
1

Variables in Computer Algebra, Mathematics, and
Science
by André Heck
AMSTEL Institute, University of Amsterdam, Kruislaan 404, 1098 SM Amsterdam,
The Netherlands. heck@science.uva.nl

We discuss the notion of variable in computer algebra, mathematics and
science. Central are the questions how variables are actually used in mathematics and
science, how computer algebra supports the various uses of variable, what conceptual
differences exist, and what consequences follow from this for teaching, learning, and
doing mathematics with a computer algebra system.

1. Introduction
In the educational research literature, little thought has been for the

differences between the concept of variable in computer algebra and the notion of
variable in mathematics and science. Yet one is immediately confronted with these
differences when using a computer algebra system or a symbolic calculator. The syntax
of the input and the interpretation of the results given by the computer algebra system
form a barrier to many pupils at higher secondary school level and first year students in
higher education. For example, see (Wain, 1994), (Guin and Trouche, 1998), and
(Drijvers, 2000). Some of the difficulties in using a computer algebra system could
have been avoided by developers of the systems; in many cases, lowering the level of
mathematical sophistication or allowing customisation by the teacher would already
help. Other difficulties are more fundamental or related to shortcomings in the
students’ knowledge of mathematics. Only developing good teaching strategies for
learning to work with a computer algebra system can level this barrier out.

In this paper we shall address the following three topics: (i) the many possible
uses of letters in mathematics and science; (ii) the way letters are used in computer
science, in ‘ordinary graphing calculators’, and in symbolic systems; (iii) consequences
for educational use of computer algebra. We shall list differences between the
algebraic representations in a symbolic system and in traditional mathematics and
science. This helps us to identify and understand some obstacles that teachers and stu-
dents encounter while working with a symbolic system. It also shows how complex
and subtle the relationship between computer algebra use, pencil-and-paper work and
algebraic thinking really is. Our study of the consistency and discrepancy between the
use of variables in mathematics and science is also motivated by the current
development at the AMSTEL Institute of an integrated computer learning environment
for mathematics and science education at secondary school level. This work builds on
earlier research work that resulted into the Coach environment for science education
(Heck, 1999; Mulder, to appear). The main problem in the design of the integrated
environment, already present at the level of building a computer model of variable and

2

algebraic expressions, is how to comply with the requirements that both mathematics
and science make for the educational tool.

This paper is organised as follows. First we describe the notion of variable in
graphing calculators. The reason for doing this is that these tools, which are widely
accepted for numeric and graphical computations, already use variables in a way that
differs from standard algebra. These differences are reinforced when symbolic
computation comes into play, as we shall see in the next section on the use of variables
in computer algebra. In the following sections we juxtapose these computer variables
and the notion of variable in mathematics and science. We conclude with a discussion
about consequences for teaching and learning mathematics and science. This is done in
the form of recommendations to users of existent computer algebra systems.

2. Variables in Graphing Calculators
In a graphing calculator, a variable can be considered as a lettered box for

storing and retrieving numerical values. To use a variable you need to know two things
about it: its name and its type. The type of the variable specifies what values can be
stored or how the contents must be interpreted. We speak about a computer variable
because it also occurs in conventional programming languages such as FORTRAN and
C. This concept of variable differs essentially from the notion of variable in
mathematics:
• A variable in a graphing calculator always has a value.
• A variable in a graphing calculator can play more than one role in a single

statement.
• The rules for manipulating computer variables differ from mathematical

manipulation rules.
• Some computer variables do not exist in mathematics and have a special

meaning.
• Arithmetic with numbers on a graphing calculator has its own rules.
• Some computer variables can be used in manners that standard mathematics

does not allow.
Below, we work out these differences.

A computer variable always has a value and this value will often change
during a computation, for example, by assignments like 3=x and 1+= xx . In the last
assignment, the following task is specified: take the current value of x, add 1, and store
the result in the variable x. Here, the symbol x plays two roles: on the left-hand side it
can be pictured as a lettered box for storing a value, and on the right-hand side it
denotes a value retrieved from a lettered box. In mathematics however, a variable need
not have a value and its role, when it appears in an expression or definition, is always
fixed. The last assignment would probably be represented in mathematics by a
recursive definition like 11 +=+ nn xx .

Manipulation of computer variables differs from the algebraic computation in
mathematics. For example, ordering of statements is of more importance in computer

3

software and calculators than in mathematics. In many programming languages and
systems, the following snippet of computer code, in which assignments are separated
by semicolons, will exchange the values of the variables x and y:
t = x; x = y; y = t; The ordering of statements cannot be changed without ruining this
meaning. In mathematics, they are just three equations in three unknowns. Their
solution can be expressed in any of the three variables, e.g., the solution
is tx = and ty = , with t free to choose. Here, the ordering of the equations does not

matter.
 Some variables have special meaning in a graphing calculator: for example,

in a TI-83, the variables ENTRY and ANS are used for storing and retrieving the last
entered input and the last computed result, respectively. An expression like 1+ANS is
interpreted as the command “add one to the previous result”, which can be repeated by

pressing the Enter key. 1+ANS corresponds with the arrow →+1 in an operation
diagram. In general, any expression that contains the variable ANS is in fact a value
recipe, i.e., it is a procedure for doing something with a value in order to produce a
new value. In conventional mathematics, the use of an expression as a recipe does not
often occur in such an explicit way: only during the process of manipulating algebraic

expressions, equations such as 222)(2 yxyyxx +=++ and 1cossin 22 =+ xx are

interpreted in this way. Note that the ordering of writing down the equation plays a
delicate role here: reading from left to write, the first formula

222)(2 yxyyxx +=++ evokes the idea of simplification, whereas the mathematically

equivalent equation 222 2)(yyxxyx ++=+ brings more to mind a process of

computation.
Computing with numbers on a graphing calculator has its own rules. Many

calculators offer a mixed mode of computing and display of results: irrational numbers
are first approximated by rational numbers before further processing, and large
magnitude rational numbers as well as small magnitude rational numbers are displayed
in decimal notation or in scientific notation. Overflow may cause surprising results: an

extreme case is the computation of 345612 on a TI-92, which results in the answer ∞,
together with a warning message that overflow was replaced by ∞ or -∞. To put it
mildly, a well-known mathematical symbol is used in an unusual way.

Although the earlier examples suggest that variables have numbers as values,
a graphing calculator like the TI-83 provides more types of variables, e.g., matrices,
lists, number sequences, and function variables. List variables allow the user to do
arithmetic with lists of numbers. For example, adding 10 to the list variable L1 with
current contents { }3,2,1 via the statement 101 +L results in the list { }13,12,11 . You can

use more complicated formulas with list variables: if { }3,2,11 =L , then 12
1 +L will

give { }28,13,4 . Here, an algebraic formula is used as a procedure for doing something

with lists of numbers in order to produce a new list of numbers. However, this
arithmetic of list variables has two side effects: (i) it extends the domains of definitions

4

of well-known mathematical functions; (ii) it leads to new objects. For example, the
sine function is not only a real or complex function anymore, but it can also be applied
to lists of numbers: entering { }()3,2,1sin will give the result { }14.0,91.0,84.0 to 2

significant digits. The second side effect can be illustrated with the definition
of { }2,1,01 += xy on a TI-83. On the one hand, it is an object symbolised by y1 that, like

a function, maps a single number to a three-tuple, but on the other hand it displays in
the graph screen as three lines with corresponding equations xy = , 1+= xy , and

2+= xy , respectively. So, the variable y1 symbolises at the same time one function

that maps on a three-dimensional space and a three-tuple of real functions. This kind of
overloading of notation obscures the well-defined mathematical notion of function.

Variables denoting number sequences and function variables can be seen as
the implementations in the graphing calculator of variables that symbolise changing
magnitudes. For example, after defining the function 121 += xy , one can define a

function variable y2 in terms of y1, say 2
12 yy = . In a table of x, y1, and y2 one sees, by

default, values of y1 and y2 tabulated for integer values of x. By changing the table
settings, step values other than 1 can be chosen. If values of x change, then values of y1

and y2 change accordingly. Simply by pressing upward and downward arrow keys one
can see more values being tabulated. The three variables are at any time related to each
other.

