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Model Primitives

m Present date ¢t = 0 and a future date t = 1

m Randomness described by (2, F,P) att =1

m An atomless pricing kernel p so that any future payoff X is
evaluated as E[pX] at present

m An agent with

m initial endowment zp at t =0
m preference specified by CPT

. wants to choose future consumption (wealth) ¢



Mathematical Behavioural Finance A Mini Course
L Formulation of CPT Portfolio Choice Model

Portfolio Choice/Consumption Model under CPT

m The model
Max V(e) = [y  wy (P (u+ ((5 - B)+> > ﬂ:)) dx

5 e ( (o (G- B)1) > )
subject to E[pé] < zo, ¢ is bounded below
(CPT)
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Portfolio Choice/Consumption Model under CPT

m The model
Max V(e) = [y  wy <P (u+ <(5 - B)+> > ﬂ:)) dx

5 e ( (o (G- B)1) > )
subject to E[pé] < zo, ¢ is bounded below
(CPT)

m u4 is assumed to be concave so overall value function
Uy (2)1g>0 — u—(x)1y<o is S-shaped; us(0) =0
m wy is in general non-convex/non-concave

m B = 0 without loss of generality
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CPT Preference

Write V(¢) = V. (¢T) — V_(¢™) where
Vi (@) == [57 wi (P (ug (¢) > ) da

V_(¢) = [yT w_ (P (u_ (¢) > x)) dx
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Mathematical Challenges

m Two difference sources

m Probability weighting and S-shaped value function
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Literature

m Almost none

m Berkelaar, Kouwenberg and Post (2004): no probability
weighting; two-piece power value function
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Standing Assumptions

m p >0 a.s., atomless, with E[p] < +oo.

m uy : [0,00) — R are strictly increasing, concave, with
ux(0) = 0. Moreover, u is continuously differentiable on
(0,00), strictly concave, and satisfies the Inada condition:
u/, (0+) = oo, u/ (00) = 0.

m wy : [0,1] — [0,1] are strictly increasing and continuously
differentiable, and satisfies w4 (0) = 0, wy (1) = 1.
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Divide and Conquer
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Our Model (Again)

Max V(@) =[S we (P (ug(Eh) > 2)) da

c ~Pw-Po@) >ade (P)
subject to  E[pé] < zg, ¢ >0

This problem admits a quantile formulation
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Divide and Conquer

We do “divide and conquer”

m Step 1: divide into two problems: one concerns the gain part
of ¢ and the other the loss part of ¢

m Step 2: combine them together via solving another problem
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Step 1 — Gain Part Problem (GPP)

A problem with parameters (A, z):

Max V+(E)~f Jo S wy (~P (ug(¢) > x)) dx
- —— { f[:cg o | c>0 (1)

where 2, > 2§ (> 0) and A € F with P(4) <1

m Define its optimal value to be vy (A, z)
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Step 1 — Loss Part Problem (LPP)

A problem with parameters (A, z):
Min V_(e) = ;7 w— (P (u_(¢) > x)) dz
[ ~

subject to ¢=0on A, ¢is bounded

where x, > xaL and A € F with P(4) <1

m Define its optimal value to be v_(A, z)
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Step 2

In Step 2 we solve

Max vy (A 1) —v_(A4,74)
AeF, x+2x6r, (3)
subject to x4 = 0 when P(A) =0,

x4 = x9 when P(A) = 1.
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It Works

Theorem

(Jin and Zhou 2008) Given ¢*, define A* := {w : ¢* > 0} and
x* := E[p(¢*)T]. Then & is optimal for the CPT portfolio choice
problem (CPT) iff (A*,x% ) are optimal for Problem (3) and
(X*)T and (X*)~ are respectively optimal for Problems (1) and
(2) with parameters (A*, x7 ).

