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A Short Introduction to Lévy Processes

In this chapter we present some basic definitions and results about Lévy
processes. We do not aim at being complete in our presentation, but for a
smoother reading, we like to include the notions we constantly refer to in
this book. We can address the reader to the recent monographs, for example,
[8, 32, 115, 213] for a deeper study of Lévy processes. Our presentation follows
the survey given in [183, Chap. 1].

9.1 Basics on Lévy Processes

Let (Ω,F , P ) be a complete probability space.

Definition 9.1. A one-dimensional Lévy process is a stochastic process η =
η(t), t ≥ 0:

η(t) = η(t, ω), ω ∈ Ω,
with the following properties:

(i) η(0) = 0 P -a.s.,

(ii) η has independent increments, that is, for all t > 0 and h > 0, the
increment η(t+ h)− η(t) is independent of η(s) for all s ≤ t,

(iii) η has stationary increments, that is, for all h > 0 the increment
η(t+ h)− η(t) has the same probability law as η(h),

(iv) It is stochastically continuous, that is, for every t ≥ 0 and ε > 0 then
lims→t P{|η(t)− η(s)| > ε} = 0,

(v) η has càdlàg paths, that is, the trajectories are right-continuous with left
limits.
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A stochastic process η satisfying (i)–(iv) is called a Lévy process in law.
The jump of η at time t is defined by

Δη(t) := η(t)− η(t−).

Put R0 := R \ {0} and let B(R0) be the σ-algebra generated by the family of
all Borel subsets U ⊂ R, such that Ū ⊂ R0. If U ∈ B(R0) with Ū ⊂ R0 and
t > 0, we define

N(t, U) :=
∑

0≤s≤t
χU (Δη(s)), (9.6)

that is, the number of jumps of size Δη(s) ∈ U for any s in 0 ≤ s ≤ t. Since
the paths of η are càdlàg we can see that N(t, U) <∞ for all U ∈ B(R0) with
Ū ⊂ R0; see, e.g. [213]. Moreover, (9.6) defines in a natural way a Poisson
random measure N on B(0,∞)× B(R0) given by

(a, b]× U �−→ N(b, U)−N(a, U), 0 < a ≤ b, U ∈ B(R0),

and its standard extension. See e.g. [97], [79]. We call this random measure
the jump measure of η. Its differential form is denoted by N(dt, dz), t > 0,
z ∈ R0.

The Lévy measure ν of η is defined by

ν(U) := E
[
N(1, U)

]
, U ∈ B(R0). (9.7)

It is important to note that ν does not need to be a finite measure. It can be
possible that ∫

R0

min(1, |z|)ν(dz) =∞. (9.8)

This is the case when the trajectories of η would appear with many jumps
of small size, a situation that is of interest in financial modeling (see, e.g.,
[17, 48, 75, 216] and references therein).

On the contrary, the Lévy measure always satisfies
∫

R0

min(1, z2)ν(dz) <∞.

In fact, a measure ν on B(R0) can be a Lévy measure of some Lévy process
η if and only if the condition above holds true. This is due to the following
theorem.

Theorem 9.2. The Lévy–Khintchine formula.

(1) Let η be a Lévy process in law. Then

E
[
eiuη(t)

]
= eiΨ(u), u ∈ R (i =

√−1), (9.9)

with the characteristic exponent
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Ψ(u) := iαu− 1
2
σ2u2+

∫
|z|<1

(
eiuz−1− iuz)ν(dz) +

∫
|z|≥1

(
eiuz− 1

)
ν(dz),

(9.10)

where the parameters α ∈ R and σ2 ≥ 0 are constants and ν = ν(dz),
z ∈ R0, is a σ-finite measure on B(R0) satisfying

∫
R0

min(1, z2)ν(dz) <∞. (9.11)

It follows that ν is the Lévy measure of η.
(2) Conversely, given the constants α ∈ R and σ2 ≥ 0 and the σ-finite

measure ν on B(R0) such that (9.11) holds, then there exists a process η
(unique in law) such that (9.9) and (9.10) hold. The process η is a Lévy
process in law.

