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Abstract 
Everybody knows the rise and fall of the tides. A closer look at the origin of tides and 
the behavior of the tides in various ports reveals a wealth of interesting phenomena 
that may challenge students to analyze and to model. Fortunately, many data sources 
are now available on the Internet for prediction and measurement of the tidal move-
ment. Each port has its characteristic tidal spectrum. When this spectrum is converted 
into sound, the peculiarities of the tidal movement in this port can be heard. 
 In this paper we present a model for the moon-earth dynamical system, 
yielding the tidal movement on an all-ocean world. We also look at data sources on 
Internet with tidal data, and reconstruct the harmonic analysis for various ports with 
advanced data analysis techniques. For the well-known tidal river Thames, we model 
the tidal behavior as a function of the tides of the North Sea. 

Tides, a fascinating phenomenon 

Introduction 
The attraction between the Earth and another heavenly body (like the Moon or the Sun) 
causes them to move in an elliptical orbit about their center of gravity with opposite phases. 
For the Earth-Moon system, the center of gravity Z lies inside the Earth:  
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The required centripetal force for the revolution about Z at the Earth's center A is exactly 
produced by the gravitational force:  
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The angular speed ω in the above corresponds with the sidereal rotation period of the Moon 
of 27.32 days, the time of one complete revolution with respect to the 'fixed' stars.  

Obviously, the Earth is not a point at all. Each point on the Earth moves with the 
same ω and Er feeling the same centrifugal force, yet experiencing a slightly different gravi-
tational pull from the Moon or the Sun. So, while the attractive gravitational force is exactly 
balanced by the centrifugal force in A, there remains for all surface points a net effect called 
the tidal force that by its nature only occurs for extended objects (the tidal force in A is 
naturally zero). 

Fig. 1. Attraction of Earth surface points by the Moon, top view (the Earth seen on the North 
 Pole). 
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Therefore, a surface point like a liter sea water experiences a tidal acceleration due to the 
discrepancy of the gravitational and the centrifugal acceleration:   
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To complete this picture historically proposed and elaborated by great scientists like Newton, 
Bernoulli and Laplace, the Earth is simplified to an all-ocean world with the Moon in the 
equatorial plane. This model yields the so-called equilibrium tide that explains many tidal 
features such as periodicity, inequalities between successive high waters and low waters, and 
the occurrence of spring tides near full and new moon. Before this theory, the tides were 
frequently explained as being generated by the ocean breathing in and out and other 
unrealistic concepts. 

Misconception! 
At the side facing the Moon or the Sun, the attractive force wins from the centrifugal force 
while at the opposite side the centrifugal force is largest. Although on the one hand this 
explains that a particular surface point meets two high waters a day by the Earth’s rotation, on 
the other it also suggests the widely spread misconception (even amongst physicists) that high 
water should be the result of the Moon’s gravitational pull. But how could the radial 
component of the tidal acceleration (about 710 g− ⋅ ) pull this off against g of the Earth itself? 
Obviously it will disappear completely in the balance of the dominant normal (or buoyant) 
force and gravity. By contrast, tidal waves on Earth are determined by the remaining 
tangential components of the tidal force field called the tractive force. The dominant compo-
nent after decomposition of tidala
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into radial and tangential components is calculated to be  

3

3 sin 2
2

MG ma R
rϕ ϕ⋅= − ⋅ ⋅  

(with R the Earth’s radius) which is maximal for 45 ,135 .ϕ = o o With respect to the Moon, the 

angle ϕ varies with a period given by the relative angular speed: 2 .tt
T
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the tidal force varies by  
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and so by half the period T, explaining the periodicity of the semidiurnal (two-daily) M2 tide: 
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Fig. 2. Tractive force field (image from Navy Operational Ocean Circulation and Tide Models 
 at www.oc.nps.navy.mil/nom/day1/partc.html)

However, objects like the moons of Jupiter do experience a strong 'massage' of the radial 
force, which explains the existence of volcanism (Io), the presence of subterranean liquid 
water and even the possibility of life (Europa). If a satellite approaches its planet close enough 



for the radial tidal force to equal the satellite’s gravity, it will be torn apart by tidal disruption. 
The rings of Saturn lie inside this Roche limit:  
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Towards a model 
We assume that for an equatorial sea channel, the work done on the water fully originates 
from the tidal acceleration:  
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Together with the expression for aϕ given above, this equation can now be used in a dynami-
cal system model as shown below in Figure 3. This over-simplified all-ocean model turns out 
to give an M2 tidal amplitude of 27 cm. A similar model including the Sun as well yields 
interference effects as neap and spring tides (when Sun and Moon align).  
 
Fig. 3. Graphical models of the all-ocean equilibrium tide.  

Left: Moon only, M2 tide. Right: Moon and Sun combined, M2 plus S2 tide.   

