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If you want your students to investigate a more challenging phenomenon than an
object that falls freely under gravity, tie a cord to this object and wrap it around an
axle. In other words, make a kind of yoyo out of it. The constrained coupling of
translation and rotation and the limited length of the cord make the motion much
more interesting. Sudents can collect experimental data of the yoyo going up and
down via video measurement. Mathematics and physics help them to describe and
understand the motion. With system dynamics software they can compare their
model (s) with reality. We present this work for a self-made yoyo of unusual size.

COLLECTING DATA THROUGH VIDEO MEASUREMENT
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Figure 1. Screen shot of the video activity

Figure 1 above is a screen shot of an automatieovideasurement with the Coach
software (Mioduszewska & Ellermeijer, 2001). In tingoer left corner is a video clip
in which a teacher plays with a self-made yoyas linade of two wooden seats of
laboratory stools. Because of the unusual sizdnisfdbject, students do not believe



their eyes when they look at the yoyo winding ug a@own slowly. You see them
thinking “How can this yoyo move so slowly andIstib all the way up? What trick
is behind this?” No trick at alll Mathematics anlkdypics help students to describe
and understand the motion.

The first step in the investigation is to colleetal of the yoyo that is winding up and
down. The position of the point near the rim of thek and marked by a sticker (P1)
is measured in a slightly moving coordinate frameosge origin is the hand of the
teacher holding the end of the cord of the yoyanPtiacking is used to collect
automatically coordinates of points of interest tied boxes illustrate the areas that
the software searched in the current frame of tdeovclip for the origin and for the
point marked by the sticker. In the upper rightgdean, the horizontal and vertical
position of P1 are plotted against time. This ismbmed with a sinusoidal fit of the
horizontal displacement of the yoyo, due to an temtional pendular motion of the
yoyo, and a quadratic function fit of the vertigadsition during the first phase in
which the yoyo unwinds. These fits can be used @wdinate functions of a
computed point that is displayed in the video ¢RR): it turns out to be the position
of the axle during the unwinding phase of the yoybe lower right diagram in
Figure 1 shows the orbit of point P2 while the yayanwinding.

EXPERIMENTAL MODELLING

Let us focus on the vertical position of the pditnear the rim of the disk for a yoyo
that is unwinding. Its motion is a superpositidrthe displacement of the centre of
mass located at the axle of the yoyo and the arpcojection of an accelerated
circular motion. The first part can be describedalyuadratic function fit; the second
part is an accelerated cycloid. It turns out taheseful idea to plot the vertical posi-
tion against the square of time. This is done m lthwer left diagram in Figure 1.
Then the graph can be described as the sum ohiglgtline approximation and a
sinusoidal approximation of the residue. The appnake formula for the vertical
coordinate of P1 as a function of tirnis

Y., =—0.0658%+ 0.139sin(4.3%52- 0.642) 0.

A physical interpretation of the above descriptiohthe unwinding yoyo is as
follows: the centre of mass moves downward withoastant acceleration that is
numerically much less than the acceleration dugréwity for a free falling object.
The point P1 rotates around the axle with an amgrdiocity that increases linearly
in time. It is an exercise in trigonometry to cortgtrom the vertical displacement of
the axle and its radius, how much rotation alrelady taken place and to determine
the coordinates of the point P1. This is appliedhi@ modelling activity shown in
Figure 2 below, which is created by the system dyos module of Coach.

The graphical model is shown in the lower rightnesrof Figure 2. The meanings of
the icons are similar to those of system dynamiésvare like Stella (Steed, 1992):
there are icons for state variables, flows, auxiligariables, constants, and con-



nectors. What is special for Coach is the posgybdi modelling based on discrete
events. The ‘Events’ box on the left in the graphimodel contains the hidden
subsystem that takes care of the change of diredtiom downward to upward
motion of the yoyo. The ‘Ycoord’ box on the rightrdains the subsystem that
computes the coordinates of point P1 at any timén education, the use of
subsystems is convenient when students are stefepyntroduced into the details of
a model or when they gradually extend themselvesodel while trying to keep a
good overview of the system. The diagram in theeundpft corner of Figure 2
illustrates that the vertical position of the axdemputed in the model for the
measured part of the unwinding motion matches wih the quadratic fit of the
measured motion. The upper right diagram of Figushows a phenomenal match
between the measured vertical position of the géinbn the yoyo and the computed
y-value. The diagram in the lower left corner ilhasés that energy loss can be taken
into account, so that the yoyo gradually returna tess high position in each cycle of
downward and upward motion.
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Figure 2. Screen shot of the modelling activity

The above experimental approach to study the matidhe yoyo perhaps satisfies an
engineer or a student who models just this padrcsystem, but he or she must start
all over again for every new kind of yoyo. In otlveords, what do you learn from it
about the motion of a yoyo in general? To this endthematics and physics must
come into play, possibly in combination with a gystdynamics approach.