Occasionally, linking variables has surprising side effects: for example, after
plotting a graph of a function variable, say y1, this variable will have a value
determined by the last value of x used to draw the plot. In the default setting of a TI-83,
after entering the function variable y1 as 121 += xy and plotting its graph, the result of

entering y1 in the home screen will be the number 21. After pressing the Trace key and
moving the cursor to another point on the graph, the values of x and y will be the
horizontal and vertical coordinates of the chosen point on the graph. However, because
of the link between the variables x and y1, the value of y1 will also be the vertical
coordinate of the chosen point. What we conclude for this brand of graphing calculator
is that y1 is used in two ways, viz., as a normal variable with a numeric value and as a
name of a function, which can be used to define other function variables or to compute
function values. The screen that is active determines in which ways the variable can be
used.

Despite the remarkable differences between variables in a graphing calculator
and variables in mathematics, many research papers and reports describe how graphing
calculators can achieve significant improvements in pupils’ understanding of the
concept of variable. For example, in (Graham and Thomas, 2000) and (Gage, 2001) is
reported how the calculator model of a variable as a lettered store for numbers can help
pupils to gain good understanding of ‘letter as placeholder’ and to overcome obstacles
common in the early stages of the transition from arithmetic to algebra. In (Cedillo,
1997), the results of a classroom research study indicate that the use the calculator’s
symbolic language can help pupils to understand the use of literal symbols to

5

generalise number patterns and that it facilitates pupils’ investigation of algebraically
equivalent expressions.

3. Variables in Computer Algebra
Computer algebra introduces another kind of computer variable, viz., one that

does not serve as a store for numerical data, but one that points just to an object. This
object, which is also called the value of a variable, can be almost anything: a number, a
symbol (mostly letters or nouns), a polynomial, an equation or inequality, a differential
equation, a function definition, a list of numbers, a graph, a table, a previously
computed result, and so on. In many cases, a variable points to an algebraic expression.
During the so-called evaluation of an expression it is transformed from one
representation to another by replacing the variables that occur in the expression by
their values. This process can be carried out recursively, in which case one speaks
about complete or full evaluation.

When one applies a command to an expression, this expression suddenly gets
its meaning. For example, the differentiate command implies that the expression is
considered as a function in the variable(s) with respect to which one differentiates. The
solve command implies that the symbols in an expression stand for yet unknown
numbers that must be computed or be expressed in terms of parameters. And more
examples could be given. Errors occur when the form of an expression is improper for
carrying out a particular task. Source may be a faulty translation of a mathematical task
into a computer algebra task or a syntactically correct translation that is however
semantically wrong (re-ordering of statements may already have this effect).

In most computer algebra systems such as Derive, Maple, Mathematica,
MuPAD, and Axiom, it is not necessary to declare variables and other objects. This
would make these systems difficult to use because during a computation objects often
change of type. However, this does not imply that an object has no type: in MuPAD
and Axiom, which are strong type systems, it always has, but it is automatically
determined during runtime or it is specified explicitly by the user. Other systems like
Derive, Maple, and Mathematica are type-less systems: although objects have in strict
sense no type information connected to them, one can ask in these systems whether a
particular expression can be interpreted as one of certain type. For example, one can

ask whether 12 ++ xx is a polynomial over the integers or not. One can also associate
properties with a variable so that one can be more specific about the set of values that a
variable can possibly take. For example, one can declare a variable as a positive real
number and the computer algebra system will then take this into account during
computations.

Although the usage of variables in computer algebra systems gives the
impression that they have more in common with variables in mathematics than
variables in a graphing calculator or in a conventional programming language have,
computer algebra variables are in fact very different in quite some aspects. The
differences between computer variables and variables in mathematics listed in the
previous section remain or are even amplified. Below, we list the properties of

6

computer algebra variables that make them essentially different from variables in
mathematics:
• A computer algebra variable always points to a value.
• Manipulation of computer algebra variables has its own rules, in which

internal storage of expressions, automatic simplification, and evaluation
scheme play a role.

• An expression can represent a mathematical object as well as describe a
particular process to be carried out. Both notions are frequently used.

• Some variables have special meaning distinct from standard mathematics.
• Although modern computer algebra systems try to mimic mathematical

notation as much as possible, their users still have to translate to and from
standard notation on many occasions.

• In computer algebra, there is a strong focus on solving generic problems, i.e.,
special cases such as special values of parameters are not taken into account.

Below we work out these differences.
Although a computer algebra system seems to allow variables just as symbols,

they are behind the scenes still pointers to values. In Mathematica, for example, a
variable used as a symbol is in fact internally a pointer to an object with header Symbol
and argument the string ”x”. One may think that it is in practice unimportant to know
exactly how variables and expressions are stored inside a computer algebra system and
how the program internally manipulates them. But this is not true: knowledge about
internal representation of objects is needed to fully understand which mathematical
subexpressions are recognised in a given expression. For example in Maple,
replacing x+1 by y in ()xx +++ 111 via the subs command gives the result

yx 11 ++ instead of yy 1+ , as one may have expected. The reason is that Maple

stores the expression ()xx +++ 111 internally as a sum of three sub-expressions, viz.,

1, x, and () 11 −+ x . Maple does not recognize at the sum-level the subexpression x+1 ;

at the power-level it does find this subexpression. Because the subs command only
does a syntactic substitution it fails to give yy 1+ ; another command, viz., algsubs is

required to do the semantic substitution. One can also apply simplification with respect
to side relations, based on Gröbner basis theory. Related to this technique, an
interesting remark has made in (Recio, 1998), viz., that the computer troubles for
deriving conclusions from equalities through rewrite rules may actually make the
students’ difficulties with such tasks more explicit and better to understand.

A user of a computer algebra system must also develop some feeling for the
algebraic manipulations and sorting of terms that are automatically carried out by the
program to bring an expression into some “standard” form. Otherwise s/he may get
frustrated that some obvious and correct manipulations cannot be done. For example,
in Maple,)3(2 +x is automatically expanded into 62 +x and there is nothing to do

about it. In Mathematica, when you input Exp[x]^2, the output is automatically

converted into xe 2 . This makes the reverse operation practically impossible in this

7

system. On a TI-92, the terms of a univariate polynomial are in the expanded form
always sorted in descending order with respect to the degree and no other orderings are
available. Whether one is happy with such automatic simplifications depends very
much on the reasons for using a computer algebra system. When it is used as an
educational tool to learn and practice manipulation of algebraic expressions, one does
not always want these simplifications automatically done. This explains why Derive,
which has been designed primarily for education, refrains from automatic
simplification. But when one uses a computer algebra system as a computational tool,
which automates mathematics as much as possible, then one appreciates more its
computational power and automatic simplification.

Anyway, there are plenty of cases in which there is little or no doubt about which
expression is simpler: 0+x should simplify to x, sin(π) should simplify in computations
to 0, and x5 is simpler and more readable than xxxxx ++++ . For reasons of
usability and efficiency such ‘obvious’ simplifications are carried out automatically on
most symbolic systems. Any other simplification is left to the user’s control; the
computer algebra system only provides the tools for doing jobs like factoring
expressions, working out brackets, and collecting terms. However, one should realise
that there is always some balance between rigorous mathematical correctness, usability
and efficiency. For example, the automatic simplification of)1(0 f× to 0, how obvious

it seems, is not always correct. An exception is the case that)1(f is undefined or

infinity. In fact, the automatic simplification is only wanted if)1(f is (known to be)

finite, but difficult to compute.
Ordering of statements is in most computer algebra systems relevant as the

following snippet of computer code, in which assignments are separated by
semicolons, illustrates: a = 2; y = a*x; a = 3; In Mathematica, the value of y after
executing the above instructions will be 2x, i.e., the last assignment has no effect on the
evaluation of y. In fact, every computer algebra system in which assignments are by
default not delayed will evaluate in this way. In mathematics, however, the definition
of y via the relationship xay = means that y is considered in the definition as the

product of a and x, regardless of the current value of a. Only the evaluation of y
changes during computations. If the value of a changes from 2 to 3, then the evaluation
of y changes evaluation from 2x to 3x. Derive, which uses by default delayed
assignment, works in the mathematical sense. If the first two statements in the above
computer code are interchanged, then Mathematica will also react in the mathematical
way. The difficulty with the computer code of the example is that the variable a is
actually used in two ways. In the first assignment as a normal programming variable,
which is not evaluated but whose pointer is set to some value, and in the second
assignment as a symbol representing a mathematical object, which is immediately
evaluated.

