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We jump on human body motions such as bouncing on a jumping stick, hopping, and making 
kangaroo jumps. Students can record the movements with a digital camera and use their video 
clips to investigate the motions with suitable video analysis and modelling software. We discuss 
some mathematical models of these motions using basic biomechanical principles and we com-
pare modelling results with experimental data obtained from video measurements. Highlight is 
the application of the model of a planar inverted spring-mass system: this rather simple model 
works qualitatively and quantitatively well for the complex motions of hopping, skipping and run-
ning at moderate speeds. The examples of video analysis and modelling activities give a good 
impression of the potential of the subject of human gait for student practical investigations and as 
a context for applied mathematics and physics at secondary and undergraduate level. 

Introduction 

Human gait can take many forms such as sauntering, walking, hopping, skipping, jogging, 
running, sprinting, and so on. In this paper we construct mathematical models of the following 
bouncing gaits: bouncing on a jumping stick, hopping, and making kangaroo jumps. This 
seems very ambitious because such vivid motions are at first sight not easily modelled. The 
pushing-off and landing of a vertically hopping person savour strongly of the motion of an 
extending and compressing inverted spring-mass system. All sorts of models of this type are 
used in biomechanical studies. But how simple or complex must such a mathematical model 
be to describe reality to a reasonable extent? Can students at secondary and undergraduate 
level with modest knowledge of mathematics and physics actually do such investigations? In 
an attempt to answer these questions we investigate bouncing gaits and corresponding 
inverted spring-mass models of increasing complexity.   

Vertical bouncing on a jumping stick 

In a 2008 nationwide secondary physics examination in the Netherlands, Thomas was put on 
the scene with his pneumatic jumping stick (See the left part of Figure 1). The main compo-
nents of this type of jumping stick are: (i) foot and hand supports; (2) an air-filled cylinder; (3) 
a piston that can slide within the cylinder and forms the bottom of an air chamber; and (4) an 
elongate shaft coupled to the bottom of the piston and moveable therewith. When Thomas 
repeatedly jumps in the vertical direction, we can distinguish two phases: (1) the aerial phase, 
in which the jumping stick is off ground, maximally extended, and assumingly moving as a 
rigid body under gravity; and (2) the contact phase, in which one end of the jumping stick re-
mains in contact with a fixed point on the ground. At landing, the shaft and piston are forced 
into the cylinder, the stick length is shortened and consequently the volume of the air cham-
ber decreases and the pressure therein increases. After shortening of the jumping stick, the 
shaft springs back and the jumping stick elongates again, just like a compressed spring. It 
turns out that Thomas could comfortably jump when the airborne and contact phase took 
almost equal time. The motion of Thomas on his jumping stick serves as source of inspiration 
for describing some natural gaits of humans and animals with an inverted spring-mass model. 

This rather clear situation of a periodic motion of a person on a jumping stick can be 
described well with a model based on simple mathematics and physics. The quality of the 
chosen model can be evaluated by comparing the model results with data acquired through 
video analysis of the motion. A schematic drawing of the one-dimensional spring-mass model 
is shown in the right part of Figure 1. In this model we ignore the mass of the spring and we 
divide the period of one jump into two phases, viz., the aerial phase (with aerial time at ) and 

the contact phase (with contact time ct ). We assume that Thomas is able to vertically jump on 
his stick without changing his posture and that his body centre is near the hand supports. At 
landing, the jumping stick has rest length L . We further assume that during aerial phase only 
the gravitational force gF mg= − , where m is the body mass and g is the acceleration of gravity, 



 

plays a role and that during contact phase also the spring force ( )sF C L y= − must be taken 
into account, i.e., for heights y L≤ the linear elastic motion of the spring depends on a spring 

stiffness C (for heights y L> we may take 0C = ).    

        

Figure 1. Thomas on his jumping stick and the corresponding spring-mass model.  

