 0.5 2.8
3 e 5 1 5.5
g . = 1.5 4.4
3. J— 2| 38
< oo ; 2.5 3.1
: . i 3 2.6
~s I? 4 2.1
-1 5 1.8
o Y SO S S S— 6 1.4

120 180 240 300 360

minutes

a) Use the method of peeling function to describedistribution and elimination of THC
mathematically with a biexponential function.

b) What value for the elimination rate constant didi ymd in part a) (or were you able to
calculate on the basis of your result). How doesrymlue compare with the literature
value of 0.235 H. What is the corresponding half-life?

c) Approximate the difference between the measuredardmation and the biexponential
approximation of the distribution and eliminatiohgse with an exponential function. Use
this to describe the measured concentration witleaponential function of the form

azxgz‘ +a3><g3t _alxgi’
where the last term corresponds with the absoriwse.
d) Estimate the lag timkyg, using the result found in part c), and comgiawgth the litera-
ture value of about 25 minutes.

Coach activity 46. Willis et al. (1979) have studied the pharmacoka®ein the human body
of dicloflenac (sodium), a pharmacon for allevigtimenstruation pain, for various ways of
drug administration. Open the corresponding Coastlvity in which data from this study
about plasma concentrations after oral adminisinatif 50 mg have already been tabulated.
They are mean normalized values of 7 female stsd®#fnhedicine.
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a)

b)

c)

time C
h pg/mL
1.5 0
2.0 0.046
25| 2.014
3.0] 0.694
3.5| 0.257
40| 0.137
45| 0.089
5.0/ 0.053
5.5| 0.035
6.0 0.025
6.5| 0.012
7.0| 0.008
8.0/ 0.005
9.0/ 0.002

Use the method of peeling function to describe th&ribution and elimination of

diclofenac mathematically with a biexponential ftioo.

What value for the elimination rate constant didi yimd in part a) (or were you able to

calculate on the basis of your result). How doegrywalue compare with the literature

value of 0.66 H. What is the corresponding half-life?

Approximate the difference between the measurecermation and the biexponential

approximation of the distribution and eliminationgse with an exponential function. Use

this to describe the measured concentration witleaponential function of the form
azxgzt +a3><g3t _alxgi’

where the last term corresponds with the absorgiase.

Estimate the lag timk,g, using the result found in part c), and compiavéth the litera-

ture value of about 1.9 hours.

Estimate the AUC and compare it with the literataiue of 1,67ug-mL™h.

The bioavailability of diclofenac is equal to 50%ause of first-pass metabolism in the

liver. Determine the volume of distribution and ttlearance. Compare your answer for

clearance with the literature value of 263 + 56 miu.

Coach activity 47. Like amphetamine, methamphetamine is sometimesisualér the name
of speed. Methamfetamine is the same as methylaaupiree and is also called yaba, crystal
(meth) or ice. Methamphetamine works for about Turk. Its user feels him/herself
temporarily indefatigable and euphoric. When therptacon has lost its effect a crash
follows: the users feels depressed and tired. Tleeteof methamphetamine is stronger and
more addictive than that of amphetamine. Use ofitiig may cause brain damage. Open the
corresponding Coach activity in which data from tadg (Cook, 1991) about plasma
concentrations after oral administration of 0.25§'kg body weight (on average 21 mg) have
already been tabulated.

time C
h pg/L
0.5 0.5
1.0 15.5
1.5 30.0
2.0 35.5
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2.5 36.0
3.0 38.5
3.5 34.5
4.0 35.5
5.0 33.5
6.0 32.0
8.0 29.0

Make a graphical computer model that describesdhaiaset with an open, one-compartment
model for which first-order kinetics applies forsaloption, distribution and elimination. First
find appropriate parameter values via regressi@ahcampare your results with the following
literature values of a biexponential modgl=0.524 h, absorption rate constégt 1.083 H,
elimination rate constarit = 0.0680 H, half-life t;» = 3.1 h, clearance Cl = 496 mL/min,
Cmax=39.8ug/L andtmax = 3.1 h. Schepers et al. (2003) report the falhgwalues of
pharmacokinetic indicatorgiag = 1.1+0.5 hityp, = 11.1+7.2 h, Cl = 33.5£15.9 L/h, AUC =
468.1+£151.8, Gax = 32.447.7ug/L andtnax=7.5£3.4 h. Build hereafter the graphical model,
run a simulation and check whether the computerahétches well with the dataset.