The basic mode of working with a computer algebra system consists of
dividing a given task into subtasks that can be carried out sequentially. Starting with
the first subtask, one repeats this process of subdividing a task into smaller pieces until

8

one arrives at a point where one is confident that one can carry out the first subtask
without great difficulty or where one wants to give it a try. This subtask, which is in
general much smaller than the original one, is then carried out by performing cyclically
the following chain of actions:
1. On the basis of the previous result, decide what computational step comes

next.
2. Figure out what symbolic input corresponds with the chosen action and enter

it.
3. Monitor the internal processing of the computer algebra system and interrupt

it because of time and memory constraints or because of change of mind.
4. Read and interpret the symbolic, numeric, graphical, or textual output. Again,

differences in notation have to be faced.
The input may be an expression to be evaluated or a process to be carried out. For
example, the input x^2 + 1 may be used to introduce a polynomial or to add 1 to the
square of x. Note that one symbolism is used for two purposes, viz., specification of a
computational process and notation for a mathematical object, which may be the result
of a process. On the input side, a user is also confronted with differences in mathe-
matical notation and computer notation. Computer algebra distinguishes between the
equal symbol in equations and in assignments, it forces the user to use brackets and
operators for specification of intentions, it reserves names for various purposes (e.g., a
symbol for referring to previous results and special names for mathematical constants),
commands replace standard mathematical notation for integration, differentiation, and
summation, etc.

All steps are of rather high level of abstraction: finding a strategy to solve a
problem, translating mathematical concepts into symbolic input to be processed, using
algebraic expressions both as objects to be manipulated and as processes to be carried
out, interpreting intermediate results that may contain unfamiliar mathematical
ingredients, making a decision on what to do next, and so on. Tall (Tall, 1992)
identifies in a study of prerequisite knowledge that students need in order to work
meaningfully with symbolic manipulators as the Achilles heel of these systems in
education:
• The strong focus on symbolic input.
• The need for the individual to construct a meaning for the symbolism as

flexible process and object.
• The internal processing of input in a manner that may not be transparent to the

user.
We would like to add to this list:
• Computer algebra systems have been designed to solve generic problems only.
• Computer algebra systems are not always able to use all mathematical rules or

assumptions they know in the right places.
• Internal processing of input cannot be adjusted to one’s needs. In particular, it

is difficult for a user to control automatic computational steps like collecting
and reordering of terms and applying rules for mathematical functions.

9

The focus on solving generic problem causes errors when first symbolic computations
are carried out and afterwards concrete values are substituted in the result. For
example, most computer algebra systems compute the antiderivative

of nx as)1(1 ++ nx n , which is wrong (even in the limit case) for 1−=n . All computer

algebra systems give two solutions when asked to solve the quadratic equation

012 =++xxa , which is wrong for the special case 0=a . All systems compute the

reduced row-echelon form of the 2×2 matrix with rows (1 1) and (x 1), respectively, as
the identity matrix, ignoring the special case 1=x . In mathematics however,
distinguishing between special cases is an important aspect of solving problems and
much attention is paid to it in education.

The inability of symbolic manipulators to use all knowledge properly can have
side effects like finding too many solutions of a problem or obtaining erroneous results.

For example, solving the cubic equation 013 =++ xx under the assumption that one
works over the real numbers still yields complex solutions in Mathematica, Maple, and
other systems. Not recognising zero in an intermediate result in combination with
automatic simplifications involving 0 can be source of wrong answers, too: some

systems compute
)1cos)1((sin

lim
220 −++→ φεφ

ε
ε

 as 0, whereas the expression after

application of the simplification rule 1cossin 22 =+ φφ does not depend ε on anymore,

but equals
φ2cos

1
.

4. Variables in Mathematics
In mathematics, variables are used in so many different ways that hardly any

attempt is made to define them rigorously, except in the field of formal logic and
abstract algebra. See (Schoenfeld and Arcavi, 1988) and (Wagner et al, 1984) for
discussion about the notion of variable, its richness, the multiplicity of meanings, and
why it is such a difficult concept to learn. The following examples (Etten, 1980)
illustrate in how many different ways variables already appear in school mathematics.

12: +xxf a wlA ×= 7=+ ba

)3)(3(92 +−=− aaa N∈x 33 +=+ xx

n is a divisor of 24 xx =2 823 +=+ xx
p is a prime number yx = rA π2=

abba +=+ 92 =a Q⊂S

1sin3cos =+ xx 9<x
222 zyx =+

k is parallel to the x-axis P lies on l
Even if letters are used for numbers only, different roles of letters in the algebraic
context can be distinguished (Kücheman, 1981; Usiskin, 1988). It may be

10

• an indeterminate, in statements like)3)(3(92 +−=− aaa .

• an unknown, in equations such as 7=+ ba .
• a known number like π .
• a variable (generalised) number, e.g., in N∈x , in declaring p a prime

number, and in differences like)()1(afaf −+ .

• a computable number like A in the formula rA π2= .
• a placeholder, e.g., in function definitions 12: +xxf a or 12)(+= xxf .

• a parameter, e.g., as a label in the function definition xpxf p =)(to

distinguish several cases.
• an abbreviation like { }3,2,1=V .

Mathematical notation has evolved into a powerful and flexible symbolism.
The simple expression)(exa + can already be used in various ways: as a generalised

number)(exa +× in which the symbol e may or may not stand for the base of the

natural logarithm, as a function a applied to ex + (in this case, a is usually not in
italics), as a function in x with parameters a and e, as a function in two or more
indeterminates, and as the instruction a applied to the argument ex + . The
mathematical context or the wording used about the expression often gives a clue. But
it is no big surprise that a secondary school pupil not always understands mathematical
statements and expressions, and that s/he often makes a mess of notations. It takes time
and practice to get used to the fact that a variable actually gets meaning in mathematics
through its use (as indeterminate, as unknown, as parameter, etc.), through its domain
of values, through its associated truth set if used in an open statement, and through the
context in which it is used.

It is almost impossible to rigorously define the concept of variable, but this
does not mean that one cannot classify the various appearances of variables in
mathematics. Freudenthal (1983) distinguishes the following three uses of variable:
1. as a placeholder, which denotes the places in an expression where the same

object is meant.
Variables as placeholders mostly occur in function definitions: for example, the

definitions 2)(xxf = and 2)(yyf = both define one and the same function, viz., the

square function. One also refers to these placeholders as dummy variables: they do not
indicate objects anymore, but rather the locations for replacements with certain kind of
objects. If other variables are present in function definition, e.g., in

cxbxaxf ++= 2)(, they are distinguished from the dummy variables and they are

called parameters. At first sight this is an easy distinction, but the use of parameters is
in practice more complicated and more difficult to master (Furinghetti and Paola, 1994;
Drijvers and van Herwaarden, 2000).
2. as a polyvalent name, i.e., a name for an object that can take a multitude of

values.

11

If n is a divisor of 24, the letter stands for any of the numbers 1, 2, 3, 4, 6, 8, 12, and

24. In the statement that we have a real number x such that 012 =−+ xx , the letter x
refers to a number that is yet unknown, but can be computed, and that has the property
that the sum of this number, its square, and −1 is equal to 0. Without knowing its exact

value, one can deduce that for this number holds 23 xxx += . Solving the equation
means finding the x for which it is true. A priori x is indeterminate, a posteriori x can
take two values.
3. as a variable object, i.e., a symbol for an object with varying value.
In mathematics, the object to be thought of can be a number whose value may change
like in the locutions “2n for n from 1 upward” and “an converges to 0 as n goes to

infinity”. Of course, one can replace these locutions with n2 for N∈n and
0lim =∞→ nn a , but then one looses the kinematic aspect of the variable. However,

this kind of variable very often occurs in mathematical models that are constructed to
study real-world phenomena. The object can be a physical quantity such as time,
position, and temperature, or an economic quantity such as price, capital, and income.
Clearly quantities with varying values.