MATHEMATICSAND PHYSICSOF THE YOYO

The coupling of translation and rotation complisatee motion of a yoyo. How
precisely and what this means for the motion carfobad by applying the laws of
classical mechanics. Here we will only study thagghin which the yoyo is unwind-
ing, but the upward motion can be treated similgigns change in the formulas).

Let us first fix notations (see the picture to tight). The hoe
yoyo has masm, an axle with radius, two circular disks cord
with equal radiiR, and it is tied to a cord with tensionay'd“":':“o“T

force T. Let D be the point of application of this tension ‘
force. This is the point around which the yoyo euntly
unwinds. The torque (moment of force) about the cent
of mass, which makes the yoyo rotate, is giverrbyTr .
The origin of the coordinate system is, like in tideo
measurement, the position of the hand that keepsnld of
the cord at (almost) a fixed position. The positixgztical
direction is chosen to be upward and the positargzbntal
direction is to the right. As usual, the verticalspion,
velocity, and acceleration of the centre of massdanoted Fg =mg

by h, v, anda, respectively. Note that these quantities are

negative for the yoyo in the unwinding phase for okoice of coordinate system.
The angular velocity and angular acceleration efythyo are denoted by the symbols
w anda, respectively The symbgl is the constant of gravity; the letters used for
the moment of inertia of the yoyo. We release thyoyat timet =0, at initial height
ho, and withP; at angleg. Newton’s laws give:

(1) sum of forcesma, i.e.-mg+T =ma
2) r=la,ie.Tr=la
(3) v=-rw,andthusa=-ra

From (2) and (3) followsT = —|%2. Substitution in (1) gives:

_ g

4 a=———.

) 1+1/mr?

For the circular yoyo holds:=imR?. Thus:
_ g

5 a=—-————— .

(5) 1+%(R/r)2

The vertical displacementof the pointP; near the rim of the disk is a superposition
of the vertical displacemehtof the centre of mad®, and the vertical projectioy,
of the rotation about the axle. Thug;, = R, ,...Sin®, where

6) @=(h-h)/r+g=-1at’/r+q,.



Therefore:
(7) y:h+ Yrot :h0+%at2 + RmarkerSin(—%atz/r +¢O)_

This formula has the same shape as the one foutiteirxperimental modelling:
substitution of the yoyo da= 0.18m, Ryarker= 0.135m, andr = 0.0145m gives the
following results:y = -0.1257 m/§ and ¢ = 4.334> +¢ . So, using mathematics and
physics, we are able to describe the motion ofutiheinding yoyo by a formula that
is in excellent agreement with the experimentalltes

What is important about this algebraic formula wimkeducation is that it is not just
a hobby of the teacher, but the formulas reallyp h&tiudents to understand the
phenomenon better. For example, it follows frommfola (5) that the acceleration is
independent of the mass of the yoyo; it only depemd the constant of gravity and
on the ratioR: r. For example, a yoyo of larger disk size would oy and down
more slowly, and the same holds for yoyo-ing on theon. The formulas, and
especially Newton’s laws, also play a fundamentdé rin the construction of a
computer model, as we will see in the next section

A SYSTEM DYNAMICS APPROACH

Let us discuss briefly how the change of directbthe moving yoyo and the energy
loss due to friction are taken into account in¢benputer model that is shown in full
bloom in Figure 3. At this point, all subsystems &ully displayed and we will focus

on the ‘Events’ subsystem as an illustration ofgbwer of event-based modelling.
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Figure 3. A graphical model of the yoyo (with events)



For the change of direction we must update the citgloand acceleration at the
following discrete events: firstly, when the endté cord is reached and the yoyo
starts rotating around the turning poiht(as a result of inertia), and secondly when
the turn is completed and the yoyo continues wigdipward. Let us look at the
details of the first event: it is triggered whem theighth becomes smaller than the
constanth,,. Then we store the absolute value of the curreldcity in the variable
2.2
9 into a:—(1+a) V”‘ax,
1+1/mr? 27
where a is a number between 0 and 1. The latter formulmasivated as follows:
when the yoyo rotates aroum until it reaches a position in which the yoyo can
wind up again, the orbit of the centre of massai$ & circle with radius. Because of
energy loss due to friction — one really feels # pn end of the cord when the yoyo
reaches its lowest position — the turn is not catgy elastic and the downward
velocity —v_ .. changes into an upward velociyVv__ , wherea (with value between

0 and } is a measure for the decrease in velocity; in otiends, Av = (1+ a)V,,,,. SO

the mean absolute value of the velocity duringrtitating phase at the bottom of the
cord is equal to}(1+a)v,,,. The time it take for rotating is therefore estieshas
1 2

At:L, which brings us toazgzm. When the rotating

11+ a) Ve At m
process is at the end, i.e., whemasses through,, the second event is triggered
9
1+1/mr?
the velocity is set tar v, . The action that is triggered by an event is dj@tin
the properties window that pops up when the comedimg events icon (with the
thunderbolt symbol) is double-clicked. Using diserevents, the modelling of rather
complex system dynamics is not beyond most studenisiore. It really widens the
scope of computer modelling in education. In owgecdt leads to a realistic, physics-
based computer model, the simulation of which megdh an excellent way with the
experimental data.