Coach activity 48. Ecstacy or XTC, with the chemical substan
name MDMA, belongs to the family of amphetaminest b has
next to its energizing effect also a psychotomatilect. XTC is
primarily used during weekends and feasts. MDMA swsthesized
for the first time in 1898 by the firm Merck Pharoeaticals as side
product in the synthesis of another chemical suigstaand patenteg
in 1914. Subsequently, the drug was forgotten utié early
seventies, when ecstacy ‘resurfaced’ for psychafheutic purposes.
But this usage is not popular anymore because gdtive side effects. In the early eighties a
new musical style emerged in the dance club Warghdo Chicago. Some musicians
swallowed XTC pills and started in this way the a$eecstacy for recreational purposes. In
November 1988, XTC was put on the list of hard driug the opium act. Since then the
popularity of XTC has only grown: in 2001 13% ofww adults in the age between 20 and
24 years had at least once used ecstacy and in gmups (early school leavers, frequent
visitors of bars, clubs and feast) percentages we2®03 between 35 and 50 % (van Laar et
al., 2006). The Netherlands is an important coufidrythe production and distribution of
ecstasy. By the way, the interest in therapeutageof ecstasy, for example with patients in
advanced stage of cancer disease, has increased hgagstanding and frequent use of
ecstacy or any other party drug that contains MDMAcombination with other substances
has negative effects like depressions, psychose®sus brain damage (in particular loss of
memory), liver and/or kidney damage (Jager, 200§en the corresponding Coach activity
in which data from a study (Mas et al., 1999) almasma concentrations after oral admini-
stration of 125 mg MDMA have already been tabulated

time C

h ug/L
0.25 0.0
0.5 19.2
0.75 74.6
1.0/ 125.0
1.5 200.0
20| 223.1
3.0| 2154
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4.0| 192.3
6.0 157.7
8.0 130.8
10.0] 1154
24.0 38.5

Make a graphical computer model that describesdataset with an open, one-compartment
model for which first-order kinetics applies forsalpption, distribution and elimination. First
find appropriate parameter values via regressi@hcmmpare your results with the following
literature values of a biexponential model: abgorptate constank, = 2.125 + 1.100 1
elimination rate constamt= 0.0923 + 0.043h half-life ty, = 8.73 + 3.29 h, lag timeag =
0,42 h, area under the curve AUC(0-24h) = 2623572.9g-L™*-h, AUC(0-0) = 3190.7 +
1953.2ug-L™-h, peak plasma level G = 236.4 + 58.Qug/L andtmax = 2.4 + 0.98 h. Assume

a bioavailablity of 84% (Yang et al, 2006; Cone &dsdtis, 2007) for the calculation of the
clearance and volume of distribution. Build hereathe graphical model, run a simulation
and check whether the computer model matches willthe dataset.

7. Mathematics under influence:
more realistic models of intake and clearance of alcohol

In the second section you became familiar witmadr model for the intake and clearance of
alcohol in the human body, viz., the Widmark modehe formula for the blood alcohol
concentration (BAC) that corresponds with the sesplersion of this model in which only
elimination is modeled is equal to

BAC:BACt:O—BXt:VE—BXt, (7.1)

d

BAC=BACt:0—[3><t=3—[3><t,

where
D =the amount of alcohol consumed (in gram),

V =the volume of the body water into which the alcak@bsorbed and distributéad liter),
B =the elimination rate (in gram per liter per hour),
t =the time {(n hour) elapsed after consumption.

