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ABSTRACT

In a laboratory activity students study the behaviaf a bouncing ball. With the help of a high-speamera they
can study the motion in detail. Computer modeliémgibles them to relate the measurement resulketthéeory.
They experience that reality (measurements) isantdmatically in line with the predictions of theebry (the
models), but often even strikingly apart. This stiates a process of repeated cycles from measutetoen
interpretations (how to adapt the model?), andhis Wway it realizes a rich and complete laboraswivity. The
activity is made possible by the integrated ICTisdor measurements on videos made by a high-spaertra
(via point-tracking), and for modelling and simiiggas.
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INTRODUCTION

Each introductory physics textbook, already at sdaoy school level, illustrates Newton's laws of
motion and concepts of gravitational energy andetiinenergy with examples of objects dropped or
thrown vertically and contains investigative adtes about falling objects. The reasons are obvious

o the physics and mathematics is still simple endogbe accessible to most of the students;

0 an experiment with a falling object, in which dat® collected with a stopwatch and meter stick,
using sensors such as a microphone or a sonicrrédigd), or via web cams and video analysis
tools (VBL), is easy to perform;

0 itis a clear invitation to compare measurementh thieoretical results.

Falling with air resistance is a natural extensib@a free fall study. In this case, explorations aften
directed towards two observable phenomena: (1)liagaobject reaches a terminal velocity and (2)
more massive objects fall faster than less masdijexts. Experience from daily life already |eattmet

air drag cannot be neglected in many practicals;asg., not for the motion of a table tennis Hatk
portant factors that have an effect upon the amotiair drag are the speed and cross-sectionaladrea
the falling object. In popular experiments of drimgpcoffee filters (Derby et al, 1997), balls aratty
balloons (Gluck, 2003), or paper cones (Woorghg, 2006), students investigate the movement of an
object released at a certain height and they déterthe influence of weight, size and shape of the
falling object on its motion. Data collection igptgally done by stopwatch and meter stick, it is IMB
based using a sonic ranger (Gluck, 2003; Woosira, 2006), or it consists of video recording with a
digital camera or web cam, followed by measurenmemt video analysis system (Pagodisl, 1997;
Mooldijk and Savelsbergh, 2000; Cross, 2007). Cdempmodelling allows the students to compare
reality (measurements) with theory-based predictiba models). However, a practical investigation o
various models of air resistance is often omittedaoise it is in practice not always easy to find
conclusive evidence of the value or nature of gsestive force: will the drag force acting on aneab

be proportional to the speed of the object, theasgof the speed, or depend differently on the dpee
The textbook or the teacher just gives the mathiealaklationship for the drag force. However, with
the advent of affordable high-speed technology., ¢hg release in 2008 of the Casio EXILIM Pro-F1



digital camera (price= 1000 US$), and by using the video tool in the CoBchomputer learning
environment (benefiting in particular from poin&tking and perspective correction facilities) tiisd

of practical investigations are brought within feasf high school students and students can explore
themselves the mathematical relationship betweag fdrce and speed (Heck, 2008).

We report in this paper about a sequence of aetévior pre-university students dealing with thpito
of a bouncing ball. Focus is on mathematical maatglby students using principles of classical me-
chanics and on validation of the constructed mod#ts discuss not only an integrated application of
mathematics and physics, but also the use of iatedriCT tools that support construction and valida
tion of models. The main aims of the developedvdids are (cf. Hestenes, 1996):

1. By engaging secondary school students in modelfictyities, give them a feel for what

models and modelling mean in the practice of ma#immans and physicists;
2. By focusing on basic models, make the structureatbrence of scientific knowledge more
evident to students.

The activities are supposed to increase the madetdompetences of the students. Herein we take a
holistic view on modelling processes in science scidnce education, and on modelling by students.
We are of opinion that students learn best aboudetting by actually doing modelling in authentic
contexts, simple ones at first but complete moaghvork nonetheless, becoming more sophisticated as
confidence and experience increase. Parts of theik resemble more and more the processes of
scientific practitioners in modelling. Because maxsentists do not consider modelling as an altar@a
to empirical science and because they usually peaitgeffort in validation of their models, we let
students act in the same way and we always requg@mparison of the results of a model with the
empirical measurements. Thus, we pay in our aEs/ig lot of attention to the validation of the
(intermediate) models. Our goal is to promote @cali attitude of students by looking at various
models of one and the same phenomenon. We wanbd ®odar that the outcomes of model of a
bouncing table tennis ball matches empirical mesments of the motion of the bouncing ball very
well, i.e., we are not satisfied with just a faiegiction of a small part of the bouncing procesefahe
number of bounces, but we really request a verylgnatch between the measured position-time graph
and the graph produced by the computer model. Awllesee this is not as easy as might be thought
and a high-speed camera will be useful to studyrtbon of a bouncing table tennis ball in detail.

