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The Skorohod Integral

The Wiener–Itô chaos expansion is a convenient starting point for the intro-
duction of several important stochastic concepts. In this chapter we focus on
the Skorohod integral. This stochastic integral, introduced for the first time
by A. Skorohod in 1975 [217], may be regarded as an extension of the Itô in-
tegral to integrands that are not necessarily F-adapted, see also, for example,
[30, 31]. The Skorohod integral is also connected to the Malliavin derivative,
which is introduced with full detail in Chap. 3.

As for other extensions of the Itô integral closely related to the Skorohod
integral, we can mention the noncausal integral (also called Ogawa integral)
and refer to [175, 176]; see also [86].

2.1 The Skorohod Integral

Let u = u(t, ω), t ∈ [0, T ], ω ∈ Ω, be a measurable stochastic process such
that, for all t ∈ [0, T ], u(t) is a FT -measurable random variable and

E[u2(t)] <∞.

Then, for each t ∈ [0, T ], we can apply the Wiener–Itô chaos expansion to the
random variable u(t) = u(t, ω), ω ∈ Ω, and thus there exist the symmetric
functions fn,t = fn,t(t1, . . . , tn), (t1, . . . , tn) ∈ [0, T ]n, in L̃2([0, T ]n), n =
1, 2, ..., such that

u(t) =
∞∑
n=0

In(fn,t).

Note that the functions fn,t, n = 1, 2, ..., depend on the parameter t ∈ [0, T ],
and so we can write

fn(t1, . . . , tn, tn+1) = fn(t1, . . . , tn, t) := fn,t(t1, . . . , tn)
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to Finance,
c© Springer-Verlag Berlin Heidelberg 2009



20 2 The Skorohod Integral

and we may regard fn as a function of n + 1 variables. Since this function
is symmetric with respect to its first n variables, its symmetrization f̃n is
given by

f̃n(t1, . . . , tn+1)=
1

n+ 1

[
fn(t1, . . . , tn+1)

+fn(t2, . . . , tn+1, t1)+· · ·+fn(t1, . . . , tn−1, tn+1, tn)
]
, (2.1)

see (1.5).

Example 2.1. Let us consider

f2,t(t1, t2) = f2(t1, t2, t) =
1
2
[
χ{t1<t<t2} + χ{t2<t<t1}

]
.

Then the symmetrization f̃2 of f2 is given by

f̃2(t1, t2, t3) =
1
3

[1
2
(χ{t1<t3<t2} + χ{t2<t3<t1})

+
1
2
(χ{t1<t2<t3} + χ{t3<t2<t1}) +

1
2
(χ{t3<t1<t2} + χ{t2<t1<t3})

]
,

which gives

f̃2(t1, t2, t3) =
1
6
. (2.2)

Definition 2.2. Let u(t), t ∈ [0, T ], be a measurable stochastic process
such that for all t ∈ [0, T ] the random variable u(t) is FT -measurable and

E[
T∫
0

u2(t)dt] <∞. Let its Wiener–Itô chaos expansion be

u(t) =
∞∑
n=0

In(fn,t) =
∞∑
n=0

In(fn(·, t)).

Then we define the Skorohod integral of u by

δ(u) :=

T∫

0

u(t)δW (t) :=
∞∑
n=0

In+1(f̃n) (2.3)

when convergent in L2(P ). Here f̃n, n = 1, 2, ..., are the symmetric functions
(2.1) derived from fn(·, t), n = 1, 2, .... We say that u is Skorohod integrable,
and we write u ∈ Dom(δ) if the series in (2.3) converges in L2(P ) (see also
Problem 2.1).

Remark 2.3. By (1.17) a stochastic process u belongs to Dom(δ) if and only if

E[δ(u)2] =
∞∑
n=0

(n+ 1)!‖f̃n‖2L2([0,T ]n+1) <∞ . (2.4)
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Example 2.4. Let us verify that

T∫

0

W (T )δW (t) = W 2(T )− T.

The Wiener–Itô chaos expansion of the integrand u(t) = W (T ) =
T∫
0

1 dW (s),

t ∈ [0, T ], is given by f0,t = 0, f1,t = 1, and fn,t = 0 for n ≥ 2. Hence

δ(u) = I2(f̃1) = I2(1) = 2

T∫

0

t2∫

0

1 dW (t1)dW (t2) = W 2(T )− T.

Note that, even if the integrand does not depend on t, we have

T∫

0

W (T )δW (t) 	= W (T )

T∫

0

δW (t).

This last remark illustrates that, for u ∈ Dom(δ), even if G is an FT -
measurable random variable such that Gu ∈ Dom(δ), we have in general that

T∫

0

Gu(t)δW (t) 	= G

T∫

0

u(t)δW (t). (2.5)

Example 2.5. What is
T∫
0

W (t)
[
W (T )−W (t)

]
δW (t) ? Note that

T∫

0

t2∫

0

χ{t1<t<t2}(t1, t2)dW (t1)dW (t2) =

T∫

0

W (t)χ{t<t2}(t2)dW (t2)

= W (t)
[
W (T )−W (t)

]
.

