
Adjoint methods in computational finance

Mike Giles

Mathematical and Computational Finance Group,

Mathematical Institute, University of Oxford

Oxford-Man Institute of Quantitative Finance

12th Winter School on Mathematical Finance

Jan 21-23, 2013

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 1 / 43



Lecture outline

SDEs and Monte Carlo methods:
I LRM and pathwise sensitivity approaches
I adjoint pathwise approach
I use of automatic differentiation software
I path dependent options
I multiple payoffs
I binning and correlation Greeks
I local volatility example, revisited
I discontinuous payoffs
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Monte Carlo simulation

If we want the expected value of a payoff function P which depends
on an underlying quantity S , so that

V = E[P(S)] =

∫
P(S) pS(θ; S) dS

where pS is the probability distribution for S which depends on an input
parameter θ, then the Monte Carlo estimate is

M−1
M∑

m=1

P(S (m))

where the samples S (m) are generated independently.
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LRM sensitivity analysis

If pS is a differentiable function of θ, then

∂V

∂θ
=

∫
P(S)

∂pS

∂θ
dS =

∫
P(S)

∂ log pS

∂θ
pS(S) dS

which is equivalent to

∂V

∂θ
= E

[
P(S)

∂ log pS

∂θ

]
which can be estimated as

M−1
M∑

m=1

P(S (m))
∂ log p

(m)
S

∂θ
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LRM sensitivity analysis

This is the Likelihood Ratio Method for computing sensitivities.

Its great strength is that there are no restrictions on P(S)
(e.g. it can be discontinuous) but it has two big drawbacks:

it requires a known distribution pS (e.g. log-normal)

the Monte Carlo estimator usually has a much larger variance than
alternative methods
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Monte Carlo simulation

Alternatively, suppose S depends on θ and a simple random variable Z
which does not depend on θ (e.g. multivariate Normal).

Then we have

V = E[P( S(θ; Z ) )] =

∫
P( S(θ; Z ) ) pZ (Z ) dZ

and the Monte Carlo estimate remains

M−1
M∑

m=1

P( S(Z (m)) )

where the samples Z (m) are generated independently.
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Pathwise sensitivity analysis

If P is a differentiable function of θ, then

∂V

∂θ
=

∫
∂P

∂S

∂S

∂θ
pZ (Z ) dZ

which is equivalent to
∂V

∂θ
= E

[
∂P

∂S

∂S

∂θ

]

This is also OK if P is continuous and piecewise differentiable, but not
if P is discontinuous.

For example, for a simple digital option with value 0 or 1 depending on S

then locally
∂P

∂S
= 0, but

∂V

∂θ
6= 0.
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Pathwise sensitivity analysis

This gives the pathwise sensitivity estimate

M−1
M∑

m=1

∂P

∂S
Ṡ (m)

where Ṡ is the sensitivity keeping fixed all of the random numbers.

Note that this corresponds very naturally to applying the forward mode
sensitivity analysis to the standard Monte Carlo estimator, but my
derivation shows the need for P(S) to be continuous – this is its big
weakness.
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Monte Carlo sensitivities

For European payoff P(SN), the forward mode sensitivity calculation is:

set S0(θ), Ṡ0

for timestep n from 0 to N−1:
compute random numbers Zn

compute Sn+1 = fn(θ; Sn,Zn)

compute Ṡn+1 =
∂fn
∂Sn

Ṡn +
∂fn
∂θ

calculate payoff P(θ; SN) and Ṗ =
∂P

∂SN
ṠN +

∂P

∂θ
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Monte Carlo sensitivities

The corresponding adjoint (reverse mode) sensitivity is

M−1
M∑

m=1

θ
(m)

where θ
(m)

corresponds to

(
∂P

∂θ

)T

for mth path

Note: the adjoint sensitivity is the same as the standard pathwise
sensitivity, so it is valid under the same conditions
(e.g. P(S) Lipschitz and piecewise differentiable)
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Monte Carlo sensitivities