THE MODELLING CYCLE: MODEL OF MODELLING + GUIDELINE FOR INSTRUCTION

There are various views on scientific modelling &osv students can develop modelling competences
(see van de Berg al, 2006). But, as Doerr and Pratt (2008) pointed e collective epistemological
perspective is that “modelling is driven by the chée describe, explain, and/or predict some pdeicu
phenomena of interest to the modeller. Elements fitte real world of the experienced phenomena are
selected, organized, and structured in such a hatythey can be mapped onto a model world. This
model world necessarily simplifies and distorts samspects of the real world while maintaining other
features and allowing for manipulations of thesedees (or objects) in accordance with the rulethef
model world.” In other words, the model is separfaten the world to be modelled. In this view, a
model is a constructed system of objects, relatipss and rules whose behaviour resembles that of
some other system in the real world of phenomeha. riiles of the model world come in our type of
modelling from mathematics and physics.

Another common epistemological underpinning to rdtifie modelling is that it is considered a cyclic
or iterative process. Doerr and Pratt (2008) brodgiward that “the source of this iteration comes
from the attempts at validation in the real worfdle outcomes of the manipulations of the objétts
the model world. This validation can take severdierent forms. In some cases, the validity of
outcomes is simply measured against the criteriasefulness for some particular purpose. In other
cases, validity is determined by comparison to othedels or to other experienced phenomena or to
predicted data. The outcomes of the validation gssaesult in either a satisfactory model or geaera
another cycle of modelling activity. The cyclic neg of this modelling paradigm is generally presdnt

in variations of the simplified form suggested iglte 1.”
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Figure 1. The cyclic nature of the modelling pracisa nutshell.

One of the variations of the simplified modellingcle, which we adopt in our work and which is quite
popular in the research community on mathematicsaibn, comes from Blum and Leif3 (2005) and
distinguishes seven sub-processes in the modgliogess (Figure 2).
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Figure 2. The modelling cycle of Blum and Leil3

Such schemes are mostly used as theoretical frarkéaoeducational research to describe the ‘ideal
modelling process’, to formulate modelling competes, and to discuss obstacles of students during
the distinct modelling phases and transitions (egllbraith and Stillman, 2006; Maal3, 2006). The
schemes do not imply that one necessarily stegagliorodelling through each and every phase in the
modelling cycle in the given ordering; modellingiis practice a non-linear process. For example, a
simulation with a given computer model may form #tarting point of an investigation to come to
grips with the phenomenon to be modelled and mayder to brush up or extend the required
mathematics and physics knowledge and skills. Blmnaimd Jensen (2003) presented an example of a
lesson design in which the mathematization happersverse order: first a suitable regression fdamu

in the form of a sum of exponential functions isedined and hereafter a two-compartmental model is
developed that has the regression formula asliitico.

Distinguishing various phases and transitions maalelling cycle does not mean that knowledge and
skills must be learned and practiced separatebaah sub-process. Then one runs into pitfalls\ohgi
away formulas in a context without any explanatiorof omitting the validation of a model by com-
paring its outcomes with experiences, observatierperimental data, or with theoretical knowledge
about the phenomena to be modelled. It is our bda students better go through the whole model-
ling cycle several times, firéh a simplified situation (which might be a similamt simpler problem
situation) and then adding step-by-step more detaithe model, with the purpose of matching the
model better with realityThe schematic representation of the modellingecgein serve as a guideline
for the design of the lessons: we have used theehadBlum and Leil3 to design our lesson series on
modelling the motion of a vertically bouncing bahd in particular of a bouncing table tennis ball.