Widmark postulated thaty is equal to the productW , whereW is the body weight andis

the so-called Widmark factor. The Widmark factomdividual and depends primarily of the
body composition. Reference values are for men (Wi standard deviation 0.085) and for
women 0.55 (with standard deviation 0.055). Thedowalue for women can be explained
because they have in general a larger percentafgtpftissue than men and thus less body
water into which alcohol can dissolve.

In Exercise 13 you have taken absorption into astauthe Widmark model: you have
investigated how the assumption that there excsrtain time spaify, of say 30 minutes, in
which the at timé = 0 consumed amount of alcohol is absorbed wittstant absorption rate
into the central blood circulation en further distited in the total body water works in
practice. Maybe you have not obtained a resultlamio the one shown in the screen shot
below. The measured data come form a real expetinmewhich a test subject drank 3
standard glasses of an alcoholic beverage in oaegtit early in the morning on an empty
stomach.
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Figure 17. Linear model of intake and clearance of alcohdhshuman body.

In this simple mathematical model two weak poinichathe eye: (1) The abrupt transition
from intake to elimination of alcohol in the humiamdy and (2) the unrealistic behavior of the
model curve that could lead in principle to negatBAC levels and does not match well with
measurements of low BAC levels. The first minus van take away by incorporating the
absorption of alcohol into the systemic circulatioa a model of exponential decay from the
gastrointestinal tract. For taking away the secomdus we must switch to more realistic,
nonlinear models. This is what we will do in thecgon.

7.1. First-order absorption kinetics

We assume that alcohol is absorbed via the gastsiinal tract and gets via the portal vein
through the liver into the systemic circulation. orRthe decrease of alcohol from the

gastrointestinal tract we use an exponential dewagel with elimination raté, . Thus:

Apbl rad = _ka |}bltracﬂ (72)

at
where A, IS the amount of alcohol in the gastrointestinattr The rate of change with

which the alcohol gets into the systemic circulatims opposite sign and we assume that all
alcohol passes the gastrointestinal tract andeber lunchanged. In terms of a mathematical
formula, the absorption component of the rate ainge of the amount of alcohol in the
central compartment, which consists of the systeaniculation and the highly perfused
tissues, is equal to

at

( A A:entral compartmenj - ka mbl ract (7 ) 3)
absorption



The zero-order elimination kinetics according te iWidmark model is expressed in mathe-
matical language as:

[Mj =, (7.4)
elimination

whereb is a constant. Adding (7.3) and (7.4) gives thenida for the rate of change of the
amount o alcohol in the central compartment andetteer with formula (7.2), a set of
equations that describe together the rate of chawfgéhe amount of alcohol in the
gastrointestinal tract and the central compartment:

A'Ablttract = _ka D%l tract
A

at

(7.5)
A'Ahentral compartment_ k @b -b
At a | tract
Division by the volume of distributioWy of the central compartment leads to the following
set of equations for the amount of alcohol in thstmintestinal tract and the blood alcohol
concentration:

AABI tract —
At - ka X '%I tract

aBAC _k (7.6)

V_: X Abltract _B

Here 3 is the elimination rate. A corresponding graphicamputer model in Coach 6 is
shown in Figure 18. In this example, BAC is complutsing the following pharmacokinetic
parameters:

at

dose =30gk,=6h", f=0.2h",V =44L.
It is still about the experiment in which a tesbjget empties three glasses of red wine in one
draught early in the morning on an empty stomach.
D=0 of\[alols @/HIEH

070

F BAC (01)
oo 0,65F measured BAC (0ion)
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/ 055F
{ 050F
045F ®
Digl n40f o
035F e
030F .
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A I y 020, O
1| X
irfiow BAC (glL) - .
010 L.
0,05 e
V(L) GD‘DBD\\II‘\II\‘\II\‘II\\'II\\'I\\I'\\\‘(h)l

beta (g/Lin)

