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Abstract, I

Recently, most fundamental and long-considered solved problems of
financial engineering, such as construction of yield curves and calibration
of implied volatility surfaces, have recently turned out to be more complex
than previously thought. In particular, it has become apparent that one of
the main challenges of options pricing and risk management is the
sparseness of market data for model calibration, especially in severe
conditions. Market quotes can be very sparse in both strike and maturity.
As the spot price moves, options that were close to at-the-money at
inception become illiquid, so that one has to find ways to interpolate and
extrapolate the implied volatilities of liquid options to mark them to
market. Moreover, for certain asset classes the concept of implied volatility
surface is badly defined. For instance, for commodities it is not uncommon
to have market prices of options for only a single maturity, while for
foreign exchange it is customary to quote option prices with no more than
five values of delta and very few maturities.
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Abstract, II

The calibration of a model to sparse market data is needed not only for
the consistent pricing of illiquid vanilla options, but also for the valuation
of exotic options. The latter is particularly demanding since it requires the
construction of implied and local volatility surfaces across a wide range of
option strikes and maturities.
In this mini-course we shall discuss a universal volatility model (UVM) and
discuss its applications to pricing of financial derivatives. First, we describe
three sources of UVM, namely, local volatility model; stochastic volatility
model; and jump-diffusion model. Second, we describe three component
parts of UVM, namely, calibration of the model to the market; pricing of
vanilla and first-generation exotic options; pricing of second-generation
exotics. Third, we discuss main analytical, semi-analytical, and numerical
techniques needed for effi cient implementation of UVM from a practical
standpoint with a particular emphasis on the Lewis-Lipton formula and its
applications.
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The roots of Mathematical Finance

The roots of Mathematical Finance are in currency exchange,
insurance, gambling, and speculation

The origin of Medici’s wealth can be traced to creative usage of
financial engineering, (more specifically, creative forex trading via
cambium sine litteris)

The origin of its disappearance can be traced to reckless usage of
financial engineering (more specifically, lending large sums of money
to sub-prime borrowers such as Charles the Bold)

St. Petersburg paradox (Nicolas Bernoulli (1713) and Daniel Bernoulli
(1738)). Utility theory. Log utility function

Gambler’s Ruin, Casino games, etc.

Pari-mutuel betting (Joseph Oller (1865))

Description of Paris Bourse by Louis Bachelier (Theory of
Speculation, 1900)
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ForEx Market, I

Forex trading has been known since antiquity

A well-known example is Arena Chapel in Padua paid for by the
Scrovengi and painted by Giotto

After WWII all major currencies were fixed against USD as part of the
Bretton-Woods System (July 1944)

In August 1971 this system was abandoned and exchange rates
became floating

According to BIS, FX market is the largest and the most liquid
market in the world. Its turnover is $4 trillion (equity turnover is less
than 400 billion).

The market increased 5 times in 15 years

This size is explained via the so-called hot potato effect
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Giotto

Figure: Giotto, Arena Chapel
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ForEx Market, II

FX market is predominantly OTC

They operate 24 hours a day (from 20:15 GMT Sunday to 22:00
GMT Friday)

Major centers: London (35%), NY (20%), Tokyo (10%)

Participants include central banks, investment banks, corporations,
hedge funds, speculators, tourists, etc.

From time to time, the market is manipulated by central banks

Top tier banks dominate the market place: DB 15.6%, BarCap
10.8%, UBS 10.6%, Citi 8.9%, JPM 6.4%, HSBC 6.3%, RBS 6.2%,
CS 4.8%, GS 4.1%, MS 3.6%

Principal transactions: spot transactions (1.49 T), forex swaps (1.77
T), outright swaps (475 B), options (207 B), cross-currency swaps
(40 B)
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ForEx Market, III

FX quoting conventions are diffi cult for the novice to grasp and are
fairly idiosyncratic (at best) especially with regards to options

Consider a spot transaction to buy one unit of currency YYY for S
units of currency XXX

Dimension of S is XXXYYY , so XXX is numerator, YYY denominator.
The market terminology is different: YYY is base, XXX is quote

Label for S is YYYXXX

The most actively traded pairs are EURUSD, USDJPY, GBPUSD,
USDCHF, and "crosses" EURJPY, EURGBP, EURCHF

Turnover share USD 85%, EUR 40%, JPY 19%, GBP 13%, AUD 8%,
CHF 6%, CAD 5%
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ForEx Market, IV

Typically currencies are quoted with 5 significant digits, the 3rd one
called "big figure", the 5th "pip"

Dealers sell at ask(offer), buy at bid, they make profit on bid-ask
spread

FX triangulates

JPY /EUR = USD/EUR × JPY /USD

EURJPY = EURUSD × USDJPY
To buy EUR (sell JPY) you buy EUR (sell USD) and buy USD (sell
JPY)
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Bloomberg FXC

Figure: Bloomberg FXC
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Bloomberg G10

Figure: Bloomberg G10
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Bloomberg EURUSDGP

Figure: Bloomberg EURUSDGP
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Bloomberg EURUSDGIP

Figure: Bloomberg EURUSDGIP
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ForEx Market , V

We can define several FX rates: cash rate X (t), spot rate S (t),
forward rate F (t,T )
Cash rate is an artificial concept which is used in order to define
F (t,T ) and S (t) via the interest rate parity

F (t,T ) = X (t)
Pf (t,T )
Pd (t,T )

This can be established by eliminating arbitrage. Carry trades exploit
the fact spot tends to deviate from forward
Now we can define S (t)

S (t) = F (t, t + δ (t)) ,

where δ (t) is the delivery lag (typically 2 business days)
The spread

F (t,T )−S (t) = F (t,T )−F (t, t + δ (t)) ≈ S (t) (rd − rf ) (T − t − δ (t))

is called "forward points"
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ForEx Market VI

FX forward is the most basic hedging instrument which is used to
cover FX needs which occur in the future as well as for speculation

A combination of two opposite FX forwards is known as FX swap (not
to be confused with cross-currency swap)

FX futures play the role similar to forwards but they trade
electronically on exchanges such as CME, Euronext, Tokyo, etc.

Since they are maked-to-market daily, they differ from forwards due to
convexity effects. However, these effects are often ignored.
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ForEx Options I

The market for FX calls and puts is the largest options market in the
world. The majority of these options are European. They all trade
OTC.

A typical European option gives the buyer the right (but not an
obligation) to buy currency YYY (sell currency XXX ) at an agreed
rate K (expressed in terms of XXX/YYY ) an an agreed date T . The
price can be quoted in pips and in percentage and in both currencies!

This is a YYY call (XXX put). It will be exercised if S (T ) > K

As usual, money is paid with delay δ (T )

Since market is global and options eventually become very short, one
has to specify the place and the exact time for settling the option

The cutoff time is as follows: Sydney 3pm, Tokyo 3pm, London 3pm,
NY 10 am. It is clear that good systems for trading options have to
interpret time in hours (but they often don’t!)
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Black-Scholes (BS) paradigm

BSM dynamics (1973) is the standard GBM:

dSt
St

=
(
rd − r f

)
dt + σdWt .

BS equation for the call price (per unit notional):

C dt +
(
rd − r f

)
SC dS +

1
2

σ2S2C dSS − rdC d = 0, C d (T ,S) = (S −K )+ .

BSM (Garman-Kolhagen) formula:

C d (t,S0,T ,K ; σ, r) = e−r
f τSΦ (d+)− e−r

d τKΦ (d−) , ∆ = e−r
f τΦ (d+) ,

d± =
ln (S0/K ) +

(
rd − r f

)
τ

σ
√

τ
± σ
√

τ

2
,

τ = T − t. This is the price is domestic currency (C d ). The price in
foreign currency is C f = C d/S
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Black-Scholes (BS) paradigm

Alternative representation of the BS formula (Lipton (2000)):

C d (0, S0,T ,K ; σ, r) = e−r
f T S0−

e−r
dTK
2π

∞∫
−∞

e(iu+
1
2 )(ln(S0/K )+(r d−r f )T )− σ2T

2 (u2+
1
4 )(

u2 + 1
4

) du.

This formula is derived by representing payoff of a call option in the form

(S −K )+ = S −min {S ,K} ,

and dealing with the bounded component of the payout by changing the
measure.
This expression has very useful generalization known as the Lewis-Lipton
formula which has important implications.
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Implied volatility

"A wrong number which is substituted in a wrong formula to get the right
price"

C (Mrkt) (T ,K ) = C (BS )
(
0, S0,T ,K ; σimp (T ,K ) , rd , r f

)
.
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Idealized equity market
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Real equity market

k\t 0.025 0.101 0.197 0.274 0.523 0.772 1.769 2.267 2.784 3.781 4.778 5.774
51.31 33.66 32.91
58.64 31.78 31.29 30.08
65.97 30.19 29.76 29.75
73.30 28.63 28.48 28.48
76.97 32.62 30.79 30.01 28.43
80.63 30.58 29.36 28.76 27.53 27.13 27.11 27.11 27.22 28.09
84.30 28.87 27.98 27.50 26.66
86.13 33.65
87.96 32.16 29.06 27.64 27.17 26.63 26.37 25.75 25.55 25.80 25.85 26.11 26.93
89.97 30.43 27.97 26.72
91.63 28.80 26.90 25.78 25.57 25.31 25.19 24.97
93.46 27.24 25.90 24.89
95.29 25.86 24.88 24.05 24.07 24.04 24.11 24.18 24.10 24.48 24.69 25.01 25.84
97.12 24.66 23.90 23.29
98.96 23.58 23.00 22.53 22.69 22.84 22.99 23.47

100.79 22.47 22.13 21.84
102.62 21.59 21.40 21.23 21.42 21.73 21.98 22.83 22.75 23.22 23.84 23.92 24.86
104.45 20.91 20.76 20.69
106.29 20.56 20.24 20.25 20.39 20.74 21.04 22.13
108.12 20.45 19.82 19.84
109.95 20.25 19.59 19.44 19.62 19.88 20.22 21.51 21.61 22.19 22.69 23.05 23.99
111.78 19.33 19.29 19.20
113.62 19.02 19.14 19.50 20.91
117.28 18.85 18.54 18.88 20.39 20.58 21.22 21.86 22.23 23.21
120.95 18.67 18.11 18.39 19.90
124.61 18.71 17.85 17.93 19.45 20.54 21.03 21.64 22.51
131.94 19.88 20.54 21.05 21.90
139.27 19.30 20.02 20.54 21.35
146.60 18.49 19.64 20.12

Figure 1: Typical Vol Table (from Andreasen & Huge, 2011)

1

Figure:
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Forex Volatility Smile, I

In equity market implied volatility exhibit a skew due to the fear of a
crash

In FX market crashes can be both sided, so we typically deal with a
smile

In equity market the concept of an option volatility is simple since
prices are quoted per strike

In FX market it is (very!) diffi cult since in the end of the day the
prices are quoted as functions of delta
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Forex Volatility Smile, II

As we know
∆f = e−r

f τΦ (d+) ,

∆f = e−r
f (T+δ(T )−t−δ(t))Φ (d+) ,

It is more convenient to introduce forward delta

∆f ,F = Φ (d+) ,

representing the amount of foreign currency which need to be bought
for forward delivery at time T for hedging purposes.
Sadly, there are other complications such as premium-adjusted YYY
delta and forward premium-adjusted delta

∆f ,p = ∆f − C f

∆f ,p,F = er
f (T+δ(T )−t−δ(t))∆f ,p

These deltas are not monotonic functions of strike.
Market conventions are different for different currency pairs, say
EURUSD, premium - USD, delta - regular, USDJPY - premium USD,
delta - premium adjusted, etc.A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 26 / 179



Forex Volatility Smile, III

We start with ATM options. For such options the strike K is chosen
in such a way that the sum of deltas for the corresponding call and
put is equal to zero. (The corresponding deltas have to be
premium-adjusted if needed).

For non-premium-adjustded delta we have

d+ (KATM ) = −d+ (KATM )

KATM = F (t,T ) e
1
2 σ2τ

For premium-adjustded delta we have

KATM = F (t,T ) e
− 1
2 σ2τ
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Forex Volatility Smile, IV

For non-ATM volatilities, the concept of risk reversals (RRs) and
strangles or butterflies (STs or BFs) is needed.

RR at a given level x is the difference of σ levels for the strikes of call
and put with delta of x

RR (x) = σ
(
KCRR (x)

)
− σ

(
KPRR (x)

)
This definition is hard to deal with since it is sightly circular.

In addition, if deltas are premium-adjusted, non-monototnicity comes
into play.

It is clear that additional information is needed.
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Forex Volatility Smile, V

This information is provided by strangles or butterflies (BFs), more
specifically, market strangles

These strangles are defined by the so-called "strangle volatility offset"
ST

We compute σST = σATM + ST ; find KCST and K
P
ST corresponding to

∆ = ±x with volatility σST ; compute the sum of the prices C + P
and require this sum to be equal to the sum of market prices of call
and put with the given ∆.
Thus, we need to know FOUR vols
σ
(
KCRR

)
, σ
(
KPRR

)
, σ
(
KCST

)
, σ
(
KPST

)
, in addition to σATM

(
KPATM

)
for which we have TWO condition. It is clear that we have to choose
some parametric form for σ (K ) to do the calibration.