Vmax and we change the acceleration fran -

and we change the formula for the acceleration lagein intoa =- and

WHAT ELSE TO DISCOVER ABOUT A YOYO?

What other questions can students ask themseloes abyoyo, research questions to
which they can try to find answers via experimantgtmodelling, and serious think-
ing? An interesting and meaningful thing studergs do is to look at the various
forms of energy that are important in the desaiptof the motion of a yoyo. The
forms of energy for which mathematical formulas @atually be derived are the
gravitational energy of the yoyo and the kinetiergy of rotation and translation.
With these formulas students can check in whictsgb@&nergy is conserved and how
the energies are related with the vertical positibthe centre of mass of the yoyo.



Students may wonder whether the time intervals éetwturning points of the yoyo
have constant size or gradually decrease in tirhey Tan study the maximum height
of the yoyo after it has gone down andrupmes and try to conjecture a formula for
the maximum height as function of

We have not said anything about the way the cotigdsto the axle, but it has in fact
a large effect on the motion of the yoyo (see thg.website How Yo-Yo's Work).
Also the shape of the yoyo is important: studeats @ise the question whether one
can play with a yoyo of rectangular shape instefadirgular shape and, if so, how
this motion then relates to that of a regular tgpgoyo? Can algebraic formulas also
be derived for a rectangular shaped yoyo?

What happens when the path of the yoyo is restriaay., when the yoyo rolls down
an incline? But even a yoyo placed on a rough |lsueflace behaves mysteriously at
first sight. When a gentle horizontal pull is eeerton the cord so that the yoyo
rotates without slipping, then the yoyo will robwards the pull (why?). When a
gentle, almost vertical pull is exerted on the cdraill roll away from the pull.
Somewhere in between there exist a critical angighéch the yoyo does not move.
We leave it as an exercise to prove that thiscalitangle is equal tarccos( r/ R). So,

it is independent of the mass of the yoyo, theitens the cord, and the coefficient
of friction.

The questions raised so far about a yoyo illustitzdé this simple toy provides a rich
context in which students can do a lot of experitsespply physics concepts in order
to understand observed phenomena, and have angteeclo experience the power
of mathematical language.

WHAT ISTHE ISSUE REALLY?

In our point of view, the real educational issuethe investigative work that we
described is the ICT-supported interaction betwesperimental work and model-
ling, in which the interpretation of results is bdon methods from mathematics and
physics. The role of ICT is here to allow studeiaicollect high-quality, real-time
data, to construct and use computer models of dynaystems in much the same
way as professionals do, and to compare results feaperiments, models, and
theory. Furthermore, students can develop and ipeadhrough their activities
research skills, and the fact that they must agiyr knowledge of mathematics and
physics in a meaningful way in a concrete conteddt at the same time to
deepening and consolidation of this knowledge. Irtgrt research competencies that
students practise through this kind of practicaestigations, which are by the way
part of the upper level curriculum in the Dutch @ettary school system, are being
able to

« formulate good research questions that guide th&;wo
» observe and discuss with others about the behawgfcam object in motion;
» design and implement an experiment for collectibretevant data;



» apply mathematical knowledge and physical conceptew situations;

» construct, test, evaluate, and improve computeratsp@nd have insight in their
role in an investigation;

 interpret and theoretically underpin results;
 reflect on own work;
» collaborate with others in an investigation task.

ICT plays an important role in enabling studentsday out investigations at a high
level of quality: automatic video measurement tusas to be an effective means to
study rotation motion quantitatively, instead ofngsonly a qualitative approach. It
also brings the real world into mathematics andspisy education in an attractive
way. Computer models can be constructed by studéetaselves on the basis of
general physical concepts in situations where afgeldormulas are out of reach or
even impossible. In short, ICT provides the stuslewith tools to be actively
involved in the process of finding solutions to lidraging problems that they come
up with themselves. The fact that these tools aredled and integrated in a single
computer learning environment comes in handy: thées it for students easier to
apply these tools in their attempts to solve pnolsler to get a better understanding
of given situations. Actually, we consider the mlbdg process, the underlying
thinking processes, and the discussions with fektwdents during the research as
more important in the students’ work than the ofgdiresults. All the same it is
joyful when experiment, model, and theory are ihdgreement, as is the case in our
study of the motion of a yoyo.
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