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Outline 
 
 Motivation:  Wots  me  Δelδa? 
 

 The short maturity arbitrage condition for implied volatility. 
 

 The minimum variance delta. 
 

 The ATM MV delta and its relation to the volatility skew. 
 

 MV delta in stochastic versus pure local volatility models. 
 

 The ATM MV gamma and its relation to the volatility smile. 
 

 The ATM MV theta and the term structure of implied volatility. 
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 The MV delta when historical and implied parameters are different. 
 

 Risk and return in option trading. 
 

 Empirical examples. 
 

 Conclusion. 
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Motivation: Wots me Δelδa? 
 
 It’s  the most pressing question for any option trader.  
 

 The  quant’s  standard  answer is:  “That  depends  on  the  model  – I have ten of 
them, you pick one...” 

 
 The ambiguity comes about because different models specify different 
dynamics for the implied volatility as the underlying moves. 

 
 Let ( , )g g s v  be the (normal) option pricing formula and v  the 
corresponding implied volatility. We have 

 
s s v sc g g v  
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 In a Levy type (jump) model we have ( , ) ( )v s k v k s  from which we get 
 

s s v kc g g v  
 

 In a local volatility model  
 

1
( , ) ( ) ( ) ( )

( )
ss k

k

s kv s k O v s k v s k
a da

 

 
 ... which leads to the exact opposite of the jump model 

 
,s s v kc g g v k s  

 
 Hence, the truly scientific quant would say: 
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,s s v kc g g v k s  
 

 Hagan et al (2002) argues that the delta can be fine tuned in stochastic local 
volatility models by changing the correlation versus the local volatility 
component – when the volatility smile is kept the same. 

 
 Dupire (2006), however, counters that and argues that close to ATM, the 
minimum variance delta is virtually independent of the choice of correlation 
versus local volatility – when the smile is kept the same. 

 
 The minimum variance delta is the position in the underlying stock that 
(locally) hedges as much variance of the option, i.e. including volatility risk, 
as possible: 

 
cov[ , ]

var[ ]s v
dv dsc c ds   
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 In this talk we provide a general proof of the Dupire statement in the context 
of short maturity expansions. 
 

 We further show that the MV delta is uniformly higher for low strikes and 
lower for high strikes in stochastic volatility models than in pure local 
volatility models. 

 
 ... and we produce a model free ATM MV gamma, and consider the link 
between ATM theta and the term structure of implied volatility. 

 
 We investigate results empirically and find that there are significant 
differences  between  “realised”  and  implied  MV  delta. 

 
 Ie historical and implied parameters of stochastic volatility models differ. 

 



 10 

 We show how one can create trading strategies that attempt to benefit from 
this. 
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Important Note 
 
 This is what I knew few months ago. 
  

 It turns out, however, that many of our results are well-known to Lorenzo 
Bergomi, who states the Delta result in his (2004) paper.  

 
 Further, our trading strategy ideas are spiritually related to investigations in 
Bergomi (2009). 

 
 It also appears that some of our results can be dug out of Durrleman (2004). 
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Short Maturity Expansion  
 
 Consider the following general class of stochastic volatility models  

 
( , )
( , ) ( , )

( , )

ds s z dW
dz s z dt s z dZ
dW dZ s z dt

            (1) 

 
 Clearly the family of models (1) is rich enough to include several models 
that fit the same smile. 

 
 As an example, one can think of the smile generated by a Heston model but 
fitted by a pure local volatility model. 

 
 Let ( )c t  be the time t  price of a European option on ( )s T : 

 



 13 

( ) [( ( ) ) ]tc t E s T k              (2) 
 
 Suppose we write the option price as 

 
( ) ( , ( ), ( ))c t g t s t v t              (3) 

 
 ... where ( )g  is  Bachelier’s  option  price  formula  and  v  is the implied normal 
volatility. I.e.  

 
( , , ) ( ) ( ) ( ) , ,x x s kg t s v s k v x T tv       (4) 

 
 We think of v  as a stochastic process and we want to identify the conditions 
v  has to satisfy for the option prices to be consistent with absence of 
arbitrage.  
 



 14 

 Ito expansion of the option price yields  
 

2 21 1
2 2s v ss sv vvtdc g g ds g dv g ds g ds dv g dv       (5) 

 
 Using properties of g  we obtain 
 

2 21 [ ( ) 2 ] ,2s ss
s kdc g ds g v dx dt vdv x v        (6) 

 
 Using that c  must be a martingale and therefore [ ] 0tE dc  leads to  

 
20 ( ) 2 [ ] ,t

s kdx dt E dv xv v           (7) 
 
 As 0 we get the condition that x  needs to be of unit diffusion, i.e.  
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2 2 2 2 22 1 , ( ) 0z zs s
dx x x x x x s kdt        (8) 

 
 This is the short maturity arbitrage condition on the implied volatility  
 

ln( / )
BS

s ks kv or vx x  
 
 Equation (8) is the so-called Eikonal equation.  