MEASURING AND MODELLING A FREE FALLING AND BOUNCING BALL

The first transition in the modelling cycle of Bluamd Leild — understanding the task — means that one
must come from the real world situation to a sibramodel. For modelling of the motion of a bounc-



ing ball, the best thing to do is to ask onesedgjions about this motion. Why in fact does thé fixak

fall down vertically and then bounce? What effegesl the ground surface have on this motion? What
effect have the choice of material, the size, shapéemperature of the object on the motion armd ca
this be understood? What effect had the mediumhiiclwthe ball moves? Can the bounce time, i.e., the
time it takes for a ball to come to rest, be coregwind predicted? These questions do not appeaf out
the blue but originate from prior experience ordxperimenting with balls. One cannot answer all
guestions at once and the investigation must b&rmzhto a manageable problem situation: in ouecas
the study is limited to the motion of a hollow bfillled with air, bouncing vertically without spion a
hard, horizontal surface. The ball can be a sogakytennis ball, or a table tennis ball; the ané can

be a hard flat floor or table. Furthermore, a sgat choice of the modeller can be to first studyma-

pler but related problem; in this case this cowddhe free fall of an object.

So, let us begin the investigation of a free fallobject with a video analysis of a recorded expernit
and an experimental way of modelling the motionreigression. A research study of Larkin-Hein and
Zollman (2000) showed that such an approach saves effective way to permit students to become
more active learners. In addition, it enhancesesitidnotivation and attitudes as well as encourages
longer time on task. Figure 3 is a screen shohefvideo analysis. In the lower left window is the
original video clip of the experiment in which arpen standing on a ladder lets a ball fall dowmfr@
height of 4.5 m. Data collection using this vidéip és a bit problematic because of the perspective
distortion. Luckily, Coach provides a tool to caftréhe perspective view of an image plane of motion
Details about the software implementation and mbospiring examples of its use can be found in
(Heck and Uylings, 2006a). The upper left windowhe screen shot below shows the result of recti-
fying the video clip to a front-parallel view ofdlscene. Point-tracking makes the data collectiadhe
rectified video clip a piece of cake. The windowshe right show the tabular and graphical resafits
measuring the height of the ball with respecttwetiIn the graph window, the (numerical) derivatife
the vertical position has been computed as welk # straight line of which the slope is closete
acceleration of gravity. It also motivates a pafli@h@gression curve to fit the data.
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Figure 3. Screen shot of video measurement anditumfit

Experimental modelling via regression is practigiyes excellent results, and may serve as arfirst
through the cyclic modelling process, but it wobklnicer if one could underpin it with a mathemltic
model using elementary concepts of kinematics. Hareputer modelling comes into play. There exist



basically three types of computer tools for simoladynamical systems: a system dynamics approach,
event-based modelling, and agent-based modelliogciCis a hybrid system that combines a tradi-
tional system dynamics approach with event-basedeiting in order to allow modellers to deal in
their description of a phenomenon with sudden &fé®/e will see examples of this later on in thas p
per. Figure 4 is a screen shot of the modellinyi#gtusing only the system dynamics part of thelto
The graphical model is shown in the upper left windThe meanings of the icons are similar to those
of system dynamics software like STELLA or Powersiihere are icons for state variables, flows, aux-
iliary variables, constants, and connectors. Thaplgical model represents a system of differential
equations that originate from Newton’s laws of rapntiThe diagram in the upper right corner of Fig-
ure 4 illustrates that the vertical position of thedl computed in the model matches very well wiité
parabolic fit of the measured motion. This conchittee second run through the modelling cycle.
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This task consists of two activities, In the first activity,

'Za Measurement on a video of the free fall of a ball',
the height of the ball is measured and the speed of the ball
is computed on the basis of these data. The graphs of height
and speed are then compared in the second activity,

'2b. Modelling of the measured video data’, with the
values computed via the model,

Figure 4. Computer modelling and comparison witasurement.

pRrEasoesn 08388 05 e

=S =]

EEE Height (em)

e 60 fgteazured Height (em)
™~ @' 55

Height (em) HO (em) j:

— 40
i @- Bounce a5
v0 Y 30

25
Once (Height<=0) Do
Velogity = -damping*Velaci
EndDo

[~

Accaleration(cmis"2)  Velocity (em/s)

acceleration_of_gravity (cmfs™2) Spead (emfs)  damping

Solved by k4 L

Speed vs time S WX

4 340f Soeed (orgs)
320F
300F
280F
260 F
240F
220F
200F
180F
160F
140F

0D D & onoc02s0|

Figure 5. Modelling a bouncing solid rubber jazl bnd comparing the model with reality.