The dynamics of the spring-mass system is now determined by a second order differential 

equation and two initial conditions: ( ) ,g sa y F F m F m′′= = + = with 0(0)y y= and 0(0)y v′ = . This 

can be rewritten as a system of first-order differential equations: ( ), g sv y a v F F m′ ′= = = + ,  

0 0(0) , (0) .y y v v= = We have done this because the rewritten equations can then be easily 
implemented in a system-dynamics based modelling tool. We use the modelling tool of the 
Coach learning environment (Heck et al., 2009). Figure 2 is a screen shot of a graphical 
model that implements the spring-mass model expressed by the above equations. In the 
graphical model, each combination of a rectangle and an inflow double arrow represents the 
integration of a quantity. In the example to the right, the arrow represents the 
derivative of the variable y and this quantity is integrated in time during a simula-
tion run. The quality of the mathematical model is determined by comparing the model results 
with data coming from real experiments. The diagram in the middle of Figure 2 shows the 
graph of the computed height and the point plot of the vertical heights measured in a digital 
video recorded while Thomas was jumping on his stick. The measured data suggest that a 
sinusoidal regression curve would describe the data quite well, and indeed it does from 
mathematical point of view, but the spring-mass model is considered better because it is 
based on physics laws. Then a sinusoidal displacement during contact phase is followed by a 
parabolic aerial phase. This judgment of the quality of a model is what students should learn. 

 

Figure 2. A graphical model implementing the one-dimensional spring-mass model and the results of a 
simulation run compared with data obtained from a video analysis of a movie clip. 

Hopping upward 

One may truly wonder whether the previous one-dimensional spring-mass model is a good 
model for human hopping in the upward direction without the use of a device. The proof of the 
pudding is in the eating. So, for the purpose of data collection, we went with students to the 
University Sports Centre of the UvA to let them hop in vertical and forward direction on a 
motorised treadmill. We recorded motions with a high speed camera at a speed of 300 
frames per second so that we could observe as many details as needed and work with a high 
time resolution. We present the results in this section. 

In order to get more insight in the motion of the body centre during contact phase of upward 
hopping we determine the exact solution of the one-dimensional spring-mass model. The 



stance leg (in this case actually both legs) is modelled as a massless, linear spring with stiff-
ness C and rest length L . Here we imitate models of Blickhan (1989), McMahon & Cheng 
(1990), and many other biomechanical scientists. For ease of computing we assume time 

0t = when the leg makes first contact with the treadmill (in a video measurement we can eas-
ily calibrate time in this way) and we assume that landing speed is equal to v− . The vertical 
position of the body centre has been chosen to be the same as the position of the hip joint of 
the hopping person (See Figure 3). Under the assumption that only gravitational force and 
spring force play a role, Newton’s second law of motion and Hooke’s law of elasticity lead to 
the following equation of motion for the height y during contact phase: ( ) ,my mg C L y′′ = − + −  

( ) ( )0 , 0y L y v′= = −ɺ
. Let u y L= − be the displacement during ground contact. Then the equa-

tion of motion can be rewritten as follows: 2 , (0) 0, (0)u u g u u vω′′ ′+ = − = = − , where the natural 

spring frequencyω is given by 2 C mω = . This equation can be solved analytically and the 

solution is the following sinusoid: ( ) ( ) ( )2 2
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ω ω ω
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g

v t v t tω ω
ω

= − − . Halfway contact 
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. What we learn from the last formula is that the 

motion during contact phase depends on three out of the four factors: (1) the acceleration of 
gravity g ; (2) the natural frequencyω of the spring-mass system; (3) the take-off and landing 

speed v ; and (4) contact time ct . Because of the definition of the natural frequency one can 

exchange this factor by the spring constant C (stiffness), provided that the body weight m is 
known. To conclude, by using exact mathematical methods one can make grounded state-
ments about a bodily motion and investigate the dependencies of determining factors. 

 

Figure 3. Video analysis of an upward hopping girl on a motorised treadmill that is not turned on. 

The exact solution of displacement can also be used to estimate the natural frequency and 
the landing speed on the basis of measurements. Figure 3 is a screen shot of a video analy-
sis using Coach. The sine curve matching best the data points can be obtained with the data 
analysis tools. The sinusoidal regression curve ( ) ( )0.12sin 21.25 2.95 0.88y t t= + + can be 

rewritten as ( ) ( ) ( )0.118sin 21.25 0.023cos 21.25 0.02u t t t= − − − . From this formula follow the ini-

tial estimates 21.25Hz, 2.5m svω = = . This landing speed is only a little bit greater than the 

speed of 2.3m s  obtained by numerical differentiation of the measured data. The estimated 
values give a contact time of 0.17s, which is also only a little bit less than the measured con-
tact time of 0.19s in the video clip (For this precision one needs a high speed camera). The 
take-off speed can be used to compute the duration of the aerial phase, under the assump-
tion that the aerial motion depends only on gravity: 2at v g= . This gives 0.47sat ≈  and the 

estimated flight time deviates little from the measured flight time of 0.40s . 