For European payoff P(SN), the adjoint calculation involves:

set S0(θ)

for timestep n from 0 to N−1:
compute and store random numbers Zn

compute and store Sn+1 = fn(θ; Sn,Zn)

calculate payoff P(θ; SN)

set SN =
∂P

∂SN
and θ =

∂P

∂θ
for timestep n from N−1 to 0

compute Sn and θ increment

add final θ increment S
T
0 Ṡ0
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Trivial example

Geometric Brownian Motion SDE, European call payoff, Euler
discretisation:

Given S0, r , σ,T ,K , then

Sn+1 = Sn + r Sn ∆t + σ Sn

√
∆t Zn n = 0, . . .N−1

and the payoff is

P = exp(−rT ) max(0, SN − K )

Note that there are 5 different sensitivities which can be computed here.

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 12 / 43



Trivial example

In the forward mode, given Ṡ0, ṙ , σ̇, Ṫ , K̇ , then

Ṡn+1 =
(

1 + r ∆t + σ
√

∆t Zn

)
Ṡn

+ Sn ∆t ṙ

+ Sn

√
∆t Zn σ̇

+
(

r Sn + 1
2 σ Sn ∆t−1/2 Zn

)
N−1Ṫ

and the payoff sensitivity is

Ṗ = exp(−rT ) 1SN>K

(
ṠN − K̇ − (SN−K ) (T ṙ +r Ṫ )

)
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Trivial example

To obtain the sensitivities to all of S0, r , σ,T ,K , in one pass, we can set

Ṡ0 =


1
0
0
0
0

 , ṙ =


0
1
0
0
0

 , σ̇ =


0
0
1
0
0

 , Ṫ =


0
0
0
1
0

 , K̇ =


0
0
0
0
1

 ,

and then the final Ṗ will be a vector of sensitivities:

Ṗ =



∂P
∂S0
∂P
∂r
∂P
∂σ
∂P
∂T
∂P
∂K


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Trivial example
In the reverse mode, we start with

SN = exp(−rT ) 1SN>K

r = − exp(−rT ) 1SN>K (SN−K ) T

σ = 0

T = − exp(−rT ) 1SN>K (SN−K ) r

K = − exp(−rT ) 1SN>K

and then loop over timesteps from N−1 to 0 using

Sn =
(

1 + r ∆t + σ
√

∆t Zn

)
Sn+1

r += Sn ∆t Sn+1

σ += Sn

√
∆t Zn Sn+1

T +=
(

r Sn + 1
2 σ Sn ∆t−1/2 Zn

)
N−1 Sn+1

to get all 5 sensitivities, S0, r , σ, T , K
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Monte Carlo sensitivities

In more complicated cases, AD tools can simplify the software
development process, especially for the reverse mode.

If a routine

step(n,theta,S,Z)

performs the nth timestep calculation, taking θ,Sn,Zn as input and
returning Sn+1, then AD tools can generate a routine

step b(n,theta,theta b,S,S b,Z)

which takes inputs θ, θ,Sn, Sn+1,Zn and returns Sn and an updated θ.

AD tools can also generate the adjoint routines for the S0 initialisation
and the payoff evaluation.
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Monte Carlo sensitivities

Some more implementation detail:

first, go forward through the path storing the state Sn at each
timestep (corresponds to “checkpointing” in AD terminology)

then, go backwards through the path, using reverse mode AD for
each step – this will re-do the internal calculations for the timestep
and then do its adjoint

when hand-coding for maximum performance, I also store the result
of any very expensive operations (typically exp) to avoid having to
re-do these

Note that this is different from applying AD to the entire path, which
would require a lot of storage – it’s cheaper to re-calculate the internal
variables rather than fetch them from main memory
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Monte Carlo sensitivities

By computing θ ≡ ∂P

∂θ
for each path individually, we can also compute

a confidence interval for the sensitivity estimate.