Hence
u(t) = W (t)

[
W (T )−W (t)

]
= I2(f2(·, t)),

where
f2,t(t1, t2) = f2(t1, t2, t) =

1
2

(
χ{t1<t<t2} + χ{t2<t<t1}

)
.

Hence by Example 2.1 we have

δ(u) = I3(f̃2) = I3(
1
6
) =

1
6
I3(1) =

1
6

[
W 3(T )− 3T W (T )

]
.
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2.2 Some Basic Properties of the Skorohod Integral

The reader accustomed with classical analysis and Itô stochastic integration
may find (2.3) to be just a formal definition for an operator, which can hardly
be matched with the general meaning of integral. The purpose of the two
following sections is to motivate Definition 2.2, showing that the operator (2.3)
is a meaningful stochastic integral having strong links with the Itô stochastic
integral itself. In the forthcoming Chaps. 3 and 5, more will be said about the
properties of the Skorohod integral.

First of all we recognize that, just like any integral in classical analysis,
the Skorohod integral (2.3) is a linear operator:

L2(P × λ) ⊇ Dom(δ) 
 u =⇒ δ(u) ∈ L2(P ).

See Problem 2.2.
Another typical property of integrals is the additivity on adjacent intervals

of integration. This also holds for the Skorohod integral.

Proposition 2.6. For any fixed t ∈ [0, T ] and u ∈ Dom(δ) we have χ(0,t]u ∈
Dom(δ) and χ(t,T ]u ∈ Dom(δ) and

∫ t

0

u(s)δW (s)=

∫ T

0

χ(0,t](s)u(s)δW (s) and

∫ T

t

u(s)δW (s)=

∫ T

0

χ(t,T ](s)u(s)δW (s),

with ∫ T

0

u(s)δW (s) =
∫ t

0

u(s)δW (s) +
∫ T

t

u(s)δW (s).

Proof The proof, based on the Wiener-Itô chaos expansions and (2.4), is left
as an exercise. See Problem 2.3. ��
Proposition 2.7. For any u ∈ Dom(δ) the Skorohod integral has zero expec-
tation, that is,

E
[
δ(u)

]
= 0. (2.6)

Proof This is a trivial consequence of the fact that Itô integrals and thus also
iterated Itô integrals have zero expectation. ��

Here we address all those who associate the name of “integral” to the
operators resulting from the classical construction, which defines the integral
as some limit of certain finite sums derived from simple functions (e.g., Rieman
integral, Lebesgue integral, and Itô integral). In some sense also the Skorohod
integral can be regarded as such (see, e.g., [169]). A full characterization in
this sense can be given in the white noise framework, see Theorem 5.20 and
Corollary 5.21.
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2.3 The Skorohod Integral as an Extension
of the Itô Integral

As mentioned earlier, the Skorohod integral is an extension of the Itô integral.
More precisely, if the integrand u is F-adapted, then the two integrals coincide
as elements of L2(P ). To prove this, we need a characterization of adaptedness
with respect to F in terms of the functions fn(·, t), n = 1, 2, ..., in the chaos
expansion.

Lemma 2.8. Let u = u(t), t ∈ [0, T ], be a measurable stochastic process
such that, for all t ∈ [0, T ], the random variable u(t) is FT -measurable and
E[u2(t)] <∞. Let

u(t) =
∞∑
n=0

In(fn(·, t))

be its Wiener-Itô chaos expansion. Then u is F-adapted if and only if

fn(t1, . . . , tn, t) = 0 if t < max
1≤i≤n

ti . (2.7)

The above equality is meant a.e. in [0, T ]n with respect to Lebesgue measure.

Proof First note that for any g ∈ L̃2([0, T ]n) we have

E[In(g)|Ft] = n!E[Jn(g)|Ft]

= n!E
[ T∫

0

tn∫

0

· · ·
t2∫

0

g(t1, . . . , tn)dW (t1) · · · dW (tn)
∣∣Ft
]

= n!

t∫

0

tn∫

0

· · ·
t2∫

0

g(t1, . . . , tn)dW (t1) · · · dW (tn)

= n!Jn(g(t1, . . . , tn) · χ{max ti<t})

= In(g(t1, . . . , tn) · χ{max ti<t}).

(2.8)

Now, u is F-adapted if and only if E[u(t)|Ft] = u(t). Namely, if and only if∑∞
n=0 In(fn(·, t)) =

∑∞
n=0E[In(fn(·, t))|Ft] =

∑∞
n=0 In(fn(·, t) · χ{max ti<t}).