There always exists a càdlàg version of the above Lévy process in law (see, e.g.,
[213]), which is a Lévy process, cf. Definition 9.1. Using this càdlàg version,
we can give the representation (9.7) of the σ-finite measure ν.

We define the compensated jump measure Ñ , also called the compensated
Poisson random measure, by

Ñ(dt, dz) := N(dt, dz)− ν(dz)dt. (9.12)

For any t, let Ft be the σ-algebra generated by the random variables W (s)
and Ñ(ds, dz), z ∈ R0, s ≤ t, augmented for all the sets of P -zero probability.
Let us equip the given probability space (Ω,F , P ) with the corresponding
filtration

F = {Ft, t ≥ 0} .
A stochastic process θ = θ(t, z), t ≥ 0, z ∈ R0, is called F-adapted if for

all t ≥ 0 and for all z ∈ R0, the random variable θ(t, z) = θ(t, z, ω), ω ∈ Ω, is
Ft-measurable. For any F-adapted process θ such that

E
[ ∫ T

0

∫
R0

θ2(t, z)ν(dz)dt
]
<∞ for some T > 0, (9.13)

we can see that the process

Mn(t) :=
∫ t

0

∫
|z|≥ 1

n

θ(s, z)Ñ(ds, dz), 0 ≤ t ≤ T,

is a martingale in L2(P ) and its limit

M(t) := lim
n→∞Mn(t) :=

∫ t

0

∫
R0

θ(s, z)Ñ(ds, dz), 0 ≤ t ≤ T, (9.14)

in L2(P ) is also a martingale. Moreover, we have the Itô isometry
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E
[( ∫ T

0

∫
R0

θ(t, z)Ñ(dt, dz)
)2]

= E
[ ∫ T

0

∫
R0

θ2(t, z)ν(dz)dt
]
. (9.15)

A Wiener process is a special case of a Lévy process. In fact, we have the
following general representation theorem (see, e.g., [119, 213].

Theorem 9.3. The Lévy–Itô decomposition theorem. Let η be a Lévy
process. Then η = η(t), t ≥ 0, admits the following integral representation

η(t) = a1t+ σW (t) +
∫ t

0

∫
|z|<1

zÑ(ds, dz) +
∫ t

0

∫
|z|≥1

zN(ds, dz) (9.16)

for some constants a1, σ ∈ R. Here W = W (t), t ≥ 0 (W (0) = 0), is a
standard Wiener process.

In particular, we can see that if the Lévy process has continuous trajectories,
then it is of the form

η(t) = a1t+ σW (t), t ≥ 0.

It can be proved that if

E
[|η(t)|p] <∞ for some p ≥ 1,

then ∫
|z|≥1

|z|pν(dz) <∞,

see [213]. In particular, if we assume that

E
[
η2(t)

]
<∞, t ≥ 0, (9.17)

then we have ∫
|z|≥1

|z|2ν(dz) <∞

and the representation (9.16) appears as

η(t) = at+ σW (t) +
∫ t

0

∫
R0

zÑ(ds, dz), (9.18)

where a = a1 +
∫
|z|≥1

zν(dz). A Lévy process of the type above with σ = 0 is
called a pure jump Lévy process.

We assume from now on that (9.17) holds and hence that η has the rep-
resentation (9.18).

Motivated by the representation (9.18), it is natural to consider processes
X = X(t), t ≥ 0, admitting a stochastic integral representation in the form

X(t) = x+
∫ t

0

α(s)ds+
∫ t

0

β(s)dW (s) +
∫ t

0

∫
R0

γ(s, z)Ñ(ds, dz), (9.19)
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where α(t), β(t), and γ(t, z) are predictable processes such that, for all t > 0,
z ∈ R0,∫ t

0

[|α(s)|+ β2(s) +
∫

R0

γ2(s, z)ν(dz)
]
ds <∞, P -a.s. (9.20)

This condition implies that the stochastic integrals are well-defined and local
martingales. If we strengthened the condition to

E
[ ∫ t

0

[|α(s)|+ β2(s) +
∫

R0

γ2(s, z)ν(dz)
]
ds
]
<∞,

for all t > 0, then the corresponding stochastic integrals are martingales.
We call such a process an Itô–Lévy process. In analogy with the Brownian

motion case, we use the short-hand differential notation

dX(t) = α(t)dt+ β(t)dW (t) +
∫

R0

γ(t, z)Ñ(dt, dz); X(0) = x (9.21)

for the processes of type (9.19).
Recall that a predictable process is a stochastic process measurable with

respect to the σ-algebra generated by

A× (s, u]×B, A ∈ Fs, 0 ≤ s < u, B ∈ B(R0).

