BRINGING REALITY INTO THE CLASSROOM
André Heck
AMSTEL Institute, University of Amsterdam

Technology offers ample opportunities to bring reality into the classroom. Students
and teachers nowadays have many tools to work in an authentic way with real data
in mathematics and science education. However, much research and development is
still needed to create a consistent learning trajectory out of the many exciting single
activities. Some examples are presented, in particular with regard to video and image
analysis, modelling, and simulation. In addition, authentic research projects of sec-
ondary school students are discussed.

INTRODUCTION

Coach is an activity-based, open computer learamgronment that offers students
and teachers a versatile set of integrated toolgldta collection (through measure-
ment with sensors or collection of data on videpscand digital images), for control
of processes and devices, for processing and anglgtata, for construction, simula-
tion, and validation of computer models, and fahatung of activities. It is the result
of more than two decades of sustained researchdamdlopment work at the
AMSTEL Institute of the University of Amsterdam itaprove mathematics, science
and technology education at primary and secondargd level. It has been trans-
lated into several languages and is used in maoptdes. The CMA Foundation
(www.cma.science.uvadlistributes the Coach environment, which is méant

» facilitate the students’ construction of in-deptidantegrated understanding
of mathematics and science concepts and procdssesgh inquiry;

* change the computer into an instrument to expleaéworld phenomena;

* involve students in similar activities to what ‘fescientists engage in and
thus lead to authentic mathematics, science, amhtdogy learning. To this
end, students are offered tools for collectinguaizing, processing, and
analysing data, and for creating computational rsoded animations;

* be universal and applicable at many levels of etilucain several curricula,
and in various types of instruction, and be adjstay teachers to their stu-
dents’ abilities.

| refer to (Heck, Kdzierska & Ellermeijer, 2009) for a review of thengipled de-

sign and implementation of Coach 6. Here | dis¢hesopportunities of a computer-
based approach to practical, investigative workhm mathematics and physics do-
main. | present some examples of activities invaljvmeasurements with sensors,
video analysis, and modelling to study real-woih@pomena in an inquiry approach.
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MEASUREMENTS WITH SENSORS

In a measurement activity with sensors, students gesight into setting up an
experiment and collecting data with sensors thatcannected through an interface
with a computer or directly attached to a hand-raddice. This understanding of
doing an experiment helps students to process aalyse the data, and to interpret
the graphical representations of the data. It helmn more because the data are
dynamically linked with different representationgl as graphs, tables, meters, and
digital values during and after the measuremerd, l@tause this measurement can
be replayed on the computer screen as many times@ed. Experiments are quite
easily set up (by dragging and dropping sensorsi@onthe virtual interface panel on
the computer screen or by automatic sensor reagoghivith a variety of interfaces
supported and a large library of calibrated senfforstemperature, light intensity,
sound level, etc.) available. Experimenters caectedn appropriate measurement
method (time-based, event-based, or manual measatemwith or without trig-
gering) and a useful measurement setting (duraih sample rate). Students can
also combine sensor-based data collection withteymous video recording of the
experiment done with a webcam. Heck and van Dor{(@e08) presented a nice
example of this feature of the Coach environmemtcerning a high school student’s
research project on gait analysis.

The above description could give you the impressi@t students must do all the
things mentioned to carry out a measurement agtivith Coach, but this is not true.
For young pupils, everything may be prearrangesuich way that they cannot (ac-
cidentally) modify the activity. More experiencetidents may get access to meas-
urement settings or the choice of sensors. Sehidests may get maximum freedom
of work for end-users, which is pretty close to fheilities for authors of Coach
activities. This approach leads to a learning ttapy for doing measurements that
works well in school practice (confer, van den Bé&rgllermeijer, 2006). It is noted
that the same tactics can also be applled in ¢yipes of Coach activities.

528 &0 ®0 3505095330

You can hear when sounds are high or low, loud or soft
You can also hear different voice sounds. For example:
say aaaaaa (from the word ‘are’), or say 0aoo (from word
‘or'), eeeee (from 'see’) or other vowels.