For simplicity, people deal with the so-called text-book strangles by
assuming that KCRR = K

C
ST ,K

P
RR = K

P
ST . This gives two conditions for

two unknowns, but this is NOT what is done in practise.
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Idealized forex market
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Real forex market

USDJPY
Maturity ATM RR25 STR25 RR10 STR10

ON 12.9100% 0.0000% 0.3800% 0.0165% 1.3649%
1w 10.7100% 0.0000% 0.3800% 0.0364% 1.3647%
2w 10.2100% 0.0000% 0.3800% 0.0489% 1.3624%
1m 10.6000% ­0.4000% 0.3800% ­0.6947% 1.3864%
2m 11.0700% ­0.6500% 0.3900% ­1.1380% 1.4518%
3m 11.5500% ­0.8400% 0.4100% ­1.4937% 1.5574%
6m 12.7100% ­1.1500% 0.4300% ­2.0758% 1.7080%
1y 13.9000% ­1.5000% 0.4500% ­2.6154% 1.9199%
2y 15.1000% ­1.7500% 0.3900% ­3.1909% 1.8453%
3y 15.7000% ­2.0000% 0.3200% ­3.7547% 1.7464%
4y 16.2000% ­2.3000% 0.2400% ­4.3359% 1.6692%
5y 16.7000% ­2.6000% 0.1700% ­4.8962% 1.6445%

1

Figure:
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Real forex market
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Bloomberg EURUSDData

Figure: Bloomberg EURUSDData
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Bloomberg EURUSDForward

Figure: Bloomberg EURUSDForward
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Bloomberg EURUSDTenor

Figure: Bloomberg EURUSDTenor
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Bloomberg EURUSDSmile

Figure: Bloomberg EURUSDSmile
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Bloomberg EURUSDSurface

Figure: Bloomberg EURUSDSurface
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Imagination versus reality

Implied volatility set or implied volatility surface.
Vol versus strike or vol versus delta? And if so, which delta?
How to preserve no arbitrage condition? And what should it be?
At the very least we have to have

CT (T ,K ) ≥ 0, CKK (T ,K ) ≥ 0.
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LECTURE II
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Something needs to be done, but what?

It is clear that we need to alter the basic premises of the BS theory.
Several possibilities present themselves:
(A) Parametric local volatility;
(B) Non-parametric local volatility;
(C) Stochastic volatility;
(D) Jumps;
(E) Regime switching;
(F) Various combinations of the above.
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Why history of mathematical finance is diffi cult to study?

Mathematical finance is a scientific discipline dealing with unpredictable
future. Sadly, as we shall see shortly, it also has unpredictable past.
Participants refuse to acknowledge earlier contributions. Typical excuses:
(A) Academics - "We do not subscribe to Risk";
(B) Practitioners - "We don’t give a damn";
(C) Software providers - "We are just nuts and bots people, leave us
alone".
All three camps play the "disappearing commissar" game thinking that
they can get away with it.
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Disappearing commissar I (Stalin)

Figure:
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Disappearing commissar II (Mussolini)

Figure:

A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 43 / 179



Parametric local volatility

Replacing GBM with a different process was the earliest approach. In fact,
it far predates BS approach. For instance, Bachelier (1900) postulated
that stock price is governed by AMB:

dSt
St

= rdt +
σ

St
dWt .

Later, several other possibilities have been considered, notably, CEV (Cox
(1975), Cox & Ross (1976), Emanuel & MacBeth (1982)),

dSt
St

= rdt + σS β−1
t dWt ,

displaced diffusion (Rubinstein (1983)),

dSt
St

= rdt + σ
(St + β)

St
dWt ,

hyperbolic diffusion (Lipton (2000)),

dSt
St

= rdt + σ

(
αSt + β+

γ

St

)
dWt ,

etc.A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 44 / 179



Non-parametric local volatility

In general, the so-called alternative stochastic processes do not match
market prices exactly (although in many cases they come quite close).
Accordingly, an idea to consider processes with unknown local volatility to
be calibrated to the market somehow had been proposed by several
researchers (Derman & Kani (1994), Dupire (1994), Rubinstein (1994)).
The corresponding dynamics is

dSt
St

= rdt + σloc (t,St ) dWt .

The first and the third approaches were formulated via implied trees, while
the second one in terms of PDEs. We discuss the actual calibration and
the associated pitfalls shortly.
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Stochastic volatility

Alternatively, several researchers suggested that volatility itself is
stochastic. Several choices have been discussed in the literature:
(A) Hull & White (1988) model:

dσt
σt

= αdt + γdWt ;

(B) Scott (1987) and Wiggins (1987) model:

dσt
σt

= (α− βσt ) dt + γdWt ;

(C) Stein & Stein (1991) model:

dσt = (α− βσt ) dt + γdWt ;
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Stochastic volatility

(D) Heston (1993) model:

dσt =

(
α

σt
− βσt

)
dt + γdWt ;

(E) Lewis (2000) model:

dσt
σ2t

=

(
α

σt
− βσt

)
dt + γdWt .

Occasionally, it is more convenient to deal with variance vt = σ2t . The
most popular assumption is that variance is driven by a square-root (Feller
(1952)) process (Heston (1993)):

dvt = κ (θ − vt ) dt + ε
√
vtdWt .

My personal favorite model is Stein-Stein. The reasons are partly practical
(easy to simulate) and partly sentimental (Kelvin wave analogy). Usual
objections (negative vol) are irrelevant (vol is not a sign definite quantity).
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Stochastic volatility

More recently Bergomi (2005) proposed to use HJM-style equations for
stochastic volatility. Closer inspection suggests (to me?) that his model is
more or less equivalent to Scott and Wiggins model.
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Jump-diffusion based models

Meton (1976) proposed to add jumps to the standard BS dynamics:

dSt
St

= (r − λm) dt + σdW +
(
eJ − 1

)
dN,

where N is the Poisson process with intensity λ, and m = E
{
eJ − 1

}
.

Merton considered Gaussian distribution of jumps. Other distributions,
such as exponential (Kou (2002) and others) and hyper-exponential
(Lipton (2002)) have been popular as well. In reality though, it is
exceedingly diffi cult to distinguish between different distributions, so that
discrete one is perfectly adequate for many applications.
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Lévy process based models

Lévy process based models had been popularized by many researchers, for
instance, Boyarchenko & Levendorsky (2000, 2002), Carr & Wu (2003,
2003), Cont and Tankov (2004), Eberlein (1995), and many others. These
models assume that St is an exponential Lévy process of the
jump-diffusion type

St = S0eXt ,

where

dXt = γdt + σdWt +
∫

R
(ex − 1) (µ (dt, dx)− ν (dx) dt) , X0 = 0

Here the random measure µ(dt, dz) counting jumps in dz over the
time-interval dt, must, from the properties of time-homogenous Lévy
processes, have the form dt × µ(dz), with expectation dt × v(dz).
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Regime switching

Regime switching models have been less popular. However, some of them
are quite good. For instance, ITO33 model which they modestly call
nobody’s model (ITO 33 (2004)) looks rather appealing.
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Composite models

Each of the models considered above has its own attractions (as well as
drawbacks). Hence several researchers tried to build combined models.
The need for such models is particularly strong in forex market because in
this markets several exotics are liquid and can be used for calibration
purposes.
In particular, a class of the so-called LSV models was developed by Jex,
Henderson, Wang (1999), Blacher (2001), Lipton (2002). The first model
is tree-based, the other two are PDE based. The corresponding dynamics
has the form

dSt
St

= rdt +
√
vtσ (t,St ) dWt ,

dvt = κ (θ − vt ) dt + ε
√
vtdZt ,

dWtdZt = ρdt.
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Composite models

Blacher (2001) assumes that log-normal volatility is quadratic:

σ (t, St ) =
(
a+ bSt + cS2t

)
.

Lipton (2002) considers hyperbolic log-normal volatility:

σ (t,St ) =
(
a
St
+ b+ cSt

)
,

as well as purely non-parametric one.
Jäckel, Kahl (2010) consider other interesting possibilities.
Lipton’s model is offered commercially by Murex (without proper
acknowledgement).
We shall discuss its effi cient implementation below.
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SABR model

A very different composite model is proposed by Hagan et al. (2002) (the
so-called SABR model). The corresponding dynamics is

dFt
Ft

= σtF
β−1
t dWt ,

dσt = νσtdZt ,

dWtdZt = ρdt.

Although this model has several attractive features, including is scaling
properties, it is clearly not dynamic in nature.
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Universal model

In 2002 Lipton proposed a Universal Vol Model. This model incorporates
most of the attractive features of the models considered so far. The
corresponding dynamics has the form

dSt
St

= (r − λm) dt +
√
vtσloc (t,St ) dWt +

(
eJ − 1

)
dNt ,

dvt = κ (θ − vt ) dt + ε
√
vtdZt (+ϕdNt ) .

While this model is very attractive, it is very ambitious in its design and
requires a lot of effort in order to be implemented properly.
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Philosophical aside

Philosophical question: What kind of models are we looking for: plastic
bags which assume the form of whatever goods are put into them, or
cardboard boxes which can keep the form regardless and break if we put
something too hard into them. Interesting ideas are developed by Aiyache
(2004), and ITO 33 (2004).
Parametric local vol (such as CEV, quadratic, etc.) is a CB-style model.
Might be diffi cult to match the market but can be good in other respects
and provides a lot of insight.
Non-parametric local vol model is a PB-style model. It takes more or less
arbitrary "market" prices (where it takes them from is entirely different
question) and converts them into implied volatility.
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Calibration of term structure model

We have to decide how to relate local vol and implied vol.
In the presence of term structure (but no skew) of the implied vol, there is
a classical relation

σ2loc (T ) =
d
(

σ2imp (T )T
)

dT
This formula is not as simple as it looks.
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Calibration of LV models, Dupire solution

When interest rates are deterministic, Dupire (1994) shows how to
combine forward Fokker-Planck equation for t.p.d. P(t, S ,T ,K ):

PT −
1
2

(
σ2locK

2P
)
KK + (rKP)K + rP = 0,

with the famous Breeden & Litzenberger (1978) formula:

P = CKK ,

in order to obtain an equation for the call prices

CT (T ,K ) + rKCK (T ,K )−
1
2

σ2loc (T ,K )K
2CKK (T ,K ) = 0,

C (0,K ) = (S −K )+ .
This equation is remarkable for its ruthless effi ciency (it is much more
economical than the BS equation).
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Local vol via implied vol

Assuming that call prices C (T ,K ) are known for all T ,K (a very dubious
assumption as we have seen), we can write

σ2loc (T ,K ) = 2
CT (T ,K ) + rKCK (T ,K )

K 2CKK (T ,K )
.

We emphasize that this approach breaks when interest rates are stochastic
(the latter effect is particularly important for long-dated forex options). In
this case one can use "the classic six" method of Lipton (1997) or simply
solve the corresponding 2D or 3D equation which can be very time
consuming.
Let us show how it can be done (in the simplest case).
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Forward PDE, stochastic rates, I

Consider the following dynamics

dSt
St

=
(
r0t + e−κtxt

)
dt+σloc (t, St ) dWt , dxt = ηeκtdZt , dWtdZt = ρdt.

The corresponding Fokker-Planck equation for P (t,S , x ,T ,K , ξ) reads

PT −
1
2

(
σ2locK

2P
)
KK −

(
ρηeκT σlocKP

)
K ξ
− 1
2

(
η2e2κTP

)
ξξ

+
((
r0T + e

−κT ξ
)
KP
)
K
+
(
r0T + e

−κT ξ
)
P = 0.

Introduce marginal distribution Q (,S , x ,T ,K ):

Q (, S , x ,T ,K ) =
∫ ∞

−∞
P (t, S , x ,T ,K , ξ) dξ = CKK (T ,K ) .
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Forward PDE, stochastic rates, II

Equation for Q is much simpler (but it is not closed!)

QT −
1
2

(
σ2locK

2Q
)
KK + r0T ((KQ)K +Q)

= −e−κT
∫ ∞

−∞
ξ ((KP)K + P) dξ.

Simple algebra yields:

CT (T ,K ) + rKCK (T ,K )−
1
2

σ2loc (T ,K )K
2CKK (T ,K )

= e−κT
∫ ∞

0

∫ ∞

−∞
ξH
(
K ′ −K

)
PdK ′dξ.
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Forward PDE, stochastic rates, III

To find a closed equation, we perform expansion in powers of η and
assume that

σ2loc (T ,K ) = σ2loc ,0 (T ,K ) + ησ2loc ,1 (T ,K ) ,

P (T ,K , ξ) = P0 (T ,K , ξ) + ηP1 (T ,K , ξ) .

It can be shown that

P0 (T ,K , ξ) = p0 (T ,K ) δ (ξ) ,

P1 (T ,K , ξ) = p10 (T ,K ) δ (ξ) + p11 (T ,K ) δ′ (ξ) ,

and

σ2loc ,0 (T ,K ) = σ2loc ,Dupire (T ,K ) ,

σ2loc ,1 (T ,K ) = −
2e−κT

∫ ∞
0 H (K

′ −K ) p11 (T ,K ′) dK ′
K 2CKK (T ,K )

.
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Application of Gyöngy (1986) theorem

In the most general case Dupire (1996) proved that

E0
{

σ2 (T ,ST , σT )
∣∣ ST = K} = σ2loc (T ,K ) .

This result is useful in theory but relatively hard to use in practice directly
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Local vol via implied vol

Alternatively, we can use the Dupire equation in order to find σ2loc (T ,K )
such that certain given market prices are matched. This approach has
been taken by Avellaneda et al. (1997), Coleman et al. (1999), and, more
recently, by Andreasen & Huge (2011) among many others. Successful
execution of this approach is much easier said than done.
We briefly discuss given a discrete set of calibration inputs.
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Forward PDE

For computational purposes, it is more convenient to deal with covered
calls C̄ (T ,K ) = S − C (T ,K ), which solve the following problem

C̄T − 1
2σ2loc (T ,K )K

2C̄KK = 0,
C̄ (0,K ) = S − (S −K )+ .

(1)

We introduce a new independent variable X , X = ln (K/S), and a new
dependent variable B (T ,X ), C̄ (T ,X ) = SeX /2B (T ,X ):

BT (T ,X )− 1
2v (T ,X )

(
BXX (T ,X )− 1

4B (T ,X )
)
= 0,

B (0,X ) = eX /21{X≤0} + e−X /21{X>0},
(2)

where v (T ,X ) = σ2loc
(
T ,SeX

)
.