Solved by Euler

Figure 18. Computer model and simulation of alcohol metalpohgith first-order
absorption kinetics and zero-order elimination Kise

This model gets simpler if you consider the qudtieinthe amount of alcohol in the gastro-
intestinal tract and the volume of distributign Let us call this the concentratiorGac: The
set of equation is then rewritten as:
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aC
Gltract — __
- ka X CGI tract
at

AaBAC
at

Now the rate of change ofgitract is opposite to the absorption component ef ridite of
change of BAC. This fits the following graphicalsgeiption of a compartmental model:

(7.7)

= ka X C:GI tract _[3

first-order zero-order

absorption central elimination

Gl tract " A compatment | =
=1 vd a

Figure 19. Two-compartment model of alcohol metabolism.

Figure 20 shows an implementation of this two-cortipant model in Coach 6, together with
the result of a simulation with measured data enlihckground. As initial value ofcGract we
choose the quotient of the amount of alcohol coresiand the volume of distribution.

050 O %[ 0| & ) ) e )

OF mac (L)
0,65 F measured BAC (ofoo)

Dig) v
Ty

absorption elimination (g/L)
M~ | L

BAG [g/L)

ka (1)

beta (giLi) delta {g/L}

Solved by Euler

Figure 20. Coach implementation of a two-compartment modellobhol metabolism.

Coach activity 49. In this activity you use the measured BAC levelstted experiment in

which a test person empties three standard gladsesd wine in one draught early in the

morning on an empty stomach. You model the intake @earance of alcohol in Coach 6

with a model of first-order absorption kinetics arato-order elimination kinetics.

a) Build the graphical model of Figure 18 and do awdation with parameter values that fit
the imported measurement data in the backgroun€dach result file with measured
BAC levels is made available for this purpose).

b) Build the graphical model of Figure 20 and do audation with parameter values that fit
the imported measurement data in the backgroun€dach result file with measured
BAC levels is made available for this purpose).

In the next Coach activity you will use measuretadeom an experiment in which a test
subject empties three standard glasses of red iwinee draught early in the morning on an
empty stomach: one at the start of the experinoemd,after 40 minutes, and the third drink 50
minutes later. The intake and clearance of alcehdescribed with a model of first-order ab-
sorption kinetics and zero-order elimination kinstiEach consumption of an alcoholic drink
has an immediate effect on the value of the stateble G, actin the mathematical model.

Unit now we have implemented sudden changes ini€6aga thePulse function and via
the RepeatedPulse function (see Coach activityl3 and 14). But whiem sudden changes in
the state variables can be counted on the fingemefhand, then is an implementation via
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discrete events the easiest approach. In the graphiodeling tool of Coach 6 exists an icon,
viz., a rhomb with a thunderbolt inside, that resgrets an event and in which arrows indicate
which state variables change because of the ocmeref the event and on which variables
these changes depend. Look at Figure 21 below inhadn screen shot of a graphical model
and results of a simulation with real data in tlaekground are visible. Behind each events
icon is a piece of computer code hidden that dessriexactly what should change in the
simulation as soon as the event occurs. In the laddalcohol experiment there are two
discrete events: consumption of a drink after fang after ninety minutes. In both cases the
concentration g actmust suddenly be increased with the quotient ofatmeunt of alcohol
present in the glass and the volume of distributidre computer code for the evelnink 2 is

for example:
Once (t>40) Do
C:= C+ C per_drink

EndDo
agerwmaow ——— g | G e e e
S SEINEIEIEEEEE]
% BAC (gL
v (L)O 'O'd () 045 E measured BAG (ui)
k (giL) 0,40 b
(=
drink_2 drink_3
absorption elimination {g/L/min}
I N [~ ,
(I
BAC (g/L)
ka (Lmin) scaiglua) o o N T
Salved by Euler =

Figure 21. Graphical model of intake and clearance of alcef@Udiscrete events.