Keep your fingers against your throat and make a vowel
sound. You can feel your throat vibrate

Mow put earplugs in your ears and stand behind
somehody. Keep your fmgers pressed softly against his
or her throat. Have your partner make different sounds
while you investigate the feelings of the sounds
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Can you feel if the sound is hard or soft?

Can you feel if the sound is high or low?

Can you feel the difference between different sounds?

Click here to apen your YWorksheet
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Figure 1. Measurement and signal analysis of voice sounttstive €Sense interface.
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Figure 1 shows a screen shot of the measuremaht(is) and the signal analysis
(blue graph) of the voice sound ‘eeh’ recorded with €Sense interface, which is
mostly used at primary school or by beginners. 2ual representation of the €Sense
interface is also present in the activity screeméke the experimental set-up clear to
pupils. A text window is used for explanation arecription of tasks. The diagrams
illustrate that the sound signal is well describgd sinusoidal signal that consists of
four frequencies. It goes without saying that tlgnal analysis is only done in an
advanced course.
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Figure 2. Screen shot of a video measurement of the starspked skater.

Figure 2 is a screen shot of a video measuremeaheddtart of a young speed skater,
which originates from the 2005 experimental compate@m in physics at the Dutch
vocational stream level (see also, Boeijen & Uying004) and has been part of a
secondary school student’s research project. Thperpft window contains the
movie in which position data (after calibrationd$tance in the movie) have been
collected by mouse clicking in the selected videonies on the head of the skater. In
the upper-right diagram, the andy coordinates of the skater's head are plotted
against time. For a suitable choice of coordingtesn and of starting time one gets
the distance-time graph. A parabola fits the mesbdistance data in the lower-left
diagram; this is clearly a good regression curvetti@ motion. The speed of the
skater can be numerically computed for the measda¢al The lower-right diagram
contains the speed-time graph and a linear fits anfirms the adequacy of the
mathematical description of the skater's motionebparabola. After this experi-
mental modelling one could try to give a physicsdthexplanation.

It is considered an advantage of this predict-olesexplain (POE) approach to
practical mathematics and science work suggeste@Gunstone (1991, p. 69) that
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physics laws, mathematical formulas, graphs, appraton techniques, and so on,
are not just compulsory items and/or a hobby oftdaeher, but become in the eyes
of students concrete, useful notions and methaatscdn be purposefully applied to
come to grips with real-world phenomena. Secondahpol students can develop in
this way a broad range of skills that includes agsbrothers asking good questions,
connecting a real world phenomenon with the wofldnathematics and science,

setting up an investigation or experiment, andembihg, representing, analysing, and
interpreting information. Uylings and Heck (2008ported about successful class-
room experiments with video analysis activitiespa¢-vocational level. Heck and

Holleman (2003) presented practical investigatiaské on human locomaotion in

which pre-university students (age 16-18 yr.) ubedvideo analysis tool of Coach to
collect and analyse real-time data about humanmganuch the same way movement
scientists do.

Some advantages of video and image measuremerdalésed.aws & Pfister, 1998),
compared to measurements with sensors and traaifi@poratory work, are:
it is an easy, fast, broadly applicable, and atitracmethod of collection
data in practical work for students who grow uphwitdeo technology and
who can devise in this way their own projects;
* the experimental set-up is rather simple and arabsetting often suffices;
 simple mouse clicking and automated tracking repkhe tedious work of
manual recording of data and allow students to eotrate on the investi-
gated phenomena. Data can be validated afterwadisarected, if needed,;
* processes that are too difficult or impossible &asure with sensors can be
studied. The range of projects has been increagedtimat affordable high
speed cameras have become available (See Hecle&xteljer, 2009; Heck
& Uylings, 2009; Heck, Uylings & Kdzierska, n.d.; Heck & Vonk, 2009);,
* students get acquainted with a major scientifieaesh method, which is
especially in biomechanics and movements scienahmsed.