Tidal friction 
The Earth does not respond immediately to the Moon’s location, as energy is dissipated in 
making the tidal bulges. Tidal friction, prolonging the Earth day by 1.6 ms each century 
(dissipation of 122 10  W× ), is strongly influenced by the distribution of land and water and 
thus by the continental drift. The 'flood crests' are carried along by the planet's rotation; the 
instantaneous tidal forces partially counteract, causing a dragging effect. The Moon with-
draws from the Earth for this reason by 3.7 cm a year, due to conservation of angular 
momentum: as the Earth’s spin diminishes, the orbital angular momentum should increase. 



This process will continue until the spin and orbital periods are equal and month and day 
coincide! (This future month-day will actually become some 50 of our present days.)   

By the same effect, the spin of the Moon itself equals its revolution period. Therefore, 
the Moon continuously faces the planet with the same (heavy) side, like almost every other 
satellite (and Mercury towards the Sun) in our solar system. Tidal dissipation thus accounts 
for the spin and rotation states of all celestial binaries. The endpoint of tidal evolution is a 
circular, synchronous orbital motion (Pluto and Charon). 

Shortcomings of the model 
Deviations from the above model arise because the Moon usually lies outside the equatorial 
plane, exhibiting a declination instead. As a result, the two height maxima during a natural 
day will have different amplitude: the daily inequality. In addition, the Moon moves in an 
elliptical rather than in a circular orbit, causing a variation in r of 10% and thus in r3 of 30%.  

The presence of land not only makes high and low water observational, it also 
changes the local phases and amplitudes in a dramatic way, both at sea and over land. Only 
the period is directly recognizable while many higher harmonics like M4, S4, and so on are 
produced. To describe and accurately predict tidal effects at seaports harmonic analysis is 
indispensable. To study the change in phase and amplitude as the tide runs up from a seaport 
into a convergent estuary, the behavior of a tidal wave must be modeled. 

Harmonic Analysis of Tides by Students 

Introduction 
Because of the geographic position and the size of the Netherlands every inhabitant is familiar 
with tides. Sea level rises and falls cyclically on a twice-daily basis and the graph of a tidal 
motion, measured or computed for a coastal place or an oil platform, is periodic. A periodic 
function can be described with sine functions. Tidal curves are always approximated in Dutch 
mathematics textbooks by single sine functions. Students search on Internet for tidal data of a 
coastal town on a certain day or the yearly average, and then they try to match the data found 
with a good sine fit using graphical software or a graphing calculator.  It’s true that limitations 
of this simple mathematical model are briefly discussed and that in particular the asymmetry 
between low and high tide is pointed at, but textbook authors do not go further than a short 
reference to harmonic analysis and a pointer for background information at a website like 
www.getij.nl. They suggest students to explore tidal motion further in practical work or a 
research project, but they do not give any clue of how to do this with a chance of success. A 
citation of Jan de Lange (2000), in a paper on studying tidal motion in the classroom, is 
hardly encouraging: “The students don’t have the tools to find a better way of coping with the 
lack of symmetry of the real graph.” As we shall see, the situation in 2006 has changed: in the 
Coach 6 environment (Mioduszewska & Ellermeijer, 2001) students have access to a state-of-
the-art signal analysis tool that allows a more realistic description of tidal motion. 

Harmonic analysis of tidal motion 
The tides in the North Sea are semidiurnal, that is, you have (more or less) two cycles per day, 
the two low waters of each tidal day are almost equal in height, and the same holds for the 
two high waters. See the screen shot below (Fig. 4) of a diagram with the predicted tidal data 
(black dots) at Flushing from May 21 till May 23, 2006. In the same diagram are shown two 
regression curves of these data: a sine fit (red) and a better approximation with a sum of two 
sine functions (blue), which is determined via the Prony method for spectral analysis 
(Mackisack et al, 1994). 



Fig. 4. Predicted tides at Flushing from May 21 till May 23, 2006, and two approximations of 
 the tidal curve. 

Tidal currents are not everywhere on earth of the same type: there are coastal areas 
with a diurnal cycle, i.e., with a period of approximately 24 hours, and there are locations on 
earth where you have two cycles per day, but the two high waters and the two low waters 
have marked differences in their heights.  
 Official tide tables for almost all coastal areas on earth can be found on Internet. This 
enables students to find places and time periods for which the tidal model of a single sinusoid 
works well. You can find for example on the website www.tidesandcurrents.noaa.gov of the 
National Oceanic & Atmospheric Administration in the United States of America the tidal 
data for Sewells Point, Hampton Roads in Virginia, from March 13 till March 15, 2006. The 
screen shot below (Fig. 5) shows the predicted tidal data (black dots) and the best sinusoidal 
model (red). The graph of the differences between predicted water levels and the outcomes of 
the sinusoidal model (residual graph in gray, with its own coordinate system) reveals that the 
simple sinusoidal model is accurate up to 3 cm. 