Its solution can be represented as follows:

B(T ,X ) =
∫ ∞

−∞
G (T ,X ,X ′)B(0,X ′)dX ′,

where G (T ,X ,X ′) is the Green’s function that solves equation (2) with
initial condition given by delta function: δ(X − X ′).
Here X is a forward variable and X ′ is a backward variable.
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Term structure of model parameters

Assume that v is a piece-wise constant function of time,

v (T ,X ) = vi (X ) , Ti−1 < T ≤ Ti , 1 ≤ i ≤ I ,
so that equation (2) can be solved by induction.
On each time interval Ti−1 < T ≤ Ti , 1 ≤ i ≤ I , the corresponding
problem is represented in the form

Bi ,τ (τ,X )− 1
2vi (X )

(
Bi ,XX (τ,X )− 1

4Bi (τ,X )
)
= 0,

Bi (0,X ) = Bi−1 (X ) ,
(3)

Bi (τ,X ) = B (T ,X ) , τ = T − Ti−1, Bi−1 (X ) = B (Ti−1,X ) .

Induction starts with

B0 (X ) = eX /21{X≤0} + e
−X /21{X>0}.

The solution of problem (3) can be written as

Bi (τ,X ) =
∫ ∞

−∞
Gi (τ,X ,X ′)Bi−1

(
X ′
)
dX ′, (4)

where Gi is the corresponding Green’s function for the corresponding time
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Andreasen & Huge (2010) solution

As a crude approximation, the time-derivative ∂/∂τ can be implicitly
discretized and forward problem (3) can be cast in the form

BAHi (X )− 1
2
(Ti − Ti−1) vi (X )

(
BAHi ,XX (X )−

1
4
BAHi (X )

)
= BAHi−1 (X ) ,

where BAHi (X ) ≈ B (Ti ,X ).
This is the approach chosen by AH in the specific case of piecewise
constant vi (X ).
While intuitive and relatively simple to implement, this approach is not
accurate, by its very nature, and its accuracy cannot be improved.
Moreover, for every τ, 0 < τ ≤ Ti − Ti−1, a separate equation single step
equation from time Ti−1 to Ti−1 + τ has to be solved. These equations
are solved in isolation and are not internally consistent.
Below an alternative approach is proposed. This approach is based on
representation (4); by construction it is exact in nature.
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Laplace Transform

It turns out that the problem (3) can be solved exactly, rather than
approximately, via the direct and inverse Laplace transform (for
applications of the Laplace transform in derivatives pricing see Lipton,
2001).
After performing the direct Carson-Laplace transform

B̂i (λ,X ) = λL {Bi (τ,X )} ,

the following Sturm-Liouville problem is obtained:

B̂i (λ,X )− 1
2
1
λvi (X )

(
B̂i ,XX (λ,X )− 1

4 B̂i (λ,X )
)
= B (Ti−1,X ) ,

B̂i (λ,X ) →
X→±∞

0. (5)

It is clear that

BAHi (X ) = B̂i

(
1

Ti − Ti−1
,X
)
. (6)
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Sturm-Liouville equation

It is convenient to represent equation (5) in the standard Sturm-Liouville
form

−B̂i ,XX (λ,X ) + q2i (λ,X ) B̂i (λ,X ) =
(
q2i (λ,X )− 1

4

)
B (Ti−1,X ) ,

B̂i (λ,X ) →
X→±∞

0,

where

q2i (λ,X ) =
2λ

vi (X )
+
1
4
.

The corresponding Green’s function Ĝi (λ,X ,X ′) solves the following
adjoint Sturm-Liouville problems

−Ĝi ,XX (λ,X ,X ′) + q2i (λ,X ) Ĝi (λ,X ,X ′) = δ (X − X ′) ,
Ĝi (λ,X ,X ′) →

X→±∞
0,

−Ĝi ,X ′X ′ (λ,X ,X ′) + q2i (λ,X ′) Ĝi (λ,X ,X ′) = δ (X − X ′) ,
Ĝi (λ,X ,X ′) →

X ′→±∞
0. (7)
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ODE solution

To be concrete, backward problem (7) is considered and its fundamental
solutions are denoted by ĝ±i (λ,X

′):

−ĝ±i ,X ′X ′
(
λ,X ′

)
+ q2i

(
λ,X ′

)
ĝ±i
(
λ,X ′

)
= 0, ĝ±i

(
λ,X ′

)
→

X ′→±∞
0.

These solutions are unique (up to a constant). It is well-known (see, e.g.,
Lipton (2001)) that

Ĝi
(
λ,X ,X ′

)
=

1
W (λ)

{
ĝ+i (λ,X ) ĝ

−
i (λ,X

′) , X ′ ≤ X ,
ĝ−i (λ,X ) ĝ

+
i (λ,X

′) , X ′ > X ,

where W (λ) is the so-called Wronskian

W (λ) = ĝ−i (λ,X ) ĝ
+
i ,X ′
(
λ,X ′

)
− ĝ+i (λ,X ) ĝ−i ,X ′

(
λ,X ′

)
.
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Summary

Once the Green’s function is found, the solution of equation (5) can be
represented in the form

B̂i (λ,X ) =

∞∫
−∞

Ĝi
(
λ,X ,X ′

) (
q2i
(
λ,X ′

)
− 1
4

)
Bi−1

(
X ′
)
dX ′. (8)

This is a generic formula in models where the Green’s function
Ĝ (λ,X ,X ′) is known in the closed form.
The inverse Carson-Laplace transform yields B (Ti−1 + τ,X ) for
0 < τ ≤ Ti − Ti−1, including Bi (X ).
In order to compute the integral in equation (8) it is assumed that X and
X ′ are defined on the same grid Xmin < X < Xmax and the trapezoidal
rule is applied.
Once Bi (X ) is computed for a given vi (X ), the latter function is changed
until market prices are reproduced. The latter operation is non-linear in
nature and might or might not be feasible. This depends on whether or
not market prices are internally consistent.

A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 71 / 179



Calibration problem for a tiled local volatility case

We apply the generic calibration method to the case of tiled local volatility
considered by AH.
Given a discrete set of market call prices Cmrkt (Ti ,Kj ), 0 ≤ i ≤ I ,
0 ≤ j ≤ Ji , we consider a tiled local volatility σloc (T ,K )

σloc (T ,K ) = σij , Ti−1 < T ≤ Ti , K̄j−1 < K ≤ K̄j , 1 ≤ i ≤ I , 0 ≤ j ≤ Ji ,
K̄−1 = 0, K̄j = 1

2 (Kj +Kj+1) , 0 ≤ j ≤ Ji − 1, K̄Ji = ∞,

Clearly, non-median break points can be chosen if needed. Equivalently,
σloc (T ,X ) has the form

σloc (T ,X ) = vij , Ti−1 < T ≤ Ti , X̄j−1 < X ≤ X̄j , X̄j = ln (K̄j/S) .

By construction, for every Ti , σloc (Ti ,K ) depends on as many parameters
as there are market quotes.
On every step of the calibration procedure these parameters are adjusted
in such way that the corresponding model prices Cmdl (Ti ,Kj ) and market
prices Cmrkt (Ti ,Kj ) coincide within prescribed accuracy.

A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 72 / 179



Calibration problem (7) for a tiled local volatility case

For calibration it is suffi cient to consider X = Xj , where Xj = ln (Sj/K );
however, to propagate the solution forward from Ti−1 to Ti , it is necessary
to consider all X .
A new set of ordered points is introduced

{Yk} = {X̄j} ∪ X , −1 ≤ k ≤ J1 + 1, Y−1 = −∞, YJ1+1 = ∞,

and it is assumed that X = Yk ∗ .
On each interval

Jk =
{
X ′
∣∣Yk−1 ≤ X ′ ≤ Yk} ,

except for the first and the last one, the general solution of equation (7)
has the form

gk
(
X ′
)
= αk ,+e

qk (X ′−Yk∗ ) + αk ,−e
−qk (X ′−Yk∗ ),

while on the first and last intervals it has the form

g0
(
X ′
)
= α0,+eq0(X

′−Yk∗ ), gJ1+1
(
X ′
)
= αJ1+1,−e

−qJ1+1(X
′−Yk∗ )

so that the corresponding Green’s function decays at infinity. Here qk are
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Calibration problem for a tiled local volatility case

For k 6= k∗ both Ĝ and ĜX have to be continuous, while for k = k∗ only
Ĝ is continuous, while ĜX has a jump of size −1.
Thus, the following system of 2 (J1 + 1) linear equations can be obtained:

(
−E+kk −E−kk E+k+1k E−k+1k
−qkE+kk qkE−kk qk+1E+k+1k −qk+1E−k+1k

)
αk ,+
αk ,−

αk+1,+
αk+1,−

 =

(
0
−δkk ∗

)
.

Here
E±kl = e

±qk (Yl−Yk∗ ),

and δkk ∗ is the Kronecker symbol.
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Calibration problem for a tiled local volatility case

In matrix form these equations can be written as

R~A = ~Bk ∗ , (9)

For instance, for J = 3, k∗ = 1, we have

R =



−E+00 E+10 E−10
−q0E+00 q1E+10 −q1E−10

−1 −1 1 1
−q1 q1 q2 −q2

−E+22 −E−22 E+32 E−32
−q2E+22 q2E−22 q3E+32 −q3E−32

−E+33 −E−33 E−43
−q3E+33 q3E−33 −q4E−43


,

~A =
(

α0,+ α1,+ α1,− α2,+ α2,− α3,+ α3,− α4,−
)T
,

~Bk ∗ =
(
0 0 0 −1 0 0 0 0

)T
,
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Calibration problem for a tiled local volatility case

Although matrix equation (9) is five-diagonal (rather than tri-diagonal), it
can still be solved very effi ciently via forward elimination and backward
substitution.
First, (α1,+, α1,−)

T is eliminated in favor of α0,+ and (αJ ,+, αJ ,−)
T is

eliminated in favor of αJ+1,−:(
α1,+
α1,−

)
=

1
2q1

(
(q1 + q0)E−10E

+
00

(q1 − q0)E+10E+00

)
α0,+ ≡ ~C1α0,+,(

αJ ,+
αJ ,−

)
=

1
2qJ

(
(qJ − qJ+1)E−JJE−J+1J
(qJ + qJ+1)E+JJE

−
J+1J

)
αJ+1,− ≡ ~DJαJ+1,−,

Next, (αk ,+, αk ,−)
T is eliminated in favor of (αk−1,+, αk−1,−)

T ,
2 ≤ k ≤ k∗ and (αk ,+, αk ,−)T is eliminated in favor of (αk+1,+, αk+1,−)T ,
k∗ + 1 ≤ k ≤ J − 1:(

αk ,+
αk ,−

)
=

1
2qk

(
(qk + qk−1)E−kk−1E

+
k−1k−1 (qk − qk−1)E−kk−1E−k−1k−1

(qk − qk−1)E+kk−1E+k−1k−1 (qk + qk−1)E+kk−1E
−
k−1k−1

)(
αk−1,+
αk−1,−

)
≡ Sk

(
αk−1,+
αk−1,−

)
,
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Calibration problem for a tiled local volatility case

(
αk ,+
αk ,−

)
=

1
2qk

(
(qk + qk+1)E−kkE

+
k+1k (qk − qk+1)E−kkE−k+1k

(qk − qk+1)E+kkE+k+1k (qk + qk+1)E+kkE
−
k+1k

)(
αk+1,+
αk+1,−

)
≡ Tk

(
αk+1,+
αk+1,−

)
,

and a recursive set of vectors is computed

~Ck = Sk~Ck−1, 2 ≤ k ≤ k∗, ~Dk = Tk~Dk+1, k∗ + 1 ≤ k ≤ J − 1.

Finally, a system of 2× 2 equations for α0,+, αJ+1,− is obtained and solved(
−1 −1
−qk ∗ qk ∗

)
~Ck ∗α0,++

(
1 1

qk ∗+1 −qk ∗+1

)
~Dk ∗+1αJ+1,− =

(
0
−1

)
.

(10)
Once α0,+, αJ+1,− are determined, (αk ,+, αk ,−)

T are calculated by using
vectors ~Ck or ~Dk .
This procedure is just icing on the cake since the size of the corresponding
system (determined by the number of market quotes) is quite small and is
not related to the size of the interpolation grid.
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Calibration problem for a tiled local volatility case

Once the coeffi cient vector ~A is known, B̂i (λ,X ) can be computed
semi-analytically via equation (8):

B̂i (λ,X ) =
(
q20 − 1

4

)
α0,+e−q0Yk∗

∫ Y0
−∞ e

q0X ′Bi−1 (X ′) dX ′

+∑Ji
k=1

(
q2k − 1

4

) (
αk ,+e−qkYk∗

∫ Yk
Yk−1

eqkX
′
Bi−1 (X ′) dX ′

+αk ,−eqkYk∗
∫ Yk
Yk−1

e−qk (X
′−Yk∗ )Bi−1 (X ′) dX ′

)
+
(
q2Ji+1 −

1
4

)
αJi+1,−e

qJi+1Yk∗
∫ ∞
YJ1
e−qJi+1X

′
Bi−1 (X ′) dX ′.