The tools for capturing and measuring video clipstibe advanced and at the same
time be understandable and easy-to-use for studermdsteachers in order to be
advantageous in practice. Highlights of the videa in Coach 6 are:

* an easy-to-use embedded tool for capturing of \adeo

» standard image processing tools such as rotatidireflection of movies,

and adjustment of brightness and contrast;

»  correction of perspective distortion (also knownraage rectification);

e automated point tracking.
The last two facilities have been added to Coacthaba user can deal with the fol-
lowing two common problems with video measurem@hthe camera is not fronto-
parallel to the plane of motion; and (ii) manuatle® measurement is too time-
consuming and error-prone. Figure 3, taken fromckH& Vonk, 2009), illustrates
the correction of perspective distortion in the tesh of moving coins on a flat
surface. The image transformation is determinedhbpping the four corners of the
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rectangular paper with a projective transformatiorthe corners of a rectangle in a
new image (see the image to the right in Fig. B Trames in the video clip are all
transformed such that the overlay becomes a reletaBigaling and translation of the

rectified image are optional.

B> B W i B

Figure 3. (a)
Video of moving coins before (a) and after (b) imagctification.

Figure 4, taken from (Heck, Ellermeijer &eHzierska, 2009), illustrates automated
point tracking in the context of a bouncing taldartis ball, recorded with a high-
speed camera at a frame rate of 150 fps. For eaoh @f interest (here the centre of
the ball), the user specifies at the start of theking process a template around this
point that will henceforth be automatically match@edsubsequent video frames.
Matching takes place in a certain moving search,ahe size of which is also user-
definable. In Figure 4 the search area around theeictly measured point {Pis
visible as a small rectangle.

[b“ﬂi% [T

Figure 4.Video measurement of a bouncing table tennisvialpoint tracking.

MODELLING

The modelling tool of Coach allows students to t¥eand run numerical models, and
to compare modelling results with experimental dataree types of model editors
are available: text-based, equations-based, amthiged. The first type of modelling
Is actually nothing else than programming in a coteplanguage that is dedicated to
mathematics, science and technology. The last ypest of modelling are based on
the system dynamics approach introduced by Forrés®1) at MIT during the late
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1950s and early 1960s, and applied to educati@ugiir a computer-based environ-
ment aimed at K-12 classes and beyond (Forre€96d)1 System dynamics is an ap-
proach to understanding the behaviour of complestesys over time. Central con-
cepts are the use of feedback loops and the metaplstocks and flows, which is
typical for a modelling system like STELLA (Richmibnl1985; Steed, 1992). The
graphical mode of Coach provides a similar framéwand easy-to-use interface to
build up and visualise the structure of dynamigatams and the interaction between
its elements. These systems are created with grapélements such as a state vari-
able (similar to the concept of stock), a rateladimge (sum of all in- and outflows of
a state variable), an auxiliary variable, and astamt (a parameter in the model); see,
for example, Figure 5. Relationships between medghbles are visualised by con-
nectors and specified by mathematical formulas. dyremics of the system is de-
termined by the rates of change of state variallbgh from mathematical point of
view represent ordinary differential equations this numerically solved in a simu-
lation. Actually, Coach is a hybrid system that bimes a classical system dynamics
approach with event-based modelling for procesksat ¢hange abruptly. This ex-
tends the set of realistic problems that can beesioby students without the need of
sophisticated mathematics beyond their educatitaval. Examples are models of
yoyos (Heck & Uylings, 2005), bouncing balls (HedK|ermeijer & Kedzierska,
2009), and quantitative pharmacokinetics (in paltc alcohol metabolism; see
Heck, 2007). Computer modelling is viable at se@mpdchool level!
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Figure 5. A limited model of a bouncing table tennis ball.

Figure 5 is a screen shot displaying a graphicalehm Coach 6 that implements the
bouncing table tennis ball by only taking into amebgravity. When the ball is in the
air, it is modelled by the system of differentiguation$’ =v,v' = -g, whereg is the

acceleration of gravity, ank andv are the height and velocity of the ball, respec-
tively. Height and velocity are state variablestthee represented in the graphical
model by rectangular boxes. The state variabeidentified with the rate of change
of h, represented in the graphical model by an inflovo\a. The acceleratioa is
also represented by an inflow, corresponding tadlte of change of. When the ball
bounces, it is assumed that its velocity instardasly changes direction and mag-
nitude: v, = -k ¥ wherek is called the coefficient of restitution. This siah

er before?

change is implemented as an event, with the fohgwtode behind the graphical
element (the thunderbolt icordnce(h<=0) Do v := -k*v EndDo. The diagram in
Figure 5 shows a height-time curve that has bebuleded for the best guess of the
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coefficient of restitutionk = 0.865) using the 4th order Runge-Kutta methdugciv
is one of the ODE solvers present in Coach. Thesored height is shown as a back-
ground graph.