 
 The Eikonal equation is a non-linear first order partial differential equation 
on the diffusion rather than the linear second order partial differential 
equations on the drift that we are used to in finance. 
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Minimum Variance Delta 
 
 The MV delta is the position in the underlying stock that minimises the noise 
of the portfolio of option and stock: 

 
minvar [ ]t dc ds              (9) 

 
 The idea first appeared in a paper by Föllmer and Sondermann (1986) under 
the name of locally risk minimizing strategies. 
 

 The solution can be found almost directly by rewriting the Brownian motion 
driver of the volatility process as 2 1/2(1 )dZ dW dB  where 0dW dB , 
i.e. 
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2 1/2
( )

[ ] (1 ) ( )
zs

z zs

dc ds c ds c dz ds O dt
c c ds c dB O dt

      (10) 

 
 This leads to the following break-down of the MV delta: 

 

minvar

[ ]z zs s v s
veganaive stickycorrection deltaofdelta strikeforcorr theimplied volatilitydelta

onlydepend on
smile

c c g g v v        (11) 

 
 So for a given smile, the minimum variance delta of the option price is given 
from the minimum variance delta of the implied volatility.  
 

 ...because g  and all its derivatives in ( , )s v  only depend on the current smile. 
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 Here, we will identify the ATM MV delta of the implied volatility from the 
volatility smile. 

 
 ... and consider what can be said for higher order derivatives. 

 
 For later use we define the MV operator 

 
,Df s z f            (12) 
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Rewriting the PDE 
 
 Using the relation ( )/x s k v  and the MV operator D  we can rewrite 
equation (7) as an equation (directly) in implied volatility 

 
2 2 2 2 2 2 2 2 2 4

3 2 2 2 2 2

0 [ ( ) (1 )( ) ]( ) [2 ( )]( ) [ ]

1 1 12 [ (1 ) ( ( )) ]2 2 2

z

zz zt

Dv v k s v Dv k s v v

v v D v v D v
  (13)  

 
 Equation (13) and differentials of this equation is what we will use for 
derivation of all results. 
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ATM Minimum Variance Delta 
 
 Differentiating (13) wrt k  and evaluating at 0,k s  yields 

 
zskv v v Dv              (14) 

 
 For at-the-money the minimum variance delta of the implied volatility is 
equal to the slope of the smile. 
 

 ... for any model without jumps. 
 
 This is the statement of Bergomi (2004) and Dupire (2006). 
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Away from ATM 
 

 Using the notation ( ) ( , ; )v k v s z k , we can re-arrange equation (13) as 
 

2 2 2 2 1/2
4

0

(1 ) ( ) ( )( ) 1( ) { ( ) ( )[1 ] } , 0( ) ( )
zv k k sv kDv k v s v kv s s k v k

   (15) 

 
 As the term inside the square-root is positive for all stochastic volatility 
models and zero for pure local volatility models we can conclude that... 
 

 For a stochastic volatility model relative to a pure local volatility model, the 
MV Delta is uniformly higher (lower) for k s (k s). 
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 An example of MV Delta as function of strike in LV and SLV models: 
 

 
 
 SABR parameters: ( , ) 0.1s z z , 0.5, ( , ) 3s z z . 1s z , 1/12.  
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ATM Minimum Variance Gamma 
 

 Hardcore (Huge) manipulations of (13) lead to 
 

2 2[ ] , 0,kkD v v v k ss z          (16) 

 
 The ATM MV gamma is determined by the ATM curvature of the smile. 
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ATM MV Theta 
 
 Differentiating (13) with respect to t  and T  and combining yield 

 
, 0,tt Tv v k s             (17) 

 
 The ATM theta is determined by the slope of the implied volatility in the 
maturity dimension. 
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Relation to Variance Contracts 
 
 Using even Huger manipulations of (13) we derive the following relation 
between the slope of ATM volatility and the variance forward 

 
2

3 2 2 2

var

[ ( ) ]1 1 1 , 0,4 2 2
t

T kk k k
slopeof contract

E T vv v v v v v v k sT     (19) 

 
 To apply to VIX, equations need to be converted to BS vols. 
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The Difference Between P and Q 
 
 We often see clear discrepancies between implied and historical parameters. 
 

 Before we venture into a discussion of whether this is due to market 
inefficiency or model misspecification, let us first investigate what it implies 
for delta hedging. 

 
 Suppose the realised dynamics are given by the model as in (1): 

 
( , )
( , )

( , )

ds s z dW
dz s z dZ
dW dZ s z dt

             (21) 

 
 But suppose that options are priced as if they come from the model 
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( , )
( , )

( , )

ds s z dW
dz s z dZ
dW dZ s z dt

             (22) 

 
 Consider a portfolio consisting of one option and  stocks. The portfolio 
evolves according to 

 
2 2

2

1 1[ ]2 2
[ ] 1

zzss szt

z zs

dc ds c c c c dt

c c dW c dB
       (23) 

 
 Because the pricing model is inconsistent with realised dynamics the 
portfolio value will not be a martingale, i.e. the hedge strategy will not be 
mean self-financing. 
 

