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Markov Decision Processes (MDPs): Motivation

Let (Xn) be a Markov process (in discrete time) with
I state space E ,
I transition kernel Qn(·|x).

Let (Xn) be a controlled Markov process with
I state space E , action space A,
I admissible state-action pairs Dn ⊂ E × A,
I transition kernel Qn(·|x ,a).

A decision An at time n is in general σ(X1, . . . ,Xn)-measurable.
However, Markovian structure implies An = fn(Xn) is sufficient.
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MDPs: Formal Definition

Definition
A Markov Decision Model with planning horizon N ∈ N consists
of a set of data (E ,A,Dn,Qn, rn,gN) with the following meaning
for n = 0,1, . . . ,N − 1:
• E is the state space,
• A is the action space,
• Dn ⊂ E ×A admissible state-action combinations at time n,
• Qn(·|x ,a) stochastic transition kernel at time n,
• rn : Dn → R one-stage reward at time n,
• gN : E → R terminal reward at time N.
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Policies

I A decision rule at time n is a measurable mapping
fn : E → A such that fn(x) ∈ Dn(x) for all x ∈ E .

I A policy is given by π = (f0, f1, . . . , fN−1) a sequence of
decision rules.
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Optimization Problem
For n = 0,1, . . . ,N, π = (f0, . . . , fN−1) define the value functions

Vnπ(x) := IEπnx

[
N−1∑
k=n

rk
(
Xk , fk (Xk )

)
+ gN(XN)

]
,

Vn(x) := sup
π

Vnπ(x), x ∈ E .

A policy π is called optimal if V0π(x) = V0(x) for all x ∈ E .

Integrability Assumption (AN): For n = 0,1, . . . ,N

sup
π

IEπnx

[
N−1∑
k=n

r+k (Xk , fk (Xk )) + g+
N (XN)

]
<∞, x ∈ E .
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General evolution of a Markov Decision Process

state at

stage n:

xn

Controller

reward at

stage n:

rn(xn,an)

random

transition 

with

distribution

Qn(.|xn,an)

state at

stage n+1:

xn+1



Markov Decision Processes with Applications to Finance

MDPs with Finite Time Horizon

VIPs of MDPs

Abbildung: Lloyd Shapley (1923 - )
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VIPs of MDPs

Abbildung: Richard Bellman (1920 - 1984)
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VIPs of MDPs

Abbildung: David Blackwell (1912 - 2010)
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I Powell (2007)
I B and Rieder (2011)
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Notation

Let M(E) := {v : E → [−∞,∞) | v is measurable} and define
the following operators for v ∈M(E):

Definition

a) (Lnv)(x ,a) := rn(x ,a) +
∫

v(x ′)Qn(dx ′|x ,a), (x ,a) ∈ Dn,

b) (Tnf v)(x) := (Lnv)(x , f (x)), x ∈ E ,
c) (Tnv)(x) := supa∈Dn(x)(Lnv)(x ,a). Note Tnv /∈M(E).

A decision rule fn is called maximizer of v at time n if
Tnfnv = Tnv .
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Theorem (Reward Iteration)

For a policy π = (f0, . . . , fN−1) and n = 0,1, . . . ,N − 1:
a) VNπ = gN and Vnπ = TnfnVn+1,π,

b) Vnπ = Tnfn . . .TN−1fN−1gN .

Theorem (Verification Theorem)

Let (vn) ⊂M(E) be a solution of the Bellman equation:
vn = Tnvn+1, vN = gN . Then it holds:

a) vn ≥ Vn for n = 0,1, . . . ,N.
b) If f ∗n is a maximizer of vn+1 for n = 0,1, . . . ,N − 1, then

vn = Vn and π∗ = (f ∗0 , f
∗
1 , . . . , f

∗
N−1) is optimal.
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Structure Assumption (SAN):

There exist sets Mn ⊂M(E) and sets ∆n of decision rules
such that for all n = 0,1, . . . ,N − 1:

(i) gN ∈MN .
(ii) If v ∈Mn+1 then Tnv is well-defined and Tnv ∈Mn.