However, the result of the simulation is in thiseaather disappointing: the model
and the measurements match only for the first tbrfeur bounces. The model also
predicts a too short bounce time. At this poinidents usually come up with various
explanations such as “the laws of mechanics arecoatkect!”, “g changes with
height”, “k is not constant”, and “air resistance cannot ligawted.” The last two ar-
guments make sense. Here, | only show that incatjor of air resistance in the
current model already makes a difference. In thereded model shown in Figure 6,
the drag forcd-4 is assumed to be

Fd:%pm;dmwz,

where p represents the density of atg, the drag coefficientA the cross-sectional
area of the object, andthe speed of the ball. The computer model andrtbasure-
ments match now much better, although theory aradityestill diverge rather
quickly. It is only a first step in the repetitiy@ocess of improving the model that
pre-university students successfully undertook practical investigation (see Heck,
Ellermeijer & Kedzierska, 2009).
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Figure 6. An improved model of a bouncing table tennis ball.

The short example of computer modelling of the lming ball gives a glimpse of the
educational benefits of modern tools for student&dnstruct and/or modify exe-
cutable computer models of dynamic phenomena. Igridgfe benefits of a tool such
as the one presented in this paper are:

* it can enhance students’ theory building and sifiemeasoning abilities;

* it allows students to study complex and realistabjems, not just limited to
ideal situations. They may modify existing modelsd ary out various
modelling ideas, or they may construct new mod®eisfscratch.

» it offers students the opportunity to compare tegoal models with experi-
mental results. Finding a suitable parameter vplags here a role as well;

e it gives students an idea of what mathematical thodeis and what its
importance in science is.
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GETTING A HEAD AROUND EXPONENTIAL DECAY

The previous examples in this paper came all froosszdisciplinary investigative

work of pre-university students in which laws ofehanics play an important role.

Exponential laws are also common to many physid@npmena. Examples are
cooling processes, radioactive decay, dischargeaaipacitor, and so on. In this sec-
tion | describe a fascinating example from rea hbr students to investigate with
inexpensive means, namely, the collapse of the béadbeer poured into a glass.
This example, which illustrates an entire invedtaain a POE instructional ap-

proach to practical work, is part of the recentBveloped e-class on continuous
dynamical systems for the optional Mathematics Drse in the Netherlands. An e-
class can be summarized as web supported instnusti@a blended learning ap-

proach; for more details about the e-class contepter to the descriptions of the e-
classes on dynamical systems (Heck, Houwing & da8€009; Heclet al, 2009).

The subject of beer foam is not only fascinating donsumers of beer, who often
judge a beer by foam, colour, and clarity unlesy ttirink their beers directly from
the bottle, but it is also for beer breweries whigdint to satisfy their customers by
brewing beers with a stable but not excessive hehile taking preferences of con-
sumers in different countries and regions into aot@See, for example, Bamforth,
2000; Smythe, O’'Mahoney & Bamforth, 2002).

The experiment is simple and similar to the onecdiesd by Leike (2002) and by

Hackbarth (2006): a natural beer pour into a ghads height measurements for beer
and foam. Figure 7 shows a screen shot of a vidatysis of the height of the beer
(BeerH, defined as the height from the inside bottuf the glass to the beer/foam
interface) and of the head of an alcohol-free lj&étFoamH, defined as the height
from the beer/foam interface to the top of the gja¥he movie has been recorded
within Coach via a webcam capturing 1 frame peeebads. Some of the beer foam
sticks to the side of the glass and this makesfitult to get accurate measurements
of the height of the head of the beer through aatechpoint tracking. Nevertheless,
this noisy data set will do for the purpose of éimalysis of the experimental results.