(11)

i) The corresponding integrals are computed via the trapezoidal rule.
ii) Variables X and X ′ are defined on the same dense spatial grid
Xmin < X ,X ′ < Xmax; this grid is similar to the one used in a conventional
finite-difference solver.
iii) For X ′ > Xmax or X ′ < Xmin it is assumed that Bi−1 (X ′) = e−|X |/2.
iv) Since these integrals are independent on Yk ∗ , they can be
pre-computed for all X ; thus the corresponding calculation has complexity
linear in Ji .
v) For i = 1, the corresponding integrals can be computed analytically.
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Calibration problem for a tiled local volatility case

The inverse Carson-Laplace transform generates B (T ,X ):

B (Ti−1 + τ,X ) = L−1τ

{
B̂ (λ,X )

λ

}
. (12)

This transform can be performed effi ciently via the Stehfest algorithm:

B (Ti−1 + τ,X ) =
N

∑
k=1

StNk
k
B̂ (kΛ,X ) , Λ =

ln 2
τ
. (13)

Choosing N = 12 is suffi cient. Coeffi cients St12k are given below

1 2 3 4 5 6
−0.01(6) 16.01(6) −1247 27554.(3) −263280.8(3) 1324138.7
7 8 9 10 11 12
−3891705.5(3) 7053286.(3) −8005336.5 5552830.5 −2155507.2 359251.2

It is obvious that these coeffi cients are very stiff.
The above procedure allows one to calculate B (Ti ,Xj ) for given vij .
To calibrate the model to the market, vij are changed until model and
market prices agree. It is worth noting that, as always, vectorizing
B̂ (λ,X ) makes computation more effi cient.A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 79 / 179



Calibration problem for a tiled local volatility case

The calibration algorithm is summarized as follows:
(A) At initialization, B0(X ) given by equation (2) is computed on the
spatial grid;
(B) At time Ti+1, given Bi (X ), equations (11) and (12) are used to
compute B(λ,Xj ) and B (Ti ,Xj ) at specified market strikes only; {vij} are
adjusted until model prices match market prices;
(C) After calibration at time Ti+1 is complete, B (Ti ,X ) is computed on
the entire spatial grid using new model parameters at time Ti+1;
(D) The algorithm is repeated for the next time slice.
If so desired, B (T ,X ) can be calculated on the entire temporal-spatial
grid with very limited additional effort.
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Table: calibrated SPX index

K/T 0.101 0.197 0.274 0.523 0.772 1.769 2.267 2.784 3.781 4.778 5.774

mdl mkt mdl mkt mdl mkt mdl mkt mdl mkt mdl mkt mdl mkt mdl mkt mdl mkt mdl mkt mdl mkt

51.31 34.40 40.66 38.42 36.88 33.62 32.44 33.66 33.66 32.91 32.91 30.92 32.27

58.64 35.80 34.29 39.25 36.60 35.21 32.30 31.25 31.78 31.78 31.29 31.29 30.18 30.08 31.30

65.97 34.65 33.37 37.20 34.52 33.34 30.86 29.98 30.19 30.19 29.76 29.76 29.56 29.75 30.28

73.30 33.80 32.10 34.39 32.17 31.22 29.30 28.63 28.63 28.63 28.49 28.48 28.54 28.48 29.22

76.97 33.05 31.25 32.59 32.62 30.79 30.79 30.00 30.01 28.42 28.43 27.89 27.83 27.78 27.88 28.66

80.63 32.06 30.27 30.66 30.58 29.37 29.36 28.75 28.76 27.53 27.53 27.13 27.13 27.11 27.11 27.11 27.11 27.25 27.22 28.09 28.09

84.30 30.76 29.09 28.82 28.87 27.96 27.98 27.51 27.50 26.63 26.66 26.33 26.44 26.46 26.66 27.51

86.13 29.95 28.38 27.94 27.27 26.92 26.19 25.92 26.11 26.14 26.36 27.20

87.96 29.10 29.06 27.65 27.64 27.16 27.17 26.64 26.63 26.38 26.37 25.79 25.75 25.55 25.55 25.80 25.80 25.85 25.85 26.10 26.11 26.93 26.93

89.97 27.90 27.97 26.66 26.72 26.26 25.88 25.71 25.30 25.11 25.42 25.49 25.77 26.60

91.63 26.92 26.90 25.82 25.78 25.57 25.57 25.30 25.31 25.20 25.19 24.93 24.97 24.79 25.12 25.23 25.53 26.36

93.46 25.86 25.90 24.86 24.89 24.76 24.64 24.63 24.54 24.43 24.78 24.94 25.26 26.08

95.29 24.98 24.88 24.08 24.05 24.04 24.07 24.06 24.04 24.11 24.11 24.19 24.18 24.10 24.10 24.48 24.48 24.71 24.69 25.00 25.01 25.84 25.84

97.12 23.86 23.90 23.24 23.29 23.31 23.41 23.53 23.81 23.73 24.14 24.46 24.71 25.57

98.96 22.98 23.00 22.58 22.53 22.69 22.69 22.83 22.84 23.00 22.99 23.47 23.47 23.40 23.82 24.26 24.45 25.33

100.79 22.14 22.13 21.78 21.84 21.97 22.20 22.42 23.11 23.03 23.48 24.03 24.15 25.07

102.62 21.38 21.40 21.24 21.23 21.43 21.42 21.72 21.73 21.98 21.98 22.81 22.83 22.75 22.75 23.22 23.22 23.81 23.84 23.93 23.92 24.86 24.86

104.45 20.78 20.76 20.70 20.69 20.89 21.22 21.50 22.48 22.45 22.95 23.55 23.69 24.63

106.29 20.24 20.24 20.23 20.25 20.40 20.39 20.74 20.74 21.04 21.04 22.15 22.13 22.16 22.68 23.25 23.47 24.41

108.12 19.84 19.82 19.86 19.84 19.95 20.28 20.59 21.81 21.87 22.43 22.95 23.24 24.19

109.95 19.57 19.59 19.45 19.44 19.58 19.62 19.87 19.88 20.20 20.22 21.50 21.51 21.61 21.61 22.19 22.19 22.71 22.69 23.04 23.05 23.99 23.99

111.78 19.28 19.29 19.18 19.20 19.26 19.49 19.84 21.20 21.35 21.94 22.48 22.84 23.79

113.62 19.04 18.98 19.01 19.02 19.13 19.14 19.50 19.50 20.91 20.91 21.08 21.69 22.27 22.63 23.60

117.28 18.73 18.68 18.84 18.85 18.55 18.54 18.90 18.88 20.39 20.39 20.58 20.58 21.22 21.22 21.85 21.86 22.24 22.23 23.21 23.21

120.95 18.65 18.48 18.66 18.67 18.11 18.11 18.38 18.39 19.89 19.90 20.14 20.86 21.41 21.91 22.84

124.61 18.92 18.34 18.71 18.71 17.85 17.85 17.92 17.93 19.45 19.45 19.79 20.54 20.54 21.03 21.03 21.62 21.64 22.51 22.51

131.94 19.85 18.19 18.72 17.59 17.32 18.77 19.22 19.88 19.88 20.54 20.54 21.06 21.05 21.90 21.90

139.27 18.12 18.61 17.47 17.00 18.29 18.79 19.30 19.30 20.02 20.02 20.53 20.54 21.35 21.35

146.60 17.31 18.63 17.43 16.83 17.92 18.44 18.49 18.49 19.64 19.64 20.12 20.12 20.90

Figure: Market and model implied volatilities
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Illustrations

For illustrative purposes a tiled local volatility model is calibrated to SX5E
equity volatility data as of 01/03/2010. This data is taken from AH.
Depending on maturity, one needs up to 13 tiles to be able to calibrate the
model to the market.
In Figure 1 model and market implied volatilities for the index are shown
graphically, while in Table 1 the same volatilities are presented numerically.
In Figure 2 the calibrated tiled local volatility is shown. In Figure 3, the
Laplace transforms of the Green’s functions Ĝ1(λ,Xj ,X ′) are shown as
functions of X ′ for fixed λ. In Figure 4, the Laplace transforms of option
prices B̂(λ,Xj ) are shown as functions of λ. In Figure 5, functions
B(Ti ,X ) are shown as functions of X . In all these Figures model
parameters calibrated to the SX5E volatility surface are used.
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Market and model implied vol
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Figure: Market and model SX5E implied volatility quotes for March 1, 2010.

A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 83 / 179



Calibrated local vol
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Figure: Calibrated local volatility for March 1, 2010.

A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 84 / 179



Laplace Transforms as functions of

x
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Figure: The Laplace transforms of the Green’s functions Ĝ1
(
λ,Xj ,X ′

)
as

functions of X ′, where λ = 1 and X = Xj , 0 ≤ j ≤ 13, are given in Table 1.
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Laplace Transforms as functions of

λ
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Figure: Option prices B̂
(
λ,Xj

)
as functions of λ, where Xj are given in Table 1.
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Option prices
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Figure: Option prices B (Ti ,X ) as functions of X , where Ti are given in Table 1.
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LECTURE III
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One-tile case. Exact Solution

Consider the one-tile case with σ = σ0, which is the classical
Black-Scholes case. In this case matrix equation (10) is trivial(

−1
−q0

)
α0,+ +

(
1
−q0

)
α1,− =

(
0
−1

)
, q0 =

√
2λ

σ20
+
1
4
.

Accordingly, α0,+ = α1,− = 1/2q0.
The Green’s function Ĝ (λ) and the corresponding option price B̂ (λ) have
the form

Ĝ
(
λ,X ,X ′

)
=
e−q0 |X−X

′|

q0
, B̂ (λ,X ) = e−

|X |
2 − e

−q0 |X |

2q0
.

The inverse Carson-Laplace transform of B̂ (λ) yields B (T ):

B (T ,X ) = e−
|X |
2 Φ

 |X | − σ20T
2√

σ20T

+ e |X |2 Φ

−|X |+ σ20T
2√

σ20T

 .
Here Φ(ξ), φ (ξ) are the cumulative density and density of the standard
Gaussian variable.A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 89 / 179



One-tile case. Approximate Solution

While the above transforms can be computed in a closed form, in
multi-tile case it is not possible.
Accordingly, an approximation valid for λ→ ∞ is useful:

q0 ≈
ζ

σ0
+

σ0
8ζ
, e−q0 |X | ≈ e−

ζ
σ0
|X |
(
1− σ0 |X |

8ζ

)
,

B̂a (λ,X ) ≈ e−
|X |
2 − σ0e

− ζ
σ0
|X |

2ζ
+

σ20 |X | e
− ζ

σ0
|X |

16ζ2
,

where ζ =
√
2λ. It is well-known that for z < 0

L−1
(
e ζz

ζ3

)
=
√
TΨ3

(
z√
T

)
,

L−1
(
e ζz

ζ4

)
= TΨ4

(
z√
T

)
,

(14)

where
Ψ3 (ξ) = ξΦ (ξ) + φ (ξ) ,

Ψ4 (ξ) =
1
2

((
ξ2 + 1

)
Φ (ξ) + ξφ (ξ)

)
.
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One-tile case. Approximate Solution

Equation (14) shows that the inverse Carson-Laplace transform of B̂a (λ)
yields an approximate option price:

Ba (T ,X ) = e−
|X |
2 − σ0

√
TΨ3

(
− |X |

σ0
√
T

)
+

σ20T |X |
8

Ψ4

(
− |X |

σ0
√
T

)
.

(15)
Exact and approximate implied volatilities for several representative
maturities are shown in Figure 6.
It is clear that exact implied volatility is equal to σ0.
This Figure shows that the above approximation is reasonably accurate
provided that σ20T is suffi ciently small.
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Figure: Implied volatility given by equation (15) with σ0 = 25% vs. exact implied
volatility σ0.
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Two-tile case

Consider two-tiled case:

σ (X ) =
{

σ0, X ≤ X̄ ,
σ1 X > X̄ .

For concreteness, the case when X < X̄0 is considered. In the case in
question equation (9) has the form
−1 1 1 0
−q0 q0 −q0 0
0 −eq0(X̄0−X ) −e−q0(X̄0−X ) e−q1(X̄0−X )

0 −q0eq0(X̄0−X ) +q0e−q0(X̄0−X ) −q1e−q1(X̄0−X )




α0,+
α1,+
α1,−
α2,−

 =


0
−1
0
0

 ,
so that (

α0,+ α1,+ α1,− α2,−
)

=
(

1
2q0
+ (q0−q1)

2q0(q0+q1)
e−2q0(X̄0−X ) (q0−q1)

2q0(q0+q1)
e−2q0(X̄0−X ) 1

2q0
1

(q0+q1)
e(q1−q0)(X̄0−X )

)
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Two-tile case

Accordingly, when X > X̄0, Ĝ (λ,X ,X ′) can be written as

Ĝ
(
λ,X ,X ′

)
=

{
1
2q0
e−q0 |X

′−X | + (q0−q1)
2q0(q0+q1)

eq0(X
′+X−2X̄0), X ′ ≤ X̄0,

1
(q0+q1)

e−q1(X
′−X̄0)−q0(X̄0−X ), X̄0 < X ′.

By the same token, when X > X̄0, it can be written as

Ĝ
(
λ,X ,X ′

)
=

{
1

(q0+q1)
eq1(X̄0−X )+q0(X

′−X̄0), X ′ ≤ X̄0,
1
2q1
e−q1 |X

′−X | + (q1−q0)
2q1(q1+q0)

e−q1(X
′+X−2X̄0), X̄0 < X ′.

As expected, Ĝ (λ,X ,X ′) = Ĝ (λ,X ′,X )
It can be shown that

B̂ (λ,X ) = e−
|X |
2 − (q(X )+q(0)−(q0+q1))e−q(X )|X−X̄0 |−q(0)|X̄0 |

2q(0)(q0+q1)
− e−q(X )(|X |−|X̄0 |)−q(0)|X̄0 |

(q(X )+q(0)) .

(16)

q (X ) =

√
2λ

σ2 (X )
+
1
4
=


√

2λ
σ20
+ 1

4 , X ≤ X̄0,√
2λ
σ21
+ 1

4 , X > X̄0.
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Two-tile case

When λ→ ∞, B̂ (λ,X ) can be expanded as follows

B̂ (λ,X ) = e−
|X |
2

−
((

1
σ(0)+

1
σ(X )

)
−
(
1

σ0
+ 1

σ1

))
2

σ(0)

(
1

σ0
+ 1

σ1

)
ζ

e
−
(
|X−X̄0 |

σ(X ) +
|X̄0 |
σ(0)

)
ζ
(
1− σ(X )|X−X̄0 |+σ(0)|X̄0 |

8ζ

)
− 1(

1
σ(0)+

1
σ(X )

)
ζ
e
−
(
|X |−|X̄0 |

σ(X ) +
|X̄0 |
σ(0)

)
ζ
(
1− σ(X )(|X |−|X̄0 |)+σ(0)|X̄0 |

8ζ

)
.