Proof. Direct by definitions of maximum/minimum.
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solution ¢_ (A, z+) and optimal value v_(A, z)
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Solution Flow

m Solve GPP for any parameter (A, z ), getting optimal
solution ¢4 (A, x4 ) and optimal value v; (A, z )

m Solve LPP for any parameter (A, z, ), getting optimal
solution ¢_ (A, z+) and optimal value v_(A, z)

m Solve Step 2 problem and get optimal (A*,z%)
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Solution Flow

m Solve GPP for any parameter (A, z ), getting optimal
solution ¢4 (A, x4 ) and optimal value v; (A, z )

m Solve LPP for any parameter (A, z, ), getting optimal
solution ¢_ (A, z+) and optimal value v_(A, z)

m Solve Step 2 problem and get optimal (A*,z%)
m Then ¢* := ¢ (A%, 2%) — é_(A*, 2% ) solves the CPT model
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Simplification
Recall Step 2 problem

v (4, 74) —v_(4,24)
optimisation over a set of random events A: hard to handle

Theorem

(Jin and Zhou 2008) For any feasible pair (A,x) of Problem
(3), there exists ¢ € [essinf p, esssup p| such that
A:={w: p < a} satisfies

vi(A,24) —v-(A,zy) 2 v (A z4) —v-(4,24).  (4)
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Simplification

Recall Step 2 problem

U+(A7 .%'+) - U—(A7 .%'+)

optimisation over a set of random events A: hard to handle

Theorem

(Jin and Zhou 2008) For any feasible pair (A,x) of Problem
(3), there exists ¢ € [essinf p, esssup p| such that
A:={w: p < a} satisfies

vi(A,24) —v-(A,zy) 2 v (A z4) —v-(4,24).  (4)

Proof. One needs only to look for ¢ = g(p) where g is
non-increasing. Hence
A={w:¢>20}={w:9(p) >0} ={w:p<a}.
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Step 2 Problem Rewritten

m Use vy (a,z4) and v_(a,z) to denote v ({w: p < a},z4)
and v_({w : p < a},z4) respectively
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Step 2 Problem Rewritten

m Use vy (a,z4) and v_(a,z) to denote v ({w: p < a},z4)
and v_({w : p < a},z4) respectively

m Problem (3) is equivalent to

Max vy(a,z4) —v—(a,z4)
essinf p < a <esssup p, x4+ >xd, (5)
subject to 2+ = 0 when a = essinf p,

x4 = x9 when a = esssup p
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Solutions to GPP and LPP
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GPP

Max Vi (@) = [i7 wy (P (ug(¢) > x)) da
. Elpel =24, ¢>0 (6)
subject to { &= 0 on AC,

where 2 > 2§ and A = {w: p < a} with essinf p < a < esssup

We have solved this problem — RDUT portfolio choice!
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Integrability Condition

m Impose the intergrability condition

£ ue (@07 (i) ) o) ] < o0
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Integrability Condition

m Impose the intergrability condition

_ p / ~
B s (60 (o)) e E)] < +oc
[ o\ (F(p) ) ) T
m In the following, we always assume the integrability condition
holds
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Solutions to GPP

(Jin and Zhou 2008) Assume M (z) = wil1=2) o non-decreasing on

F-Y(1=2)

z € (0,1).
(i) If x4 =0, then optimal solution of (6) is ¢* = 0 and v4(a,z4) = 0.
(ii) If x4 > 0 and a = essinf p, then there is no feasible solution to (6)
and vy (a,24) = —00.
(iii) Ifz4 > 0 and essinf p < a < esssup p, then optimal solution to (6)

isér = (u))? (#ﬁﬁ(ﬁ))) 1(5<q) with the optimal value
A <

vi(a,24) = E [u+ ((u;)—l(%)) W', (F5(5))1(p<a)|, where
A* is determined by E(pc*) = x..
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Idea of Proof

m Work on conditional probability space
QNAFNAP,:=P(-|4))

m Revise weighting function

wa (@) = wy (@P(4))/wy (P(4)), @ €[0,1]
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Idea of Proof

m Work on conditional probability space
QNAFNAP,:=P(-|4))

m Revise weighting function
wa(x) == wi (zP(A)) fw (P(A)), @ € [0,1]
m GPP is rewritten as