Moreover, any measurable F-adapted and left-continuous (with respect to t)
process is predictable.

9.2 The Itô Formula

The following result is fundamental in the stochastic calculus of Lévy pro-
cesses.

Theorem 9.4. The one-dimensional Itô formula. Let X = X(t), t ≥ 0,
be the Itô–Lévy process given by (9.19) and let f : (0,∞) × R −→ R be a
function in C1,2((0,∞)× R) and define

Y (t) := f(t,X(t)), t ≥ 0.

Then the process Y = Y (t), t ≥ 0, is also an Itô–Lévy process and its differ-
ential form is given by

dY (t) =
∂f

∂t
(t,X(t))dt+

∂f

∂x
(t,X(t))α(t)dt+

∂f

∂x
(t,X(t))β(t)dW (t)

+
1

2

∂2f

∂x2
(t,X(t))β2(t)dt+

∫
R0

[
f(t,X(t) + γ(t, z)) − f(t,X(t))

− ∂f

∂x
(t,X(t))γ(t, z)

]
ν(dz)dt+

∫
R0

[
f(t,X(t−) + γ(t, z)) − f(t,X(t−))

]
Ñ(dt, dz).

(9.22)
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In the multidimensional case we are given a J-dimensional Brownian mo-
tion W (t) = (W1(t), ...,WJ (t))T , t ≥ 0, and K independent compensated
Poisson random measures Ñ(dt, dz) = (Ñ1(dt, dz1), ..., ÑK(dt, dzK))T , t ≥ 0,
z = (z1, ..., zK) ∈ (R0)K , and n Itô–Lévy processes of the form

dX(t) = α(t)dt+ β(t)dW (t) +
∫

(R0)K

γ(t, z)Ñ(dt, dz), t ≥ 0,

that is,

dXi(t)=αi(t)dt+
J∑
j=1

βij(t)dWj(t)+
K∑
k=1

∫
R0

γik(t, zk)Ñk(dt, dzk), i=1, ..., n.

(9.23)

With this notation we have the following result.

Theorem 9.5. The multidimensional Itô formula. Let X = X(t), t≥0,
be an n-dimensional Itô–Lévy process of the form (9.23). Let f : (0,∞) ×
R
n −→ R be a function in C1,2((0,∞)× R

n) and define

Y (t) := f(t,X(t)), t ≥ 0.

Then the process Y = Y (t), t ≥ 0, is a one-dimensional Itô–Lévy process and
its differential form is given by

dY (t) =
∂f

∂t
(t, X(t))dt +

n∑
i=1

∂f

∂xi
(t, X(t))αi(t)dt

+

n∑
i=1

J∑
j=1

∂f

∂xi
(t, X(t))βij(t)dWj (t) +

1

2

n∑
i=1

J∑
j=1

∂2f

∂xi∂xj
(t, X(t))(ββT )ij(t)dt

+

K∑
k=1

∫
R0

[
f(t, X(t) + γ(k)(t, z)) − f(t, X(t)) −

n∑
i=1

∂f

∂xi
f(t, X(t))γik(t, z)

]
νk(dzk)dt

+

K∑
k=1

∫
R0

[
f(t, X(t−) + γ(k)(t, z)) − f(t, X(t−))

]
Ñk(dt, dzk),

(9.24)

where γ(k) is the column number k of the n×K matrix γ =
[
γik
]
.