B̂ (λ,X ) = e−
|X |
2

−
σ(0)

(
σ0σ1 (σ(0)+σ(X ))

σ(0)σ(X ) −(σ0+σ1)
)

2(σ0+σ1)ζ
e
−
(
|X−X̄0 |

σ(X ) +
|X̄0 |
σ(0)

)
ζ
(
1− σ(X )|X−X̄0 |+σ(0)|X̄0 |

8ζ

)
− σ(0)σ(X )
(σ(0)+σ(X ))ζ e

−
(
|X |−|X̄0 |

σ(X ) +
|X̄0 |
σ(0)

)
ζ
(
1− σ(X )(|X |−|X̄0 |)+σ(0)|X̄0 |

8ζ

)
.

The inverse Carson-Laplace transform using on equation (14) yields
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Two-tile case

B (T ,X ) = e−
|X |
2 − σ (0)

√
T(

(σ0+σ1−2σ(0))
(σ0+σ1)

Ψ3

(
−
(
|X−X̄0 |

σ(X )
√
T
+ |X̄0 |

σ(0)
√
T

))
+Ψ3

(
−
(
|X |−|X̄0 |
σ(X )

√
T
+ |X̄0 |

σ(0)
√
T

)))
+ σ(0)σ(X )T

8


(

σ0σ1 (σ(0)+σ(X ))
σ(0)σ(X ) −(σ0+σ1)

)
(σ(X )|X−X̄0 |+σ(0)|X̄0 |)

(σ0+σ1)σ(X )

Ψ4

(
−
(
|X−X̄0 |

σ(X )
√
T
+ |X̄0 |

σ(0)
√
T

))
+ 2(σ(X )(|X |−|X̄0 |)+σ(0)|X̄0 |)

(σ(0)+σ(X )) Ψ4

(
−
(
|X |−|X̄0 |
σ(X )

√
T
+ |X̄0 |

σ(0)
√
T

)))
.

(17)

Figure 7 shows the implied volatility computed using approximate formula
(17) and the implied volatility computed by the exact algorithm.
This formula provides adequate solution to the original problem.
Note that the classical short-time approximation

σimp (X ) =
X∫ X

0
d ξ

σloc (ξ)

=
|X |

|X |−|X̄0 |
σ(X ) + |X̄0 |

σ(0)

, (18)

is extremely inaccurate in the case under consideration.A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 96 / 179



Two-tile vol approximation
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Figure: Two-tile case with σ0 = 30%, σ1 = 20%, X̄0 = −0.1. Implied volatility
computed using equation (17) vs. implied volatility computed via the exact
Carson-Laplace using equation (16); for five representative maturities T = 1, ..., 5.
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Short time asymptotics for local vol, I

Following Andersen & Brotherton-Ratcliffe (1999) we consider Dupire
equation written in terms of Σ = σL and σ = σI :

Σ2 =
2TσσT + σ2(

1− kσk
σ

)2
+ Tσσkk − 1

4T
2σ2σ2k

,

or, equivalently,

σ2 − Σ2
(
1− kσk

σ

)2
+ 2TσσT − TΣ2σσkk +

1
4
T 2Σ2σ2σ2k = 0.

Expansion
σ = A (1+ TB + ...) .

The zero-order equation

A2 − Σ2
(
1− kAk

A

)2
= 0.
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Short time asymptotics for local vol, II

Ansatz

A (k) =
k(∫ k

0
d ξ

Σ(ξ)

) ,
yields

kAk
A
=

(
1− A

Σ

)
, 1− kAk

A
=
A
Σ
,

and

A2 − Σ2
(
A
Σ

)2
= 0,

as desired.
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Short time asymptotics for local vol, III

Equation for B:

2A2B + 2Σ2
A
Σ
kBk + 2A

2B − Σ2AAkk = 0,

or

kBk + 2
A
Σ
B − 1

2
ΣAkk = 0,

It is easy to check that

ΣAkk = −
2A2

k

(
Ak
A
− Σk
2Σ

)
,

so that we can rewrite the equation as follows

kBk + 2
A
Σ
B +

A2

k

(
Ak
A
− Σk
2Σ

)
= 0
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Short time asymptotics for local vol, IV

Ansatz

B (k) =
A2 (k)
k2

ln

(√
Σ (0)Σ (k)
A (k)

)
,

yields

lhs =
2A2

k2

(
kAk
A
− 1
)
ln

(√
Σ (0)Σ (k)
A (k)

)
+
A2

k

(
Σk
2Σ
− Ak
A

)

+
2A3 (k)
k2Σ

ln

(√
Σ (0)Σ (k)
A (k)

)
+
A2

k

(
Ak
A
− Σk
2Σ

)
= 0,

as needed.
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Short time asymptotics for local vol, V

It is useful to compute σ (0) , σk (0) , σkk (0) , .... It is clear that
σ (0) = Σ (0). We have

k
σ (k)

=
∫ k

0

dξ

Σ (ξ)
,

1
σ (k)

− kσk (k)
σ2 (k)

=
1

Σ (k)
,

−2σk (k)
σ2 (k)

− kσkk (k)
σ2 (k)

+
2kσ2k (k)

σ3 (k)
= −Σk (k)

Σ2 (k)
,

−3σkk (k)
σ2 (k)

+
6σ2k (k)
σ3 (k)

+ ... = −Σkk (k)
Σ2 (k)

+
2Σ2k (k)
Σ3 (k)

so that

σ (0) = Σ (0) , σk (0) =
Σk (0)
2

, σkk (0) =
2Σ (0)Σkk (0)− Σ2k (0)

6Σ (0)
.
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LECTURE IV
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Analytical solution for local vol, I

We consider options on the underlying driven by Brownian motion with
local volatility. The corresponding backward pricing problem has the form

Vt +
1
2

(
σNloc (F )

)2
VFF = 0,

V (T ,F ) = v (F ) .

We can simplify this problem via the Liouville transform

dF
σNloc (F )

= dY , Y (F0) = 0,
V (t,F )√

σNloc (F )
= U (t,Y ) ,

which results in the following pricing problem

Ut +
1
2
UYY + 1

8ΘN (Y )U = 0, (19)

U (T ,Y ) = u (Y ) ,

where Y0 ≤ Y ≤ Y∞,
A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 104 / 179



Analytical solution for local vol, II

u (Y ) =
v (F (Y ))√
σNloc (F (Y ))

,

ΘN (Y ) = 4
(

σNloc

)3/2
((

σNloc

)1/2
)
FF
= 2σNlocσNloc ,FF −

(
σNloc ,F

)2
= 2

(
ln
(

σNloc

))
YY
−
(
ln
(

σNloc

)
Y

)2
,

Y0 = −
∫ F0

0

dF
σNloc (F )

, Y∞ =
∫ ∞

F0

dF
σNloc (F )

.

The corresponding interval can be bounded or unbounded depending on
σNloc (F ). It is clear that, if so desired, we can express σNloc in terms of Θ
via the standard Riccati transform. A simple calculation yields σNloc = ζ−2,
where ζ is a solution of the following equation

1
2

ζYY +
1
8ΘN (Y ) ζ = 0.
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Analytical solution for local vol, III

Thus, we can expect to find a (semi)-analytical solution of the pricing
equation provided that we know the solution of the spectral problem

−1
2

ΥYY (Y ,λ)−
1
8

ΘN (Y )Υ (Y ,λ) = λΥ (Y ,λ) , (20)

supplied with appropriate boundary conditions at Y0, Y∞. In this case we
call the potential ΘN (Y ) solvable. Choosing Θ = const is an obvious
possibility, others include quadratic potential Θ, etc.
The corresponding spectrum can be both continuous and discrete.
Assuming that the spectrum is parametrized in the most convenient way,
so that λ = λ (k), Υ (Y ,λ) = Υ (Y , k) we can symbolically represent the
solution of the problem (19) in the form

U (τ,Y ) =
∫
K

e−λ(k )τΥ (Y , k)ψ (k) dk, (21)

where τ = T − t, and the coeffi cients ψ (k) are uniquely determined by
the expansion of the terminal condition

u (Y ) =
∫
K

Υ (Y , k)ψ (k) dk.
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Quadratic vol, I

In particular, when volatility is quadratic, the corresponding transformed
PDE also has constant coeffi cients:

Ut +
1
2
UYY −

1
8

ωU = 0,

ω = β2 − 4αγ.

Assuming that

σNloc (F ) = α (F − p) (F − q) , p < q < 0,

ω = α2 (q − p)2 > 0.
we have

Y =
1√
ω
ln
(
(F − q) (F0 − p)
(F − p) (F0 − q)

)
, F =

p (F0 − q) e
√

ωY − q (F0 − p)
(F0 − q) e

√
ωY − (F0 − p)

.

The positive semi-axis is compactified and mapped into a finite interval:

I =
1√
ω

[
ln
(
q (F0 − p)
p (F0 − q)

)
, ln
(
F0 − p
F0 − q

)]
= [Y0,Y∞] , |I | =

ln
(
p
q

)
√

ω
.
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Quadratic vol, II

The corresponding call spread payoff for u has the form

u (Y ) =
√

α√
ω

 −p
√

F0−q
F0−p e

√
ωY /2 + q

√
F0−p
F0−q e

−
√

ωY /2, Y ∈ [Y0,YK ] ,
K
(
−
√

F0−q
F0−p e

√
ωY /2 +

√
F0−p
F0−q e

−
√

ωY /2
)
, Y ∈ [YK ,Y∞] ,

where

YK =
1√
ω
ln
(
(K − q) (F0 − p)
(K − p) (F0 − q)

)
.
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Quadratic vol, III

Solutions of the corresponding problems can be found either via the
eigenfunction expansion method or the method of images. When the
eigenfunction expansion method is used, solutions are represented in the
form

U (τ,Y ) =
∞

∑
l=1

e−
1
2 (k 2l +

1
4 )ωτφl sin

(√
ωkl (Y − Y0)

)
,

where

kl =
πl√
ω |I |

=
πl

ln
(
p
q

) > 0,
and φl are the corresponding Fourier coeffi cients. The calculation of φl is
tedious but straightforward and gives the following answer

φl =
2 (−1)l+1

√
σNloc (K )

|I |ω
(
k2l +

1
4

) sin
(
kl ln

(
K − p
K − q

))
,
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Quadratic vol, IV

We now solve the problem via the method of images. We define

Yl =
1√
ω
ln
(
p2l

q2l

)
, Y0 =

1√
ω
ln
(
q (F0 − p)
p (F0 − q)

)
,

Y∞ =
1√
ω
ln
(
F0 − p
F0 − q

)
, YK =

1√
ω
ln
(
(F0 − p) (K − q)
(F0 − q) (K − p)

)
.

The Green’s function has the form

G
(
τ,Y ,Y ′

)
=

∞

∑
l=−∞

(
g
(
τ,Y − Y ′ − Yl

)
− g

(
τ,Y + Y ′ + Yl − 2Y0

))
=

∞

∑
l=−∞

(
g
(
τ,Y ′ + Yl − Y

)
− g

(
τ,Y ′ + Yl + Y − 2Y0

))
.
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Quadratic vol, V

We are interested in Y = 0, so that

G
(
τ,Y ′

)
≡ G

(
τ, 0,Y ′

)
=

∞

∑
l=−∞

(
g
(
τ,Y ′ + Yl

)
− g

(
τ,Y ′ + Yl − 2Y0

))
.

Generic integral

m (x ; a, b, c) =
∫
ecxφ (ax + b) dx =

1
a
e−

bc
a +

c2

2a2 Φ
(
ax + b− c

a

)
,

so that

I±l
(
τ,Y ′

)
=
∫
e±

√
ωY ′
2 g

(
τ,Y ′ + Yl

)
dY ′ = e∓

√
ωYl
2 Φ

(
Y ′ + Yl√

τ
∓
√

ωτ

2

)
,

J±l
(
τ,Y ′

)
=

∫
e±

√
ωY ′
2 g

(
τ,Y ′ + Yl − 2Y0

)
dY ′

= e∓
√

ω(Yl−2Y0)
2 Φ

(
Y ′ + Yl − 2Y0√

τ
∓
√

ωτ

2

)
.
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Quadratic vol, VI

In the case when volatility is quadratic with negative roots, we can
represent the price of a call option in two complementary ways. The
eigenfunction expansion representation has the form

C (τ,F0,K ) = F0 −
2

ln (p/q)

√
σNloc (F0) σNloc (K )

ω

×
∞

∑
l=1

e−
1
2ωτQ (kl )

Q (kl )
sin (klZ∞) sin (kl (Z∞ − ZK )) ,

where kl = πl/ ln (p/q), and

Z∞ = ln
(
F0 − p
F0 − q

)
, ZK = ln

(
(F0 − p) (K − q)
(F0 − q) (K − p)

)
.

It can be shown that for p → −∞, q → 0, αp → const, this formula
becomes the standard LL formula.
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Quadratic vol, VII

The method of images provides a viable alternative. The corresponding
representation has the form

C (τ,F0,K )

= F0 −

√
σNloc (F0)

ω

(√
σNloc (0)

∞

∑
l=−∞

(Υ (ωτ,Zl + Z0)− Υ (ωτ,Zl − Z0))

+
√

αK 2
∞

∑
l=−∞

(Υ (ωτ,Zl − Z∞ + 2Z0)− Υ (ωτ,Zl − Z∞))

+
√

σNloc (K )
∞

∑
l=−∞

(Υ (ωτ,Zl − ZK )− Υ (ωτ,Zl − ZK + 2Z0))
)
,

Υ (v , k) = e−
k
2 CS (v , k) = e−

k
2 Φ
(
k√
v
−
√
v
2

)
+ e

k
2 Φ
(
− k√

v
−
√
v
2

)
,

Zl = ln
(
p2l

q2l

)
, Z0 = ln

(
q (F0 − p)
p (F0 − q)

)
.

