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Figure 1. Moving Money. 
The experiment 
The experiment is simple: seven coins lie on a paper placed on a flat table, lined up at 
equal distances. A ruler, making a circular movement, pushes the coins. The origin of this 
circle is at one site of the row of coins (in this case, the left upper corner of the papers in 
Figure 1). The ruler stops, and the coins leave the ruler, having a velocity perpendicular to 
the ruler. At this point, friction comes into play. The friction is constant, because all coins 
are the same, and this friction does not depend on the velocity. The work done by the 
friction equals W F s= ⋅ , where F is the friction and s is the distance over which the coin 
moves after leaving the ruler. It means that the distance a coin travels after leaving the 
ruler is proportional to the kinetic energy at the moment the coin looses contact with the 
ruler. Since the ruler makes a circular movement, the velocity v of each coin is proportional 
to the original distance d of the coin to the center of rotation. Because the kinetic energy of 

the coin Ek equals 21

2
mv  we get 21

2
F s mv⋅ = . Since F and m are constants, s is 

proportional to 2v . This means that the distance traveled by a coin after leaving the ruler is 
proportional to the square of its original distance to the center of rotation. In other words, 
we expect that the coins, once they stop moving, lie on a parabolic curve. The final 
position of the coins proves that we are right (see picture to the right in Figure 1).  
 
Are we sure and how can we find out? 
The easiest way to check whether the coins after leaving the ruler lie on a parabolic curve 
is to do a video measurement. Two problems arise right from the start:  
1. The motion is too quick for recording with a normal camera or webcam; 
2. In practice, it may not be possible to make a movie from the top. 
The first problem is solved by using a high-speed camera (say at a speed of 400 fps). The 
second problem can be solved by perspective correction (see Figure 2). 
 

    

Figure 2. Before and After Perspective Correction. 



We have rescaled the rectified video in Figure 2 further to the one shown in Figure 1 in 
order to make dimensions fit reality better, i.e., to obtain a video in which the paper has 
been scaled to real proportions. 

Manual collection of video data about seven coins is time-consuming, boring, and 
error-prone. Instead one can better track the motion of the coins and record automatically 
the coordinates of the objects in subsequent frames of the video clip.  

Perspective correction and tracking of objects in video measurement are possible 
in version 6 of the Coach learning environment. 
 
In what follows, we will check some statements made in the previous description of the 
experiment. 

The ruler stops, and the coins leave the ruler, having a velocity perpendicular to the ruler. 

Because there are no other forces besides friction, the track of each coin will be a straight 
line once it has left the ruler. Under these circumstances it seems natural to take the 
center of rotation as the origin of the coordinate system and to align the x-axis with the 
ruler when it stops moving. Using these coordinate settings and tracking, we get the next 
screen shot of a Coach 6 activity.  

 

Figure 3. Tracking of Coins.  

To the left, you see the yellow axis pointed out just like the ruler was at the moment that 
the coins lost contact. To the right, you see the track of the seventh coin. Clearly, with 
these coordinate settings the x-component of the velocity is not equal to zero. This means 
that the velocity at the moment when the coin looses contact is not perpendicular to the 
ruler shown. 

We can take a closer look on this velocity component parallel to the ruler. We 
rewind the movie and play it frame by frame. While the ruler is rotating and is in contact 
with the coins, the coins turn out to move along the ruler. For example, one can measure 
the distance between the seventh coin and the origin in various frames. Analyzing the 
frames 6, 8, 10 and 11, one finds every time a slightly different value for the distance from 
the coin to the origin: values are 53.54, 53.71, 54.55, and 55.21 cm, respectively.  

   

Figure 4. Measurement of the Distance of the 7th Coin in Different Frames.  



This means that the coins have indeed a velocity parallel to the ruler. In other words, the 
velocity when a coin looses contact with the ruler is in reality not perpendicular to the ruler.  

We expect that the coins, once they stop moving, lie on a parabolic curve. The final 
position of the coins proves that we are right (see picture to the right in Figure 1).   

The first thing we do is to orientate the coordinate system such that the 7th coin moves in a 
straight vertical line. Figure 5 shows clearly the horizontal axis is not aligned to the ruler 
once it has been stopped.  

 

Figure 5. A More Convenient Choice of the Coordinate System.  

The diagram to the right shows the final positions of the 7 coins. The coins seem to lie on 
a parabola, but this can only be verified by regression analysis. The curve in the diagram 
shows the best quadratic fit calculated by the computer program:   

(-0.023976370735911*X-0.012360878869639)*X-1.999994733605468 

Written in a more conventional way with less precision as 

Y =  -0.02398 X2  - 0.01236 X – 1.99999 
or 
 

Y =  -0.02398 (X + 0.25777) 2 – 1.99840 

Translation of the origin of the coordinate system over the vector (-0.25777, 1.99840) 
would lead to a simple relationship of the form Y =  -c X2.  But it would have been mere 
luck if we had immediately chosen the coordinate system as such.   

 

Figure 6. Y-t graphs of Moving Coins and Quadratic Regression Curves  

 



The Y-t graphs of the coins as long as they move freely on the table also look like 
parabolas. See Figure 6 for the quadratic regression curves of the 4th and 7th coin. In each 
diagram is also displayed the velocity curve of the function fit. Its intersection with the 
horizontal axis shows at what time the particular coin stopped moving.  

 

Figure 7. v-t graphs of Freely Moving Coins and a Quadratic Fit of the Final Positions. 

To the left in Figure 7 we show the velocity curves of the coins in one diagram: it seems 
that the 1st, 3rd, 5th and 7th coin move such that their velocity curves during free motion are 
parallel equidistant lines, as theory could explain. The 4th and the 6th coin also move such 
that their velocity curves during free motion are parallel equidistant lines, but their 
deceleration occurs to be greater than those of the other coins. This is reflected in the 
diagram to the right on Figure 7, which shows a quadratic fit of the final positions of the 
coins: the 4th and 6th coin are indeed a little above the regression curve. Apparently friction 
was not of equal size for all coins or could it make a difference whether head or tail is 
down? With hindsight, did we pay attention to this in the experiment and would it have 
made a difference? Reality turns out to be more complex than can be foreseen and that 
theory predicts. It is a good experience for students to deal with such subtle issues in 
linking theory and practice.  

 

 