After having gone through the model cycle of treeffall of an object neglecting aerodynamic effects
we can continue with the more complicated situatiba free fall in which air resistance plays arof
with a bouncing ball for which air drag can be meggd. We select in this paper the second option; i
the developed lesson series we actually treatitsteoption beforehand. As you can see in Figurth®,
graphical modelling window in the upper left corejust an extension of the previous model ofeg fr
falling ball with an event icon. At the discreteg event when the ball hits the table we must \gouhet
velocity in order to change the direction of mofioa., to change the velocity. Let us look at die¢ails
of this event: it is triggered when the height brees less than or equal zero. Because of energy loss
due to inelastic collision — one notices that treximum heights of the bouncing ball decrease i tim
the downward velocity changes into an upward véjfognd its magnitude is decreased by multiplica-
tion with a damping factor between 0 and 1. Thismpiag factor is commonly called the coefficient of
restitution. The yellow sticker, which pops up whgu keep the cursor for a while on top of the éven
icon (the thunderbolt symbol), contains the follogricomputer code:

Once (Height<=0) Do Velocity := -danpi ng*Vel ocity EndDo
The choice of the word “Once” in the computer cotstead of “If” is important. In the latter casbet
condition would be checked each time when the caengarogram passes this piece of code and it is
then possible that the sign of the velocity is ¥erechanging, while the ball position remains negat
In order to avoid such erratic behaviour and intsieacies an event has been implemented in Coach 6
according to the principle of software triggerirag soon as some particular condition is fulfilled,
once-only action is put in running and only at plwént that this condition is not satisfied anymdhen
the event can occur anew.

The graph window in the upper right corner of theeen shot in Figure 5 contains the motion graph
computed via the computer model and the measuradpdént at the background. It shows that model
graph and the measured data match well for thécpkat type of ball that was used in the experiment
(a solid rubber jazz ball, also known as a sup#j.ld@r many a teacher and student this is often t
point to stop work and continue with another tofibis is a pity because the above experimental
approach to study the motion of the bouncing balyperhaps satisfy someone who models just this
particular system, but he or she must start all @gmin for every new kind of ball. In other words,
what does the person learn from it about the motibra bouncing ball in general? To this end,
mathematics and physics must come into play, plyssib combination with a system dynamics
approach that can handle discrete events. Formgathe damping can be computed as the square root
of the ratio of the maximum height after and befitye bounce when aerodynamic effects are not taken
into account. The reasoning is not beyond the lef/slecondary school students in physics: the speed
v, of the ball with masmfalling freely from a maximum heighfwhen it hits the table is given

byv, :\/ﬁ, whereg is the acceleration of gravity. This is true beeatl®e potential energygh, is
completely transformed into the kinetic enetgys; . For the speed, of the ball when it bounces we
takev, =k [V,, wherek is the damping factor, and the heibjtio which the ball returns is determined
byv, :\/m. Thereforek :vz/vl :m. The damping found experimentally in this way fréime
measured heights in the video is 0.84; this isxitelent agreement with the damping 0.83 usedén th

computer model to match the data. Another questiahcan be successfully investigated by a student
is the following: how much time does it take foethall to come to rest? The mathematical reasoning

could be that the time needed for the first andosdcfall are, =,/2h /g andt, =,/2h,/g =k,
respectively. If one takes into account that thi ibathe first phase only falls on the table amatt
hereafter it goes up and down, then it is cleartth@bounce timé is given by

T =t +20,+ 2,40 =t + K, (1 k+K 4+ ) =ty + Kt/ Bk Ft,00K ) @k

=4/2h/g [1-k)/ (1+k)
What is important about this algebraic work for ealion is that it is not just a hobby of the teachet
that the formulas really help students to undedstdre phenomenon better. For parameter values
k=0.84,h = 0.60mg = 9.81yn’we gefl =4.0s, which is actually one second more than the time



that is found in the experiment recorded in theswidlip. The reason for the difference between eiath
matical model and experiment is that the bouncioggss is more complicated, and changes when time
goes on and when the last bounces of the ballgidee. Another point that may surprise students is
that although the mathematical model predictsttiaball bounces infinitely many times, the totade

for the ball to come to rest is finite. As a matéifact, all these issues make the investigationjust
more complicated, but more interesting and challeng

