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Introduction

Merton’s portfolio problem on a finite horizon [0,T ]:

• Single agent;

• Invest in a bond and a stock starting from initial wealth x
following the (admissible) strategy π(t) while consuming c(t);

• Agent derives utility from consumption c(t) and from
terminal wealth X x ,c,π(T );

• Objective is to maximize expected utility

sup
c,π

E

[∫ T

0
U1(t, c(t))dt + U2(X x ,c,π(T ))

]
.

Optimal investment under stochastic mortality and stochastic interest rates 2/26 Jan de Kort



Introduction Model for the economy Problem definition Solution Conclusion References

Economic motivation for an extension

• Agent derives utility from consumption and from savings at
the retirement date;

• Lifetime is uncertain, i.e. the agent may not survive up until
retirement;

• Expected lifetime continues to improve (longevity risk) in an
unpredictable way, mortality rates are stochastic;

• Exclude cases where the optimal control problem is not
well-posed, e.g. if investing all wealth into the money-market
account leads to infinite utility.
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Relation to existing literature
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Yaari [Yaa65] X X X X X

Ye and Pliska [PY07] X X X X X X X X

Menoncin [Men08] X X X X X X

Deelstra et al. [DGK00] X X X X X

Jeanblanc and Yu [JY10] X X X X X X X

Kraft [Kra03] X (X) X X X X

This talk X X X X X X X X X
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Dynamics of the short rate and mortality rate

Let W (t) = (W1(t),W2(t)) be standard Brownian motion

on (Ω,G,P) and let F(t) be the filtration generated by W (t).

Assume that the short rate r(·) and the mortality rate λ(·) follow

Cox-Ingersoll-Ross processes under P

dr(t) = κ1(µ1 − r(t))dt + ν1

√
r(t)dW1(t) (2.1)

with r(0) = r0 > 0, and

dλ(t) = κ2(µ2 − λ(t))dt + ν2

√
λ(t)dW2(t) (2.2)

with λ(0) = λ0 > 0 given. The coefficients κi , νi and µi are

deterministic and positive. Furthermore we require the Feller

condition 2κiµi > ν2
i to hold for i = 1, 2.
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Tradeable instruments

Assume absence of arbitrage and construct a complete market by

introducing the following tradeables:

• A money market account S0(·) based on the stochastic short

rate r(·);

• A zero-coupon bond P(·,T1) paying 1 unit of currency at

maturity T1;

• A survival bond F (·,T1) paying at time T1 the

mortality-dependent quantity

R = e−
∫T1

0 λ(u)du .
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Tradeable instruments

The price process of the money market account S0(·) satisfies

S0(t) = e
∫ t

0 r(u)du . (2.3)

The price of the zero-coupon bond P(t,T1) is given by

P(t,T1) = E
P̃

[
e−

∫ T1
t r(u)du

∣∣∣F(t)
]

(2.4)

in which P̃ ∼ P is the (unique) risk neutral measure.
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Tradeable instruments

The price of the survival bond is given by

F (t,T1) = E
P̃

[
R e−

∫ T1
t r(u)du

∣∣∣Ft

]
. (2.5)
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Main problem

Let τ (time of death) be a stopping time satisfying

F (t) := P(τ > t | Ft) = e−
∫ t

0 λ(s)ds . (3.1)

Find the consumption and terminal wealth maximising power

utility on the horizon [0,T ∧ τ ] where 0 < T < T1.

This problem can be formulated as:

sup
c,π admissible

E

[ ∫ T

0
U1(t, c(t))dt + U2(X x ,c,π(T ))

]
(3.2)

where U1(t, x) = F (t)Û1(t, x) and U2(x) = F (T )Û2(x) and

Û1(t, x) = Û2(x) = 1
p x

p, p ∈ (−∞, 1) \ {0}.
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Solution method:

• Step 1. Use martingale method and call on results by

Karatzas and Shreve [KS98] to establish existence of solution

provided that an ‘implicit’ integrability condition is satisfied;