Example 9.6. The generalized geometric Lévy process. Consider the
one-dimensional stochastic differential equation for the càdlàg process Z =
Z(t), t ≥ 0:
{
dZ(t)=Z(t−)

[
α(t)dt+β(t)dW (t)+

∫
R0
γ(t, z)Ñ(dt, dz)

]
, t>0,

Z(0)=z0 > 0.
(9.25)

Here α(t), β(t), and γ(t, z), t ≥ 0, z ∈ R0, are given predictable processes
with γ(t, z) > −1, for almost all (t, z) ∈ [0,∞)× R0 and for all 0 < t <∞
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∫ t

0

[|α(s)|+ β2(s) +
∫

R0

γ2(s, z)ν(dz)
]
ds <∞ P -a.s.,

cf. (9.20). We claim that the solution of this equation is

Z(t) = z0e
X(t), t ≥ 0, (9.26)

where

X(t) =
∫ t

0

[
α(s)− 1

2
β2(s) +

∫
R0

[
log(1 + γ(s, z))− γ(s, z)]ν(dz)]ds

+
∫ t

0

β(s)dW (s) +
∫ t

0

∫
R0

log(1 + γ(s, z))Ñ(ds, dz).

(9.27)

To see this we apply the one-dimensional Itô formula to Y (t) = f(t,X(t)),
t ≥ 0, with f(t, x) = z0e

x and X(t), as given in (9.27). Then we obtain

dY (t) = z0eX(t)
[(

α(t) − 1

2
β2(t) +

∫
R0

[
log(1 + γ(t, z)) − γ(t, z)

]
ν(dz)

)
dt + β(t)dW (t)

]

+ z0eX(t) 1

2
β2(t)dt+

∫
R0

z0

[
eX(t)+log(1+γ(t,z))−eX(t)−eX(t) log(1 + γ(t, z))

]
ν(dz)dt

+

∫
R0

z0

[
eX(t−)+log(1+γ(t,z)) − eX(t−)

]
Ñ(dt, dz)

= Y (t−)
[
α(t)dt + β(t)dW (t) +

∫
R0

γ(t, z)Ñ(dt, dz)
]

as required.

Example 9.7. The quadratic covariation process. Let

dXi(t) =
∫

R0

γi1(t, z)Ñ1(dt, dz) +
∫

R0

γi2(t, z)Ñ2(dt, dz), i = 1, 2 (9.28)

be two pure jump Lévy processes (see (9.23) with βij = 0. Define

Y (t) = X1(t)X2(t), t ≥ 0.

Then by the two-dimensional Itô formula we have

dY (t) =
∑

k=1,2

∫
R0

[
(X1(t) + γ1k(t, zk))(X2(t) + γ2k(t, zk)) − X1(t)X2(t)

− γ1k(t, zk)X2(t) − γ2k(t, zk)X1(t)
]
νk(dzk)dt

+
∑

k=1,2

∫
R0

[
(X1(t−) + γ1k(t, zk))(X2(t−) + γ2k(t, zk)) − X1(t−)X2(t−)

]
Ñk(dt, dzk)

=
∑

k=1,2

∫
R0

γ1k(t, zk)γ2k(t, zk)νk(dzk)dt

+
∑

k=1,2

∫
R0

[
γ1k(t, zk)X2(t−) + γ2k(t, zk)X1(t−) + γ1k(t, zk)γ2k(t, zk)

]
Ñk(dt, dzk)

= X1(t−)dX2(t) + X2(t
−)dX1(t) +

∑
k=1,2

∫
R0

γ1k(t, zk)γ2k(t, zk)Nk(dt, dzk).
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We define the quadratic covariation process [X1, X2](t), t ≥ 0, of the processes
X1 and X2 as

d[X1, X2](t) := d(X1(t)X2(t))−X1(t−)dX2(t)−X2(t−)dX1(t). (9.29)

Hence, for the processes X1, X2 given in (9.28), we have that

d[X1, X2](t) =
∑
k=1,2

∫
R0

γ1k(t, zk)γ2k(t, zk)Nk(dt, dzk). (9.30)

In particular, note that

E
[
X1(t)X2(t)

]
= X1(0)X2(0) +

∑
k=1,2

∫ t

0

∫
R0

γ1k(s, zk)γ2k(s, zk)νk(dzk)ds.