(iii) For all v ∈Mn+1 there exists a maximizer fn of v with
fn ∈ ∆n.
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Structure Theorem

Theorem
Let (SAN ) be satisfied. Then it holds:

a) Vn ∈Mn and (Vn) satisfies the Bellman equation.
b) Vn = TnTn+1 . . .TN−1gN .
c) For n = 0,1, . . . ,N − 1 there exist maximizers fn of Vn+1

with fn ∈ ∆n, and every sequence of maximizers f ∗n of Vn+1
defines an optimal policy (f ∗0 , f

∗
1 , . . . , f

∗
N−1).
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Upper Bounding Functions

Definition
b : E → R+ is called an upper bounding function if there exist
cr , cg , αb ∈ R+ such that for n = 0,1, . . . ,N − 1:

(i) r+n (x ,a) ≤ cr b(x),

(ii) g+
N (x) ≤ cgb(x),

(iii)
∫

b(x ′)Qn(dx ′|x ,a) ≤ αbb(x).

αb := sup(x ,a)∈D

∫
b(x ′)Q(dx ′|x ,a)

b(x) . Define ‖v‖b := supx∈E
|v(x)|
b(x) .

IBb := {v ∈M(E) | ‖v‖b <∞}, IB+
b := {v ∈M(E) | ‖v+‖b <∞}.
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Example: Consumption-Investment Problem

Financial Market:

I Bond price: Bn = (1 + i)n,
I Stock prices: Sk

n = Sk
0
∏n

m=1 Y k
m, k = 1, . . . ,d .

We denote Yn := (Y 1
n , . . . ,Y d

n ).

Assumptions:

I Y1, . . . ,YN are independent.
I (FM): There are no arbitrage opportunities.



Markov Decision Processes with Applications to Finance

MDPs with Finite Time Horizon

Example: Consumption-Investment Problem

Financial Market:

I Bond price: Bn = (1 + i)n,
I Stock prices: Sk

n = Sk
0
∏n

m=1 Y k
m, k = 1, . . . ,d .

We denote Yn := (Y 1
n , . . . ,Y d

n ).

Assumptions:

I Y1, . . . ,YN are independent.
I (FM): There are no arbitrage opportunities.



Markov Decision Processes with Applications to Finance

MDPs with Finite Time Horizon

Example: Consumption-Investment Problem

Policies:

I φk
n = amount of money invested in stock k at time n,
φn = (φ1

n, . . . , φ
d
n ) ∈ Rd .

I φ0
n = amount of money invested in the bond at time n.

I cn = amount of money consumed at time n, cn ≥ 0.

Wealth process:

X c,φ
n+1 = (1 + i)(X c,φ

n − cn) + φn · (Yn+1 − (1 + i) · e)

= (1 + i)(X c,φ
n − cn + φn · Rn+1)
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Optimization Problem

Let Uc ,Up : R+ → R+ be strictly increasing, strictly concave
utility functions.


IEx

[∑N−1
n=0 Uc(cn) + Up(X c,φ

N )
]
→ max

(c, φ) = (cn, φn) is a consumption-investment strategy with
X c,φ

N ≥ 0.
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MDP Formulation

I E := [0,∞) where x ∈ E denotes the wealth,
I A := R+ ×Rd where a ∈ Rd is amount of money invested

in the risky assets, c ∈ R+ is amount which is consumed,
I Dn(x) is given by

Dn(x) :=
{

(c,a) ∈ A | 0 ≤ c ≤ x and

(1 + i)(x − c + a · Rn+1) ∈ E P -a.s.
}
,

I Qn(·|x , c,a) := distribution of (1 + i)(x − c + a · Rn+1),
I rn

(
x , c,a

)
:= Uc(c),

I gN(x) := Up(x).
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Structure Result

Note: b(x) = 1 + x is a bounding function for the MDP.