It can be checked that for p → −∞, q → 0, αp → const, this formula
becomes the standard BS formula.
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Quadratic vol, VIII

It is worth noting that processes with quadratic volatility are not
matringales, but rather supermatingales, see., e.g., Andersen (2008). As a
consequence, the solution of the corresponding pricing problem is not
unique and a proper one has to be chosen. This choice is implicitly done
above. Non-uniqueness also means that there are (many) non-zero
solutions of the pricing problem with zero initial and boundary conditions.
Assuming for brevity that p = q = 0, so that

σNloc (F ) = αF 2, α > 0,

we can represent the corresponding homogeneous pricing problem as
follows:

Vτ −
1
2

α2F 4VFF = 0, V (0,F ) = 0, V (τ, 0) = 0.
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Quadratic vol, IX

It can be shown that the generic non-trivial solution of the above problem
has the form

V (τ,F ; h) =
1
α

∫ τ

0

e−(2α2F 2(τ−τ′))
−1√

2π (τ − τ′)3
h
(
τ′
)
dτ′.

In particular, when h (τ) = 1, we have

V (τ,F ; 1) = 2FΦ
(
− 1

αF
√

τ

)
.
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Poisson summation formula

The famous Poisson summation formula states that under appropriate
regularity conditions we have

∞

∑
k=−∞

g (x + 2πk) =
1
2π

∞

∑
n=−∞

ĝ (n) e inx ,

ĝ (n) =
∫ ∞

−∞
g (x) e−inxdx .

Consider h (x) ≡ ∑∞
k=−∞ g (x + 2πk). It is 2π periodic and

h (n) =
1
2π

∫ 2π

0
h (x) e−inxdx =

1
2π

∫ ∞

−∞
g (x) e−inxdx =

1
2π
ĝ (n) .

A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 116 / 179



Green’s function for correlated Brownian motions, I

Without jumps, we need to find Green’s function for the correlated heat
equation in the quarter-plane, i.e., to solve the following problem

Gt − 1
2

(
σ21Gx1x1 + 2ρσ1σ2Gx1x2 + σ22Gx2x2

)
+ µ1Gx1 + µ2Gx2 = 0

G (t, x1, 0) = 0, G (t, 0, x2) = 0

G (t, x1, x2)→ δ
(
x1 − x ′1

)
δ
(
x2 − x ′2

)
Standard transform

G = exp
(
αt + β1

(
x1 − x ′1

)
+ β2

(
x2 − x ′2

))
u

removes drift terms provided that

Σβ = µ, α = −1
2

Σ−1µ · µ
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Green’s function for correlated Brownian motions, II

Lu = ut − 1
2

(
σ21ux1x1 + 2ρσ1σ2ux1x2 + σ22ux2x2

)
= 0

We rescale x1, x2, u and introduce ξ1, ξ2, v such that

xi = σi ξ i , x ′i = σi ξ
′
i , u =

v
σ1σ2

,

In these variables the pricing problem becomes

Mv = vt −
1
2

(
vξ1ξ1 + 2ρvξ1ξ2 + vξ2ξ2

)
= 0

v (t, ξ1, 0) = 0, v (t, 0, ξ2) = 0

v (t, ξ1, ξ2)→ δ
(
ξ1 − ξ ′1

)
δ
(
ξ2 − ξ ′2

)
.
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Green’s function for correlated Brownian motions, III

Next, we make a further linear transform

(ξ1, ξ2) = (ρ̄p1 + ρp2, p2) ,
(
ξ ′1, ξ

′
2

)
=
(
ρ̄p′1 + ρp′2, p

′
2

)
, v =

w
ρ̄

where ρ̄ =
√
1− ρ2, and rewrite the pricing problem as follows

Nw = wt −
1
2
(wp1p1 + wp2p2) = 0

w (t, p1, 0) = 0, w (t,−ρp2/ρ̄, p2) = 0

w (t, p1, p2)→ δ
(
p1 − p′1

)
δ
(
p2 − p′2

)
where (p′1, p

′
2) =

((
ξ ′1 − ρξ ′2

)
/ρ̄, ξ ′2

)
. We now have the standard heat

equation in an angle and can use our previous results. This angle is formed
by the horizontal axis p2 = 0 and a sloping line p1 = −ρp2/ρ̄. It is acute
when ρ < 0 and blunt otherwise. The size of this angle is α =atan(−ρ̄/ρ).
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Eigenfunction expansion

The solution of the above problem via the method of images was
independently introduced in finance by He et al., Zhou and Lipton. We
want to find the Green’s function for the following parabolic equation

wt −
1
2

(
wrr +

1
r
wr +

1
r2
wφφ

)
supplied with the boundary conditions of the form

w (t, r , φ) →
r→0

C < ∞, w (t, r , φ) →
r→∞

0, w (t, r , 0) = 0, w (t, r , α) = 0

and the initial condition

w (t, r , φ) →
t→0

δ (r − r ′) δ (φ− φ′)

r ′

The fundamental solution has the form

Ψα

(
t, r , φ|0, r ′, φ′

)
=
2e−(r

2+r ′2)/2t

αt

∞

∑
n=1

Inπ/α

(
rr ′

t

)
sin
(
nπφ′

α

)
sin
(
nπφ

α

)
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Method of images, I

We introduce the following function f (p, q) with p ≥ 0, −∞ < q < ∞,
(which is a close relation of α-stable Levy distributions):

f (p, q) = 1− 1
2π

∫ ∞

−∞

e−p(cosh(2qζ)−cos(q))

ζ2 + 1
4

dζ

We also define the following auxiliary function h (p, φ):

h (p, q) =
1
2
(s+f (p,π + q) + s−f (p,π − q))

where
s± = sign (π ± q)
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Method of images, II

Then we can represent unbounded Ψ (t, r , φ|0, r ′, φ′) in the following
remarkable form, which can be viewed as a direct generalization of the
planar 2D case:

Ψ
(
t, r , φ|0, r ′, φ′

)
=

1√
2πt

g
(
d (r , r ′, φ− φ′)√

t

)
h
(
rr ′

t
, φ− φ′

)
where

d
(
r , r ′, φ− φ′

)
=
√
r2 + r ′2 − 2 cos (φ− φ′) rr ′

The corresponding Ψα can be written as follows:

Ψα

(
∗|0, r ′, φ′

)
=

∞

∑
n=−∞

[
Ψ
(
∗|0, r ′, φ′ + 2nα

)
−Ψ

(
∗|0, r ′,−φ′ + 2nα

)]

A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 122 / 179



Non-periodic Green’s function
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Important remark

For short times, implied volatility generated by diffusion processes is very
flat (viewed as function of ∆). Hence these processes can not be used to
explain forex smile.
Indeed, for the quadratic volatility model with negative real roots, say,
expressions for σ

(0)
imp , σ

(1)
impbecome especially simple

σ
(0)
imp (k) =

√
ωk

ln
(
(Fek−q)(F−p)
(Fek−p)(F−q)

) = √
ω ln

(K
F

)
ln
(
(K−q)(F−p)
(K−p)(F−q)

) ,

σ
(1)
imp (τ, k) = σ

(0)
imp (k)

(
1+

τ

24

((
σLNloc (k̄)

)2
−ω

))
= σ

(0)
imp (τ, k)

(
1+

τ

24

((
αK̄ + β+

γ

K̄

)2
−ω

))
.

This observation is illustrated in the following Figures
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Short-time asymptotics for QVP
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Implied vol for quad vol model for fixed delta as function
of time
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Implied vol for quad vol model for fixed time as function of
delta
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Calibration of Heston model, I

There are several approaches one can use.
First, when ρ = 0 one can use simple scenario analysis of Hull & White
(1988) and write

C (SV ) (0, S ,T ,K ) =
∫ ∞

0
C (BS ) (0,S ,T ,K ; σ̂) f (σ̂) d σ̂, σ̂2 =

∫ T
0 σ2t dt

T
.

When ρ 6= 0 this formula can be extended (as was done by Willard
(1997)):

C (SV ) (0, S ,T ,K ) =
∫ ∞

0
C (BS )

(
0, e−

1
2 ρ2 σ̂2T+ρJS ,T ,K ;

√
1− ρ2σ̂

)
g (σ̂, J) d σ̂dJ,

J =
∫ T

0
σtdWt .

These formulas reduce dimensionality of the problem to 1D.
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Calibration of Heston model, II

Willard formula gives the following simple expression for the "equivalent"
local vol (see Lee (2001), Henry-Labordére (2009)):

σ2loc =

E

{
σ2T

e
− X 2

2(1−ρ2)T σ̂2

T σ̂2

}

E

{
e
− X 2

2(1−ρ2)T σ̂2

T σ̂2

} , X = ln
(
K
S

)
+
1
2

ρ2σ̂2T − ρJ.
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Calibration of Heston model, III

Second, Assuming that vol-of-vol ε is a small parameter, we can write
Heston price as a series in powers of ε. Inspired by earlier work of Hull &
White (1987), Lipton (1997, 2001) and Lewis (2000) obtained the
following expansions:

C (H ) = CBS (
√

γ)

+

(
ερf (1)1 d−

γ
+ ε2

(
− f

(2)
1 (1− d+d−)

γ
√

γ
+

ρ2f (2)2

(
1− d2−

)
γ
√

γ

+
ρ2f (2)3

(
3− 3d+d− − 3d2− + d+d3−

)
γ2
√

γ

))
Φ (d−)

γ = θτ +
(v − θ)

κ

(
1− e−χ

)
, χ = κτ,

f (1)1 = − 1
2κ2

(
v
(
1− (1+ χ) e−χ

)
− θ

(
2− χ− (2+ χ) e−χ

))
.

etc.
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Calibration of Heston model, IV

These formulas show that

σimp,0 (l) =
√

v

(
1+

ρl
4
+

(
1− 5

2ρ2
)
l2

24

)
,

where l = εk/v.
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Calibration of Heston model, V

Third, we can use the stoch vol version of the general Lewis (2000, 2001)
and Lipton (2000, 2001, 2002) model and represent the price in the form
(for brevity we put r = 0)

C (SV ) (T ,K ) = S − K
2π

∞∫
−∞

e(−iu+
1
2 ) ln(S/K )+α(SV )(T ,u)−β(SV )(T ,u)v(u2+ 1

4 )(
u2 + 1

4

) du,

α(SV ) = −κθ

ε2

(
ψ+T + 2 ln

(
ψ− + ψ+e

−ζT

2ζ

))
, β(SV ) =

1− e−ζT

ψ− + ψ+e
−ζT ,

ψ± = ∓ (iuερ+ κ̂) + ζ, κ̂ = κ − ερ

2

ζ =

√
u2ε2 (1− ρ2) + 2iuερκ̂ + κ̂2 +

ε2

4
.

This formula is more effi cient than the original Heston (1993) formula.
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General LL formula

When jumps are present (but local vol is flat) the LL formula can easily be
generalized

C (SVJD ) (T ,K ) = S − K
2π

∞∫
−∞

e(−iu+
1
2 ) ln(S/K )+α(JD )(T ,u)+α(SV )(T ,u)−β(SV )(T ,u)v(u2+ 1

4 )(
u2 + 1

4

) du.

This formula is very effi cient and can be used in order to analyze both the
qualitative and asymptotic behavior of the implied vol surface. In
particular, one can derive all known (and many unknown) results regarding
short-time (T → 0), long-time (T → ∞), wing (ln (S/K )→ ±∞), and
weak perturbation (ε→ 0,λ→ 0) asymptotics in a very straightforward
fashion.
For that reason (?), it has been a subject of the disappearing commissar
treatment.
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Calibration of the Universal vol model, I

In the most general case, we still can follow Dupire recipe (modified as
appropriate) and specify his (and Gyöngy’s) formula for the problem at
hand. For brevity we put r = 0. We follow Lipton (2002).
The corresponding Fokker-Planck equation for the t.p.d.f. P (T ,K ,w)
reads

PT −
1
2

(
wσ2loc (T ,K )K

2P
)
KK − (ρεwσloc (T ,K )KP)Kw −

1
2

(
ε2P
)
ww

− ((−λm)KP)K + (κ (θ − w)P)w − λ
∫
P
(
e−jK

)
e−jφ (j) dj + λP = 0,

P (0.K ,w) = δ (S −K ) δ (v − w) .
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Calibration of the Universal vol model, II

For our purposes we mostly interested in marginal t.p.d.f. Q (T ,K ) given
by

Q (T ,K ) =
∫ ∞

0
P (T ,K ,w) dw .

Integration of the FP equation yields

QT −
1
2

(
V (T ,K ) σ2loc (T ,K )K

2Q
)
KK − ((−λm)KQ)K

−λ
∫
Q
(
e−jK

)
e−jφ (j) dj + λQ = 0,

where

V (T ,K ) =

∫ ∞
0 wP (T ,K ,w) dw

Q (T ,K )
.
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Calibration of the Universal vol model, III

Finally, application of the Bredeen-Litzenberger yields

CT −
1
2
V (T ,K ) σ2loc (T ,K )K

2CKK − λmKCK

−λ
∫
C
(
e−jK

)
e−jφ (j) dj + λ (m+ 1)C = 0,

C (0,K ) = (S −K )+ .
Various special cases had been studied in the literature earlier, notably, by
Andersen & Andreasen (2000), but the general formula was not known.
This calibration procedure works very well, as is shown in the following
figure.
It has been rediscovered several times.
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LSV Calibration Example (thanks to A Sepp)
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Extension of Heston model

This formula can be extended to the case when vol is composite (provided
that ρ = 0) by replacing En as follows

En = e
α(SV )(T ,un)−β(SV )(T ,u)v(u2n+ 1

4 ).