A DETAILED STUDY OF A BOUNCING TABLE TENNISBALL

The first example of a bouncing ball dealt withuper ball in an experiment where air resistancédcou
be neglected. We will now look at a bouncing tablenis ball and we will see striking results. Thstf
step in the investigation is an experiment. Fighiis a screen shot of the video measurement dila ta
tennis ball released at a height of 51 cm and twmmcing on an office desk. The video clip was re-
corded with a high-speed camera with a frame ratE50 fps. The measurement of the height of the
ball is automatically done via the method of pdmatking. This is easy: for each point of interst
cluding the origin of a moving coordinate systethg user specifies at the start of the trackinggse

a template around this point that will henceforéhadutomatically matched in subsequent video frames.
Matching takes place in a certain moving search,dtee size of which is also user-definable. In-Fig
ure 6 you can see the search area around the tyrnesasured point (in this case, the center of the
table tennis ball) as a small rectangle. In thig,whe coordinates of the moving object with respec
the user-defined coordinate system, the origin loictv was chosen to be the point were the center of
the ball is when it hits the ground, have been rmataally determined in all frames of the videqocli
without any difficulty. Measuring in 1000 framesatideo clip can be a piece of cake!
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Figure 6. Video measurement of a bouncing tabiriseball via point-tracking.
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Figure 7. A less successful model of a bouncibtgttennis ball.



These measured data can be used to validate theysky defined model (Figure 5). Figure 7 shows
the result for the best guess of the coefficientestitution  =0.865). The result of the simulation is
disappointing: the model and the measurements n@ibhfor the first three or four bounces. The
model predicts a too short bounce time. Maybe yiosir thought is that a guess for the best paramete
on the basis of visual inspection is not a smarnthoe and that the coefficient of resolution can be
better determined in a systematic way. There atiewamethods to do this:

1. Because the video was recorded with a high frarte ome can find a good estimate of the
speed of the ball just after and before the impEoe quotient of these speeds is the coefficient
of restitution for that particular bounce;

2. Look at the maximum height of the ball after andobe the impact. The square root of the
quotient of these maximum heights equals the ageffi of restitution in case of no air drag;

3. If one plots the time between two subsequent baufite flight time) against the time when
the first of these two subsequent bounces tooleplae gets a scatter plot of points that lie on
a straight line with slope equal ke-1. Note that this method can also be applied to data
obtained by acoustic measurements of bouncing lvells a sound sensor (Aguiar and
Laudares, 2003),

The third method would provide an estimatekef 0.918, but this value of the coefficient of restitution
also does not lead to a good agreement betweenl modieneasurements. Figure 8 is a screen shot of a
graphical model that not only computes the heidhthe bouncing ball, but also stores the computed
times when the ball bounces. In the diagram taittg are shown the computed and measured scatter
plot of the flight time against the time when thestf of two subsequent bounces took place. In this
diagram too, theory (the model) does not matchitye@he measurement).
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Figure 8. Comparison of a model of a bouncingaabhnis ball (neglecting air resistance) withitgal

At this point students come up with various exptene: “the laws of mechanics are not correct!”,
“g changes with height” K‘is not constant”, and “air resistance cannot liented.” The last two ar-
guments make sense. Let us first investigate whatherporation of air resistance in the currendeio
makes a difference. In the model shown in Figuneassume that the drag forEgis given by

F, :%pﬁtd [AL?,

whereprepresents the density of aw,is the drag coefficientA the cross-sectional area of the object

( A=71D?/4 for a ball of diameteb), andv the velocity of the ball. The computer model and the meas-
urements match now much better, but theory and readlitgiserge rather quickly.

The coefficient of restitution has been consideredas@s a constant that only depends on the pair
(ball, surface), but this is in fact nowhere motivatediyWould it not depend on the speed of the ball
when it hits the floor? In fact, for the bounce of dadknnis ball on a hard flat surface it does depend
on the impact speed (Hubbard and Stronge, 2001). Wevaified this by video recording of vertical
bounces of the ball with a high-speed camera: fordpeeds the coefficient of restitution is constant
and for high speeds it linearly decreases with spdeelfdllowing relation is used in Figure 10:

k=0.932 if[y<1.9ms , andk= 1.000-0.084 otherw
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Figure 9. Improved model of a bouncing table tennis ball witfriation taken into account.
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Figure 10. Bouncing ball model including air resistance amohaconstant coefficient of restitution.
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Figure 11. Modelling of a bouncing table tennis ball as a continuoge$s, assuming that the motion
of the ball can be modelled as an ideal spring during balacowith the hard surface. The variable u is
the computed deformation of the ball. Zooming in reveals that thputech contact time is about 1 ms.