The numerical value of a quantity depends on the unit in which it is expressed.
This affects formulas in which the quantity occurs. For example, the Quetelet index is
defined as the quotient of body weight (in kilogram) divided by the square of the
length (in meters). If units are changed from kilogram and meter to gram and
centimetre, respectively, a scale factor of size 10 should be included in the definition to
maintain the meaning of the Quetelet index.

A variable object may be related with others. One speaks of independent
variables, whose values one is free to choose, and of dependent variables, whose values
one can compute given the values of the independent variables. Many applications can
be given: the position of a moving object depending on time, the room temperature
depending on the time of the day, the temperature of a long rod as a function of place,
the number of articles sold in a shop as a variable that depends on the price per unit,
the income of a person as a function of his or her education, and so on. In many cases,
a variable may depend on more variables than explicitly stated. For example, income
of a person may depend on education, professional experience, age, number of hours at
work, sex, job status, and so on. But in an economic or social study not all independent
variables are taken into account; some of them are neglected, others appear as
parameters in a model description. The roles of independent and dependent variables
are often not fixed during a computation. For example, studying the motion of a
sprinter, one may on the one hand consider acceleration as a function of time, but on
the other hand describe it as a function of the velocity of the sprinter. One of the big
ideas in calculus, and in mathematics in general, is the freedom of choosing
independent and dependent variables. In (Hall, 1999) one can read a lively account of
how in design-oriented work by a multidisciplinary team considerable time is actually
spent on identifying the quantities of importance and formulating symbolic
relationships between them.

12

The above distinction of three uses of variable can be applied to parameter as
well: in the role of a placeholder, the parameter has one value at a time. For example,

in the formula
g

l
T π2= for the period of the mathematical pendulum, the letter g

stands for the gravitational constant. You may study the motion of the pendulum on
earth and as well as on moon, but always stands g for one value only. The given
formula expresses the relationship between the period of the pendulum and the length
of the pendulum. So the letter l plays the role of a variable object. Thirdly, as a
polyvalent name, a parameter allows you to write general formulas. For example, the
letters A (amplitude), ω (angular frequency), and φ (phase) are used in the formula

)sin(φω += tAu to describe harmonic motion mathematically. Typically, one keeps

values of all parameters except one fixed and draws graphs for several values of the
free parameter in one picture, i.e., the parameter in its generalising role is used to
distinguish several cases.

5. Variables in School Algebra
In school mathematics, much attention is paid to the introduction of variables.

Educators search for ways to familiarise pupils with variables (e.g., see Kieran, 1992;
Kieran, 1997). The content of secondary school algebra has more or less evolved into a
standard approach to these topics.

At the beginning of learning algebra, the link to arithmetic is emphasised:
letters are used in algebraic expressions to represent quantities, numbers, and
numerical relationships. At this stage, an algebraic expression is still considered as an
arithmetic operation upon numbers and algebraic manipulation is more or less a change
of the recipe to compute a result: xx + and x2 are algebraically equivalent because
the numerical results when x is replaced by a concrete value are the same, ignoring that
the expressions are different from a computational point of view. Pupils start with
studying the connection between a table, a simple computation, and a simple word
formula. Labelled arrows represent simple computations like “multiply by 2”, “add 3”,
and so on. Words are used to describe input and output. In situated contexts, pupils
must find regular patterns in number sequences and express these in terms of word
formulas. The relationships are almost always linear. Typical tasks are:
• Given a formula, construct the corresponding computational steps.
• Given the computational steps, fill out a table.
• Given a table of numbers, discover a pattern and find the corresponding

formula.
• Given a situated context, create a formula and check correctness.
Next comes the study of the connection between a word formula, a table, and a graph.
Typical exercises are:
• Given a formula, fill out a table.
• Given a table, draw the points in a graph.

13

• Given a graph, read off coordinates of points on the graph.
After this, the movement from word formulas to letter formulas and the learning of
basic rules of simplification such as aaaa 3=++ takes place. Letters are used as
abbreviations of quantities and pupils learn the usual rules of computing with letters in
situated contexts.

Working with operation diagrams and function machines that have formulas
as labels completes the introduction to algebra as a procedural tool. First chains of
labelled arrows are studied to set up an operation diagram. Later on, such a chain is
replaced with a single function machine labelled with a formula. The word “formula”
has a special meaning in school mathematics and the role of the letters in the formula

1+= xy is not the same as in the equation 1=− xy . The words “formula” and

“equation” are used to distinguish between the case of a functional relationship
between the isolated variable y that depends on the other variable and the case of a
more general relationship between unknowns. For pupils it is important to make a clear
distinction between these different notions. A mathematician, however, is much used to
applying the same algebraic symbolism for many purposes: 1+= xy may stand for an

equation, for an abbreviation of the expression 1+x , as well as for the process of
computing the value of y from the value of x .

After the introduction of variables, by working with simple algebraic
expressions containing familiar arithmetic operations like addition, subtraction,
multiplication, and division, pupils start learning to view an expression not only as a
process of computing, but also as a result of this process. An expression also becomes
a mathematical object on its own, which can be manipulated. In (Gray and Tall, 1994)
the word “procept” is introduced for the combination of symbol, process, and concept,
to make clear that a mathematical object never completely looses its process nature.
The alternative conceptions are also referred to as “process and object” (Sfard, 1991),
where the word “reification” is used for the objectivation of a process, and “procedure
and structure” (Kieran, 1992). Gradually, pupils learn to see variables as a replacement
not only for numbers, but also for expressions. They learn and practice the various
ways in which algebraic expressions can be manipulated: combining literal terms,
replacing subexpressions, factoring, completing the square in a quadratic polynomial,
rationalising the denominator, subtracting the same term from both sides of an
equation, solving systems of linear equations, and differentiating are examples of
activities that are present in all mathematics curricula.

At this point, the status of school algebra has become generalised pure
arithmetic, based on reference-free numbers, where variables are mostly used as
polyvalent names and placeholders. In many research studies (e.g., see Kieran, 1989;
Sfard at el, 1994; MacGregor and Stacey, 1997; Stacey and MacGregor, 2000; Tall et
al, 2001) is reported that understanding generalised pure arithmetic is not easy: literal
symbols are like numerals and words, yet they are different, and pupils have to learn to
deal with these differences. They must understand the underlying structure of algebra
and become familiar with the dual character of algebraic expressions
(operational/structural, process/object) to gain competence in mathematics.

14

This is also the point where mathematics has completed the move into a
direction different from the natural sciences, which use generalised quantity arithmetic,
i.e., the arithmetic of modelling, in which variables are mainly used as variable objects.
Pupils are often expected to make for themselves the link between the generalised pure
arithmetic and the generalised quantity arithmetic.

6. Variables in Science
In (Vredenduin, 1979), the author discusses some of the differences in

terminology between physics and mathematics, but most of his conclusions hold for
any science field. Here, a variable is most often used as a name for a quantity that can
vary (often with respect to time) and that in many cases can be measured. Physical
quantities can be magnitudes such as temperature, mass, and length, or combinations of
magnitude and direction such as velocity, acceleration, and force. Function, sample of
function values, and single function value are mixed up easily in science and
apparently without much harm: a physical quantity is sometimes a function of time, in
other occasions a finite sample of values measured at different times, and sometimes a
function value at a certain fixed time. As a concrete example may serve Boyle’s law

constantVp = , for pressure p and volume V. The variables are in fact functions of

time, viz.,)(p:p tt a and)(V:V tt a . Boyle’s law says that the product of these

two functions is a constant function, i.e., constant)(V)(p =× tt , at every time t. In an

experiment, one verifies or rediscovers the relationship by measuring p and V under
different conditions. In a problem like “suppose that V=10 ml when p=2 bar, how
much is V when p=4 bar?”, p and V do not represent functions anymore but function
values, viz., the pressure and volume at a certain fixed time.