In short, the one-dimensional spring-mass model applied to a person hopping upward using 
no special device leads to model results that are in good agreement with results obtained 
from video analysis measurement on recorded movie clips. The agreement between model 
results and measured data get even better when we do not find out a sinusoidal regression 
curve for the measured data, but instead try to find the best values for parameters in the 
spring-mass model by the method of trial and improvement. For the hopping girl in Figure 3 
we found a very good match between model and video analysis, which holds for nine con-
secutive hops, using 19kN m, 1.95m sC v= = . This value of the stiffness C is in good agree-
ment with values found in the literature (Farley et al., 1991). From these values we obtain the 
following results: 18.9Hz, 0.19s, 0.40s.c at tω = = =  Whereas aerial and contact time were 
almost equal for hopping on a jumping stick, they differ for human hopping without a device. 

Hopping forward like a kangaroo   

What should set the seal on our work is the application of a planar inverted spring-mass 
model to human double legged forward hopping, i.e., mimicking kangaroo jumping. The 
model is in this case two-dimensional. So to start with, the one-dimensional spring-mass 
model of upward hopping is extended. The new model contains besides the kinematical vari-

ables ( ), , ,y y yy v a F also the variables ( ), , ,x x xx v a F , as it were ‘doubled’. Quantities like speed 

and force are decomposed in the x- and y-direction. The planar inverted spring-mass model 
for bouncing gaits such as hopping and running is schematised in Figure 4.  

 

Figure 4. Planar inverted spring-mass model for forward hopping and running.  

In comparison with the one-dimensional spring-mass model of upward hopping, we have now 
two new conditions: the leg angle of attack α, when the leg makes ground contact, and the 
angle of take-off velocity β, when the leg looses ground contact. These angles are most easily 
defined when we select the stance point as the origin of the coordinate system during contact 
phase, with the positive x-axis in the direction of motion and the positive y-axis in the upward 
direction, and when we assume that the stance leg lands at time 0t = : tan (0) (0)y xα = − and 

tan v uβ = , where u is the horizontal landing speed (equal to the speed of the motorised 

treadmill when the gait is on such device) and v− is the landing and take-off speed. The leg 
angle of attack and the angle of take-off velocity are not necessarily equal. It is not difficult to 
determine these angles in a recorded video clip because Coach, like any professional video 
analysis tool, provides its user a digital ruler, a digital protractor, and graphs of position and 
velocity. Notice that one cannot freely change the parameters α and β in a computer model 

for given values of leg length 2 2(0) (0)L x y= + and landing velocity 2 2(0)v u v= + if the model 

must be periodic. After all the leg angle of attack and the leg angle of take-off must be equal 
for a periodic motion. Under the given circumstances the following condition can be used to 
distinguish between aerial and contact phase: when sin .y L α≤ there is ground contact and the 

leg can be considered as a linear spring with stiffness C .  

Let us now derive the equations of motion for bouncing gaits. The spring force sF during con-

tact phase is according to Hooke’s law of elasticity given by ( )sF C L r= − , where 2 2r x y= +  

is the length of the spring and C is the stiffness of the spring. This spring force must be de-
composed into horizontal and vertical components in order to derive the equations of motion: 

, ,cos , sins x s s y sF F F Fφ φ= = . Thus: , ,, .s x s s y sF F x r F F y r= =  After moderate alge-

braic manipulation we obtain the following initial value problem from Newton’s second law of 



motion: 2 2

2 2 2 2
, ,s s
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x y x y

λ λω ω′′ ′′= − + = − − +
+ +

(0) cos , (0) , (0) sin ,x L x u y Lα α′= − = =

(0) .y v′ = −  Here we have introduced the parameters 2
s C mω = , 2

p g Lω = , and 2 2
s pλ ω ω= . The 

main difference between vertical and forward hopping is that the leg length, parameterised 
by λ comes seriously into play in the modelling of the body motion during ground contact. The 
main application of the analytical methods like the one discussed in this section is that it 
allows investigating the influence of gait parameters on the body motion and researching 
dependencies between the various parameters in the mathematical model. 