Using the corresponding expression as zeroth-order approximation, we can
perform expansion in powers of ρ. This expansion works very well.
Alternatively, we can perform expansion in powers of ε which results in the
so-called "classic six" set of equations (Lipton (1997)) which works very
well and has been recently used by Andreasen and Huge (2010) with great
success.
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LECTURE V
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Asymptotics I

Consider
F (t) = F (0)eX (t), (22)

where X (t) is a Lévy process. In this setup, particular emphasis has been
put on the small-time asymptotic of C (t; τ,K ) for τ → 0 and K fixed at
some level different from F (t). A typical result in this area of research is
that

C (t; τ,K ) ∼ τ, K 6= F (t),
where ∼ indicates the leading order term as τ → 0. Small-time results for
at-the-money (ATM) options where K = F (t) are scarcer, but Carr & Wu
(2003) use Tanaka’s formula to demonstrate that

C (t; τ,F (t)) ∼
{

τ, σ = 0,√
τ, σ 6= 0,
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Asymptotics II

Tankov and many others further elaborate on this result in implied
volatility space, and demonstrates that for a finite variation Lévy process
(necessarily without a diffusion component)

σimp (t; τ,F (t)) ∼
√
2πτmax

{∫
R
(ex − 1)+ ν (dx) ,

∫
R
(1− ex )+ ν (dx)

}
,

(23)
where ν(·) is the Lévy measure of X . In the presence of a diffusion
component with constant volatility σ, Tankov (2010) shows that if∫

R
x2ν(dx) < ∞,

then
σimp (t; τ,F (t)) ∼ σ

for τ ↓ 0.
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Levy Processes, I

Let X (t) be a Lévy process, i.e. a cadlag process with stationary and
independent increments, satisfying X (0) = 0. It is known that every Lévy
process is characterized by a triplet (γ̄, σ, ν), where γ̄ and σ are constants,
and ν is a (possibly infinite) Radon measure, known as the Lévy measure.
The Lévy measure must always satisfy∫

R
min

(
x2, 1

)
v(dx) < ∞. (24)

To characterize the infinitesimal generator of a Lévy process, let E be the
expectation operator, and define

V (t, x) = E (f (X (T ))|X (t) = x)
for some suitably regular function f (·). It can be shown that V solves a
partial integro-differential equation (PIDE) of the form

Vt +γVx +
1
2

σ2 (Vxx − Vx )+
∫

R

[
V (t, x + y)− V (t, x)− y1|y |≤1Vx (t, x)

]
ν(dy) = 0,

(25)
where γ = γ̄+ σ2/2, subject to the terminal condition V (T , x) = f (x) .
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Levy Processes, II

By choosing f (x) = exp(iux) and solving (25) through an affi ne ansatz

V (t, x ,T ) = exp(ψ(u)(T − t) + iux),

one arrives at the famous Lévy-Khinchine formula,

φ(t, u) , E
(
e iuX (t)

)
= exp (ψ(u)t) ,

ψ(u) = γiu − 1
2

σ2u (u + i) +
∫

R

[
e iux − 1− iux1|x |≤1

]
ν(dx), u ∈ R,

(26)
where ψ is the so-called Lévy exponent. In practice, a Lévy process may be
specified either by its exponent ψ or by its Lévy measure ν.

A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 143 / 179



Levy Processes, III

We wish for F (t) to be a martingale in some pricing measure. For this, we
impose that, for any t > 0,

E
(
eX (t)

)
= 1, (27)

which requires that the first exponential moment of X (t) exists in the first
place, i.e. that large positive jumps be suitably bounded∫

|x |>1
exν(dx) < ∞. (28)

Equivalently, we require that φ(t, z) exists in the complex plane strip

S = {z ∈ C|Im(z) ∈ [−1, 0]},
and that

φ(t,−i) = exp
(

γt + t
∫

R

[
ex − 1− x1|x |≤1

]
ν(dx)

)
= 1,

in order to satisfy condition (27). This implies the constraint

γ = −
∫

R

[
ex − 1− x1|x |≤1

]
ν(dx). (29)A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 144 / 179



Characteristic function, I

Using (29) to eliminate γ from (26), the martingale restriction on F allows
us to write the Lévy exponent in the form

ψ(u) = −1
2

σ2u(u + i) +
∫

R

[
e iux − 1− iu (ex − 1)

]
ν(dx). (30)

Similarly, we may write the PIDE (25) as

Vt +
1
2

σ2 (Vxx − Vx )+
∫

R
[V (t, x + y)− V (t, x)− (ey − 1)Vx (t, x)] ν(dy) = 0.

(31)
Whenever possible, it is more convenient to use the following forms of the
PIDE (25), namely,

Vt + γ′Vx +
1
2

σ2 (Vxx − Vx ) +
∫ ∞

−∞
[V (t, x + y)− V (t, x)] ν(dy) = 0,

(32)

Vt +γ′′Vx +
1
2

σ2 (Vxx − Vx )+
∫ ∞

−∞
[V (t, x + y)− V (t, x)− yVx (t, x)] ν(dy) = 0,

(33)
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Characteristic function, II

First, if the Lévy measure is finite (i.e., the jump component of the process
has finite activity), the resulting process for X (t) is a combination of a
Brownian motion and an ordinary compound Poisson jump-process. We
may then replace ν(dx) with

ν(dy) = λ j(dy), λ ,
∫

R
ν(dx) < ∞, (34)

where j(dx) = ν(dx)/λ is now a properly normed probability measure for
the distribution of jump sizes in X , and λ is the (Poisson) arrival intensity
of jumps. We may now write

ψ(u) = γ′iu − 1
2

σ2u (u + i) + λ

(∫
R
e iux j( dx)− 1

)
,

where the martingale restriction requires that γ′ satisfies the martingale
condition. Notice that if we define a random variable J with density j(dx),
then we can, in the finite activity case, interpret

ψ(u) = γ′iu − 1
2

σ2u (u + i) + λ [φJ (u)− 1] , (35)

where φJ (·) is the characteristic function of the jump size J.
For finite activity processes pricing PIDE simplifies to:

Vt + γ′Vx +
1
2

σ2 (Vxx − Vx ) + λ
∫

R
V (t, x + y) j(dy)− λV = 0.
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Characteristic function, III

The jump component of a Lévy process is said to have finite variation if∫
|x |≤1

|x |ν(dx) < ∞. (36)

Under this condition, truncation of the Lévy exponent ψ around the origin
is not necessary, and we may write

ψ(u) = γ′iu− 1
2

σ2u (u + i)+
∫

R

[
e iux − 1

]
ν( dx), γ′ = γ−

∫
|x |≤1

xν(dx),

(37)
For the PIDE (25), we then get the simpler form (32).
Finally, for the case where the first moment exists,∫

R
|x |1|x |>1ν( dx) < ∞, (38)

we may write the Lévy exponent in purely compensated form:

ψ(u) = γ′′iu− 1
2

σ2u (u + i)+
∫

R

[
e iux − 1− iux

]
ν( dx), γ′′ = γ+

∫
|x |≤1

xν(dx), .

The corresponding PIDE can be written in the simpler form (33).
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Classification

Establishing short-time ATM volatility smile asymptotics for the
completely generic class of exponential Lévy processes appears to be a
diffi cult problem, so we narrow our focus to classes of processes important
in applications. Of primary importance to us are processes characterized
by Lévy measures of the form

v(dx) =
(
c+
xα+1 e

−κ+x1x>0 +
c−
|x |α+1 e

−κ−|x |1x<0

)
dx , (39)

where we require that κ+ ≥ 1, κ− ≥ 0, c+ ≥ 0, c− ≥ 0, and α < 2. The
resulting class of processes is known as tempered α-stable (TS) Lévy
processes.
The overall behavior of the TS class is closely tied to the selection of the
power α, as demonstrated in Table I.

α Activity Variation
< 0 Finite Finite
(0, 1) Infinite Finite
[1, 2) Infinite Infinite

Table I. The behavior of the TS Lévy class as a function of α
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Special cases

Some important special cases of the TS class include:

The KoBoL (CGMY) model, where c+ = c−;

The exponential jump model, where α = −1;
The Gamma process, where α = 0 and either c− = 0 or c+ = 0;

The Variance Gamma model, where α = 0;

The Inverse Gaussian process, where α = 1/2 and either c− = 0 or
c+ = 0.

For some of the special cases above, explicit formulas exists for the density
of X (t) and for European call options.
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Characteristic function, IV

When α 6= 0 and α 6= 1, the characteristic function for the TS Lévy
process can easily be shown to be

ψ(u) = ∑
s=±

as (κs − siu)α + γiu + δ,

where

as = Γ (−α) cs , ζs = s
(
κα
s − (κs − s)

α) , ηs = −κα
s ,

γ = a+
(
κα
+ − (κ+ − 1)

α)+ a− (κα
− − (κ− + 1)

α) = a+ζ+ − a−ζ−,

δ = − (a+κα
+ + a−κα

−) .
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Fractional derivatives, I

Consider now the TS Lévy class with an added Brownian motion with
volatility σ. For α ∈ (0, 1) the PIDE (32) applies, and has the form

Vt +γVx +
1
2

σ2 (Vxx − Vx )+ ∑
s=±

cs
∫ ∞

0
(V (x + sy)− V (x)) e

−κsydy
y1+α

= 0,

(40)
for α ∈ (1, 2) the PIDE (33) can be used,

Vt +γVx +
1
2

σ2 (Vxx − Vx )+ ∑
s=±

cs
∫ ∞

0
(V (x + sy)− V (x)− syVx (x))

e−κsydy
y1+α

= 0.

(41)
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Fractional derivatives, II

Interestingly, it is possible to rewrite both (40) and (41) in terms of
so-called fractional derivatives.
For non-integer values of α, consider first α ∈ (0, 1), and define left
(s = −1) and right (s = 1) fractional derivatives of order α as follows

Dα
sV (x) =

(−s)α

Γ (−α)

∫ ∞

0
(V (x + sy)− V (x)) dy

y1+α
, s = ±.

We emphasize that with this definition, irrespective of s,

Dα
s e
iux = (iu)αe iux ,

consistent with what one would expect from a generalization of a regular
derivative.
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Fractional derivatives, III

Under some mild regularity assumptions we can write

Dα
sV (x) =

(−s)α−1

Γ (1− α)

∫ ∞

0
Vx (x + sy)

dy
y α
=
(−s)α−1

Γ (1− α)

d
dx

∫ ∞

0
V (x + sy)

dy
y α
.

For all non-integer values of α ∈ (1,∞) we may then define

Dα
sV (x) = (−s)b

αcD
α−bαc
s

(
DbαcV (x)

)
,

where bαc is the floor function, i.e., the largest integer such that bαc < α,
so that

Dα
sV (x) =

(−s)α−1

Γ (1− α+ bαc)
d bαc+1

dxbαc+1

∫ ∞

0
V (x + sy)

dy
y α−bαc .

Notice that in general Dα
+V (x) is complex-valued even when V (x) is

real-valued.
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Fractional derivatives, IV

For α ∈ (0, 1), the PIDE (40) may be written

Vt + γVx +
1
2

σ2 (Vxx − Vx ) + ∑
s=±

(−s)α asesκsxDα
s

(
e−sκsxV

)
+ δV = 0.

(42)
For α ∈ (1, 2), the PIDE (41) can be written as

Vt +

(
γ+ ∑

s=±
sasακα−1

s

)
Vx +

1
2

σ2 (Vxx − Vx )+ ∑
s=±

(−s)α asesκsxDα
s

(
e−sκsxV

)
+ δV = 0.

(43)
In particular, for a regular stable process with κ± = 0, the corresponding
PIDE has the form

Vt + γVx +
1
2

σ2 (Vxx − Vx ) + ∑
s=±

(−s)α asDα
sV = 0.
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Fractional derivatives, V

We introduce the upper and lower computational boundaries B± to
represent the infinite computational domain, and then construct the
finite-difference grid xn = B− + nh, h = (B+ − B−) /N, and discretize
Dα
s f (xn) at a representative grid point as follows

Dα
s f (xn) =

(−s)α

Γ (−α) hα

Kn,s

∑
k=0

Γ (k − α)

Γ (k + 1)
f (xn + s (k − 1) h) ,

Kn,− = n− 1, Kn,+ = N − (n− 1) .

For s = + and s = − this discretization is based on the values of f (·)
computed at all the grid points lying to the right (left) of the point xn, the
point xn itself, and an additional point immediately to the left (right) of it.
This discretization guarantees that the resulting finite difference scheme is
stable.
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Fractional derivatives, VI

As a result of this discretization Dα
s turns into a Hessenberg matrix H

α
s . In

order to take full advantage of this fact we solve a generic evolution
equation of the form (42), (43) by splitting a typical time step into two:

Vm+1n − V ∗n
∆t

+
1
4

(
MV ∗ +MVm+1

)
n +

1
2
(−1)α a+

(
Hα
+V
∗ +Hα

+V
m+1)

n = 0,

V ∗n − Vmn
∆t

+
1
4
(MV ∗ +MVm)n +

1
2
a− (Hα

−V
∗ +Hα

+V
m)n = 0,

where M is the standard tri-diagonal matrix representing advection and
diffusion terms. It is clear that at each half-step we have to solve a
Hessenberg system of equations, so that our scheme is computationally
effi cient, of order O(N). We illustrate the effi ciency of the scheme by
numerically constructing the known PDF for the Inverse Gaussian process;
see Figure 31.
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Numerics vs. analytics
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Figure: Numerical and analytical PDFs for a maximally skewed Lévy-Gauss
process. For comparison, PDFs for the "equivalent" Gaussian and Cauchy
processes are shown as well.
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Lewis-Lipton formula for Levy Processes, I

The key formula allowing one to analyze option prices for Lévy processes
has been independently proposed by Lewis (2000) and Lipton (2000).
The normalized price of a call written on an inderlying driven by an
exponential Lévy process has the form

C (τ, k) = 1− 1
2π

∫ ∞

−∞

E (τ, u)
Q (u)

e−k(iu−
1
2 )du, (44)

where

E (τ, u) = exp
(

τυ (u)− 1
2

σ2τQ (u)
)
,

υ (u) = ψ0

(
u − i

2

)
,

Q (u) = u2 +
1
4
.
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Lewis-Lipton formula for Levy Processes, II

The corresponding derivatives Ck and Ckk can be written as

Ck (τ, k) = u −
1
2π

∫ ∞

−∞

E (τ, u)
Q (u)

e−k(iu−
1
2 )
(
−iu + 1

2

)
du,

Ckk (τ, k) = −
1
2π

∫ ∞

−∞

E (τ, u)
Q (u)

e−k(iu−
1
2 )
(
−iu + 1

2

)2
du.