In mathematics, this ambiguous use of notation for function, sample of
function values, and function value rarely occurs. One exception: in statistics, a
random variable X is in fact a function on the set of all possible results in a chance
experiment. As an example, think of the experiment of throwing two fair dies and let
X1 and X2 be the scores of the first and second die, respectively. The set of all possible
results equals the set of 36 pairs [i,j] with i,j=1,2,…,6. The random variables X1 and X2

are functions defined by X1([i,j])=i and X2([i,j])=j, respectively. Other random
variables like X=X1+X2 can be constructed. Although random variables are functions,
a statistician has no problem asking for the probability that X is in a certain interval.
He or she may talk for example about the chance that X>6. In such a question, the
variable represents function values. Efficiency of the mathematical language is the
keyword here. Mathematical purism does not lead to any deeper insight in these
matters and it will even be a burden in mathematical reasoning and understanding of
variables and functions.

In mathematics it is often allowed to change names in an expression without
changing the meaning: for example, {(x,y) | xy=1} is the same set of ordered pairs as
{(a,b) | ab=1}. But in science, such replacements are almost always forbidden:
replacing traditional names for energy E, mass m, and the velocity of light c in

15

Einstein’s law E=mc2 will ruin it. The reason is simple: most variables in physics are
not meaningless but deal with concepts in physics that have the property of quantity.
Therefore, one often chooses the first character of the name of the concept as the name
of the variable: F for force, m for mass, and a for acceleration in Newton’s law

amF = is one example of many. This strong sense of notational conventions in

science, compared to the freedom in mathematics, pops up on many occasions. For
example, in (Wijers et al, 2000) the use of ratio tables in secondary school mathematics
and science are compared: in mathematics there is no preference which to choose as
upper or lower row in a ratio table, but in science there is a preference, in particular in
the compound-quantity case like speed (distance over time) or density (mass over
volume), to let the ratio table labels reflect the ‘formula’ of the compound quantity
involved.

Physical quantities can often be measured, but the measured values are always
natural numbers (in counting processes) or floating-point numbers, possibly with
margins of error. Irrational numbers like √2 or π do not occur in measurements.
Nevertheless, scientists mostly compute with quantities as if they take real values.
They also treat floating-point numbers differently than most mathematicians do. For
many a mathematician, the number 1.23000 is the same as the number 1.23 without the
trailing zeros. However, in numerical analysis and in science, the notation 1.23000
implies that the number is known more accurately than 1.23. A value of a physical
quantity actually consists of three parts, viz., the numerical value (a number), the
precision (the number of significant decimals or the margins of error), and the unit that
is used to measure the quantity. This makes quantity arithmetic more difficult to learn
and to use than reference-free number arithmetic.

In science, words like “big”, “small”, “relatively small”, “negligible” can be
used while talking about quantities. A small change of a quantity Q is also given a

name, such as Q∆ , and one manipulates it as any other variable, except that one often

ignores higher order terms like ()2Q∆ to get a simpler model description. Going from

calculus of small changes to infinitesimal change and calculus with differentials is then
a natural step. The following example shows how it works. We look at the

formula 2tas = for a moving body with s being the distance travelled as function of

time t. Suppose that one is interested at the speed of the object during its fall. The
change in distance travelled)(1ts∆ during a small time interval []ttt ∆+11, is given

by () ()2
1

2
1

2
11 2)(tattatattats ∆+∆=−∆+=∆ . A physicist will say that, when t∆ is

small, the term with ()2t∆ can be neglected. So, for the rate of change one has

11 2)(tatts ≈∆∆ . In the limit case of infinitesimal changes, one has 11 2)(attdtds = .

So, the speed at time t1 is equal to 12 ta . The mathematician, on the other hand, is not

happy with the sentence “when t∆ is small, you can neglect the term with ()2t∆ ”. He or

16

she will say that tatatts ∆+=∆∆ 11 2)(and that therefore 110 2)(lim tattst =∆∆→∆ .

The same conclusion, but a different style of working.
It is clear that when a variable is mostly used as a placeholder, in which only a

number or an expression that evaluates to a number can be substituted, a pupil gets the
impression that a variable is a rather static mathematical entity: it makes no sense to
him or her to consider change of the variable. In contrast, when a variable is used for a
variable object, change becomes an important issue and calculus of small changes, ulti-
mately leading to differentials, becomes a natural and useful technique in mathematical
modelling. One can defend the standpoint that this does not only hold for the study of
physical phenomena, but also for problems that are more looked upon as mathematical
ones. For example, the relationship between the circumference and the area of a circle
can be derived as follows: consider the area A as a variable dependent on the radius r.
Let the radius increase with a small amount of r∆ . This leads to a small increase of the
area A∆ . These small changes are related by rCA ∆×≈∆ , where C is the
circumference of a circle with radius r. This approximation can be explained by
transforming the small rim smoothly into a rectangle of length C and width r∆ .
Choosing very small increases r∆ and ultimately taking infinitesimal quantities leads
to the following equation with differentials: drCdA = . This corresponds

with CdrdA = . Knowing the formula rC π2= , one finds 2rA π= . In mathematics

education, there is a recurrent debate about whether the concept of differentials or
instead the concept of derivative should be used in the calculus curriculum.

The above differences add a good deal to the understanding of the difficulties
that pupils have in relating the mathematical methods and techniques that are used in
natural sciences to what is learned in mathematics lessons. In mathematics, they use
variables mostly as placeholders and polyvalent names. Emphasis is on generalised
pure arithmetic, with reference-free numbers, and on the concept of function defined as
a special kind of correspondence between nonempty sets A and B which assigns to each
element in A one and only one element in B, i.e., on the Dirichlet approach to the
concept of function. In science, the third kind of variable, viz., the variable object,
comes into play. One is involved with functional relationships between varying
quantities, in which one distinguishes between dependent and independent variables. In
working with variable objects and relationships between them one uses mainly the
theory and practice of solving equations in known and unknown quantities and one
uses the calculus of change.

7. Computer Algebra in Education
Use of computer algebra systems and symbolic calculators is new in school

mathematics and educational research is still in its childhood. Early in the nineties,
pioneering educators had high expectations of computer algebra (e.g., see Karian,
1992). This resulted in many papers entitled “Using Computer Algebra …” in
conference proceedings and system-related periodicals. The envisioned scope of
computer algebra usage was broad and was in line with the original design goal of

17

most symbolic systems, viz., providing a general purpose tool for technical computing
in various areas. The overview of (Mayes, 1997) indicates that studies in this period try
to find rationales for the use of computer algebra and investigate potentialities of
symbolic systems such as improving conceptual understanding, overcoming limitations
imposed by poor algebraic skills, and bringing applications of mathematics within
students’ reach in the expectation that the mathematics curriculum is more attractive in
this way. A good overview of the state of computer algebra in mathematics education
at that time is given by (Berry et al, 1997). Another source of information is (Heugl et
al, 1996), which describes practical examples and experiences from a large Austrian
Derive-project. Consensus in the pioneering work seems to exist on the most important
advantage of using computer algebra in mathematics education: computer algebra has
the potential of making mathematics more enjoyable for both teachers and pupils
because it turns mathematical entities into concrete objects, which can be directly
investigated, validated, manipulated, illustrated, and otherwise explored. Beautiful
curves and graphs, interesting numerical and symbolic results, meaningful
constructions and derivations with immediate feedback, all this becomes accessible.
Abstraction, exact reasoning, and careful use of symbolism are not solely a hobby of
the mathematics teacher anymore, but are immediately rewarded when using computer
algebra.

In the second half of the nineties, classroom experiments have shown that the
integration of computer algebra in mathematics education is more complex than
expected. The optimism in constructivist approaches that the computer environment
can help to create adequately problematic settings in which the learner meets
insufficiency or inconsistency of his/her knowledge and starts to develop him/herself
new knowledge is damped in the school practice. The fact is, the constructivist view
assumes that the computer environment will provide the means for a predicable and
meaningful interaction. However, results from a large-scale Derive-experiment in
France (Artigue, 1997) indicate that it is only a matter of ‘pseudo-transparency’: in the
mediation of the computer algebra system, the instrument may be transparent for the
teacher who is an expert both in mathematics and in the operation of the symbolic
system, but not for the students who perceive the mathematics through the symbolic
system and are unaware of properties of the instrument and of differences between
internal computer representations and (mathematical) representations returned by the
user interface. Students may build unexpected or even incorrect mathematical
meanings from the system’s feedback.