If we had applied AD to the entire code which computes:

the estimate

the confidence interval

then we would have obtained:

the sensitivity of the estimate

the sensitivity of the confidence interval, not the confidence interval
of the sensitivity – a subtle but important difference.
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LIBOR Market Model

As an example, consider the LIBOR market model of BGM,
with m+1 bond maturities Ti , with spacings Ti+1 − Ti = δ.

The forward rate for the interval [Ti ,Ti+1) satisfies

dLi (t)

Li (t)
= µi (L(t))dt + σ>i dW (t), 0 ≤ t ≤ Ti ,

where µi (L(t)) =
i∑

j=η(t)

σ>i σj δLj(t)

1 + δLj(t)
,

and η(t) is the index of the next maturity date.

For simplicity, we keep Li (t) constant after maturity, and take the
volatilities to be a function of time to maturity, σi (t) = σi−η(t)+1(0).
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LIBOR Market Model

The LMM portfolio has 15 swaptions all expiring at the same time,
N periods in the future, involving payments/rates over an additional
40 periods in the future.

Interested in computing Deltas, sensitivity to initial N +40 forward rates,
and Vegas, sensitivity to initial N +40 volatilities.

Focus is on the cost of calculating the portfolio value and the sensitivities,
relative to just the value.
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LIBOR Market Model

Finite differences versus forward pathwise sensitivities:
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LIBOR Market Model

Forward versus adjoint pathwise sensitivities:
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Additional complications

path-dependent payoffs

efficiency improvement for handling multiple European payoffs
(Christoph Kaebe & Ekkehard Sachs)

binning for expensive pre-processing steps
(Luca Capriotti)

handling discontinuous payoffs
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Path dependent payoffs

The simplest way to handle path dependent payoffs is to make the payoff
depend only on the final state SN by including one or more of the
following as part of a larger state Ŝn∑

m≤n
Sm for Asian options

min
m≤n

Sm, max
m≤n

Sm for lookback options

sum of all (discounted) cash payments made so far

We then have an augmented timestep calculation

Ŝn+1 = f̂n(θ; Ŝn,Zn)

and can again use AD tools to generate the whole adjoint code.
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Multiple European payoffs

Suppose that you have

nθ input parameters

nP different payoffs

dimension d path simulation

If nθ is smallest, use forward mode sensitivity analysis

If nP is smallest, use reverse mode sensitivity analysis

What if d is smallest?
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Multiple European payoffs

Going back to the original matrix question, what is the best way of
computing this?


· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·



·
·
·
·
·

( · · · · · )

· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·


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Multiple European payoffs

The most efficient approach is

perform d adjoint calculations to determine

∂SN

∂θ

perform d forward sensitivity calculations to determine

∂Pk

∂SN

combine these to obtain

∂Pk

∂θ
=
∂Pk

∂SN

∂SN

∂θ
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Binning

The need for binning is best demonstrated by the case of correlation
Greeks – computing the sensitivity of the option value to each element in
the correlation matrix.

Given correlation matrix Ω, Cholesky factor L is lower-triangular matrix
such that L LT = Ω. If Z is a vector of uncorrelated unit Normals, then
L Z has variance Ω.

The standard pricing calculation has three stages

perform Cholesky factorisation

do M path calculations

compute average and confidence interval

How do we compute the adjoint sensitivity to the correlation coefficients?
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Binning

If we apply the reverse mode AD approach to the entire calculation,
then we get an estimate of

the sensitivity of the price

the sensitivity of the confidence interval,
not the confidence interval for the sensitivity!

To get the confidence interval for the sensitivity, for each path we can do
the adjoint of the Cholesky factorisation, so we compute θ for each path
and then compute an average and confidence interval in the usual way.

However, this greatly increases the computational cost.
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Binning

The binning approach splits the M paths into K groups
(grouped arbitrarily, unlike “binning” in some other contexts).