(9.31)

9.3 The Itô Representation Theorem for Pure Jump
Lévy Processes

We now proceed to prove the Itô representation theorem for Lévy processes.
Since we already know the representation theorem in the continuous case, that
is, Ñ ≡ 0 (see [179] and Problem 1.4), we concentrate on the pure jump case
in this section. We assume that

η(t) =
∫ t

0

∫
R0

zÑ(ds, dz), t ≥ 0, (9.32)

that is, a = σ = 0 in (9.18).
The following representation theorem was first proved by Itô [121]. Here

we follow the presentation given in [154]. The proof is based on two lemmata.
Let us consider the filtration F of the σ-algebras Ft generated by η(s),

s ≤ t (t ≥ 0).

Lemma 9.8. The set of all random variables of the form{
f(η(t1), ..., η(tn)) : ti ∈ [0, T ], i = 1, ..., n; f ∈ C∞

0 (Rn), n = 1, 2, ...
}

is dense in the subspace L2(FT , P ) ⊂ L2(P ) of FT -measurable square inte-
grable random variables.

Proof The proof follows the same argument as in Lemma 4.3.1 in [179]. See
also, for example, [154]. ��
Lemma 9.9. The linear span of all the so-called Wick/Doléans–Dade expo-
nentials

exp
{∫ T

0

∫
R0
h(t)zχ[0,R](z)Ñ(dt, dz)− ∫ T

0

∫
R0

[
eh(t)zχ[0,R](z)

−1− h(t)zχ[0,R](z)
]
ν(dz)dt

}
, h ∈ C(0, T ), R > 0,

is dense in L2(FT , P ).
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Proof The proof follows the same argument as in Lemma 4.3.2 in [179]. See
also, for example, [154]. ��

We are ready now for the first main result of this section. Note that the
representation is in terms of a stochastic integral with respect to Ñ and not
with respect to η.

Theorem 9.10. The Itô representation theorem. Let F ∈ L2(P ) be FT -
measurable. Then there exists a unique predictable process Ψ = Ψ(t, z), t ≥
0, z ∈ R0, such that

E
[ ∫ T

0

∫
R0

Ψ2(t, z)ν(dz)dt
]
<∞

for which we have

F = E[F ] +
∫ T

0

∫
R0

Ψ(t, z)Ñ(dt, dz). (9.33)

Proof First assume that F = Y (T ), where

Y (t) = exp
{∫ t

0

∫
R0
h(s)zχ[0,R](z)Ñ(ds, dz)− ∫ t

0

∫
R0

[
eh(s)zχ[0,R](z)

−1− h(s)zχ[0,R](z)
]
ν(dz)ds

}
, t ∈ [0, T ],

for some h ∈ C(0,∞), that is, F is a Wick/Doléans–Dade exponential. Then
by the Itô formula (cf. Theorem 9.4 and see Problem 9.2)

dY (t) = Y (t−)
∫

R0

[
eh(t)zχ[0,R](z) − 1

]
Ñ(dt, dz).

Therefore,

F =Y (T ) = Y (0)+
∫ T

0

1dY (t)=1+
∫ T

0

∫
R0

Y (t−)
[
eh(t)zχ[0,R](z)−1

]
Ñ(dt, dz).

So for this F the representation (9.33) holds with

Ψ(t, z) = Y (t−)
[
eh(t)zχ[0,R](z) − 1

]
.

Note that

E
[
Y 2(T )

]
= 1 + E

[ ∫ T

0

∫
R0

Y 2(t−)
(
eh(t)zχ[0,R](z) − 1

)2
ν(dz)dt

]
.

If F ∈ L2(FT , P ) (i.e., an FT -measurable random variable in L2(P )) is arbi-
trary, we can choose a sequence Fn of linear combinations of Wick/Doléan–
Dade exponentials such that Fn −→ F in L2(P ). See Lemma 9.9. Then we
have
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Fn = E[Fn] +
∫ T

0

∫
R0

Ψn(t, z)Ñ(dt, dz),

for all n = 1, 2, ..., where

E[F 2
n ] = (E[Fn])2 + E

[ ∫ T

0

∫
R0

Ψ2
n(t, z)ν(dz)dt

]
<∞.

