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Lecture outline

PDEs and finite difference methods:
I formulation of adjoint PDEs and finite difference methods
I financial application
I vanilla pricing calculation
I sensitivities for linear explicit discretisations
I nonlinear implicit discretisations
I what can go wrong?
I calibration using Fokker-Planck discretisation
I Greeks using Black-Scholes discretisation
I local volatility example
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Forward and reverse PDEs

Suppose we are interested in the forward PDE

∂p

∂t
= Lt p,

where Lt is a spatial operator, subject to Dirac initial data
p(x , 0) = δ(x−x0), and we want the value of the output functional

(p(·,T ), f ) ≡
∫

p(x ,T ) f (x)dx .

The adjoint spatial operator L∗t is defined by the identity

(Ltv ,w) = (v , L∗tw), ∀v ,w

assuming certain homogeneous b.c.’s.
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Forward and reverse PDEs

If u(x , t) is the solution of the adjoint PDE

∂u

∂t
= −L∗t u,

subject to “initial” data u(x ,T ) = f (x) then

(p(·,T ), u(·,T ))− (p(·, 0), u(·, 0)) =

∫ T

0

∂

∂t
(p, u) dt

=

∫ T

0

(
∂p

∂t
, u

)
+

(
p,
∂u

∂t

)
dt

=

∫ T

0
(Ltp, u)− (p, L∗tu) dt

= 0,

and hence u(x0, 0) = (p(·,T ), f ).
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Forward and reverse PDEs

Hence, to compute our output of interest, we have a choice:

forward:

I start with Dirac initial data for p(x , 0)
I solve forward PDE for p(x , t)
I compute (p(·,T ), f )

reverse:
I start with “initial” data for u(x ,T )
I solve backward PDE for u(x , t)
I output is u(x0, 0)

We get the same answer either way, so can choose based on other
considerations, such as computational efficiency
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Financial relevance

Fokker-Planck (or forward Kolmogorov) equation:

∂p

∂t
+

∂

∂x
(a p) =

1

2

∂2

∂x2

(
b2 p

)
for probability density p(x , t) for path St satisfying the SDE

dSt = a(St , t) dt + b(St , t)dWt .

Backward Kolmogorov (or Feynman-Kac) equation:

∂u

∂t
+ a

∂u

∂x
+

1

2
b2 ∂

2u

∂x2
= 0

where u(x , t) = E[f (ST )|St = x ]
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Financial relevance

The spatial operators are

L p ≡ − ∂

∂x
(a p) +

1

2

∂2

∂x2

(
b2 p

)
and

L∗ u ≡ a
∂u

∂x
+

1

2
b2 ∂

2u

∂x2

The identity
(Lv ,w) = (v , L∗w), ∀v ,w

can be verified by integration by parts, assuming

a v w , b2v
∂w

∂x
, b2∂v

∂x
w are zero on boundary.
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Forward and reverse FDEs

Suppose that a numerical finite difference discretisation of the forward
problem gives the discrete equivalent

pn+1 = An pn

where pn is an vector of approximations to p(xj , tn) at points xj at time tn,
and An is a square matrix.

For example,

pj ,n+1 = pj ,n +
∆t

∆x2

(
pj+1,n − 2pj ,n + pj−1,n

)
is an approximation to

∂p

∂t
=
∂2p

∂x2
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Forward and reverse FDEs

If there are N timesteps, the output (p(x ,T ), f ) can be approximated as∑
j

pj ,N fj ∆x

or more generally as f TM pN where M is a symmetric “mass” matrix,
usually either diagonal or tri-diagonal.

The output then has the form

f TM pN = f T M AN−1 AN−2 . . . A0 p0.
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Forward and reverse FDEs

Taking the transpose, this can be re-expressed as

pT0 v0

where
v0 = AT

0 . . . AT
N−2 AT

N−1 M f

The adjoint solution vn is therefore defined by

vn = AT
n vn+1

subject to “initial” data vN = M f .
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Forward and reverse FDEs

It is often more appropriate to work with

un = M−1vn,

in which case we have

un = (M AT
n M

−1)un+1

subject to “initial” data
uN = f ,

and the output functional is pT0 M u0.

This is more appropriate because now un is an approximation to the
adjoint PDE solution u(x , tn)
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Financial relevance

In finance, the discrete equations are usually formulated for backward
equation:

un = Bn un+1

subject to payoff data uN = f , and the output is eTu0 where e is a unit
vector with a single non-zero entry.

The equivalent discrete adjoint problem is

Pn+1 = BT
n Pn

subject to initial data P0 = e, and the output is PT
N f .