For each group, it uses the full AD approach to efficiently compute an
estimate of the price sensitivity.

It then uses the variability between the group averages to estimate the
confidence interval.

Needs

K � 1 to get a good estimate of the confidence interval

K � M for cost of K adjoint Cholesky calculations to be smaller
than M path calculations
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Local volatility example

The same approach can be used for a Monte Carlo version of the earlier
example with local volatility:

market implied vol σI =⇒ local vol σL at a few points using Dupire’s
formula

local vol σL at a few points =⇒ σL, σ
′
L through cubic spline procedure

M Monte Carlo path calculation, using spline evaluation to obtain
local volatility

compute average and confidence interval

The adjoint of the path calculation will give increments to σL and σ′L.
Then, for each group of paths, can use adjoint of first two stages to get
an estimate for the sensitivity to market implied vol data.
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Local volatility example

In the PDE case, we assumed the spline evalation location S didn’t vary,
but here it does. In the forward mode we get

σ̇(S) = aj(S) σ̇j + bj(S) σ̇j+1 + cj(S) σ̇′j + dj(S) σ̇′j+1

+
(
a′j(S) σj + b′j(S) σj+1 + c ′j (S) σ′j + d ′j (S) σ′j+1

)
Ṡ

and in the reverse mode we get

σj += aj(S) σ(S)

σj+1 += bj(S) σ(S)

σ′j += cj(S) σ(S)

σ′j+1 += dj(S) σ(S)

S +=
(
a′j(S) σj + b′j(S) σj+1 + c ′j (S) σ′j + d ′j (S) σ′j+1

)
σ(S)
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Discontinuous payoffs

The biggest limitation of the pathwise sensitivity method (both forward
mode and reverse mode) is that it cannot handle discontinuous payoffs.

There are 3 main ways to deal with this:

explicitly smoothed payoffs

using conditional expectation to smooth the payoff

“vibrato” Monte Carlo

Of course, we can also switch to Likelihood Ratio Method or Malliavin
calculus, but then I don’t see how to get the efficiency benefits of adjoint
methods.
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Discontinuous payoffs

Explicitly-smoothed payoffs replace the discontinuous payoff by a smooth
(or at least continuous) alternative.

Digital options P(S) ≡ H(S−K ) can be replaced by a piecewise linear
approximation:

C
C
C
C
CC

-

6

S

P

or something much smoother such as Φ
(
S−K
δ

)
which has an O(δ2) bias
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Discontinuous payoffs

Implicitly-smoothed payoffs use conditional expectations.

My favourite is for barrier options, where a Brownian Bridge conditional
expectation computes the probability that the path has crossed the barrier
within a timestep.
(see Glasserman’s book, pp. 366-370)

This improves the weak convergence to first order, and also makes the
payoff differentiable.
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Discontinuous payoffs

With digital options, can stop the path simulation one timestep before
maturity.

Conditional on the value SN−1, an Euler discretisation for the final
timestep has the form

SN = SN−1 + µN−1 ∆t + σN−1 ∆WN−1

which gives a (multi-variate) Normal p.d.f. for SN

In simple cases it is possible to analytically evaluate

E
[

P(SN) |SN−1

]
and this will be a smooth function of SN−1 so we can use the pathwise
sensitivity method.

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 36 / 43



Discontinuous payoffs

Continuing this digital example, in more complicated multi-dimensional
cases it is not possible to analytically evaluate the conditional expectation.

Instead, we can apply the Likelihood Ratio Method for the final step
– I called this the “vibrato” method because of the uncertainty in the final
value SN

Need to read my paper for full details for multi-dimensional applications
– I’ll give an outline for a scalar SDE.