Then by the Itô isometry we have the expression

E
[
(Fm −Fn)2

]
=
(
E[Fm−Fn]

)2 +E
[ ∫ T

0

∫
R0

(
Ψm(t, z)− Ψn(t, z)

)2
ν(dz)dt

]
,

which vanishes form,n→∞. Therefore, Ψn, n = 1, 2, ..., is a Cauchy sequence
in L2(P ×λ× ν); hence, it converges to a limit Ψ ∈ L2(P ×λ× ν). This yields
(9.33), in fact

F = lim
n→∞Fn = limn→∞

{
EFn +

∫ T
0

∫
R0
Ψn(t, z)Ñ(dt, dz)

}

= EF +
∫ T
0

∫
R0
Ψ(t, z)Ñ(dt, dz).

The uniqueness is given by the convergence in L2-spaces and the Itô isometry.��
Example 9.11. Choose F = η2(T ). To find the representation (9.33) for F we
define

Y (t) = η2(t) =
( ∫ t

0

∫
R0

zÑ(ds, dz)
)2

, t ∈ [0, T ].

By the Itô formula

dη2(t) =
∫

R0

[
(η(t) + z)2 − η2(t)− 2η(t)z

]
ν(dz)dt

+
∫

R0

[
(η(t−) + z)2 − η2(t−)

]
Ñ(dt, dz)

=
∫

R0

z2ν(dz)dt+
∫

R0

[
2η(t−) + z

]
zÑ(dt, dz)

(see Problem 9.2). Hence we get

η2(T ) = T

∫
R0

z2ν(dz) +
∫ T

0

∫
R0

[
2η(t−) + z

]
zÑ(dt, dz). (9.34)

Remark 9.12. Note that it is not possible to write

η2(T ) = E
[
η2(T )

]
+
∫ T

0

ϕ(t)dη(t) (9.35)
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for some predictable process ϕ. In fact, the representation (9.35) is equiva-
lent to

η2(T ) = E
[
η2(T )

]
+
∫ T

0

∫
R0

ϕ(t)zÑ(dt, dz),

which contradicts (9.34), in view of the uniqueness of the Itô stochastic integral
representation.

9.4 Application to Finance: Replicability

The fact that the representation (9.35) is not possible has a special interpre-
tation in finance: it means that the claim F = η2(T ) is not replicable in a
certain financial market driven by the Lévy process η. We now make this more
precise.

Consider a securities market with two kinds of investment possibilities:

• A risk free asset with a price per unit fixed as

S0(t) = 1, t ≥ 0, (9.36)

• n risky assets with prices Si(t), t ≥ 0 (i = 1, ..., n), given by

dSi(t) = Si(t−)
[
σi(t)dW (t) +

∫
R0

γi(t, z)Ñ(dt, dz)
]
, (9.37)

where W (t) =
(
W1(t), ...,Wn(t)

)T , t ≥ 0, is an n-dimensional Wiener

process and Ñ(dt, dz) =
(
Ñ1(dt, dz), ..., Ñn(dt, dz)

)T , t ≥ 0, z ∈ R0,
corresponds to n independent compensated Poisson random measures.
The parameters σi(t) =

(
σi1(t), ..., σin(t)

)
, t ≥ 0 (i = 1, ..., n), and

γi(t, z) =
(
γi1(t, z), ..., γin(t, z)

)
, t ≥ 0, z ∈ R0 (i = 1, ..., n), are pre-

dictable processes that satisfy

E
[ n∑
i,j=1

∫ T

0

[
σ2
ij(t) +

∫
R0

γ2
ij(t, z)ν(dz)

]
dt
]
<∞. (9.38)

A random variable F ∈ L2(FT , P ) represents a financial claim (or T -
claim). The claim F is replicable if there exists a predictable process ϕ(t) =(
ϕ1(t), ..., ϕn(t)

)T , t ≥ 0, such that

n∑
i=1

∫ T

0

ϕ2
i (t)S

2
i (t

−)
[ n∑
j=1

σ2
ij(t) +

∫
R0

γ2
ij(t, z)ν(dz)

]
dt <∞ (9.39)

and

F = E[F ] +
n∑
i=1

∫ T

0

ϕi(t)dSi(t). (9.40)
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If this is the case, then ϕ is a replicating portfolio for the claim F . See Sect. 4.3.
Let A denote the set of all predictable processes satisfying (9.39). These

constitute the set of admissible portfolios in this context.
Let us now consider the general Lévy process η(t), t ≥ 0:

dη(t) = dW (t) +
∫

R0

zÑ(dt, dz).