In the same research study (Artigue, 1997), it is reported that students may
interpret tasks different from teachers or authors of textbooks. They illustrate this by
the following investigative task: “Propose, in the form of conjectures, factorisations of

polynomials of the form 1−nx ”. One interpretation of the task, and probably the one
that its creator had in mind, is to use the computer algebra system as a computational
tool to find theorems about factorisation of polynomials of this kind. Students however
interpret this task often as “find conjectures about factorisations in the computer
algebra system”. This task may even turn out to be more complicated than the one of

18

the first interpretation. Artigue refers to this phenomenon as “double reference”.
Although the computer algebra system is a driving force in the activity, it is in general
not the symbolic system itself that is of interest to the teacher; s/he wants to use the
computer algebra system only as a tool for doing mathematics. Pupils may look upon
this with different eyes: for them, working with the computer algebra system may be
the mathematical activity.

Artigue also identifies four broad reactions to a new tool amongst students in
the experimental classes: refusal, blind confidence, tool for computing and checking
results, and tool for learning. Similarly, in (Guin and Trouche, 1998) and (Trouche,
2000) a great variety of student’s behaviour is observed. They identify the following
styles of working, characterized by the frequency and style of tool use: random,
mechanical, resourceful, rational, and theoretical. They illustrate that according to their
profile characteristics, students develop different problem solving techniques and
different relationships with their symbolic calculators. Another report of this kind is
(Weigand and Weller, 2001), which describes the working styles of 11th graders at a
German high school studying quadratic and trigonometric functions in a computer
algebra environment. One conclusion of this empirical work is that it is not easy to
bring pupils from working at a level of experimental heuristics to mathematical
reflections about the problem and problem solving activities. Activation of basic
mathematical knowledge while working with the computer is needed for developing
mathematical thinking and the teacher plays an important role in this.

The aforementioned research studies make clear that efficient and successful
use of symbolic systems is not self-evident: it takes time and effort to acquire the
appropriate skills and knowledge for proficient use of such systems, and this process
may differ from student to student. Obstacles that students encounter while working
with a symbolic system have often both a technical and mathematical character. For
example, Drijvers (Drijvers, 2000) identifies the following general obstacles for
students using a TI-92 to study optimisation problems:
• The difference between the algebraic representations provided by the CAS

and those students expect and conceive as ‘simple’.
• The difference between numerical and algebraic calculations and the implicit

way the CAS deals with this difference.
• The limitations of the CAS and the difficulty in providing algebraic strategies

to help the CAS to overcome these limitations.
• The inability to decide when and how computer algebra can be useful.
• The flexible conception of variables and parameters that using a CAS

requires.
This list of obstacles is in line with results of other research studies that show the
complexity of the so- called instrumentation process. For example, (Guin and Trouche,
1998) also point out that the confusion between mathematical objects and their
representation by calculators is an obstacle in the process of instrumentation. The
complexity of transforming the computer algebra tool into a mathematical instrument

19

for students is probably one of the reasons why teachers in school mathematics have
not embraced symbolic calculators immediately.

As symbolic systems have not fully penetrated in school mathematics (yet), it
may be no surprise that they are not much used in school science either. Main reason is
actually that the science lessons are principally descriptive, qualitative, and experi-
mental in nature. For example, in secondary school chemistry, mathematics is almost
limited to unit conversions, drawing and interpreting titration curves, balancing of
chemical equations, and to computations related with a chemical equilibrium. Apart
from solving equations, not much symbolic computation is present, and where
mathematics is needed in chemistry, it is expected that one can build upon basic skills
learned in mathematics lessons. In secondary school physics, more mathematics is
used. For example, trigonometry, plotting and analysing measured data, working with
vectors, algebra of small quantities, and coordinate transformations are required. But
again, not overwhelmingly much symbolic computation is present. It is mostly limited
to rewriting of ‘simple’ formulas, mathematical manipulation of measured data,
solving equations, and to working with trigonometric expressions. Only in a few
experiments, the measured data lead to a clear mathematical function and formula. For
example, discharge of an electric conductor shows a nice exponential decay. Analytical
solution of such an example problem already pays off, because it can be applied to
many other physical processes that follow exponential growth or decay. Think of
cooling of an object, radioactive decay, first-order kinetics of a chemical reaction, and
so on.

In science, mathematics is anyway more a means to an end. Plotting graphs
helps to interpret data; simulation of science experiments is done to understand real-
world phenomena; algebraic manipulation often aims at presenting experimental
results in a more convenient way; and so on. Computer programs and graphing cal-
culators are mainly used for acquisition of experimental data, visualisation and analysis
of experimental results, and for simulation of experiments. The need for symbolic com-
putation is more felt at higher educational level, when mathematical modelling
becomes more important. At this point the mathematical theory is extended with
differential equations, integration, special functions, etc., and formula manipulation
becomes more elaborate. Then, a computer algebra system comes into play as a
personal educational assistant that allows a student to concentrate on science concepts
instead of wasting time in algebraic drudgery.

Reports in the last ten years on the use of computer algebra in mathematics
and science lessons during the first two years of university and higher vocational
education plus personal observations over the last decade in courses that introduce
Maple and Mathematica to novice users lead us to the following general findings about
algebraic manipulation with computer algebra systems:
• With a powerful repertory of tools at hand, it becomes even more important

for the user to realise what goals s/he has, what results already have been
obtained in this direction, and what steps can come next. Stated in a one-liner:
computer algebra is not hands-on, but brains-on computing.

20

• Basic manipulation skills are required for effective use of a computer algebra
system.

• Computer algebra systems force their users to express their intentions in an
explicit manner and in a syntax that is rather distinct from the flexible
symbolism normally used in mathematics and science.

• Symbolic input is in most cases the driving force in obtaining results with a
computer algebra system.

• Use of variables as variable objects is not much supported in a computer
algebra system.

Especially the last two points have great impact on the usability of computer algebra in
science education. Computer algebra systems provide little support for real-time
acquisition and analysis of data from experiments, whereas this often is the starting
point in science work. The symbolic calculator connected to a CBL can only be
considered as a poor alternative for the data acquisition and analysis tools currently
used in science education. In the use of a variable as variable object, it is the finiteness
of any representation on a computer that imposes restrictions. Possible finite
representations are:
• with a finite indexed listing of values.
• via an algorithm expressed in finitely many terms.
In (Spunde and Neidinger, 1999), the authors advocate an implementation of a variable
object as a finite list of values and show that calculus with samples of values is
possible with existent computer algebra systems. However, these systems lack the
direct manipulation of lists and immediate linking of lists, as is offered by graphing
calculators. The finite representation of a variable object via an algorithm rarely
occurs: in Maple, formal power series are the only data structures of this kind.

8. Recommendations to Teachers
The list of general findings about algebraic manipulation with computer algebra
systems at the end of the previous section would just form a collection of more or less
obvious statements if they would not lead to recommendations to teachers who use
existing computer algebra systems in their lessons. Based upon our experiences with
first year university students who start learning to use computer algebra systems, but
who are supposed to have reached already a sufficient level of algebraic thinking, we
make some recommendations that may help avoid foreseeable pitfalls. They are in line
with suggestions of others (e.g., see Lagrange, 1999; Guin and Trouche, 1998) for
strategies to turn symbolic systems into efficient mathematical instruments. Our
recommendations are:

1. Let students develop a good understanding of when, why, and how computer
algebra can be helpful.
It is for pupils and teachers good practice first to explore a problem situation,

to reformulate a problem in a seemingly appropriate mathematical way, to do some
easy calculations or algebraic manipulation by pencil and paper, and to think about

21

what kinds of answers are actually wanted. In this exploratory phase, small computer
algebra calculations may assist in unravelling the initial problem and in coming to a
solution strategy. Only after these introductory steps one can make right decisions on
how to proceed, what computational tools to use, and what notation fits best. Two
examples of much used solution strategies are:
• If the zeros of some unfamiliar function must be approximated, one first

makes a plot of the function to get an idea where solutions can be found. Then
one decides whether a graphical approximation of zeros suffices, or that this is
used as a starting point in a numerical solution method.