 However, the choice of  only affects the risk, not the expected return.  
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 The delta that minimizes the risk is  
 

[ ]z zs s v sc c g g v v            (24) 
 

 So the minimum variance delta should be based on the historical (realised)  
parameter /   in combination with derivatives , zsv v  computed on 
implied parameters. 
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Estimating MV Delta 
 
 We have 

 
2

2

( ) 1 ( )

( ) 1

z zs zs

s
z

ds v dz O dt v ds v ds dB O dtdv v v

dv v ds O dt ds dBv

     (25) 

 
 This equation in combination with a model can be used for estimating the 
historical  and the expected noise of the Delta hedge which is proportional 
to 

 
21  
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Realised and Implied MV Delta 
 
 EUR/USD 1y options over a time series of two years. 

 

 -4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

06-Jun-11 14-Sep-11 23-Dec-11 01-Apr-12 10-Jul-12 18-Oct-12 26-Jan-13 06-May-13 14-Aug-13 22-Nov-13

eta

impl

est



 31 

 USD/JPY 1y options over a time series of two years. 
 

 
 

 Dotted lines are error bars of the statistical error. 
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 Significant differences between historical  and implied . 
 

 …  and  a  lot  of  variation  and co-variation in both quantities. 
 

 Which shows 
 

- Implied  will not minimize P&L noise. 
 

- Hedge  has to be frequently updated. 
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Risk and Return 
 
 The MV delta hedged option position evolves according to (23).  
 

 This equation can be re-written using the Eikonal equation (13). 
 
 We have the ATM limits 

 
2 2 2

1 2 2 2

1{ [ ] 1 ( ) }2

{ [ ] ( ) 1

zss
atm delta hedged atm vega riskatm carry

zssk k k kz
skew carryatm skew delta hedged

dc ds g dt vv dB O dt

dc ds g v Dv Dv dt v v vv dB ( ) }
skew vega risk

O dt
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 Which shows that as long as the underlying evolves continuously, the risk of 
the delta hedged ATM and the skew positions vanish in the short maturity 
limit. 

 
 Using our empirical estimates we can now compute the risk and return in 
option positions. 

 
 So option prices combined with historical estimates actually give both risk 
and return information.  
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Historical Risk and Return 
 
 Selling ATM 1y USD/JPY volatility (risk and return): 
 

 
 So if your target Sharpe ratio is 1, then sell ATM volatility over first period, 
then go neutral and buy volatility towards the end of the last  (Abe’nomic)  
period. 
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 Selling 1y USD/JPY skew (risk and return) 
 

 
 

 There is no point in either buying or selling skew over the first period, 
whereas it appears profitable to sell over the last period. 
 

 Note that all calculations exclude transaction costs. 
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Model Misspecification? 
 

 All results here depend on no jumps. 
 

 So the question is whether there are enough jumps to worry. 
 

 A simple test for jumps is to consider  
 

2 3 4

varlog

1 1 1ln ( ) ( ) ( )2 3 4
contractcontract deltahedge skewcontract kurtosiscontract

s s s ss s s s s  

 
 Hence, can we hedge a log-contract with Delta hedge + variance swap? 
 

 Or do we need to include skew and kurtosis contracts...? 
 



 38 

 This test can be done without any option and interest rate data or 
assumptions (!) plus we can translate the outcomes in terms of implied 
volatility, through 

 
21ln ( )/ ( ) ( )2 BSS T S t v T t  
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Jumps in FX? 
 
 Rolling 1y log-contract on USD/JPY data (1971-2013) in implied vol: 
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 Hedging errors: 
 

 
 

 So the maximum error of hedging log-contract with variance contract over a 
period of 40y is ~ 0.25% Black volatility! 
 

 In other words: the skewness contract never realised more than 0.25% BS 
vol! 
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Jumps in Equities? 
 
 Rolling 1m log-contract on S&P500 (1927-2013) in implied volatility: 
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 Hedging errors in implied volatility terms. 
 

 
 
 So very little jump risk in selling ATM options. Primary risk is Vega. 
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Conclusion 
 
 We have produced model free short maturity limits of  

 
- ATM minimum variance delta. 

 
- ATM minimum variance gamma. 

 
 We have shown that MV delta is uniformly higher for low strikes and lower 
for high strikes in stochastic volatility models relative to pure local volatility 
models.  
 

 An ATM theta estimate can be produced from slope in the maturity direction 
of the implied volatility. 
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 Results hold for all models without jumps that match the observed smile. 
 

 Empirical investigations suggest that historical and implied MV delta can 
differ significantly. 
 

 ... and that realised parameters tend to fluctuate more than implied.  
 
 MV delta should be computed using historical parameter estimates in 
combination with implied parameters for the option price derivatives. 

 
 Differences in implied and historical parameters create non-zero expected 
returns on option books. 

 
 Risk premiums for option positions can be estimated – as opposed to 
conventional investments. 
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 Methodologies around the latter need further development. 
 

 ... for example in the direction of identifying the full efficient frontier of 
volatility trading. 

 
 Qualitatively, our empirical results for FX options are very similar to results 
obtained for equity options by Bergomi (2004) and Bergomi (2008). 

 
 
 
 