Data Video - video & [ 3 |simple exp tial model = v O

BeerH {cm)
WetFoamH (cm)
Fit of beerH (cm)

i Fit of WetFoamH {cm)

Figure 7. Screen shot of a video analysis of the head @fl@rhol-free beer.
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The processes that play a role in the foam formadiod retention are not simple and
form the trick of the trade of beer brewing. The kdysical events of foam forma-
tion, retention and adhesion are as follows (LefiBamforth, 2006): (1) bubble
formation; (2) creaming; (3) drainage; (4) disprammation; and (5) lacing. Beer is
a supersaturated solution of gas. In the casegef ldis is carbon dioxide, but in the
case of ales it may be a mixture of carbon dioxadd nitrogen gas. During the beer
pour there is condensation of the dissolved gamsddubbles rise to the top of the
glass forming the fine bubbled, white, and statdachof the beer with a high liquid
fraction. The bubbles do not nucleate spontanepumly need a nucleation site,
which can be a particle in the beer, a scratcmperfection on the glass (often espe-
cially designed beer glasses have roughened bawea)preformed micro bubble.
Creaming, also called beading, is the continuousy@ion of new bubbles. It not
only is an appealing spectacle in beer, but algmnant because it replenishes the
foam if it is sustained through the time for whitie beer is in the glass. The main
factors that influence the foam formation and cregnare temperature, the shape of
the beer glass, the manner of pouring the beerti@glass, and the surface tension
and liquid viscosity of the beer depending on thensical composition. Drainage,
that is, the downward flow of beer from the foanven by gravity, begins as soon as
the pour is complete. Dak# al (1999) found that a simple exponential law models
the first phase of the decay of beer foam massciwimniay take about 300 seconds
(depending amongst other things on the type angeemture of the beer and the
manner of pouring the beer into the glass) and wadsofor 85-90% loss of foam
mass. In the diagram to the right in Figure 7,libst exponential decay curve for the
measured head of the beer is shown, using the farmu

WetFoamH } = WetFoam{ )ae ™",

where WetFoamH(0) is the initial foam height atdtm 0, and 7 is a time constant
called the lifetime. The graph matches the dat# wrtept at the early stage, and the
lifetime is 131 seconds with initial foam heightuad|to 8.7 cm. In connection with
this exponential decay, an exponentially decelegagjrowth curve fits the measured
height of the beer. It is expressed by a functibtine following type

BeerH(t)=c-ale™",
where the best parameter values are3.7 (cm)b= 0.04(1 s), and= 7(cI.

As drainage proceeds, the foam structure changes $pherical to polyhedral bub-
ble shapes and it shrinks. The concentration ofgegtide material in the foam in-

creases and the foam coarsens through dispropatibon(i.e., diffusion of gas from

a small bubble to a larger adjacent bubble) an®amseltap (1989) demonstrated, to
a much lesser extent under normal condition throcmgdescence (i.e., merging of
bubbles through the rupture of the film betweemthelhis consolidation phase can
also be modelled by exponential decay (Dalal, 1999). Thus, the beer foam col-
lapse is usually modelled through a biexponentiatieh that consists of a fast and
slow decay. Lacing, that is, foam adhering to tlle ®f the glass, is ignored in this
mathematical modelling. Beer foam is expected sbdh least 5 minutes.

ICTMT 9 - 2009 1-9




Heck

| have spent many words on the processes that cadm@lay during the formation
and retention of the head of a beer because | twamtke clear that a rather simple
mathematical model like exponential decay can dirdze used to describe a com-
plex real-life phenomenon. Refinement of this modédl only be necessary when
one wants to put the dots on the i's and add syegidp more details to the model
with the purpose of matching the model better wathlity. This progressive aspect is
common in mathematical modelling: first one simpBfthe situation to such an ex-
tent that a simple model can be constructed. Heeeahe evaluates this model, pref-
erably by comparing it with experimental data, ane adapts it if necessary. Adap-
tation of the model normally means that one makesntodel more complicated by
taking more factors, which cannot really be neglédgcinto account or by undoing
some earlier simplifications. In my opinion, stutkeshould get ample opportunity to
experience through investigative work the naturemafdelling. | believe that by
looking at various models of one and the same pienon a critical attitude of
students is promoted. | shall illustrate this tlglodurther modelling of beer foam
collapse.