And thus if and only if fn(t1, . . . , tn, t) · χ{max ti<t} = fn(t1, . . . , tn, t) a.e. in
[0, T ]n with respect to Lebesgue measure. By uniqueness of the sequence of
deterministic functions in the Wiener-Itô chaos expansion and since the last
identity is equivalent to (2.7), the lemma is proved. ��
Theorem 2.9. Let u = u(t), t ∈ [0, T ], be a measurable F-adapted stochastic
process such that

E
[ T∫

0

u2(t)dt
]
<∞.
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Then u ∈ Dom(δ) and its Skorohod integral coincides with the Itô integral

T∫

0

u(t)δW (t) =

T∫

0

u(t)dW (t). (2.9)

Proof Let u(t) =
∑∞
n=0 In(fn(·, t)) be the chaos expansion of u(t). First note

that by (2.1) and Lemma 2.8 we have

f̃n(t1, . . . , tn, tn+1) =
1

n+ 1
fn(t1, · · · , tj−1, tj+1, . . . , tn+1,tj),

where
j := argmax1≤i≤n+1 ti.

Hence

‖f̃n‖2L2([0,T ]n+1) = (n+ 1)!
∫

Sn+1

f̃2
n(t1, . . . , tn+1)dt1 · · · dtn+1

=
(n+ 1)!
(n+ 1)2

∫

Sn+1

f2
n(t1, . . . , tn+1)dt1 · · ·dtn+1

=
n!

n+ 1

T∫

0

t∫

0

tn∫

0

· · ·
t2∫

0

f2
n(t1, . . . , tn, t)dt1 · · · dtndt

=
n!

n+ 1

T∫

0

T∫

0

tn∫

0

· · ·
t2∫

0

f2
n(t1, . . . , tn, t)dt1 · · · dtndt

=
1

n+ 1

T∫

0

‖fn(·, t)‖2L2([0,T ]n)dt,

again by using Lemma 2.8. Hence, by (1.17),

∞∑
n=0

(n+ 1)!‖f̃n‖2L2([0,T ]n+1) =
∞∑
n=0

n!

T∫

0

‖fn(·, t)‖2L2([0,T ]n)dt

=

T∫

0

∞∑
n=0

n!‖fn(·, t)‖2L2([0,T ]n)dt

= E
[ T∫

0

u2(t)dt
]
<∞.
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This proves that u ∈ Dom(δ), see (2.4). Finally, we prove the relationship
(2.9):

T∫

0

u(t)dW (t) =
∞∑
n=0

T∫

0

In(fn(·, t))dW (t)

=
∞∑
n=0

T∫

0

n!
∫

0≤t1≤···≤tn≤t
fn(t1, . . . , tn, t)dW (t1) · · ·dW (tn)dW (t)

=
∞∑
n=0

T∫

0

n!(n+ 1)
∫

0≤t1≤···≤tn≤tn+1

f̃n(t1, . . . , tn, tn+1)dW (t1)

· · · dW (tn)dW (tn+1)

=
∞∑
n=0

(n+ 1)!Jn+1(f̃n) =
∞∑
n=0

In+1(f̃n) =

T∫

0

u(t)δW (t).

By this the proof is complete. ��

2.4 Exercises

Problem 2.1. Let u(t), 0 ≤ t ≤ T , be a measurable stochastic process such
that

E

[∫ T

0

u2(t)dt

]
<∞.

Show that there exists a sequence of deterministic measurable kernels
fn(t1, ..., tn, t) on [0, T ]n+1 (n ≥ 0), with

∫
[0,T ]n+1

f2
n(t1, ..., tn, t)dt1...dtndt <∞

such that all fn are symmetric with respect to the variables t1, ..., tn and such
that

u(t) = u(ω, t) =
∞∑
n=0

In(fn(·, t))(ω), ω ∈ Ω, t ∈ [0, T ],

with convergence in L2(P × λ). [Hint. Consider approximations of u(t), t ∈
[0, T ], in L2(P×λ) of the form

∑m
i=1 ai(ω)bi(t), m = 1, 2, ..., where ai ∈ L2(P )

and bi ∈ L2([0, T ]).]

Problem 2.2. Prove the linearity of the Skorohod integral. [Hint . See
Problem 1.2.]
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Problem 2.3. Prove Proposition 2.6.

Problem 2.4. (*) Compute the following Skorohod integrals:

(a)
T∫
0

W (t)δW (t),

(b)
T∫
0

( T∫
0

g(s)dW (s)
)
δW (t), for a given function g ∈ L2([0, T ]),

(c)
T∫
0

W 2(t0)δW (t), where t0 ∈ [0, T ] is fixed,

(d)
T∫
0

exp{W (T )}δW (t) [Hint . Use Problem 1.3.],

(e)
∫ T
0
FδW (t), where F =

∫ T
0
g(s)W (s)ds, with g ∈ L2([0, T ]) [Hint . Use

Problem 1.3].