• Step 2. Replace ‘implicit’ integrability condition by a

condition stated explicitly in terms of model parameters using

results by Kraft [Kra03] and Hurd et al. [HK08] on the

Laplace transform of a CIR process;

• Step 3. Exploit affine structure of CIR process to derive

closed-form solution for optimal consumption and wealth;

• Step 4. Derive dynamics of optimal wealth process and

determine optimal strategy.
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Step 1: Martingale method

The following result, which applies to a continuous-time diffusion
setting, is due to Karatzas and Shreve [KS98]. Suppose that

E

[∫ T

0
H0(u)du + H0(T )

]
< ∞ and X (1) < ∞ (4.1)

where H0(·) denotes the state price density and

X (y) = E

[∫ T

0
H0(t)I1(t, yH0(t))dt + H0(T )I2(yH0(T ))

]
, (4.2)

in which I1(t, ·) and I2(·) are the inverse functions of U ′1(t, ·) and
U ′2(·). Then the optimal consumption and terminal wealth are
given by

c(t) = I1(t,Y(x)H0(t)) , (4.3)

X (T ) = I2(Y(x)H0(T )) . (4.4)

where
Y(x) =

(
x

X (1)

)p−1

is the inverse of X (·).
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Step 2: Laplace transform of CIR process

In our economy the state price density is given by

H0(t) = exp

{
−
∫ t

0
r(u)du −

∫ t

0
θ(u)dW (u)−

1

2

∫ t

0
||θ(u)||2du

}
, (4.5)

in which, for positive constants θ1, θ2, ν1, ν2, the market price of
risk is

θ(t) =

(
−
θ1

ν1

√
r(t), −

θ2

ν2

√
λ(t)

)
. (4.6)
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Step 2: Laplace transform of CIR process

It can be shown that for some constants K1 and K2

E [H0(t)I1(t,H0(t))] = E
P̃0

[
exp

{
−K1

∫ t

0
r(u)du − K2

∫ t

0
λ(u)du

}]
. (4.7)

in which, dP̃0
dP = Z (T ) and, for every p < 1, p 6= 0, the

stochastic exponential

Z(t) = E
(

p

1− p
θ(t) ·W (t)

)
,

is a martingale (see Revuz and Yor [RY99, Ch. VIII, Ex. 1.40]).

Hence by changing the probability measure, the evaluation of X (y)

can be recast into the evaluation of a Laplace transform of∫
r(u)du and

∫
λ(u)du.
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Step 2: Laplace transform of CIR process

Let κ > 0, θ > 0 and ν > 0 such that 2κθ > ν2. Suppose that ζ(·)
follows a Cox-Ingersoll-Ross process

dζ(t) = κ(θ − ζ(t)) dt + ν
√
ζ(t) dW (t) . (4.8)

The Laplace transform
φ(t,T , ζ) = E

[
exp

{
−αζ(T )− β

∫ T

t
ζ(s)ds

} ∣∣∣∣ ζ(t) = ζ

]
, (4.9)

of
(
ζ(T ),

∫ T
t ζ(s)ds

)
is finite-valued if

(i) − β <
κ2

2ν2
and (ii) − α <

κ + a

ν2
,

where a =
√
κ2 + 2βν2 . Moreover, φ(t,T , ζ) has an affine

representation φ(t,T , ζ) = e−A(t,T )−B(t,T )r .

Proof: Combine results in Kraft [Kra03] and Hurd et al. [HK08].
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Step 3: Optimal consumption and terminal wealth

If the following conditions are satisfied

p
[

2ν2
1 + (κ1 + θ1)2

]
< κ

2
1 , (4.10)

−2ν2
2 + p (κ2 + θ2)2

< κ
2
2 and κ̃2 + ã2 > 0 , (4.11)

