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Model Primitives

m Present date ¢t = 0 and a future date t =1

m Randomness described by (2, F,P) att =1

m An atomless pricing kernel (or state-price density or stochastic
discount factor) p so that any future payoff X is evaluated as
E[pX] at present

m An agent with

m initial endowment o >0 att =0
m preference specified by RDUT pair (u, w)

. wants to choose future consumption (wealth) ¢
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Portfolio/Consumption Choice Model under RDUT

The model

Max V(e) = ;7w (P (u(@) > x))de

¢ . ~ (RDUT)
subject to  E[pé] <z, ¢ >0
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Issues Related to the Model

m Feasibility: whether there is at least one solution satisfying all
the constraints

m Well-posedness: whether the supremum value of the problem
with a non-empty feasible set is finite (in which case the
problem is called well-posed) or +oo (ill-posed)

m Attainability: whether a well-posed problem admits an optimal
solution

m Uniqueness: whether an attainable problem has a unique
optimal solution
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m The model
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m The model
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m First-order condition: & = (u/)~! ( )
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EUT Model Revisited

Let w(p) =p
m The model
Max = [o° P (u(é) > z) dx = E[u(¢)]
subject to E[ ] <z, C Z 0

Lagrange: Max; E[u(¢) — \pc]

First-order condition: ¢* = (u/)~! (\p)

Determine \: E[p(u/)~t (\p)] = zo

Karatzas and Shreve (1998), Jin, Xu and Zhou (2008)



Mathematical Behavioural Finance A Mini Course
L Formulation of RDUT Portfolio Choice Model

Properties of EUT Solution




Mathematical Behavioural Finance A Mini Course
L Formulation of RDUT Portfolio Choice Model

Properties of EUT Solution

m &= (u)7H (M)
m Assume Inada condition: u/(0+) = 0o, u/(c0) =0



Mathematical Behavioural Finance A Mini Course
L Formulation of RDUT Portfolio Choice Model

Properties of EUT Solution

m &= (u)7H (M)
m Assume Inada condition: u/(0+) = 0o, u/(c0) =0
m & e (0,4+00)



Mathematical Behavioural Finance A Mini Course
L Formulation of RDUT Portfolio Choice Model

Properties of EUT Solution

& = () ()
Assume Inada condition: v/ (0+) = oo, u/(00) =0
¢* € (0,+00)

¢* is a non-increasing function of p — anti-comonotonic with p
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m The model
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Challenges under RDUT

m The model

Max = [ w ) > x))dx

(RDUT)
subJect to E[ ] <z, >0

m u is assumed to be concave
® w is in general non-convex/non-concave

m Difficulty: due to nonlinear weighting function w, (RDUT) is
not a concave maximisation problem even though w is
concave!
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L Formulation of RDUT Portfolio Choice Model

Literature

m Very little ...

m Shefrin (2008): finite probability space; informal and
preliminary

m Carlier and Dana (2008): necessary conditions; no explicit
solution
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Standing Assumptions

m p >0 a.s., atomless, with E[p] < +oo.

m u: [0,00) — R is strictly increasing, strictly concave,
continuously differentiable on (0, c0), and satisfies the Inada
condition: u/(0+) = oo, u/(00) = 0.

m w: [0,1] — [0,1] is strictly increasing and continuously
differentiable, and satisfies w(0) = 0, w(1) = 1.
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[ Quantile Formulation

Quantile (Function)

= Given random variable X and its CDF F : (—00,00) — [0, 1]
m The (upper) quantile G ¢ : [0,1) — [—00,00] is defined as

G4 (p) :=inf{x eR : Fy(z) >p}, pel0,1)

m G'; is non-decreasing and right-continuous
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The Model Again

Max JoSw ) > x))dx

¢ (RDUT)
subject to E[pc] § xg, ¢ >0
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[ Quantile Formulation

Preference and Cost

m Preference measure V(¢) = [;°w ) > x))dz is
increasing in ¢

V' is law-invariant: V (¢) = V(&) whenever ¢ ~ &

One may substitute ¢ in V' by any r.v. ¢ without changing its
value — so long as the distribution remains unchanged

. which & is the cheapest?

Consider ming .z E [p¢]
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Hardy—Littlewood Inequality

(Jin and Zhou 2008) We have that ¢* := G(1 — F;(p)) solves

ming .z F [pc|, where G is quantile of ¢. If in addition
—00 < E[pé*] < 400, then ¢* is the unique optimal solution.