Theorem

a) Vn are strictly increasing and strictly concave.
b) The value functions can be computed recursively by

VN(x) = Up(x),

Vn(x) = sup
(c,a)

{
Uc(c) + IEVn+1

(
(1 + i)(x − c + a · Rn+1

)}
.

c) There exist maximizers f ∗n (x) = (c∗n(x),a∗n(x)) of Vn+1 and
the strategy (f ∗0 , f

∗
1 , . . . , f

∗
N−1) is optimal.
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Power Utility
Let us assume Uc(x) = Up(x) = 1

γ xγ with 0 < γ < 1.

Theorem

a) The value functions are given by Vn(x) = dnxγ , x ≥ 0.
b) Optimal consumption is c∗n(x) = x(γdn)−δ and the optimal

amounts which are invested (δ = (1− γ)−1)

a∗n(x) = x
(γdn)δ − 1

(γdn)δ
α∗n, x ≥ 0

where α∗n is the optimal solution of the problem

sup
α∈An

IE[(1 +α ·Rn+1)γ ], An = {α ∈ Rd : 1 +α ·Rn+1 ≥ 0}.
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Semicontinuous MDPs

Theorem
Suppose the MDP has an upper bounding function b and for all
n = 0,1, . . . ,N − 1 it holds:

(i) Dn(x) is compact and x 7→ Dn(x) is upper semicontinuous
(usc),

(ii) (x ,a) 7→
∫

v(x ′)Qn(dx ′|x ,a) is usc for all usc v ∈ IB+
b ,

(iii) (x ,a) 7→ rn(x ,a) is usc,
(iv) x 7→ gN(x) is usc.
Then Mn := {v ∈ IB+

b | v is usc} and ∆n := {fn dec. rule at n}
satisfy the Structure Assumption (SAN ). In particular, Vn ∈Mn
and there exists an optimal policy (f ∗0 , . . . , f

∗
N−1) with f ∗n ∈ ∆n.
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Infinite Horizon Problem
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MDPs with Infinite Time Horizon
Consider a stationary MDP with β ∈ (0,1],g ≡ 0 and N =∞.

J∞π(x) := IEπx

[ ∞∑
k=0

βk r
(
Xk , fk (Xk )

)]
,

J∞(x) := sup
π

J∞π(x), x ∈ E .

Integrability Assumption (A):

δ(x) := sup
π

IEπx

[ ∞∑
k=0

βk r+
(
Xk , fk (Xk )

)]
<∞, x ∈ E .
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Convergence Assumption (C)

lim
n→∞

sup
π

IEπx

[ ∞∑
k=n

βk r+
(
Xk , fk (Xk )

)]
= 0, x ∈ E .

Assumption (C) implies that the following limits exist:

I limn→∞ Jnπ = J∞π.
I limn→∞ Jn =: J ≥ J∞.

J is called limit value function. Note: J 6= J∞, J∞ /∈M(E).
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Example: J 6= J∞ (β = 1)

We obtain:

J∞(1) = −1 < 0 = J(1).
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Verification Theorem

Tv(x) = sup
a∈D(x)

{
r(x ,a) + β

∫
v(x ′)Q(dx ′|x ,a)

}

Theorem
Assume (C) and let v ∈M(E), v ≤ δ be a fixed point of T such
that v ≥ J∞. If f ∗ is a maximizer of v, then v = J∞ and the
stationary policy (f ∗, f ∗, . . .) is optimal for the infinite-stage
Markov Decision Problem.
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Structure Assumption (SA)

There exists a set M ⊂M(E) and a set of decision rules ∆
such that:

(i) 0 ∈M.
(ii) If v ∈M then Tv(x) is well-defined and Tv ∈M.

(iii) For all v ∈M there exists a maximizer f ∈ ∆ of v .
(iv) J ∈M and J = TJ.
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Structure Theorem

Theorem
Let (C) and (SA) be satisfied. Then it holds:

a) J∞ ∈M, J∞ = TJ∞ and J∞ = J = limn→∞ Jn.
b) There exists a maximizer f ∈ ∆ of J∞, and every maximizer

f ∗ of J∞ defines an optimal stationary policy (f ∗, f ∗, . . .).
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Example: Dividend Pay-Out

Let Xn be the risk reserve of an insurance company at time n.
We assume that

I Zn = difference between premia and claim sizes in n-th
time interval,

I Z1,Z2, . . . are iid, Zn ∈ Z and P(Z1 = k) = qk , k ∈ Z.
I P(Z1 < 0) > 0 and IEZ+ <∞.