Without experimentation and video recording of the motion oftébée tennis ball with a high-speed
camera, and without careful validation of the intermediate rsodelwould never have gone so many
times through the modelling cycle until such a nice desoripdf the bouncing table tennis ball. This
does not automatically mean that the model and all the agsmsfitat have been made are necessarily
the only possible choices. For example, an interesting agptbat avoids the use of discrete time
events has been worked out by Bridge (1998): he assumes thatltderlvey impact phase can be
considered as an ideal spring following Hooke’s law. Figure Hlssreen shot of a Coach 6 imple-
mentation of this model that illustrates a splendid mhgtiveen model and measurement. The impact
time can be estimated from the computed model and is abmillisecond. This is also in agreement
with empirical results of a high-speed camera recording.

MODELLING OF A BOUNCING BALL ON AN OSCILLATING PLATFORM

An interesting and challenging problem situation for studenthe bouncing ball on an oscillating
platform that introduces students also into the concept of chraosr mathematical discussion below
we neglect air resistance but maintain the concept ofjgrissipation at impact of the ball with the
surface. We assume that the platform oscillates as &usiagon with amplitude

. t
yplatform = _AESIn(ﬁ] ’

whereA ande are positive numbers ardis small. Then the platform is in rapid motion with a small
amplitude. The following scaling of time and height — by the/,whis is a much-used concept in
modelling by professional modellers and is of interest for siisde learn —

o=_L nh=2Y
V' ey
leads to the following dynamical system:
0,.,=6,+v,, v, = kv, =4 cos(6n+nn).

Here isk the coefficient of restitution and isa parameter given byl =(1+Kk)[CA. This dynamical

system can behave in many different ways. For exampled-iuillustrates that the simulation of the
computer model for parameter valuds=5,¢ =0.00lleads to periodic behaviour of the ball. The

diagram windows in Figure 12 show different timeeiwals or zoomed-in versions.

Model window 3
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Figure 12. Periodic behaviour of the bouncing ballan oscillating platform
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Figure 13 illustrates chaos: the behaviour of §stesn is completely different whenequals 0.00099:
the ball in the end follows closely the motion GEtplatform. Animations (next release of Coach)
linked to the computer model visualize these phesranin an appealing way.

03fg, g
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run with epsilon = 0.001 as
gray background graph

Figure 13. Periodic behaviour of the bouncing ballan oscillating platform
CONCLUSIONS

The progressive aspect of modeling, visualized byodeling cycle like the one of Blum and Leil3, is a
pointer to a suitable manner to introduce it talstis: it seems best not to let them construcobtite
blue some well-functioning model, but to let themmstf start with modeling of a simple but related
problem situation, or to let them first improve existing model by changing or adding details. Here
is important that students can compare the restifse computer model with real data, preferablly co
lected in an earlier measurement activity. Confrtiah of a model with reality turns (graphical) mod
eling not only into a fun way of learning, but al®akes it exciting, challenging, and concrete work
students. Our experience is that this is practegat@rtainly when this validation of models is tega
repeatedly over a long period. Our lesson seridsonmcing balls does not necessarily have to be don
in one row but can be spread of months or evensyd&ar example, the parts about free fall with or
without air resistance can be done in one yeattlaadbcus on bouncing balls can be in the next gear
as a practical investigation task

Using discrete events, modelling of complex systiymamics is not beyond most of the students abili-
ties anymore. It really widens the scope of compuotedelling in education. In our case, it has ket
realistic, physics-based model of a bouncing llaé, simulation of which matches in an excellent way
with the experimental data at the beginning of tinscess. Heck and Uylings (2006b) have reported
similar success of investigating the motion of goy@ia video analysis and graphical modelling.

What is important for the kind of modelling actie# discussed in this paper is that students have a
their disposal a versatile computer learning emwitent with integrated tools for measurement, model-
ling, and mathematical analysis. Coach 6 is suchemrironment: it provides a graphical, system
dynamics based modelling tool that allows its usedeal easily with discrete time events and ini-add
tion to measurements with sensors it offers a mogifeo analysis system with tools for perspective
correction and point-tracking. This last tool is1genient when high-speed video clips come into play
and manual data collection is laborious, time-caniag, and error prone.
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