In the particular example of the behaviour of bpeured into a glass, ignoring or

separating the first stage of foam collapse impsdie initial model. The diagram to

the left in Figure 8 shows the exponential decayhef head of the beer and the
exponentially decelerated growth of the beer hewghén only the measured data
after 30 seconds have been taken into accountiretiression methods. The regres-
sion curves match the measured data for that tien®g well, but this also means

that the beer foam collapses at the early stageaility faster than in the theoretical

model; drainage of beer from the foam is then gdesger than expected in the

theoretical model. Correspondingly, the model ofrbieeight overestimates the real
height at the early stage. This can be understemhuse at the early stage the
packing density of the bubbles in the foam is migds than later on in the experi-

ment, which leads to a rapid loss of beer in tterfan the first 30 seconds following

the pour.

beer and wet foam height =, % [JEJ |dry foam height = % O3
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Figure 8. Screen shot of the exponential decay model ofbset foam after 30
seconds (left) and of the exponential decay mofigleodry foam height (right).

The beer model can also be improved by separaliegvet part of the beer foam
from the dry part of the foam, and by distinguighipetween the contribution of
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drainage and condensation to the beer foam coll&pskow Hackbarth (2006), who
introduced dry foam height (DryFoamH) by

DryFoamH= WetFoamH ( FinalBeerH Beef

and showed that the dry foam height can be matheafigtmodelled well through
exponential decay over the whole time period. Tiagmm to the right in Figure 8
illustrates that this also holds for the recordedrpof the beer in the given experi-
ment. The lifetime of dry foam is then 153 secomdsich is as expected more than
the lifetime found for wet foam. The initial drydm height is 6.7 cm.

Besides the experimental modelling of beer foanlapsk through regression, one
can also model the phenomenon in a system dynapm®ach. Then, the aim is to
set up a system of differential equations thatoeably describes the foam collapse
and the increase of the beer height in the glaks. differential equations can be
solved analytically or numerically on a computermy opinion, it is good when stu-

dents learn both approaches of mathematical madedind reflect on their strengths
and weaknesses.

Below, | use the graphical modelling tool of Cod&cto investigate the phenomenon
of beer foam collapse by interrelated mathematiwadiels. Each time | compare the
results of a simulation run for suitable parametdues with the experimental data.

The exponential decay model of the head of the beeesponds with the following
ordinary differential equation:

%WetFoamI—( )= —% OWetFoamft),

wherer is the lifetime. The graphical representationhia modelling tool of Coach 6
Is shown in Figure 9. The decay model with the nsostiable values of initial height
and lifetime matches the measured data rather watkept (as discussed before) for
the first stage.

Model window W [ E] |Wet Foam Height 2w 08
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WetFoamH [cm) \

Figure 9. Screen shot of the exponential decay model of to@en height.

The exponentially decelerated growth model of teertheight corresponds with the
following ordinary differential equation:

% BeerH( ) =b-alBeerHt).

4 [ computed WetFoamH {cm)
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Solved by Euler
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Figure 10 shows the solution curve far0.04(¥ s and b=0.282(cm,, which are

parameter values that give the best match withnibasured data well all are taken
into account. It has been noted before that thpe tgf model works best if one
ignores the beer collapse at the early stage sE80nds.

Model window % [ E3 | model of beer height Ly OB

D=0O0A|l\L Y| oeH ® M|

; sgmodel of beer height {cm)

“tmeasured beer height {cm)
als) BeerHO (cm) TOE

/

/ beerH (cm)

b {em)

Solved by RK4
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Figure 10. Screen shot of the exponentially decelerated dromddel of beer height.