Hardy, Littlewood and Polya (1952), Dybvig (1988)
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[ Quantile Formulation

Changing Decision Variable

m We only need to consider consumption class of the form
¢ = G(Z) where G is quantile of ¢ and
Z:=1- F;(p) ~U(0,1)

m Budget constraint rewritten

E[pd <zo = E [Fﬁ_l(l - Z)G(Z)} <z | Frl(1-2)G(2)dz < 2o
0
m Preference measure rewritten
/0 w (P (u(é) > x))dz :/0 u(z)dw(Fs(z))dx :/0 u(G(z))dw(z),

where w(p) =1 — w(1 — p) (dual of w)

m Decision variable is now changed from ¢ to its quantile G!
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[ Quantile Formulation

Original RDUT Model

Max JoSw ) > x))dx

¢ (RDUT)
subject to E[pc] § xg, ¢ >0
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Quantile Formulation

The quantile formulation of (RDUT) is:

Ié.;/leaé Ul(G(-)l) = [1u(G(2)w' (1 - 2)dz @
subject to [y F5 (1 — 2)G(2)dz < a0
where

G ={G :1]0,1) — [0, o0] non-decreasing and right-continuous},

is the set of quantile functions of nonnegative random variables

A concave maximisation problem!
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Lagrange Method

m Apply a multiplier X to the initial budget constraint

m For each )\, we solve the unconstrained problem and derive
the optimal solution G

m Find \* such that G%. binds the initial budget constraint, i.e.,

1
/ Fﬁ_l(l — 2)G3«(2)dz = xo.
0

Then G%. is optimal to (Q)
m ¢ =G5 (1 — F;(p)) is optimal to (RDUT)
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L Solutions

Anti-Comonotonicty

m ¢ =G3.(1-F;(p))
m ¢* is a non-increasing function of p

m ¢* is anti-comonotonic with p
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Unconstrained Problem

m The quantile problem is to solve

M _
Max fo '(1—2)dz
subject to fo F~ (1-— z)G(z)dz <z
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Unconstrained Problem

m The quantile problem is to solve

M _
Max fo '(1—2)dz

Q)
subject to fo F~ (1-— z)G(z)dz <z

m Given )\, consider

Max U(G) = fy [u(c(z))w'a —2) = AF; (1 - Z)G(Z)} dz
(Qr)
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L Solutions

“Brute Force” Solution

m Maximise the integrand over G(z) pointwisely
m First-order condition: «/(G(2))w'(1 — z) — )\Fl;l(l —2)=0

_ —11—2
mG(z) = (u)! <MZ”,(17(_1Z))) would solve the quantile

formulation ...
-1

. Fl(1-z) . . .
m ... provided that %7;) iS non-increasing, or

M(z) := % is non-decreasing!
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to ensure that the optimal value is finite and the optimal
solution exists
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Integrability Condition

m We impose the following condition as in classical EUT model
to ensure that the optimal value is finite and the optimal
solution exists

E [u <(u’)1 (#ﬁp))»] < 400, forany A >0

m In the following, we always assume the integrability condition
holds
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Solution under Monotonicity Condition

(Jin and Zhou 2008) /f M (z) is non-decreasing on z € (0,1),
then the unique optimal solution to (RDUT) is given as

where \* is determined by E(pc*) = xy.

Remark

When there is no probability weighting, it reduces to the
classical EUT result.
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The Monotonicity Condition

m M(z) = % is automatically non-decreasing if w is
11—
concave (risk-seeking)

m If we C? and Gp € C', then M is non-decreasing iff

w'(z) _ Gp2)
=G0

0<zxl1

where G is the quantile of p

m However: The condition is violated for many known
weighting functions and a lognormal pricing kernel
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Violation of Monotonicity Condition

(He and Zhou 2012) Suppose p is lognormally distributed, i.e.,

)= (m _ M)

g

for some p and o > 0, where ®(-) is the CDF of standard Normal.
For any weighting function in K-T, T-F, P with 0 < v < 1, there
exists ¢ > 0 such that
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Probability Weighting Functions

m Kahneman and Tversky (1992) weighting

w(p) = i VEL
(P + (1 —p)M)/

m Tversky and Fox (1995) weighting

wip) = —P
Y -
m Prelec (1998) weighting

w(p) = e8P

® Jin and Zhou (2008) weighting
ao 2
ygfak:ea“‘k( ' (@71(2) —ao) 2<1— 2,

(bo)?

C+ ke 2@ (@7 1(2) —bo) 2>1-2

w(z) =
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Endogenous Portfolio Insurance

(He and Zhou 2012) /f there exists € > 0 such that

1-e<z<1,

then for any optimal solution ¢* to (RDUT), we have
essinf ¢* > 0.

m Agent will set a positive floor (portfolio/consumption
insurance) endogenously if = ((Zz)) is sufficiently large when

z 1s near 1

1"
m Fear index: 15)/((5)) when z is near 1
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Tversky and Fox 1995

M(z)

0 0.1 . . .
z
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Prelec 1998

M(z)
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Assumption

M () is continuously differentiable on (0, 1) and there exists
0 < zp < 1 such that M(-) is strictly decreasing on (0, z9) and
strictly increasing on (zp, 1). Furthermore, lim,4; M(z) = +o0.
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Monotonicity Condition