Theorem 9.13. Let F ∈ L2(FT , P ) be a claim on the market (9.36)–(9.37),
with stochastic integral representation of the form

F = E[F ] +
∫ T

0

α(t)dW (t) +
∫ T

0

∫
R0

β(t, z)Ñ(dt, dz). (9.41)

Then F is replicable if and only if the integrands α = (α1, ..., αn) and β =
(β1, ..., βn) have the form

αj(t) =
n∑
i=1

ϕi(t)Si(t)σij(t), t ≥ 0, (9.42)

βj(t, z) =
n∑
i=1

ϕi(t)Si(t
−)γij(t, z), t ≥ 0, z ∈ R0 (j = 1, ..., n), (9.43)

for some process ϕ ∈ A. In this case ϕ is a replicating portfolio for F .

Proof First assume that F is replicable with replicating portfolio ϕ. Then
clearly

F − E[F ] =
n∑
i=1

∫ T

0

ϕi(t)dSi(t)

=
∫ T

0

n∑
i=1

ϕi(t)Si(t)σi(t)dW (t)

+
∫ T

0

∫
R0

n∑
i=1

ϕi(t)Si(t
−)γi(t, z)Ñ(dt, dz).

In view of the uniqueness, comparing this with the representation (9.41), we
obtain the results (9.42)–(9.43). The argument works both ways, so that if
(9.42)–(9.43) hold, then the above computation lead to representation (9.40)
and the claim F is replicable. ��
We refer to [25, 29] for further arguments on the aforementioned result.

Remark 9.14. Note that any F ∈ L2(FT , P ) admits representation in form
(9.41) (see, e.g., [71, 121]).

Example 9.15. Returning to Example 9.11 we can see that in a securities
market model of the type:
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• A risk free asset with price per unit S0(t) = 1, t ≥ 0,
• One risky asset with price per unit S1(t), t ≥ 0, given by

dS1(t) = Si(t−)
∫

R0

zÑ(dt, dz), (9.44)

the claim F = η2(T ) is not replicable since its representation is given by
(9.34):

η2(T ) = T

∫
R0

z2ν(dz) +
∫ T

0

∫
R0

(2η(t−) + z)zÑ(dt, dz),

with β(t, z) = (2η(t−) + z)z, t ≥ 0, z ∈ R0, which is not of the form (9.43).

Financial markets in which all claims are replicable are called complete.
Otherwise the market is called incomplete. The market model presented here
above is an example of an incomplete market.

9.5 Exercises

Problem 9.1. (*) Let X(t), t ≥ 0, be a one-dimensional Itô–Lévy process:

dX(t) = α(t)dt+ β(t)dW (t) +
∫

R0

γ(t, z)Ñ(dt, dz).

Use the Itô formula to express dY (t) = df(X(t) in the standard form:

dY (t) = a(t)dt+ b(t)dW (t) +
∫

R0

c(t, z)Ñ(dt, dz)

in the following cases:

(a) Y (t) = X2(t), t ≥ 0,
(b)Y (t) = exp{X(t)}, t ≥ 0,
(c) Y (t) = cosX(t), t ≥ 0.

Problem 9.2. (*) Let h ∈ L2([0, T ]) be a càglàd real function. Define

X(t) :=
∫ t

0

∫
R0

h(s)zÑ(ds, dz)−
∫ t

0

∫
R0

(
eh(s)z − 1− h(s)z)ν(dz)ds

and put
Y (t) = exp{X(t)}, t ∈ [0, T ].