Coach activity 50. Build the graphical model of Figure 21 and do a uation with
parameter values that fit the imported measurerdatat in the background (A Coach result
file with measured BAC levels is made available tltis purpose). Much better results than
shown in Figure 21 cannot be achieved: the meadBifgdl levels are closely after intake of
alcohol always greater than the simulation resdltee main reason is that the mathematical
model used is in fact too simple is to describestittct of alcohol kinetics well. For this one
needs amongst other things more compartments iméteematical model (see Heck, 2007).

7.2. Nonlinear kinetics of alcohol clearance

In the Widmark model it is assumed that the elimorarate is constant. Of course this cannot
be the whole story because then the blood alcadratentration would be negative after some
time. In reality this cannot happen and we haveida this in our computer models by
introducing a stop condition of ending the simuatwhen the blood alcohol concentration
becomes smaller or equal to zero. Figures 20 andh2iv that the BAC after intake of
alcohol seems to decrease at high BAC levels witlorastant rate, but not anymore when
BAC level get small. Thus we have two reasons ifigoroving the mathematical model with
respect to elimination. We will investigate threeduals.

7.2.1. A combination of zero-order and first-order elimination kinetics

An exponential decay of BAC after alcohol consumiptias we have applied in previous sec-
tions on pharmacokinetics, does not lead to afgatgs model because BAC measurements
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really show that the rate of change is nearly aorisat high BAC levels and does not follow
an exponential decay course. A simple adaptatioim@fWidmark model is switch to an ex-
ponential model only when the blood alcohol conditn gets less than some threshold
value. An important issue to take into accountis tase is to make sure that the BAC curve
constructed is as smooth as possible.

Coach activity 51. In this activity you use the measured BAC levelsh#d experiment in
which a test person empties three standard gladsesd wine in one draught early in the
morning on an empty stomach. You model the intakalaohol with a model of first-order
absorption kinetics. You model the clearance obladt with a model of first-order elimina-
tion kinetics in case the BAC level is less thanequal to the threshold val@eand with
zero-order elimination kinetics given by the foliogy equations:

aC

Gltract — __
Sl = xC,
at

sBAC _{ k,XCquaq =B~ IfBAC >0

| tract

(7.8)

k,xC -kxBAC ifBAC<0

wherek, is the absorption raté,is the first-order elimination rate for BAC levééss than or
equal to the threshold valdeandf is the zero-order elimination rate in case BA@risater
than the threshold.

a) Prove that for a given zero-order elimination ifa&nd a given threshold valdeyou only

at Gl tract

get a smooth BAC curve if you choose the first-orelémination rate equal t% (Hint:

smoothness means that the rate of change of BA@diog to linear Widmark model and
the rate of change of BAC according to the modetxgfonential decay are equal to each
other when the BAC level is equal to the threshalldied).

b) Build a graphical model with combined zero-orded &irst-order elimination kinetics and
do a simulation with parameter values that fit thgorted measurement data in the
background (A Coach result file with measured BA®els is made available for this
purpose). To inspire you and to show that such dahis also realizable we show below a
screen shot coming from a simulation based onntlaihematical model.

D70E Bac oy
0,65F measured BAC (ofon)

0BOE
[i¥133
nsof  *
046F
040F
036F
030F
025F
0,20
015
0,10

0,05

|
e Y 70 T3 70 15 30 EX a0 15 50

7.2.2. The Wagner model

You may of course ask whether the rate of chand®A& cannot be described in a satisfying
way with a single mathematical function. The gragflsuch a function should look like a
straight line through the origin for small valueslaapproach some constant value. A rational
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function of the form f (x) =;TD(, with positive parameter values farandb satisfies these
X

criteria. Wagner has described a model that prediot this way the blood alcohol
concentration for the first time in 1972. Just ltke Widmark model it is in fact an open one-
compartment model, but the difference is that tiraieation of alcohol is described by the
so-calledMichaelis-Menten kinetics. This means that after alcohol absorption, thenghan
the blood alcohol concentration is given by théofelng formula:
Vv, - BAC _ _ Vauu [BAC 1
at k.,+BAC

whereV, is the volume of distributionk , is thee Michaelis-Menten constant apgdis the

maximum elimination rate. In the common terminolagypharmacokinetics we deal with a
models in which the clearan€? is given by the following rational expression:

Cl=— Vmax (7.10)
k,+BAC

When the BAC level is high, then the eliminatiorieras almost equal to the maximum
elimination rate/, , (about140 mg/min) and the graph of BAC against time iarhyea straight
line. The curvature of the BAC curve is clearlyibie when the BAC level reaches half of the

maximum elimination rate. At that moment BAC is afto k,, and this value is mostly
between 5 and 50 mg/L.

(7.9)

Coach activity 52. Apply the Wagner model to the measurements in xiperment in which
a test person empties three standard glasses wfimedn one draught early in the morning on
an empty stomach. Assume first-order absorptioptids.

7.2.3. The Pieters model

Pieters et al. (1990) modeled alcohol clearanckhuimans with a semi-physiological three-
compartment model. Their model considers the ckwowapartment, in which alcohol is
metabolized following Michaelis-Menten kineticsetBtomach and the small intestine. The
alcohol goes into the stomach first, hereafter thiosmall intestine, and finally from there it
is absorbed into the bloodstream and rapidly dhsted in the central compartment. For the
last two mentioned compartments they specify firster absorption kinetics. The scheme
below illustrates the model.

oral intake
of alcohol

Vmax
kl k2 km+ c3
—ts( ¢ ) =25 ¢ | —>
STOMACH SMALL INTESTINE CENTRAL COMPARTMENT
—

Figure 22. Scheme for the Pieters model of alcohol intakd @earance.

The model equations are:
aC,

AC]_ - k1 5 m:l, A_C:Z - kl > m:l_kz m:Z' bt k2|]:2— VmaX m::),a
at 1+alC; at 1+alC; at k,+C,

m
with initial conditions

[C.(0).C,(0).C, (0] =[C, 0.9
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whereCy = Do/ V, the initial amount of alcohd,, divided by the volume of distributiov of

the central compartment, and whetg C,, and Cs are the alcohol concentrations in the
stomach, small intestine and central compartmezgpeactively, related to the volume of
distribution of the third compartment. Suitablegaeter values for an experiment in which a

test subject drank 28,5 g alcohol early in the nmyron an empty stomach are tabulated
below (Pieter et al., 1990):

Average values

parameter  unit male female
Voo gO*mh™ 0.470 0.480
K, g 0.380 0.405
C, g™ 0.455 0.703

K, h™ 5.55 4.96

K, h 7.05 4.96

a 12 g2 0.42 0.75

Table 1. Parameter values for the Pieters 3-compartmenemod

The first differential equation in the Pieters 3wmartment model, which models emptying of
the stomach, does not represent a simple firstrgmcess, but a feedback control is built-in
that depends on the instantaneous concentratitimeirstomachC;. The parametea in the
quadratic term of the denominator determines wheghstric emptying is faster (negatisp

or slower (positivea) than the first order rate under normal conditions. So, the effect of an
empty or full stomach on alcohol clearance canalert into account mathematically (Wedel
et al., 1991). By the way, food promotes alcohelachnce, even when alcohol intake takes
place via an intravenous infusion (Hahn et al.,4)9%he Pieters model cannot explain this.

Coach activity 53. Apply the Pieters model to the measurements irekperiment in which a
test person empties three standard glasses ofiredivone draught early in the morning on

an empty stomach. Also draw the graphs of the ceéetpalcohol concentrations in the
stomach and the small intestine.
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