Max Vi (@) = wi(P(A)) [57 wa (Pa (uy(8) > 2)) da
subject to  { Ea[pc] = x4 /P(A), ¢>0
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Idea of Proof

m Work on conditional probability space
QNAFNAP,:=P(-|4))

m Revise weighting function
wa(x) == wi (zP(A)) fw (P(A)), @ € [0,1]
m GPP is rewritten as

Max Vi (@) = wi(P(A)) [57 wa (Pa (uy(8) > 2)) da
subject to  { Ea[pc] = x4 /P(A), ¢>0

m Apply result in Chapter 2
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LPP

Min V_(&) = [;7w- (P (u_(¢) > z)) dx
. Elpél =x4 —x0, €20 (7)
RERICe e { ¢=0on A, ¢is bounded

where 2 > 2§ and A = {w: p < a} with essinf p < a < esssup

This is a minimisation problem!
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A General Problem

Min JoSw ) > z))dx
C
subject to E[pc] 2 xg, ¢ >0
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Hardy-Littlewood Inequality (Again)

(Jin and Zhou 2008) We have that ¢* := G(F;(p)) solves

maxy .~z E [pc], where G is quantile of ¢. If in addition
—00 < E[pé*] < 400, then ¢* is the unique optimal solution.

Hardy, Littlewood and Polya (1952), Dybvig (1988)
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Quantile Formulation

The quantile formulation of (G) is:

Min  U(G()) = Jy u(G(2)w'(1 - 2)dz
subject to fol Fl;l(z)G(z)dz > 10
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Combinatorial Optimisation in Function Spaces

To minimise a concave functional: “wrong” direction!

. which originates from S-shaped value function

Solution must have a very different structure compared with
the maximisation counterpart

Lagrange fails (positive duality gap)

Solution should be a “corner point solution”: essentially a
combinatorial optimisation in an infinite dimensional space
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Characterising Corner Point Solutions

Proposition

(Jin and Zhou 2008) Assume u(-) is strictly concave at 0. Then
the optimal solution to (Q), if it exists, must be in the form
G*(2) = q(b)11y(2), 2z € [0,1), with some b € [0,1) and

o a . . .
q(b) := Tl Moreover, in this case, the optimal solution

is & = G (F3(p)).

m One only needs to find an optimal number b € [0, 1)
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Characterising Corner Point Solutions

Proposition

(Jin and Zhou 2008) Assume u(-) is strictly concave at 0. Then
the optimal solution to (Q), if it exists, must be in the form
G*(2) = q(b)11y(2), 2z € [0,1), with some b € [0,1) and
Moreover, in this case, the optimal solution

1)) o= E[ﬁl{p(;(,s»b}]'
is & = G*(F3(p)).

m One only needs to find an optimal number b € [0, 1)

® ... which motivates introduction of the following problem

Mbin f() = fol w(G(2))w' (1 — 2)dz
SllbjeCt to G() = ml(b’”('), 0 S b < 1.
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Solving (G)

Theorem

(Jin and Zhou 2008) Assume u(-) is strictly concave at 0. Then
(G) admits an optimal solution if and only if the following problem

. o ;
min = u( —=——— |w(P(p>0b
0<b<esssup p <E[p1(ﬁ>b)] ) ( (p ))

admits an optimal solution b*, in which case the optimal solution
fLok B 5
to (G) IS C" = B (555m)] 1(p>b*)-
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Solutions to LPP

(Jin and Zhou 2008) Assume u(-) is strictly concave at 0.

(i) If a = esssup p and x4 = xg, then optimal solution of (7) is ¢* =0
and v_(a,z4) = 0.

(ii) Ifa = esssup p and x4 # xo, then there is no feasible solution to
(7) and v_(a,z4) = +o0.