Show that
dY (t) = Y (t−)

∫
R0

(
eh(t)z − 1

)
Ñ(dt, dz).

In particular, Y (t), t ∈ [0, T ], is a local martingale.
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Problem 9.3. Use the Itô formula to solve the following stochastic differential
equations.

(a) The Lévy–Ornstein–Uhlenbeck process:

dY (t) = ρ(t)Y (t)dt+
∫

R0

γ(t, z)Ñ(dt, dz), t ∈ [0, T ],

where ρ ∈ L1([0, T ]) and γ is a predictable process satisfying (9.20).
(b)A multiplicative noise dynamics:

dY (t) = α(t)dt+ Y (t−)
∫

R0

γ(t, z)Ñ(dt, dz), t ∈ [0, T ],

where α, γ are predictable processes satisfying (9.20).

Problem 9.4. (a) Integration by parts. Let

dXi(t) = αi(t)dt+ βi(t)dW (t) +
∫

R0

γi(t, z)Ñ(dt, dz) (i = 1, 2),

be two Itô–Lévy processes. Use the two-dimensional Itô formula to show
that

d
(
X1(t)X2(t)

)
= X1(t−)dX2(t) +X2(t−)dX1(t) + β1(t)β2(t)dt

+
∫

R0
γ1(t, z)γ2(t, z)N(dt, dz).

(b)The Itô–Lévy isometry. In the aforementioned processes, choose αi =
Xi(0) = 0 for i = 1, 2 and assume that E[X2

i (t)] < ∞ for i = 1, 2. Show
that

E
[
X1(t)X2(t)

]
= E

[ ∫ T

0

(
β1(t)β2(t) +

∫
R0

γ1(t, z)γ2(t, z)ν(dz)
)
dt
]
.

Problem 9.5. The Girsanov theorem. Let u = u(t), t ∈ [0, T ], and
θ(t, z) ≤ 1, t ∈ [0, T ], z ∈ R0, be predictable processes such that the pro-
cess

Z(t) := exp
{
−
∫ t

0

u(s)dW (s)− 1
2

∫ t

0

u2(s)ds+
∫ t

0

∫
R0

log(1−θ(s, z))Ñ(ds, dz)

+
∫ t ∫

R0

(log(1 − θ(s, z)) + θ(s, z))ν(dz)ds
)
, t ∈ [0, T ],

exists and satisfies E[Z(T )] = 1.

(a) Show that

dZ(t) = Z(t−)
[− u(t)dW (t)−

∫
R0

θ(t, z)Ñ(dt, dz)
]
.

Thus, Z is a local martingale.
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(b) Let

dX(t) = α(t)dt+ β(t)dW (t) +
∫

R0

γ(t, z)Ñ(dt, dz), t ∈ [0, T ],

be an Itô–Lévy process. Find d
(
Z(t)X(t)

)
. In particular, note that if u

and θ are chosen such that

β(t)u(t) +
∫

R0

γ(t, z)θ(t, z)ν(dz) = α(t),

then Z(t)X(t), t ∈ [0, T ], is a local martingale.
(c) Use the Bayes rule to show that if we define the probability measure Q on

(Ω,FT ) by
dQ = Z(T )dP,

then the processX is a local martingale with respect to Q. This is a version
of the Girsanov theorem for Lévy processes.

Problem 9.6. (*) Let

η(t) =
∫ t

0

∫
R0

zÑ(dz, dz), t ∈ [0, T ].

Find the integrand ψ for the stochastic integral representation

F = E[F ] +
∫ T

0

∫
R0

ψ(t, z)Ñ(dt, dz)

of the following random variables:

(a) F =
∫ T
0 η(t)dt

(b)F = η3(T )
(c) F = exp{η(T )}
(d)F = cos η(T ) [Hint. If x ∈ R and i =

√−1, then eix = cosx+ i sinx].

Moreover, in each case above, decide if F is replicable in the following
Bachelier–Lévy type market model on the time interval [0, T ]:

risk free asset: dS0(t) = 0, S0(0) = 1
risky asset: dS1(t) = dη(t), S1(0) ∈ R.