• If one is asked to solve some non-linear system of equations, it may be wise
first to reformulate the problem in terms of a system of polynomial equations,
then apply standard techniques for solving such systems, and finally transfer
the solutions back in terms of the original equations. A concrete example of
this strategy is given in (González-López and Recio, 1993) for the inverse
geometric model of a robot manipulator and in (Heck, 1993) for relating
geodetic and geocentric coordinates.

Describing how a particular problem has been solved, discussing alternative solutions
and methods, and so on, is supported by the documentation facilities of modern
computer algebra systems. This does not mean that reporting is only by way of
computer algebra worksheets or notebooks. Copying results from computer screen in a
workbook, in standard mathematical notation, remains good practice for various
reasons: it forces pupils to distinguish important results from intermediate results and
to report about their work in standard mathematical notation, which can be understood
by persons not familiar with the tools used. Only by practice, pupils learn to speak and
write the language of mathematics and science.

2. Ensure that pupils maintain basic algebraic skills and basic knowledge of
mathematical properties.
It is a misconception to believe that with the advent of computer algebra

systems pupils need less training in manipulation of algebraic expressions because the
computer programs will carry out the manipulative tasks. On the contrary, for effective
use of a computer algebra system a good insight in formulas is required, must be
developed, and must be maintained. A simple example: recognising the common

term 12 +x in)12()12(2 +−+ xxx one easily gets the equivalent expression

)1)(12(++ xx and the factor command in any computer algebra system would give this

result, too. But the simplify command would in most systems just work out the

expression into 132 2 ++ xx . If a student relies on this command only, in the
expectation that it will always produce the simplest and most suitable expression, then
s/he will not acquire the various skills needed for formula manipulation. Elementary
manipulation skills are also required for formulating a problem in such a way that the
particular computer algebra system in use understands it or can handle it, and for
recognising structure in symbolic output. Think of a science problem, say

22

dxpadp 21+= that is formulated in terms of differentials, but that must be entered

in the computer program in terms of derivatives, for example in Maple as diff(p(x), x) =
a*sqrt(1+p(x)^2). Another example is a complicated expression in which a pupil has to
recognise and judge applicability of simple manipulation rules to achieve
simplification. Solving a problem may drastically change when some simplification is
done before carrying out a standard technique. For example, computing the derivative
of xx)1(+ by the quotient rule gives a rather complicated answer, and a computer

algebra system will do this when asked, whereas after simplification to x11+ it can

readily be seen that the derivative equals 21 x− . Proving convergence of the definite

integral ∫
∞

++
1

73)1(1 dxxx is easy once one realises that 7373 1)1(1 xxx <++ on

the domain of integration, but computing the definite integral with a computer algebra
system takes a lot of computing time and computer memory. Transcribing a relatively
simple algebraic formula from a textbook into the computer algebra language may
already turn out a complicated task, in which the pupil must not mix notations and
quite often needs to add brackets and operators at proper places in the input. Here too,
basic knowledge about mathematical notation and about elementary manipulations of
symbolic expressions is of key importance. Do not expect that pupils maintain these
skills and knowledge of properties all by themselves or simply by using a computer
algebra system.

3. Prepare your pupils to working with mathematically sophisticated systems
that may produce unfamiliar results.
Altering the traditional choice and sequence of topics of the mathematics

curriculum is necessary when computer algebra comes into play. Instead of treating
topics in a compartmental way, in which a couple of lessons are spent on one main
topic before the next one is treated, pupils must learn many basic things in short time.
Not in great depth, but enough to understand or be able to handle computer output that
contains unfamiliar ingredients. Advice: lead your pupils from “knowing little about
much” to “knowing more about much” in mathematics. As a side effect, this prepares
pupils for later professional life, where they may have to use tools of which they do not
know the precise internal workings, but with which they are expected to study
phenomena or analyse data in a sensible way. Future decision makers have to be able
to read reports, judge information, interpret data and graphs, etc., without knowing all
details of how data are collected and processed, and they must be able to ask the right
questions to the persons who actually make the reports.

4. Make a virtue of necessity: use the explicit symbolism of computer algebra to
make pupils conscious of the versatile use of variables and use surprising
results or bugs as opportunities to discuss mathematical topics further.

23

Use of computer algebra demands meaningful choice and careful use of names
and notation. Traditional notation and locutions that one sees in textbooks may not be

appropriate. For example, a sloppy notation like ∫= dxxfxF)()(brings problems

when calling the function F with a numeric argument. This could easily be avoided by

a more careful formulation like ∫=
x

dfxF
0

)()(ξξ . Tasks must be carefully formulated

avoiding erroneous use of words that have already a different meaning in the tool that
one uses. For example, do not ask to “solve an integral” because this may cause a pupil
to use the solve command in the computer algebra system, which most probably can
only be used for solving (systems of) equations. Do not ask to differentiate or plot a
function K=)(xf because this may cause a pupil to enter a command like

differentiate(f(x)=…) and plot(f(x)=…), respectively. The resulting error messages may
make them angry and frustrated and most likely they will blame the computer algebra
system, whereas in fact the problem lies somewhere else. It is clearer and actually not
much more work to ask for the derivative and graph of the function f defined by …

Surprising results of a computer algebra system can be used as a good source for

discussing mathematics. The integration of 42)1(10 +xx gives in Maple, Mathematica,

and other systems a lengthy answer that does not factor to the obvious answer
52)1(+x ; an opportunity to discuss the notion of integration constant! After discussing

divergence of sums, the fact that Maple computes a standard example of a divergent

sum, viz., ∑∞
= −

1
)1(

n
n as −1/2 gives food for discussion. Plot aliasing, as it appears in

Mathematica and Maple when one asks to plot the surface)2sin(xyz π= for),(yx in

[0,75]×[0,1], invites for a discussion of what expectations one can have with regards to
the graph of a function, knowing the constituents of the formula that defines the
function.

5. Teach pupils convenient styles of working with a computer algebra system
and use them yourself.
In doing mathematics and science with computer algebra software, the

preferred ordering in definitions is often from the general to the more specific. An
advantage of specifying the general formula first, is that it allows an easy visual check
whether the appropriate expression has been entered via the keyboard. Note that this
ordering of commands is opposite to the normal didactic order, in which specific cases
are studied before the general case is considered. Other rules of thumb with regards to
expressions are:
• Start each exercise or example with a clean slate so that previously assigned

variables do not interfere.
• Try to validate symbolic results as much as possible. In many cases, exact

results can be verified numerically, graphically, or by doing the same
computation again using a different method.

24

• Resist the temptation to call every unknown x and y, but use meaningful
names so that you and other persons later can still understand what it was all
about.

• Always make a clear distinction between algebraic expressions, equations, and
functions in a computer algebra system.

This last remark may seem obvious, but one of the most important sources of many
user problems is in fact mixing these two different notions. The following small Maple
example shows some of the subtleties. Consider the differential equation ydxdy 2= .

To enter this equation in Maple, one must use y(x) instead of y and enter
diff(y(x),x)=2*y(x) to make clear that one thinks of y as a function in x. When Maple is
asked to solve the differential equation with initial conditions y(0)=1, it returns the
answer y(x) = exp(2x). Although it looks as a definition of the function y, it is in fact an
equation in which y(x) is used as an ordinary variable. To turn the equation into a
function definition, one can make use of the special instruction unapply that transforms
an expression into a function definition. Once y is the name of a function, one cannot
use y(x) as an ordinary variable anymore.

Especially when computer algebra is used for studying science problems one
often has to change from expression to function and vice versa. In mechanics, for
example, one likes to work with explicit coordinate functions x(t) and y(t) for the
position of a moving body so that one can plot the trajectory of the object or compute
positions at certain times. On the other hand, it is often convenient that x and y can be
manipulated as ordinary variables. A good example is the algebra one often has to do
before equations of motion are in suitable format.

The above list of recommendations may give you the impression that you con-
stantly have to run the gauntlet with regards to symbolic input and output. This is
partly true because, in computer algebra, the mathematical context is not implicitly
used, so that computer algebra notation must indeed be less flexible than standard
mathematical notation. But at the same time, the necessity to carefully specify in
explicit form what one wants makes one very much aware of the many roles that
variables and expressions play in mathematics. It makes a pupil (and the teacher!)
conscious of the differences between mathematical entities that in standard notation
may be expressed via one and the same formula. One can actually benefit from the fact
that computer algebra syntax is less flexible than standard mathematical notation. It
forces the pupil not to make a mess of mathematical notions and notations. And the
reward is great in the form of interesting results, which one would not have easily
obtained otherwise.