We are almost ready for constructing a computer model of periodic forward hopping like a 
kangaroo. But first we must realise that the body centre follows under the given assumptions 
a parabolic curve during aerial phase that starts in ( )cos , sinL Lα α with a horizontal speed 

u and a vertical take-off speed v . After all, the initial value problem for the motion during aerial 
phase is: 0, ( ) , ( ) cos , , ( ) , ( ) sin .c c c cx x t u x t L y g y t v y t Lα α′′ ′ ′′ ′= = = = − = = . These equations of 
motion of the spring-mass model of forward hopping can easily be implemented in the graphi-
cal modelling tool of Coach. Only a solution for moving the coordinate system from one 
stance point to the other must be found. The fact that Coach is designed as a hybrid system 
that combines a classical system dynamics approach with event-based modelling for 
processes that change abruptly helps solve the implementation problem of a moving frame. 
As triggering condition for the landing of a hopping person we can use the Boolean expres-
sion and 0 and 0,start starty y y x x′≤ ≤ + >  where the initial conditions startx and starty are given by 

cosstartx L α= − and sinstarty L α= . The event is defined behind the upper-left icon in the below 
graphical model. The idea behind the event handling is that one starts with a coordinate sys-
tem of which the origin coincides with the first stance point. In the variable 0x we store the cur-
rent value of the x-coordinate of the origin of the moving coordinate frame. Each time when 
the event of touch down occurs, the variable 0x is refreshed with the x-coordinate of the new 

stance point via the assignment 0 cosx x L α= + . 

 

Figure 5. Coach simulation of the planar inverted spring-model of forward hopping like a kangaroo. 

In order to evaluate the suitability of the spring-mass model for human hopping like a kanga-
roo we compare model results with experimental results obtained by motion analysis. To this 
end we recorded the motion of a hopping girl on a motorised treadmill going at a speed of 
3 km/h on video and constructed the height-time graph via automated point tracking of a hip 
joint marker. We use this measurement as a background graph in the modelling activity to 
find by trail and improvement appropriate parameter values. It is quite tricky to set the values 
such that the spring-mass model runs periodically for a long time: the leg angle of attack must 
match with other parameters in order that the take-off velocity equals the landing velocity. But 



the reward is great: Figure 5 illustrates a perfect match. The upper-right y-x diagram 
illustrates the periodicity of the simulated motion. The computer model can be used to study 
common forms of energy such as the kinetic energy 21

2kinE mv= , the gravitational energy 

gE mgy=  and the spring potential energy ( )21
2sE C L r= − . The sum totE of these three ener-

gies is constant, as shown in Figure 5.  The parameter values found for the hopping girl 
weighing 53 kg were: 28kN m,C = 0.84m s ,u = 1.95m s,v = 0.91m,L = 86.0003.α =  Other 

quantities can then be computed: 23.0 Hz, 10.8Hz, 0.40s, 0.2ss p a ct tω ω= = = = . What the re-

sults indicate is that leg stiffness and spring frequency sω are greater in hopping forward like a 
kangaroo than in hopping upward is greater in this case. Yet this had little or no effect on 
aerial and contact time. All this is not so very strange considering the low speed of the tread-
mill. Apparently, only leg stiffness must be increased to maintain a short contact phase. 

Conclusion 

Finally, let us return to the two questions raised in the introduction. How simple or complex 
must such a mathematical model be to describe reality to a reasonable extent? It is striking 
that a relative simple spring-mass model describes bouncing gait patterns so well. Bullimore 
& Burn (2007) confirmed that the model allows prediction of several gait characteristics such 
as contact time, vertical momentum, and stride length. But they also noticed that it often 
overestimates the horizontal ground reaction force, the flight time and the change of 
mechanical energy of the body centre. Geyer (2005) successfully adapted the spring-mass 
model to walking and running gait patterns. The actual power of the mathematical models is 
that they help researcher investigate various aspects of bouncing gaits, such as step fre-
quencies, forces, stability of gait patterns, costs of energy, etc., and compare gait patterns. 

The second question was whether students at secondary and undergraduate level with 
modest knowledge of mathematics and physics can actually do such investigations. Our 
experience is that students with a keen interest and good ability in mathematics and physics 
can master the modelling process. Less gifted students are still expected to be able to grasp 
the one-dimensional inverted spring-mass model, which was after all used in a nationwide ex-
amination. More importantly, all students can do with modest means biomechanical research 
in much the same way as ‘real’ scientists and they can practise herein mathematical knowl-
edge and skills such as graph comprehension, numerical differentiation and integration, data 
processing and analysis, regression, etc. They can develop the critical attitude that is neces-
sary for successful modelling of natural phenomena. For this it is very important that the stu-
dents can compare the results of computer models with real data, preferably collected in an 
earlier measurement activity. Confrontation of a model with reality turns graphical modelling 
not only into a fun way of learning, but it also makes it exciting, challenging, and concrete 
work. It is joyful when experiment, model, and theory are in good agreement, as in this paper.  
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