For TSP

ETSP (τ, u) = exp

(
τ

(
−1
2

σ2Q (u) + ∑
s=±

as

(
κs − s

(
iu +

1
2

))α

+ γ

(
iu +

1
2

)
+ δ

))
.
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Lewis-Lipton formula for Levy Processes, III

In the case of a standard diffusion process, Eq. (44) yields

BS (v , k) = 1− 1
2π

∫ ∞

−∞

e−
1
2 vQ (u)−k(iu−

1
2 )

Q (u)
du,

so that

1
2π

∫ ∞

−∞

e−
1
2 vQ (u)−k(iu−

1
2 )

Q (u)
du = Φ

(
k − 1

2v√
v

)
+ ekΦ

(
−k − 1

2v√
v

)
.

In the limiting case v = 0, we get

1
2π

∫ ∞

−∞

e−k(iu−
1
2 )

Q (u)
du = ek− .

These formulas are used below for studying properties of MPs and other
purposes.
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Lewis-Lipton formula for Levy Processes, IV

When jump component of a Lévy process is small compared to its diffusion
component, the call price can be written in the form

C (τ, k) = 1− 1
2π

∫ ∞

−∞

e−
1
2 σ2τQ (u)−k(iu− 1

2 )

Q (u)
du

−τ
1
2π

∫ ∞

−∞

e−
1
2 σ2τQ (u)−k(iu− 1

2 )

Q (u)
υ (u) du + ...,

provided that the second integral converges. In particular

σimp (τ, k) = σ+ σ1 (τ, k) + ...,

where σ1 is of the same order of magnitude as υ, and is given by the
following expression

σ1 (τ, k) = τ1/2 e
k 2/2σ2τ

√
2π

∫ ∞

−∞

e−
1
2 σ2τu2−iku

Q (u)
υ (u) du

= τ1/2 1√
2π

∫ ∞

−∞

e
− 1
2

(
στ1/2u+ ik

στ1/2

)2
Q (u)

υ (u) du.
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Lewis-Lipton formula for Heston processes, I

The normalized price of a call written on an underlying driven by a
square-root stochastic volatility process has the form

C (τ, k) = 1− 1
2π

∫ ∞

−∞

E (τ, u)
Q (u)

e−k(iu−
1
2 )du, (45)

where

E (τ, u) = eα(τ,u)−β(τ,u)vQ (u) ≡ eγ(τ,u), (46)

α (τ, u) = −κθ

ε2

(
ψ+ (u) τ + 2 ln

(
ψ− (u) + ψ+ (u) exp (−ζ (u) τ)

2ζ (u)

))
,

β (τ, u) =
1− exp (−ζ (u) τ)

ψ− (u) + ψ+ (u) exp (−ζ (u) τ)
,

γ (τ, u) = α (τ, u)− β (τ, u)vQ (u) ,

and

ψ± (u) = ±
(

ρε

(
iu +

1
2

)
− κ

)
+ ζ (u) , (47)

ζ (u) =

√(
ρε

(
iu +

1
2

)
− κ

)2
+ ε2Q (u),
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Lewis-Lipton formula for Heston processes, II

The martingale condition, which is easy to verify, reads

α

(
τ,− i

2

)
= 0.

We note in passing that γ (τ, u) can be represented in the form

γ (τ, u) = θδ1 (τ, u) +vδ2 (τ, u) ,

which emphasizes the contributions of average and instantaneous variance,
respectively.
For τ → ∞ we can represent γ (τ, u) as follows

γ (τ, u) = −
κθψ+ (u) τ

ε2
− 2κθ

ε2
ln
(
1−

ψ+ (u)

2ζ (u)

)
− v

ε2
ψ+ (u) +O

(
1
τ

)
.

(48)
It is easy to see from this formula that a Heston process with zero
correlation is asymptotically equivalent to a NIGP. Naturally, in the
long-time limit, to the leading order γ does not depend on v.
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Lewis-Lipton formula for Heston processes, III

For τ → 0 we use for inspiration the well-known duality between the
Brownian motions W (τ) and τW (1/τ). We introduce a new variable
v = τu and notice that

γ
(

τ,
v
τ

)
= −

ivv sinh
(

ρ̄εv
2

)
τε sinh

(
ρ̄εv
2 + iφ

) − κθ

ε2

iρεv + 2 ln

− i sinh
(

ρ̄εv
2 + iφ

)
ρ̄


+
i κ̂vv

(
− ρρ̄εv

2 + sinh
(

ρ̄εv
2

)
cosh

(
ρ̄εv
2 + iφ

))
ρ̄ε2 sinh2

(
ρ̄εv
2 + iφ

)2 +O (τ) ,

where ρ̄ =
√
1− ρ2, and φ = arctan (ρ̄/ρ). Thus, to the leading order a

Heston process can be viewed as a Levy process but with time inverted.
Naturally, in the short-time limit, to the leading order γ does not depend
on θ.
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Lewis-Lipton formula for Levy Processes and their
asymptotics

LL formula encapsulates all the known results about the asymptotic
behavior of option prices and the corresponding implied volatility in various
asymptotic regimes, namely: τ → 0, k = 0; τ → 0, k 6= 0 (short-time
asymptotics); τ → ∞, k = τk̄, k̄ ∼ 1 (long-time asymptotics);
τ ∼ 1, k → ∞ (wing asymptotics).
It is shown in Andersen and Lipton (2012) that some of these results are
useful but most of them are not because asymptotics works only in remote
limits. For instance, wing asymptotics becomes accurate when the price of
the option is 10−10, etc.
Also, Andersen and Lipton contain many references to the work on
asymptotics done by (many) other researchers.
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Long-time Asymptotics, I

Saddle-point approximation is a method for computing integrals of the
form

g (τ) =
1
2π

∫
γ

f (z) eτS (z )dz (49)

when τ → +∞. Here γ is a contour in the complex plane, and the
amplitude and phase functions f (z) , S (z) are holomorphic is a domain D
containing γ. The extremal points of S , i.e. zeroes of S ′ are called the
saddle points of S . Under reasonable conditions, the contribution from a
non-degenerate saddle point z0 , i.e., a saddle point such that S ′′ (z0) 6= 0
is given by

g (0)z0 (τ) =
1√

−2πτS ′′ (z0)
eτS (z0)f (z0)

(
1+O

(
τ−1

))
,

It is clear that the main contribution comes from the points where Re [S ]
attains its absolute maximum. The second-order approximation has the
form

g (1)z0 (τ) = g
(0)
z0 (τ)

1− 1
2τ


(
f ′(z0)
S ′′(z0)

)′
f (z0)

+
5
(
S
′′′
(z0)

)2
12 (S ′′ (z0))

3 −
S
′′′′
(z0)

4 (S ′′ (z0))
2

+O (τ−2)
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Long-time Asymptotics, II

Consider y ∈ (−Y+,Y−) and define Ξ0 (y) and f0 (y) as follows

Ξ0 (y) = υ (iy) +
1
2

σ2R (y) , f0 (y) =
1

R (y)
, R (y) = y2 − 1

4
.

Also define

Ξ1 (y) = Ξ′0 (y) , Ξ2 (y) = Ξ′′0 (y) , Ξ3 (y) = Ξ′′′0 (y) , Ξ4 (y) = Ξ′′′′0 (y) ,

f1 (y) = f ′0 (y) = −
2y

(R (y))2
, f2 (y) = f ′′0 (y) =

(
6y2 + 1

2

)
(R (y))3

,

c0 (y) =
f0 (y)√
Ξ2 (y)

=
1√

Ξ2 (y)R (y)
,

c1 (y) = − 1
2Ξ2 (y)

((
6y2 + 1

2

)
(R (y))2

+
2yΞ3 (y)
R (y)Ξ2 (y)

+
5Ξ23 (y)
12Ξ22 (y)

− Ξ4 (y)
4Ξ2 (y)

)
.
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Long-time Asymptotics, III

Then for k̄ = −Ξ1 (y) the corresponding σimp (τ, τk̄) can be written in
the form

σimp (τ, τk̄) =
(
a0 (y) +

a1 (y)
τ

+
a2 (y)

τ2
+ ...

)1/2

, (50)

where

a0 (y) = 2 (s+ (y)− s− (y))2 , (51)

a1 (y) =
2 ln

(
a1/2
0 (y) r (y) c0 (y)

)
r (y)

,

a2 (y) =
2c1 (y)
r (y)

+

(
r (y) a1 (y)

(
(r (y) a1 (y)− 3)

(
r (y) + 1

4

)
− 1

4

)
+ 6r (y) + 2

)
r3 (y) a0 (y)

,

and

r (y) = R
(

Ξ1 (y)
a0 (y)

)
, s± (y) = sign

(
y ± 1

2

)√
−Ξ0 (y) + Ξ1 (y)

(
y ± 1

2

)
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Long-time Asymptotics, IV

for the Heston model the LL exponent is not proportional to time.
However, it is proportional to time to the leading order when τ → ∞.
Formal expansion in powers of exp (−τζ (u)) yields

E (τ, u, k)
Q (u)

=
eα(τ,u)−β(τ,u)vQ (u)−τk̄(iu− 1

2 )

Q (u)
→ eτS (u,k )f (u) ,

where

S (u, k̄) = −κθ

ε2
ψ+ (u)− k̄

(
iu − 1

2

)
, f (u) =

e−
v
ε2

ψ+(u)

Q (u)
(
1− ψ+(u)

2ζ(u)

)2κθ/ε2
,

and ψ+ (u) , ζ (u) are given by Eqs. (47). As before, we can use
saddle-point method to obtain the asymptotic of the LL integral. It is easy
to check that the corresponding saddle point has to be purely imaginary,
we so that we can proceed as before.
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Long-time Asymptotics, V

Consider y ∈ (−Y−,Y+), where

Y± =
ρκ̂ ±

√
κ̂2 + 1

4 ρ̄2ε2

ρ̄2ε
,

and define Ξ0 (y) , f0 (y) as follows

Ξ0 (y) =
κθ

ε2
(ρεy + κ̂ − ς (y)) , f0 (y) =

e
v
ε2
(ρεy+κ̂−ς(y ))

R (y)
(
1
2 −

(ρεy+κ̂)
2ζ(u)

)2κθ/ε2
,

where

ς (y) =

√
−ρ̄2ε2y2 + 2ρεκ̂y + κ̂2 +

1
4

ε2.

Then

σimp (τ, k (y)) =
(
a0 (y) +

a1 (y)
τ

+O
(
1
τ2

))1/2

,

with a0, a1 are given by the general Proposition. Accordingly, the zero and
first order approximations have the form

σimp,0 (τ, k (y)) = a
1/2
0 (y) , σimp,1 (τ, k (y)) = a

1/2
0 (y) +

a1 (y)
2a0 (y) τ

.
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Long-time asymptotics, tempered stable processes, I
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Figure: The shape of the curves Ξ1 (y), Ξ01 (y), Ξ2 (y) for
−κ+ + 1/2 < y < κ− + 1/2. The relevant parameters are as follows σ = 0.3,
c+ = 1.0, c− = 0.8, κ+ = 9.2, κ− = 4.9, α = 0.5, τ = 5.0.

A Lipton (Bank of America Merrill Lynch & Imperial College)Mathematical Methods in Finance 23/01/2012 171 / 179



Long-time asymptotics, tempered stable processes, II
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Figure: Comparison of different expressions for the implied volatility of a TSP in
the limit of infinite maturity. The relevant parameters are as follows σ = 0.3,
c+ = 1.0, c− = 0.8, κ+ = 9.2, κ− = 4.9, α = 0.5, τ = 5.0.
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Long-time asymptotics, Merton processes, I
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Figure: The shape of the curves Ξ1 (y), Ξ01 (y), Ξ2 (y) for −∞ < y < ∞. The
relevant parameters are as follows σ = 0.3, λ = 0.1, µ = −0.1, θ = 0.3.
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Long-time asymptotics, Merton processes, II
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Figure: Comparison of different expressions for the implied volatility of a MP in
the limit of infinite maturity. The relevant parameters are as follows The relevant
parameters are as follows τ = 3.0, σ = 0.3, λ = 0.1, µ = −0.1, θ = 0.3.
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Long-time asymptotics, Heston processes, I
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Figure: The shape of the curves Ξ01 (y), Ξ1 (y), Ξ2 (y) for −Y+ < y < Y−.
The relevant parameters are as follows: θ = 0.06, κ = 3.00, ε = 0.30, ρ = −0.20,
v = 0.09, τ = 5.0.
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Long-time asymptotics, Heston processes, II
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Figure: Comparison of different expressions for the implied volatility of a HSVP in
the limit of infinite maturity. The relevant parameters are as follows: θ = 0.06,
κ = 3.00, ε = 0.30, ρ = −0.20, v = 0.09, τ = 5.0.
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Short-time asymptotics, Heston processes, I
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Figure: The shape of the curves Ξ01 (y), Ξ1 (y), Ξ2 (y) for −Y+ < y < Y−.
The relevant parameters are as follows: ε = 0.30, ρ = −0.20, v = 0.09.
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Short-time asymptotics, Heston processes, II
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Figure: Comparison of different expressions for the implied volatility of a HSVP in
the limit of vanishing maturity. The relevant parameters are as follows: θ = 0.06,
κ = 3.00, ε = 0.30, ρ = −0.20, v = 0.09, τ = 0.10.
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Wing asymptotics, tempered-stable processes
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Figure: Comparison of exact and approximate expressions for the implied volatility
of a TSP in the remote wing limit. The relevant parameters are as follows
σ = 0.3, c+ = 1.0, c− = 0.8, κ+ = 9.2, κ− = 4.9, α = 0.5, τ = 1.0.
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