Fig. 5. Tides at Sewells Point (Virginia) from March 13 till March 15, 2006, and the tidal 
 graph approximated with a sinusoidal model. 

Do not draw the wrong conclusion that the tides at Sewells Point in Virginia are always well 
described by a sinusoidal model. Figure 6 shows the tidal data from March 23 till 25, 2006, an 
approximation with a single sine function (red) and a better approximation with a sum of two 
sine functions (blue), which is determined via the R-ESPRIT method for spectral analysis 
(Mahata, 2003). 



Fig. 6. Tides at Sewells Point (Virginia) from March 23 till March 25, 2006, and two approxi- 
 mations with sine functions. 

In order to get an adequate mathematical model of the tides with sine functions for a 
longer time period you must add more terms (‘harmonic constituents’) of the form 

( )sinH tω φ+ . In Coach this can be done best via the R-ESPRIT method. In this method you 
can set two parameters: the snapshot dimension, which determines the length of the sequence 
of consecutive data that is used in the harmonic analysis,  and the number of sine functions 
present in the mathematical model. If you model the predicted tides at Sewells Point in 2005 
with 8 sine functions, then you get with the following formula with the automatically chosen 
snapshot dimension equal to 84: 

41.11 35.12sin(28.982 - 75.637) 6.38sin(30.002 6.794)
4.97sin(15.052 -152.698) 4.95sin(13.946 78.075)
0.45sin(0.200 106.750) 0.96sin(27.990 92.143)
0.02sin(31.472 - 24.033) 0.02sin(33.216 103.
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where t is the time (in hours) from the beginning of 2005 and the speed of each constituent (if 
you wish, the frequency of each sine function) has the in tidal analysis commonly used unit of 
degrees per hour. The standard deviation turns out to be about 8 cm. You can extend this 
model to 18 harmonic constituents by applying the same spectral analysis to the difference of 
the predicted tides and the approximation already found. The next eight constituents are: 

0.11 7.70sin(28.438 60.437) 4.06sin(0.049 -177.360)
1.30sin(15.067 - 37.467) 0.38sin(57.963 - 79.633)
0.06sin(29.475 - 77.609) 0.05sin(30.721 106.212)
0.02sin(13.569 -164.1467) 0.01sin(43.806 - 43.641)
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The standard deviation of the model with 16 sine functions is about 5 cm. In Table 1 we com-
pare the five most important contributions in our Coach model with literature values of the 
harmonic constituents: 

Table 1. Comparison of the principle harmonic constituents at Sewells Point (Virginia) found 
in Coach and provided by the National Oceanic & Atmospheric Administration in the USA. 

Coach model Literature data 
speed (°/h) amplitude (cm) speed (°/h) amplitude (cm) label 
28.982 35.12 28.984 36.6 M2 
28.438 7.70 28.440 8.1 N2 
30.002 6.38 30.000 6.4 S2 
15.052 4.97 15.041 4.9 K1 
13.946 4.95 13.943 4.2 O1 



You may call this agreement between the Coach model and the literature values 
astonishing. The sixth most important contribution in the model with speed 0.049 degrees per 
hour and amplitude 4.06 probably corresponds with the harmonic constituents labeled SA and 
SSA, which describe the yearly meteorological variations and their influence on the sea level. 
The labels M2 and S2 belong to the harmonic constituents that are linked with the motion of 
the moon around the earth and the motion of the earth around the sun, respectively, and which 
cause the semidiurnal tide. The N2 constituent takes into account the effect that the orbit of 
the moon around the earth is in reality not a circle but an ellipse. The diurnal constituents K1 
and O1 take into account (amongst other things) the inclination of the earth’s equatorial plane 
with respect to the plane of the moon’s orbit. Most (if not all) harmonic constituents can be 
related to astronomical phenomena and therefore a tidal prediction is often referred to as 
astronomical tide. In practice, the number of constituents needed for accurate tidal predication 
and the amplitude, speed and phase of each harmonic constituent are often determined from 
tidal records of three consecutive years. As a matter of fact, the speeds are always fixed and 
only the amplitudes and phases of the strongest tidal constituents that have propagated to a 
point of interest must be determined by regression methods. Short term tidal constituents (say 
for data periods up to one month) are also determined by the Fourier harmonic analysis 
method that we use in our work. We refer to the NOAA report ‘Tidal Current Analysis Proce-
dures and Associated Computer Programs’ (Zervas, 1999) for detailed information. 
 