(iii) Ifessinf p < a < esssup p, then

v (a,74) = nfye (g esssup ) U (m) w_ (1= F(b)).
Moreover, Problem (7) admits an optimal solution ¢* iff the
following problem

min  u_ (M) w_ (1= F5(b)) (8)

be[a,esssup p) E[ﬁl(ﬁ>b)]

T4+ —To

admits an optimal solution b*, in which case ¢* = oI F |
P15 p*)]

155p-.
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A Mathematical Programme

Consider a mathematical programme in (a,z4):

_ ANa,x4)p 7
Mox(oa,) B [ur ((w4)7F (2425 )) vl (Fp((p) <o

i (-0~ F@)

essinf p < a < esssup p, x4 > zBL,
x4 =0 when a = essinf p, x = 29 when a = esssup p),
(MP)
p

,)3))) ﬁl(ﬁéa)} =z

subject to {

where \(a, ) satisfies F {(uﬁr)*l ( al

L4
B

W (F
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Grand Solution

Theorem

(Jin and Zhou 2008) Assume u_(-) is strictly concave at 0 and
M is non-decreasing. Let (a*,x% ) solves (MP). Then the optimal
solution to (CPT) is

- _ AD Tt — xg
&= |(u)) 1( A >}1~<a* {7~+ }1*(1*-
[ T\ (Fp() )] TP T Bl gsan]] P
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_ _ Ap a5, — @3y
&= @) (7 )}1 [7f ]1
[ o \WL(F() )] TP T Bl san]] TP

m Future world divided by “good” states (where you have gains)
and “bad” ones (losses), completely determined by whether
p<a*orp>a*
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_ _ Ap a5, — @3y
&= @) (7 )}1 [7f ]1
[ o \WL(F() )] TP T Bl san]] TP

m Future world divided by “good” states (where you have gains)
and “bad” ones (losses), completely determined by whether
p<a*orp>a*

- 1 A5
m Agent buy claim {(uﬁr) (W’;(ﬁ)))] (5<a+) at cost
J:j_—aco

i o] 1(5>q+) to finance shortfall

x> x9 and sell {

Ty — Zo
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leverage to do so



Mathematical Behavioural Finance A Mini Course
L Grand Solution

Interpretations and Implications

m Future world divided by “good” states (where you have gains)
and “bad” ones (losses), completely determined by whether
p<a*orp>a*

- 1 A5
m Agent buy claim {(uﬁr) (W’;(ﬁ)))] 1(5<a+) at cost

E—
$+ o

x> x9 and sell { }] 1(5>q+) to finance shortfall

B[P (p>ax)
Ty — Zo

m Agent not only invests in stocks, but also generally takes a
leverage to do so

m Optimal strategy is a gambling policy, betting on the good

states while accepting a known loss on the bad
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Section 5

Continuous Time and Time Inconsistency
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R"™-valued, F;-adapted standard Brownian motion
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I—Continuous Time and Time Inconsistency

A Continuous-Time Economy

m An economy in which m + 1 securities traded continuously

m Market randomness described by a complete filtered
probability space (€2, F, {Ft}t>0, P) along with an
R"™-valued, F;-adapted standard Brownian motion
W(t) = (WL(t), -, W™(t)) with {F;};>0 generated by
w()

m A bond whose price process Sy(t) satisfies

dSo(t) = r(t)So(t)dt: So(0) = so

m m stocks whose price processes Si(t),- - Sy (t) satisfy
stochastic differential equation (SDE)

=1

dSl(t) = Sl(t) (Mi(t)dt + i 045 (t)dW] (t)) ) Sl(O) = S5
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Tame Portfolios

m Let
o(t) = (04(t))mxm
B(t) := (pa(t) = r(t), -, pm(t) — (1)’
m An F;-progressively measurable process
7(t) = (w1(t), -+ ,mm(t)) represents a (monetary) portfolio,
where 7;(t) is the capital amount invested in stock i at ¢
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Tame Portfolios

m Let
o(t) := (03 (t))mxm
B(t) = (pa(t) = (), pm(t) — (1))’
m An F;-progressively measurable process
mw(t) = (w1(t), - ,mm(t)) represents a (monetary) portfolio,
where 7;(t) is the capital amount invested in stock i at ¢
m A portfolio 7(+) is admissible if