When there is no discounting (so no r u term in Black-Scholes PDE)
then Pn corresponds to a vector of discrete probabilities – need to divide
by grid spacing to get approximation to probability density.
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Financial relevance

With implicit time-marching, we have an equation like

An un = Cn un+1

so
Bn ≡ A−1

n Cn

In this case,
BT
n ≡ CT

n (AT
n )−1

so
Pn+1 = CT

n (AT
n )−1Pn

Note order reversal: multiplication by Cn and then by A−1
n turns into

multiplication by (AT
n )−1 and then by CT

n
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Financial relevance

Which is better – forward or reverse?

reverse is only possibility for American options, and also gives
Delta and Gamma approximations for free

forward is best for pricing multiple European options

I for different strikes, a single forward calculation and then a separate
vector dot product for each option

I for different maturities, do a single calculation to the final maturity,
and use intermediate values at intermediate maturities

I particularly useful when calibrating a model to vanilla options?
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FDE sensitivities

Suppose we want to compute output eTu0 where uN = f and

un = Bn un+1.

Now suppose that f and Bn depend on some parameter θ, and we want to
compute the sensitivity to θ.

Standard “forward mode” sensitivity analysis gives sensitivity eT u̇0 where
u̇N = ḟ and

u̇n = Bn u̇n+1 + ḃn

with
ḃn ≡ Ḃn un+1
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FDE sensitivities

What is reverse mode adjoint?

Work “backwards” applying the linear algebra rules.

u0 = e

un+1 = BT
n un, bn = un

f = uN

Note: the original code goes from n=N to n= 0, so the reverse mode
goes from n=0 to n=N, using stored values for un+1.
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FDE sensitivities

This gives f and bn and then payoff sensitivity is given by

θ = f
T
ḟ +

∑
n

b
T
n ḃn

This can be evaluated using AD software, or hand-coded following the AD
algorithm.

θ, un+1 −→ Bn un+1 original code

θ, un+1 −→ Ḃn un+1 forward mode, keeping un+1 fixed

θ, un+1, bn −→ θ incr reverse mode, keeping un+1 fixed
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FDE sensitivities
We now consider nonlinear discretisations (e.g. for American options)

In 1D, these are usually one of the following types:

explicit:
uj ,n = g(uj−1,n+1, uj ,n+1, uj+1,n+1)

– function of the nearest “old” values from the previous timestep

one-step implicit:

aj uj−1,n + bj uj ,n + cj uj+1,n = g(uj−1,n+1, uj ,n+1, uj+1,n+1)

– needs solution of tridiagonal system of equations at each timestep

iterative implicit:

g(uj−1,n, uj ,n, uj+1,n, uj−1,n+1, uj ,n+1, uj+1,n+1) = 0

– a nonlinear system of simultaneous equations to be solved iteratively
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FDE sensitivities

Considering perturbations to these, “forward mode” sensitivity analysis
gives

A u̇n = Cn u̇n+1 + ḃn

with tridiagonal A,C and vector ḃn.

For example, in the third case we have ḃj ,n ≡
∂g

∂θ
and

Aj ,j−1 ≡ −
∂g

∂uj−1,n
, Aj ,j ≡ −

∂g

∂uj ,n
, Aj ,j+1 ≡ −

∂g

∂uj+1,n
,

Cj ,j−1 ≡
∂g

∂uj−1,n
, Cj ,j ≡

∂g

∂uj ,n
, Cj ,j+1 ≡

∂g

∂uj+1,n
,

with A,C , ḃn dependent on uj−1,n, uj ,n, uj+1,n, uj−1,n+1, uj ,n+1, uj+1,n+1.
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FDE sensitivities

“Reverse mode” gives

un+1 = CT
n (AT

n )−1un, bn = (AT
n )−1 un

This again gives bn and AD ideas can then be used to compute the
increments to θ.

So far, I have talked of θ being a single input parameter, but it can be a
vector of input parameters.

The key is that they all use the same f and bn, and it is just this final AD
step which depends on θ, and the cost is independent of the number of
parameters.

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 20 / 39



What can go wrong?

Differentiation like this gives the sensitivity of the numerical approximation
to changes in the input parameters.

This is not necessarily a good approximation to the true sensitivity

Simplest example: a digital put option with strike K when wanting to

compute
∂V

∂K
, the sensitivity of the option price to the strike
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What can go wrong?

Using the simplest numerical approximation,

fj = H(K−Sj)

and so ḟ = 0 which leads to a zero sensitivity!

Using a better approximation

fj =
1

∆S

∫ Sj+
1
2

∆S

Sj− 1
2

∆S
H(K−S) dS

gives an O(∆S2) approximation to the price, and an O(∆S)
approximation to the sensitivity to K .
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What can go wrong?

Figure: A stepped approximation to the function 2x−x2
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What can go wrong?

More generally, discontinuities are not the only problem.

Suppose our analytic problem with input x has solution

u = x2

and our discrete approximation with step size h� 1 is

uh = x2 + h2 sin(x/h)

then uh − u = O(h2) but u′h − u′ = O(h)

This seems to be typical, that in bad cases you lose one order of
convergence each time you differentiate.
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What can go wrong?

Figure: A wavy approximation to the function 2x−x2
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What can go wrong?

Careful construction of the approximation can usually avoid these
problems.

In the digital put case, the problem was the strike moving across the grid.