The beer foam collapse and the increase of the light are of course related to
each other. It seems reasonable to model the tacepses together through the fol-
lowing system of equations:

%WetFoaml—(t) -1 OWetFoam(t) % Beeft) = - f E—ldd—t WetFoarfti

4

wheref is the conversion factor that relates an amouteet foam to an equivalent
amount of liquid beer. Figure 11 is a screen sHathe corresponding graphical
model, in which the Erlenmeyer symbol links theflouwt of the foam height and the
inflow of the beer height. Actually, it represetite following rewritten equations:

%WetFoaml—(t)z— Collapsig) % Beeflt) = f O Collafse

Collapsét) = % OWetFoamft) .

The diagrams in Figure 11 have been obtained tfdlowing parameter values:
7=100(s),f = 0.15, WetFoamH)& 10(cm), Bedrj=0  5.68]
Model window ¥ ] |BeerH L% & |WetFoamH Le &

O+ Q0 O /\ | W | A | =] | @ E—:” i E| , 5 computed BeerH {cm) 10, Computed WetFoamH {cm)
measured BeerH {cm) gAmeasured WetFoamH (cm)

“Wy'etFoarmHD (cm) EieerH0 (o) 7.0

B5F
-

B.OF

g

.
> DI_b__l ok
L 50Ls

BeetH (cm)

WetFoamH (cm)

Cuollapse (cmfs) 45F

40
358 tis)
1 30|||\|\|\|\l\|\|\|\|||||\|\||||||\||\||||

50 100 150 200 250 300 350 400 A0 100 150 200 250 300 350 400

tau (s

Solved by RK4

Figure 11. Screen shot of the coupled model of foam heigHtleeer height.

A better match between experimental data and efdin a theoretical model can
be obtained by separating wet and dry foam hejgst like Hackbarth (2006) did. It
has already been noted that the dry foam heighbeanodelled well by an exponen-
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tial decay function. The wet part of the foam heighetPartFoamH), defined as the
difference between the beer foam height (WetFoamhkt) the dry foam height

(DryFoamH), turns out to be well modelled by a Ipexential decay function in this

particular beer experiment:

WetPartFoamt)= 4e®" + 1e1°%

The first term on the right-hand side describesft#s drainage at the early stage
(with a lifetime of 10 seconds) and the second tsrsiow drainage later on (with a
lifetime of 100 seconds).

The graphical model in Figure 12 corresponds withfbllowing system of differen-
tial equations.

DryDecay(t) = 1 OFoamHit) , WetDrainagg = ., WetPartFoaftH

dry 4

wet
%DryFoaml—(t) = - DryDecaft) , % WetPartFoanftj =— WetDrainfige

%BeerH(t) = f ODryDecaft) + WetDrainage)

Figure 12 shows the result when exponential det#lyeowet part of the beer foam is
assumed, that is, when a constant lifetime of tteendge ¢,.) is assumed. This

result cannot be improved much; one could only skgomarameter values such that
the model works well for the beer height only aftex early stage of fast drainage.

Model window % [ |BeerH L% (3 |DryFoamH L T8
n ) ; |y = o (ke
Os=0 0 5 | ~ | 4 | = | @ E ‘ @ j | - computed BeerH {cm) 7.0¢ computed DryFoamH {cm)
DryFoamH {om) t _Cd}( : BeerHa (o) ?n_measured BeerH {cm) sshmeasured DryFoamH (cm)
A, s
o -y f {r | et

[ K
b 1~ 55F,
DryFoamH (cm) DryDecay (cmfs)  BeerH (:m)lﬁl 50

] ==
. WelD
WetPartFoamH (cm) eibrminage (cmys)

t(s
|||\|\H\|\H\\\|\\|\|\|\|\|||||||(||)| \f-“'
‘WetPanFoamHI (cm) tau_wet (s) 50 100 150 200 250 300 250 400 : 50 100 150 200 250 300 350 400

Solved by Rk4

Figure 12. Screen shot of a coupled model of foam height la@er height with
distinguished dry and wet parts of the foam.

The above model can be improved by using a suitébie-dependent function
forr .. From the biexponential decay function of the patt of the beer foam found

wet *

earlier by regression, it is already known thathsadunction should be nearly con-
stant and close to 100 for large values of timeu&hhave values close to 10 in the
early stage of foam collapse. By trial and errootstructed the following continuous
function forr, ., which more or less meets the stated criteria:

wet?
99.9

T, =0.1+ o1 200

wet
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With this choice of the sigmoid function, a veryoglomatch of the computed model
results and the experimental data is obtained.réi§j8 hardly leaves space for doubt.