/ o(t) (¢ |dt<+oo/ (t)]dt < +00, as.
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Tame Portfolios

m Let
o(t) := (03 (t))mxm
B(t) = (pa(t) = (), pm(t) — (1))’
m An F;-progressively measurable process
mw(t) = (w1(t), - ,mm(t)) represents a (monetary) portfolio,
where 7;(t) is the capital amount invested in stock i at ¢
m A portfolio 7(+) is admissible if

/ o(t) (¢ |dt<+oo/ (t)]dt < +00, as.

m An agent has an initial endowment x
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Wealth Equation

m Wealth process x(-) follows the wealth equation

{ dz(t) = [r(t)z(t) + B(t)w(t)]dt + = (t) o(t)dW(t)
z(0) =z
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I—Continuous Time and Time Inconsistency

Wealth Equation

m Wealth process x(-) follows the wealth equation

{ dz(t) = [r(t)z(t) + B(t)w(t)]dt + = (t) o(t)dW(t)
z(0) =z

m An admissible portfolio 7 (+) is called tame if the
corresponding wealth process z(-) is uniformly lower bounded
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Market Assumptions

Market assumptions:
(i) There exists k € R such that fo t)dt >k,

(“) fO i= 1‘b ‘+Z,] 1‘0'1]( )’ ]d75<—|-C>O7
(iil) Rank (o(t)) =m, t € [0,T],
(iv) There exists an R™-valued, uniformly bounded,

Ji-progressively measurable process () such that
o(t)6(t) = B(t)
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m Define

) i=exp{~ [ t )+ 5100 ds - [ t@(s)'dW(s>}
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Pricing Kernel

m Denote p:= p(T)

m Assume that p is atomless
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Continuous-Time Portfolio Choice under EUT

Max Elu(z(T))]
subject to (z(:),n(-)) : tame and admissible pair

where u is a concave utility function satisfying the usual
assumptions
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Forward Approach: Dynamic Programming

m Let v be the value function corresponding to (9): v(t,x) is
the optimal value of (9) if the initial time is ¢ (instead of 0)
and the initial budget is x (instead of z)

m Time (dynamic) consistency: E(¢|F;) = E[E(¢|F;)|F]
vVt < s

m v satisfies the Hamilton—Jacobi—Bellman (HJB) equation:

Vg + SUP L cpm (%ﬂ"aa’ﬂ'vm + Bm}l) +rzv, =0, (t,2) €[0,T) xR,
(T, z) = u(zx)
(10)

m Verification theorem: optimal portfolio

T (t,x) = f(a(t)')*le(t)M

Vg (t, )

(11)
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Backward Approach: Replication

m One solves first a static optimization problem in terms of
terminal wealth, ¢:

Max Elu(eé)
subject to  E[pé] = wo; ¢ is Fr-measurable

. &= (W) )

m Solve backward stochastic differential equation (BSDE) in

(@ (), 27 ()):
da* () = [r(t)a™ (£)+0(t)' 2" (t)]dt+ 2" (8) AW (t); a*(T) = & (13)

(12)

] Sejcting 7*(t) = (o(t)")~12z*(t) and (z*(-),7*()) is optimal
pair
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Time Inconsistency under Probability Weighting

[ thquet expectation .
EX]= [XdwoP)= [FwP(X > z))dx

m How to define “conditional Choquet expectation”?

m Evenif a conditiAonaI ChoquAetAexpectation can be defined, it
will not satisfy E(&F;) = E[E(¢|Fs)|F]

m Dynamic programming falls apart

m Consider a weak notion of “optimality” - equilibrium portfolio
in other settings (Ekeland and Pirvu 2008, Hu, Jin and Zhou
2012, Bjork, Murgoci and Zhou 2012)
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Replication: Pre-Committed Strategies

m Solve a static optimisation problem (with probability
weighting) in terms of terminal wealth

m Such a problem has been solved by our approach developed

m Find a dynamic portfolio replicating the obtained optimal
terminal wealth

m Such a portfolio is an optimal pre-committed strategy (Jin
and Zhou 2008, He and Zhou 2011)
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I—Summary and Further Readings