Its main weakness is that the variance is O(∆t−1/2), but it is much better
than the O(∆t−1) variance of the standard Likelihood Ratio Method, and
you get the full benefit of adjoints.
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Discontinuous payoffs

Conditional on the value of SN−1, the probability distribution for SN is

ps(θ,SN−1; S)

where ps is a Normal distribution with a mean and variance which depend
on SN−1, and perhaps also directly on θ.

Hence, using the LRM approach,

∂

∂θ
E
[

P(SN) | SN−1

]
= E

[
P(SN)

(
∂ log ps

∂θ

)
total

|SN−1

]
with (

∂ log ps

∂θ

)
total

=
∂ log ps

∂SN−1

∂SN−1
∂θ

+
∂ log ps

∂θ

The conditional expectation can be estimated by averaging over a number
of samples for ZN−1, the random number used for the final timestep.
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Discontinuous payoffs

Re-arranging we get

∂

∂θ
E
[

P(SN) |SN−1

]
= E

[
P(SN)

∂ log ps

∂SN−1
|SN−1

]
∂S

∂θ

+ E
[

P(SN)
∂ log ps

∂θ
|SN−1

]
so for the adjoint version we set

SN−1 = E
[

P(SN)
∂ log ps

∂SN−1
| SN−1

]

θ = E
[

P(SN)
∂ log ps

∂θ
| SN−1

]
and then continue backwards down the path in the usual way.
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Conclusions

adjoints can be very efficient for option pricing, calibration and
sensitivity analysis

same result as “standard” approach but a much lower computational
cost

basic elements of discrete adjoint analysis are very simple, although
real applications can get quite complex

automatic differentiation ideas are very important, even if you don’t
use AD software
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Further reading

M.B. Giles and P. Glasserman. ‘Smoking adjoints: fast Monte Carlo
Greeks’, RISK, 19(1):88-92, 2006

M.B. Giles and P. Glasserman. ’Smoking Adjoints: fast evaluation of
Greeks in Monte Carlo calculations’. Numerical Analysis report NA-05/15,
2005.
— original RISK paper, and longer version with appendix on AD

M. Leclerc, Q. Liang, I. Schneider. ’Fast Monte Carlo Bermudan Greeks’,
RISK, 22(7):84-88, 2009.

L. Capriotti and M.B. Giles. ‘Fast correlation Greeks by adjoint algorithmic
differentiation’, RISK, 23(5):77-83, 2010
— correlation Greeks and binning

L. Capriotti and M.B. Giles. ‘Adjoint Greeks made easy’, RISK,
25(9):96-102, 2012
— use of AD
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Further reading

M.B. Giles. ’Monte Carlo evaluation of sensitivities in computational
finance’. Numerical Analysis report NA-07/12, 2007.
— use of AD, and introduction of Vibrato idea

M.B. Giles. ’Vibrato Monte Carlo sensitivities’. In Monte Carlo and
Quasi-Monte Carlo Methods 2008, Springer, 2009.
— Vibrato Monte Carlo for discontinuous payoffs

C. Kaebe, J.H. Maruhn and E.W. Sachs. ’Adjoint-based Monte Carlo
calibration of financial market models’. Finance and Stochastics,
13(3):351-379, 2009.
— adjoint Monte Carlo sensitivities and calibration
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Further reading

M.B. Giles ‘On the iterative solution of adjoint equations’, pp.145-152 in
Automatic Differentiation: From Simulation to Optimization, G. Corliss,
C. Faure, A. Griewank, L. Hascoet, U. Naumann, editors, Springer-Verlag,
2001.
— adjoint treatment of time-marching and fixed point iteration

M.B. Giles. ’Collected matrix derivative results for forward and reverse
mode algorithmic differentiation’. In Advances in Automatic
Differentiation, Springer, 2008.

M.B. Giles. ’An extended collection of matrix derivative results for forward
and reverse mode algorithmic differentiation’. Numerical Analysis report
NA-08/01, 2008.
— two papers on adjoint linear algebra, second has MATLAB code and
tips on code development and validation
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