References
Artigue, M. (1997). Le logiciel ‘Derive’ comme révélateur de phénomènes didactiques
lies a l’utilisation d’environnements informatiques pour l’apprentissage. Educational
Studies in Mathematics 33 No 2, 133-169.

25

Berry, J., Monaghan, J., Kronfellner, M. and Kutzler, B. (eds.). (1997). The state of
computer algebra in mathematics education. Chartwell-Bratt, Bromley.

Cedillo, T. (1997) Algebra as a language in use: a study with 11-12 year olds using
graphic calculators. In Pehkonen, E. (ed.), Proceedings of the 21st international
conference for the psychology of mathematics education, vol 2. University of Lahti,
Lahti.

Drijvers, P. (2000). Students encountering obstacles using a CAS. International
Journal of Computers for Mathematical Learning, 5, 189-209.

Drijvers, P. and Herwaarden, O. van. (2000). Instrumentation of ICT-tools: the case of
algebra in a computer algebra environment. International Journal of Computers in
Mathematics Education, 7 No 4, 255-275.

Etten, B. van (1980). Variabelen in de schoolwiskunde. [Variables in school
mathematics] Nieuwe Wiskrant, 23, 15-18.

Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Reidel,
Dordrecht.

Furinghetti, F. and Paola, D. (1994). Parameters, unknowns, and variables: a little
difference? In Da Ponte, J.P. and Matos, J.F. (eds.), Proceedings of the 18th

International Conference for the Psychology of Mathematics Education, vol 2.
University of Lisbon, Lisbon

Gage, J. (2001). The Role of the Graphic Calculator in Early Algebra Lessons. In
Borovcnik, M. et al (eds.). Proceedings of the 5th international conference on
technology in mathematics education. Klagenfurt, Austria

González-López, M.J. and Recio, T. (1993). The ROMIN inverse geometric model and
the dynamical evaluation method. In Cohen, A.M. (ed.). Computer algebra in industry:
problem solving in practice. Wiley, Chichester.

Gray, E.M. and Tall, D.O. (1994). Duality, ambiguity and flexibility. A proceptual
view of simple arithmetic. Journal for Research in Mathematics Education, 26 No 2,
115-141.

Graham, A. and Thonas, M. (2000). Building a versatile understanding of algebraic
variables with a graphic calculator. Educational Studies in Mathematics, 41 No 3,
265-282.

26

Guin, D. and Trouche, L. (1998). The complex process of converting tools into
mathematical instruments: the case of calculators. International Journal of Computers
for Mathematical Learning, 3 No 3, 195-227.

Hall, R. (1999). Following mathematical practices in design-oriented work. In Hoyles,
C. et al (eds.). Rethinking the mathematics curriculum. Studies in Mathematics
Education Series, Vol. 10, Falmer Press, London.

Heck, A. (1993). Transformation between geocentric and geodetic coordinates. In
Cohen, A.M. (ed.). Computer algebra in industry: problem solving in practice. John
Wiley & Sons Ltd, Chichester.

Heck, A. (1999). Coach: an environment where mathematics meets science and
technology. In Maull, W. et al (eds.) Proceedings of the 4th international conference on
technology in mathematics education. CD-ROM published by the University of
Plymouth, ISBN 1-84102-056-7 UK.

Heugl, H., Klinger, W. and Lechner, J. (1996). Mathematikunterricht mit
Computeralgebra-Systemen. Addison-Wesley, Bonn.

Karian, Z.A. (ed.) (1992). Symbolic computation in undergraduate mathematics
education. MAA Notes 24, Mathematical Association of America, Washington, D.C.

Kieran, C. (1989). The early learning of algebra: a structural perspective. In Wagner,
S. et al (eds.). Research issues in the learning and teaching of algebra.
NCTM/Lawrence Erlbaum, Reston, VA.

Kieran, C. (1992). The learning and teaching of school algebra. In Grouws, D.A. (ed.).
Handbook of research on mathematics teaching and learning. MacMillan, New York.

Kieran, C. (1997). Mathematical concepts at the secondary school level: the learning
and teaching of algebra and functions. In Nunes, T. et al (eds.). Learning and teaching
mathematics. Psychology Press, Hove.

Kücheman, D.E. (1881). Algebra. In Hart, K.M. (ed.). Children’s understanding of
mathematics: 11-16, John Murray, London.

Lagrange, J.-L. (1999). Complex calculators in the classroom: theoretical and practical
reflections on teaching pre-calculus. International Journal of Computers for
Mathematical Learning, 4 No 1, 195-227.

MacGregor, M. and Stacey, K. (1997). Students’ understanding of algebraic notation:
11-15. Educational Studies in Mathematics, 33 No 1, 1-19.

27

Mayes, R. (1997). Current state of research into CAS in mathematics education. In
Berry, J. et al (eds.). The state of computer algebra in mathematics education.
Chartwell-Bratt, Bromley.

Mulder, C. (to appear). Computer-based Investigations in Physics. PhD Thesis,
University of Amsterdam.

Recio, T. (1998). Didactical Relevance Of Meaningless Mathematics. International
Journal of Computers in Mathematics Education, 5 No 1, 15-27.

Schoenfeld, A.H. and Arcavi, A. (1988). On the meaning of variable. Mathematics
Teacher, 81 No 6, 420-427.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on
processes and objects as different sides of the same coin. Educational Studies in
Mathematics, 22 No 1, 1-36.

Sfard, A. and Linchevsky, L. (1994). The gains and pitfalls of reification - the case of
algebra. Educational Studies in Mathematics, 26, 191-228.

Spunde, W.G. and Neidinger, R.D. (1999). Sample Calculus. Mathematics Magazine,
72 No 3, 171-182.

Stacey, K. and MacGregor, K. (2000). Learning the Algebraic Method of Solving
Problems. Journal of Mathematical Behavior, 18 No 2, 149-167.

Tall, D.O. (1992). Mathematical processes and symbols in the mind. In Karian, Z.A.
(Ed.). Symbolic computation in undergraduate mathematics education, MAA Notes
24, Mathematical Association of America, Washington, D.C.

Tall, D.O. and Thomas, M.O.J. (1991). Encouraging versatile thinking in algebra using
the computer. Educational Studies in Mathematics, 22 No 2, 125-147.

Tall, D.O. et al (2001). Symbols and the bifurcation between procedural and
conceptual thinking. Canadian Journal of Science, Mathematics and Technology
Education, 1 No 1, 81-104.

Trouche, L. (2000). La parabole du gaucher et de la casserole à bec verseur: etude des
procesus d’aprentissage dans un environnement de calculatrices symboliques.
Educational Studies in Mathematics, 41 No 3, 239-264.

28

Usiskin, Z. (1988). Conceptions of school algebra and uses of variable. In Coxford,
A.F. et al (eds.). The ideas of algebra, K-12 . NCTM 1988 Yearbook. NCTM, Reston,
VA.

Vredenduin, P. (1979). Terminologie in natuurkunde en wiskunde. [Terminology in
physics and mathematics] Euclides, 55, 81-94.

Wagner, S., Rachlin, S.L. and Jensen, R.J. (1984). Algebra Learning Project – Final
Report. University of Georgia, Department of Mathematics Education.

Wain, G. (1994). Some Technical Problems in the use of Derive with school Pupils.
International Derive Journal 1 No 1, 49-55.

Weigand, H-G. and Weller, H. (2001) Changes of working styles in a computer algebra
environment – the case of functions. International Journal of Computers in
Mathematics Education, 6 No 1, 87-11.

Wijers, M. et al (2000). Using ratio tables from mathematics in secondary school
science. Paper presented at the 25th annual ATEE conference, Barcelona.

Acknowledgments
The author would like to thank Jan van de Craats, Ton Ellermeier and Leendert van
Gastel for careful reading of earlier drafts and for helpful remarks.