This makes the increase of the beer height alshenaitically well modelled.

Model window % T3 |BeerH L
) = ) O/ Ty — | E v !
O <=0 O /\ | o | W} | B3 | @ E_ﬂ @ E’| Wt computed BeerH {cm)
DinyFoamHD (cm) Tk Sur
O Bl (om) o measured BeerH {cm) !
tau_dny (s) O_ : 5
BOE
[~ | E
b 55F
DryFoarH (crm) DryDecay (cmys] BeerH (cm) 50H
I:'r:/_\m\ 45
Erad X
‘WetParFoamH {cm) WetDrainage (crm/s) 40
O | = )
I T T T T 0T T T W B A B R |
WetPanFaamHD (om) 50 100 150 200 250 300 350 400
Solved by Ak fau_wet (s) Hel
time dependence of tau ‘% [ |DryFoamH ¢ % T3
100 tau_wet (s) 75 computed DryFoamH {cm)
w0k ;2 measured DryFoamH (cm)
s0F 60
70F Eg
80 4:5
.
aof 30
20F 15
b 1.0
10f
E t(s 05 t (s5)
D:"""""""""""""""""""("} 00 T T B RN L. e
0 50 100 150 200 250 300 350 400 : 50 100 150 200 250 300 350 400

Figure 13. Screen shot of a coupled model of foam height laeer height with
distinguished dry and wet parts of the foam, arith witime-dependent lifetime of the
drainage of the foam.

The presented example of investigating the beanfoallapse and the other model-
ling examples in this paper illustrate that sucthantic investigative activities offer
students ample opportunity to practise their reseabilities. The students learn to:

» formulate good research questions that guide timetimel work;

* observe phenomena and discuss with peers about them

* design and implement an experiment for collectibretevant data;

* apply mathematical knowledge and science concapisw situations;

» find ways to use tools to solve problems at hand;

e construct, test, evaluate, and improve computeretsod

* interpret and theoretically underpin results;

* geta scholarly attitude;

» reflect on own work and on work of others;

» collaborate with others in investigative work;

* report about and present own work.
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CONCLUSION

In mathematics and science, students are expeotatevelop a broad range of
research abilities, which includes connecting d warld phenomenon with the
scientific world, understanding the problems atchand asking the right questions,
making a project plan, designing and carrying auteaperiment, and collecting,
representing, analysing, and interpreting infororatiStudents need ICT tools that
make such investigation tasks feasible and thdilerthem to work at an appropriate
level. In this paper | reported on a computer legyand authoring environment that
provides students and teachers with a rich settefgrated tools, namely, Coach
(Heck, Kedzierska & Ellermeijer, 2009). This environmentesff students opportuni-
ties to work like scientists with possibilities obllecting data with sensors, control-
ling experiments, measuring on video clips andtdigmages, processing and ana-
lysing data, exploring and creating executable rhadedynamical phenomena,
exploring and creating animations, and reportingvofk. With these tools, students
can carry out cross-disciplinary, authentic pradtizork in which the gap between
mathematics and science learning at school andifealontexts is bridged through
collection of real data by students. The authemi@ure of such activities is
interpreted as:

* the opportunity for students to work directly wiltiigh-quality, real-time
data in much the same way professionals do;

* the resemblance of mathematics and science leamtihgractice. Students
come in contact with present-day research work;

» the investigation are characterized as being ehgihg, complex and open-
ended, cross-disciplinary, and not merely involvagplication of standard
recipes, but also requiring a strong commitmenhétasks at hand, a broad
range of abilities, including modelling and reflect skills.

The experiences with the students’ research pofbet have been cited in this paper
justify the following conclusions:

 ICT enables and facilitates authentic, relevand, laigh-quality projects for
students in secondary education and beyond,;

» students recognize the ICT possibilities immediamhd on the basis of
prior experience or preparation in lessons chobsentfor their practical
assignments and research projects;

e secondary school students are able to do researahniay that resembles
work of ‘real’ scientists.
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