Then the optimal consumption strategy is given by

c(t) =
m(t)

n(t)
X (t) , (4.12)

in which
X (t) =

x n(t)Λ(t)

n(0)H0(t)
, (4.13)

is the optimal wealth process, and value function is given by

V (x) =
1

p
n(0)1−pxp , (4.14)
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where

Λ(t) = exp

{
p

1− p

∫ t

0
θ(u)dW (u)−

1

2

(
p

1− p

)2 ∫ t

0
||θ(u)||2du

}

m(t) = exp

{
−

1

1− p

∫ t

0
λ(u)du +

p

1− p

∫ t

0
r(u)du +

p

2(1− p)2

∫ t

0
||θ(u)||2du

}

n(t) =

∫ T

t
L(t, u)du + L(t,T )

and L(·,T ) has an affine representation

L(t,T ) = e−A1(t,T )−A2(t,T )−B1(t,T )r(t)−B2(t,T )λ(t)

in which

Ai (t,T ) =
−κiµi (κ̃i − ãi ) (T − t)

ν2
i

+
2κiµi

ν2
i

log

(
1− qi e

−ãi (T−t)

1− qi

)

B i (t,T ) = 2Ki
e ãi (T−t) − 1

e ãi (T−t)(κ̃i + ãi )− κ̃i + ãi

for i = 1, 2 and

qi =
κ̃i − ãi

κ̃i + ãi
, ãi =

√
κ̃2
i + 2Kiν

2
i , κ̃i = κi −

p

1− p
θi .
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Step 4: Optimal investment strategy

For all 0 < T <∞ define the process L(·,T ) by

dL(t,T ) = µ̃(t,T ) dt + ν̃(t,T )dW (t)

where W (t) = (W1(t),W2(t) ) is a Brownian motion, µ̃ is an

adapted, non-negative function [0,T ]× [0,T ]× Ω→ R and ν̃ is

an adapted, non-negative function [0,T ]× [0,T ]× Ω→ R2.

If for i = 1, 2

∫ t

0

{
ν̃i (u, s)

}2du < ∞ a.s. for all t ∈ [0,T ] and s ∈ [0,T ] , (4.15)

∫ t

0

{∫ T

0
ν̃i (u, s) ds

}2

du < ∞ a.s. for all t ∈ [0,T ] , (4.16)
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Step 4: Optimal investment strategy

If furthermore

t 7→
∫ T

0

{∫ t

0
ν̃i (u, s) dWi (u)

}2
ds

is almost surely continuous then

d

(∫ T

t
L(t, s)ds

)
=

{
−L(t, t) +

∫ T

t
µ̃(t, s)ds

}
dt +

2∑
i=1

{∫ T

t
ν̃i (t, s)ds

}
dWi (t) . (4.17)

Proof: Combine results in Munk [Mun03, Thm. 3.3] and Heath et

al. [HJM92, Appendix A].
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Step 4: Optimal investment strategy

Apply Itô’s lemma and Leibniz’ rule to the dynamics of optimal
wealth process to obtain:

d
(
X (t) +

∫ t
0 c(u)du

)
X (t)

=
(

1− Q1(t)
) dS0(t)

S0(t)
+
(
Q1(t)− Q2(t)

) dP(t,T1)

P(t,T1)
+ Q2(t)

dF (t,T1)

F (t,T1)
,

where, for i = 1, 2, the hedging strategies take the following

explicit form:

Qi (t) =
1

Bi (t,T1)

(
1

1− p

θ1

ν2
i

+
Ξi (t)

n(t)

)

in which
Ξi (t) = B i (t,T )L(t,T ) +

∫ T

t
B i (t, u)L(t, u) du .

The short rate and mortality rate are observable due to the affine

relation between the (observable) bond price and S-forward price.
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More results

• Bounds on the hedging demand can be derived in terms of

model parameters.

• A rolling bond can be used (instead of a long-term bond) to

trade interest rate risk.

• Stocks can be added to the asset mix.

• The proportionality constants in the market price of risk can

be assumed to be time-dependent, provided that the resulting

Riccati equation has a continuous solution; conditions under

which this holds are left for future research.
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Conclusion

• A solution to the optimal consumption and investment

problem with (non-negative) Cox-Ingersoll-Ross short rate and

mortality rate exists under conditions which can be expressed

explicitly in terms of model parameters;

• The optimal consumption and investment strategy has been

derived in closed-form.
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