Tidal analysis becomes more interesting for students when they can investigate tidal 
motion closer at home.  Figure 7 is a Coach screen shot of a tidal analysis of two consecutive 
days at Europahaven (May 24-25, 2005). It shows that the phenomenon of double low water 
(also known as agger), which means that the low water consists of two minima separated by a 
relatively small elevation, can be modeled well by harmonic analysis. Actually the model 
consists of a fundamental tidal speed and overtides, i.e., harmonic constituents with a speeds 
that are an exact multiple of the fundamental constituent.  

Fig. 7. Screen shot of modeling double low water at Europahaven (May 24-25, 2005). 

In order to get good results with the R-ESPRIT method, which are in good agreement 
with recorded data or official tidal predictions the choice of the snapshot dimension is impor-
tant. You must determine this parameter by trial and error in case no suitable value less than 
or equal to 100 has been found automatically. For example, we have found for the location 
Roompot-Buiten in the Oosterschelde the following six constituents on the basis of tidal data 
from 2005 (Table 2). 

The astonishing agreement between our spectral analysis with Coach and the litera-
ture data of RIKZ (2006) has been accomplished by choosing a snapshot dimension of 521 
for a model with eight sine functions. The best snapshot dimension less than or equal to 100 
leads to the first two constituents only. Admittedly, it is a bit of a puzzle to find a suitable 
snapshot dimension, but in this way students might learn to look critically at mathematical 
models and computed results presented to them in future. 



Table 2. Comparison of the principle harmonic constituents at Roompot-Buiten found with 
 Coach and provided by the National Institute for Coastal and Marine Management. 

Coach model Literature data 
speed (°/h) amplitude (cm) speed (°/h) amplitude (cm) label 
28.980 131.1 28.984 135 M2 
29.996 36.3 30.000 36 S2 
28.457 15.3 28.440 22 N2 
30.098 10.5 30.082 10 K2 
13.956 10.5 13.943 11 O1 
27.995 4.9 27.968 11 µ2

Tidal waves in convergent estuaries 
The dominant influence on the tides in estuaries is the change of water depth and estuary 
width as the tide propagates up the estuary. The shoaling and narrowing of the estuary slows 
the progress of the tidal wave, increasing its amplitude. At the same time, there is a damping 
effect of channel friction balancing the tidal amplification in shallow estuaries (Friedrichs & 
Aubrey, 1994; de Swart, 2006).  

Fig. 8. Description of a tidal wave by the relative height ζ and the flow Q. 

Tidal waves may be described by the de Saint-Venant equations. Using the Lorentz 
linearization procedure for the quadratic friction (Lorentz, 1922; Labeur, 2006), they can be 
simplified to a telegraphist’s equation:  
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Here, 0c gh= is the frictionless wave speed and κ the linearized friction factor. In 
a prismatic channel (constant width and depth), this yields a simple traveling wave as a 
solution:  

( , ) cos( ).xx t Ae t kxµζ ω ϕ−= − +
Here, 

tankµ δ=
is related to a ‘friction angle’ 

( )11
2 tan /δ κ ω−=

that in turn is determined by the friction factor .κ
In a model, we want to study the progression of the tidal amplitude and phase along 

an estuary like the river Thames. Following the stock-flow philosophy of graphical modeling, 
it seems logical to introduce bathtubs of 1m length of Thames water with given in- and 
outflows. The instantaneous water volume divided by the width then directly yields the height 
as a function of time. Not surprisingly, this height lags behind the inflow by the friction 
angle .δ First, we study the situation at Coryton:  

 



Fig. 9. Graphical model of the tidal wave at Coryton.   

To continue, we assume an exponential behavior for the width and the average depth of the 
Thames as a function of distance along the river:  

( ) 4000exp( / 25)B x x= − and ( ) 12.5exp( / 79).h x x= −
Furthermore, the river is subdivided into seven prismatic sections, each with a constant width 
and depth determined by the one meter bathtub in the middle. To achieve a more quantitative 
picture, some assumptions on the inclination of the banks are made: 

Fig. 10. Modeling of the river cross section.  

Due to the flattening of the banks, the quantity ζ deviates only slightly from a pure sinusoidal 
function. Fitting ζ to a sine function with ω fixed to the M2 frequency yields the requested 
phases and amplitudes. 

 The full model is a straightforward extension of the above, each section being 
a copy of the former with corresponding changes in distance, width and depth. Obviously, 
phase and amplitude matching has to be applied at the transition of each section. As can be 
seen from Ffigure 11, both the amplitudes and the phases now turn out to correspond 
reasonably well with experiment. Please note that the amplitude almost linearly increases 
during the first 20 km, reaches a maximum at 33 km from the mouth (actually at the Tidal 
Barrier at 40 km) and then decreases again. The data are compared to the results of Green’s 
classical theory for amplitude amplification, that does not take into account frictional effects. 
 



Fig. 11. Tidal amplitudes of the river Thames as a function of distance. 
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