Summary

m Portfolio choice under CPT - probability weighting and
S-shaped value function

Technical challenges
Approach — divide and conquer

Combinatorial optimisation in infinte dimension

Optimal consumption profile markedly different from that
under EUT — leverage and gambling behaviour

m Inherent time inconsistency for continuous-time behavioural
problems
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Essential Readings

m A. Berkelaar, R. Kouwenberg and T. Post. Optimal portfolio
choice under loss aversion, Review of Economics and
Statistics, 86:973-987, 2004.

m H. Jin and X. Zhou. Behavioral portfolio selection in
continuous time, Mathematical Finance, 18:385—426, 2008;
Erratum, Mathematical Finance, 20:521-525, 2010.
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Other Readings

m T. Bjork, A. Murgoci and X. Zhou. Mean-variance portfolio optimization with state dependent risk
aversion, Mathematical Finance, to appear; available at http://people.maths.ox.ac.uk/"
zhouxy/download/BMZ-Final.pdf

m P. H. Dybvig. Distributional analysis of portfolio choice, Journal of Business, 61(3):369-398, 1988.
m D. Denneberg. Non-Additive Measure and Integral, Kluwer, Dordrecht, 1994.

m |. Ekeland and T. A. Pirvu. Investment and consumption without commitment, Mathematics and Financial
Economics, 2:57-86, 2008.

m G.H. Hardy, J. E. Littlewood and G. Polya. Inequalities, Cambridge University Press, Cambridge, 1952.
m X. He and X. Zhou. Portfolio choice via quantiles, Mathematical Finance, 21:203-231, 2011.

m Y. Hu, H. Jin and X. Zhou. Time-inconsistent stochastic linear-quadratic control, SIAM Journal on
Control and Optimization, 50:1548-1572, 2012.

m H. Jin, Z. Xu and X.Y. Zhou. A convex stochastic optimization problem arising from portfolio selection,
Mathematical Finance, 81:171-183, 2008.

m |. Karatzas and S. E. Shreve. Methods of Mathematical Finance, Springer, New York, 1998.
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Two Revolutions in Finance

m Finance ultimately deals with interplay between market risk
and human judgement

m History of financial theory over the last 50 years characterised
by two revolutions

m Neoclassical (maximising) finance starting 1960s: Expected
utility maximisation, CAPM, efficient market theory, option
pricing

m Behavioural finance starting 1980s: Cumulative prospect
theory, SP/A theory, regret and self-control, heuristics and
biases
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Neoclassical vs Behavioural

m Neoclassical: the world and its participants are rational
“wealth maximisers”

m Behavioural: emotion and psychology influence our decisions
when faced with uncertainties, causing us to behave in
unpredictable, inconsistent, incompetent, and most of all,
irrational ways

m A relatively new field that attempts to explain how and why
emotions and cognitive errors influence investors and create
stock market anomalies such as bubbles and crashes

m It seeks to explore the consistency and predictability in human
flaws so that such flaws can be avoided or even exploited for
profit
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Do We Need Both?

m Foundations of the two
m Neoclassical finance: Rationality (correct beliefs on
information, risk aversion) — A normative theory
m Behavioural finance: The lack thereof (experimental evidence,
cognitive psychology) — A descriptive theory

m Do we need both? Absolutely yes!
m Neoclassical finance tells what people ought to do
m Behavioural finance tells what people actually do
m Robert Shiller (2006), “the two ... have always been
interwined, and some of the most important applications of
their insights will require the use of both approaches”
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Mathematical Behavioural Finance

“Mathematical behavioural finance” leads to new problems in
mathematics and finance

But ... is it justified: to rationally and mathematically
account for irrationalities?

Irrational behaviours are by no means random or arbitrary
“misguided behaviors ... are systamtic and predictable —
making us predictably irrational” (Dan Ariely, Predictably
Irrational, Ariely 2008)

We use CPT/RDUT/SPA and specific value functions as the
carrier for exploring the “predictable irrationalities”

Mathematical behavioural finance: research is in its infancy,
yet potential is unlimited — or so we believe
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