Solution: move the grid with the strike at maturity t = T , keeping the end
at time t = 0 fixed.

log Sj(t) = log S
(0)
j + (logK − logK (0))

t

T

This uses a baseline grid S
(0)
j corresponding to the true strike K (0) then

considers perturbations to this which move with the strike.
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Use of adjoint sensitivities

Fokker-Planck discretisation:

standard calculation goes forward in time, then performs a separate
vector dot product for each vanilla European option

adjoint sensitivity calculation goes backward in time, gives sensitivity
of vanilla prices to initial prices, model constants

if the Greeks are needed for each option, then a separate adjoint
calculation is needed for each – might be better to use “forward
mode” AD instead, depending on number of parameters and options

one adjoint calculation can give a weighted average of Greeks
– useful for calibrating a model to market data
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Use of adjoint sensitivities

A calibration procedure might find the optimum vector of parameters θ
which minimises the mean square difference between vanilla option model
prices and market prices:

1
2

∑
k

(
C

(k)
model(θ)− C

(k)
market

)2

Gradient-based optimisation would need to compute

∑
k

(
C

(k)
model − C

(k)
market

) ∂C (k)
model

∂θ

which is just a weighted average (with both positive and negative weights)
of the Greeks.
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Use of adjoint sensitivities

Since the vanilla option price is of the form

C
(k)
model = f Tk PN

then, provided fk does not depend on θ, the adjoint calculation works
backwards in time from the “initial” condition:

PN =
∑
k

(
C

(k)
model − C

(k)
market)

)
fk
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Use of adjoint sensitivities

Black-Scholes / backward Kolmogorov discretisation:

standard calculation goes backward in time for pricing an exotic
option, with possible path-dependency and optional exercise

adjoint sensitivity calculation goes forward in time, giving sensitivity
of price to initial prices, model constants, etc.
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Use of adjoint sensitivities

Many applications may involve a process which goes through several
stages:

market implied vol σI =⇒ local vol σL at a few points using
Dupire’s formula

local vol σL at a few points =⇒ σL, σ
′
L through cubic spline

construction

σL, σ
′
L =⇒ σ at FD grid points using cubic spline interpolation

σ at FD grid points =⇒ option value V using FD calculation
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Generic black-box problem

Remember generic black-box viewpoint

u0 - - - - �
��������

�- - - - uN

Key assumption: each step is (locally) differentiable
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Generic black-box problem

Forward mode:

u̇n+1 = Dn u̇n, Dn ≡
∂un+1

∂un

Reverse mode:
un = DT

n un+1

starting from given uN , and with all of the Dn or un stored from the
original black-box computation.

Validation:

∂uN
∂un

∂un
∂θ

=
∂uN
∂un+1

∂un+1

∂θ
=⇒ uTn u̇n = uTn+1 u̇n+1

This must hold for any u̇n, un+1 – very helpful for checking the forward
and reverse mode versions of each black-box component.
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Use of adjoint sensitivities

To obtain the sensitivity of the option value to changes in the market
implied vol, go through all of the stages in the reverse order:

V =⇒ σ

σ =⇒ σL, σ
′
L

σL, σ
′
L =⇒ σL

σL =⇒ σI

Each stage needs to be developed and validated separately, then they all
fit together in a modular way.
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Use of adjoint sensitivities

It is not necessary to use adjoint techniques at each stage.

For example, the final stage in the last example computes

σI =

(
∂σL
∂σI

)T

σL

The matrix
∂σL
∂σI

can be obtained by forward mode sensitivity analysis (more expensive),
or approximated by bumping (more expensive and less accurate)
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Cubic spline step

For a point Sj < S < Sj+1, cubic spline interpolation is defined by an
equation of the form

σ(S) = aj(S) σj + bj(S) σj+1 + cj(S) σ′j + dj(S) σ′j+1,

where aj(S), bj(S), cj(S), dj(S) are cubic polynomials.

The σ′ values are obtained from the σ values by solving a tri-diagonal
system of equations:

A σ′ = B σ
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Cubic spline step

In the forward mode we get

A σ̇′ = B σ̇,

and then

σ̇(S) = aj(S) σ̇j + bj(S) σ̇j+1 + cj(S) σ̇′j + dj(S) σ̇′j+1

assuming that the point at which the spline is evaluated does not change.

As usual, this is relatively intuitive.

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 37 / 39



Cubic spline step

In the reverse mode we have

σj += aj(S) σ(S)

σj+1 += bj(S) σ(S)

σ′j += cj(S) σ(S)

σ′j+1 += dj(S) σ(S)

which gives the increments to σj , σj+1, σ′j , σ′j+1 due to the spline
evaluation.

Reversing the calculation of the spline derivatives then gives

σ += BT (AT )−1 σ′,

which adds to σ the extra dependence due to the way in which σ′ is
calculated from σ.
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Final comments

for pricing multiple European options, cheaper to solve one Forward
Kolmogorov equation for evolution of density, rather than multiple
Backward Kolmogorv (Black-Scholes) equations for option value

doesn’t work for American or Bermudan options because they’re
nonlinear

for sensitivity calculations, the big benefit from adjoint methods
comes (as usual) when there are lots of sensitivities to be computed
– local volatility case is a good example

must remember there’s a potential loss of accuracy when
differentiating – a good approximation to the option value does not
necessarily imply a good approximation to the Greeks
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