Assumption

M () is continuously differentiable on (0, 1) and there exists
0 < zp < 1 such that M(-) is strictly decreasing on (0, z9) and
strictly increasing on (zp, 1). Furthermore, lim,4; M(z) = +o0.

m Under this assumption,

G(z) = () <%) = («/)"Y(\/M(2)) is no longer

non-decreasing, so the brutal force (point-wise maximization)
fails
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One Dimensional Optimisation

m We only need to consider quantiles in the form of
G(Z) = C_:(y)]-0<z§y aln C_:(Z)]-y<z<1

for zo <y<1
m Substitute above G into

UA(G) = /0 WG/ - 2) - A1 - 2)G(2)] d

and find optimal y!
m Optimal y exists and is unique, and independent of A

m Denote optimal y by z*, which is shown to be the unique root
of

y
(p(y):/ '1-2)dz2— M /F~ (1—-2)dz, z<y<l1
0
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Solution under Two-Piece Monotonicity Condition

(He and Zhou 2012) Under the specified condition on M,
(RDUT) has a unique optimal solution

where a* > 0 is the root of

(e e]

o(z) = 2(1 — w(F3(x))) — ' (F3(x)) / sdFy(z)

T

on (F;l(zo), +00), and X\* > 0 is such that E(pc*) = xg.
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Max V(e)
C
subject to  E[pé] <z, ¢ >0
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I—Quantile Formulation as a General Approach

Basic Assumptions

m V is law invariant

m “The more money the better”: v(zg) > v(x() whenever
xo > x(, where v(xp) is the supremum of (P)

m [ is atomless
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I—Quantile Formulation as a General Approach

Quantile Formulation

m Quantile formulation

Max V(G(2))
subject to E[Fﬁ_l(l ~ 2)G(2)] < 0

where Z ~ U(0,1)
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I—Quantile Formulation as a General Approach

Quantile Formulation

m Quantile formulation

Max V(G(Z))
et IR (Q)
subject to  E[F; (1 — Z)G(Z)] < xo

where Z ~ U(0,1)

m If G* is optimal to (Q) then ¢* := G*(1 — F;(p)) is optimal to
(P)
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I—Quantile Formulation as a General Approach

Quantile Formulation

m Quantile formulation

Max V(G(Z))
GeG 5 - (Q)
subject to E[Fﬁ_l(l —Z)G(Z)] < x9
where Z ~ U(0,1)
m If G* is optimal to (Q) then ¢* := G*(1 — F;(p)) is optimal to
(P)

m So ¢* is always anti-comonotonic with p
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Goal Achieving

Max P(¢ > b)
C
subject to E[pé] <z, ¢>0

where b: the goal

Kulldorff (1993), Heath (1993), Browne (1999), Follmer and
Leukert (1999), Spivak and Cvitani¢ (1999), etc.
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Quantile Formulation

m Quantile formulation
Max U(G) == fl 1(G( )>b dz
GeG 0 2)2b)
Subject to fol F;l(l —2)G(z)dz < x9
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Solution

Theorem

(He and Zhou 2009) The unique optimal solution to
goal-achieving problem is ¢* = bl(;<,) where a > 0 is such that
E[1(3<q)p] = w0/b. The optimal value is Fj(a).

Proof.

Lagrange — pointwise maximisation — binding budget constraint [
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I—Quantile Formulation as a General Approach

SP/A Portfolio Choice Model

Max V(@) =[5 w (P (u(@) > z))dx
subject to  E[pc] < zg, ¢ > 0, (SPA)
P(c>A) >«

where
m A > 0: aspiration level
m «: confidence level
Lopes and Oden (1999)
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I—Quantile Formulation as a General Approach

Quantile Formulation

Max fo (G(2))w' (1 — 2)dz
Subject to fo Fyi(1— z)G(z)dz <z9, Gl—a)> A
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Solution

Theorem
(He and Zhou 2012) Assume that zy > AE [ﬁl(ﬁspﬁ—l(a))}, and

M is non-decreasing on (0,1). Then the unique optimal solution
to (SPA) is given as

~k N=1(_Xp _
= (v) <w/(F,;(ﬁ)))1(ﬁ2F,;l(a))

* [(“1)71 <#ﬂp>)> v A] L Gera)

where \* is the one binding the initial budget constraint, i.e.,
E(ﬁ&*) = Z(-
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Section 5

Summary and Further Readings
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Summary

m Portfolio choice under RDUT - probability weighting

m Technical challenge arising from probability weighting:
non-convex optimisation in infinite dimension

m Approach — quantile formulation

m Think of distribution/quantile of future consumption!
m A monotonicity condition - its economic interpretation
[

Quantile formulation can treat a much broader class of
problems
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