Control: We can pay-out a dividend at each time-point.

Xn+1 = Xn − fn(Xn) + Zn+1.

Let τ := inf{n ∈ N : Xn < 0} be the ruin time point.
Aim: Maximize the expected disc. dividend pay-out until τ .
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Formulation as an MDP

I E := Z where x ∈ E denotes the risk reserve,
I A := N0 where a ∈ A is the dividend pay-out,
I D(x) := {0,1, . . . , x}, x ≥ 0, and D(x) := {0}, x < 0,
I Q({y}|x ,a) := qy−x+a if x ≥ 0, else Q({y}|x ,a) = δxy ,
I r(x ,a) := a,
I β ∈ (0,1).

Then for a policy π = (f0, f1, . . .) we have

J∞π(x) = IEπx

[
τ−1∑
k=0

βk fk (Xk )

]
.
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First Results

Corollary

a) The function b(x) = 1 + x , x ≥ 0 and b(x) = 0, x < 0 is a
bounding function. (A) is satisfied.

b) (C) is satisfied.
c) It holds for x ≥ 0 that

x +
β IEZ+

1− βq+
≤ J∞(x) ≤ x +

β IEZ+

1− β

where q+ := P(Z1 ≥ 0).

In particular (SA) is satisfied with M := IBb.
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Bellman Equation

The Structure Theorem yields that
I limn→∞ Jn = J∞,
I Bellman equation

J∞(x) = max
a∈{0,1,...,x}

{
a + β

∞∑
k=a−x

J∞(x − a + k)qk

}
,

I Every maximizer of J∞ (which obviously exists) defines an
optimal stationary policy (f ∗, f ∗, . . .).

Let f ∗ be the largest maximizer of J∞.
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Further Properties of J∞ and f ∗

Theorem

a) The value function J∞(x) is increasing.
b) It holds that

J∞(x)− J∞(y) ≥ x − y , x ≥ y ≥ 0.

c) For x ≥ 0 it holds that f ∗
(
x − f ∗(x)

)
= 0.
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Band and Barrier Policies

Definition

a) A stationary policy (f , f , . . .) is called band-policy, if ∃
n ∈ N0 and c0, . . . cn,d1, . . .dn ∈ N0 s.t. dk − ck−1 ≥ 2,
0 ≤ c0 < d1 ≤ c1 < . . . < dn ≤ cn and

f (x) =


0, if x ≤ c0

x − ck , if ck < x < dk+1
0, if dk ≤ x ≤ ck

x − cn, if x > cn.

b) A stationary policy (f , f , . . .) is called barrier-policy if it is a
band-policy and c0 = cn.
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Band Policies
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Barrier Policy
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Main Results

Lemma
Let ξ := sup{x ∈ N0 | f ∗(x) = 0}. Then ξ <∞ and

f ∗(x) = x − ξ for all x ≥ ξ.

Theorem
The stationary policy (f ∗, f ∗, . . .) is optimal and a band-policy.
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When is the Band a Barrier?

Known Condition: P(Z1 ≥ −1) = 1.

I de Finetti (1957)
I Shubik and Thomson (1959)
I Miyasawa (1962)
I Gerber (1969)
I Reinhard (1981)
I Schmidli (2008)
I Asmussen and Albrecher (2010)
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Semicontinuous MDPs

Theorem
Suppose there exists an upper bounding function b, (C) is
satisfied and

(i) D(x) is compact for all x ∈ E and x 7→ D(x) is usc,
(ii) (x ,a) 7→

∫
v(x ′)Q(dx ′|x ,a) is usc for all usc v ∈ IB+

b ,
(iii) (x ,a) 7→ r(x ,a) is usc.
Then it holds:

a) J∞ ∈ IB+
b , J∞ = TJ∞ and J∞ = J (Value Iteration).

b) ∅ 6= LsD∗n(x) ⊂ D∗∞(x) for all x ∈ E (Policy Iteration).
c) There exists an f ∗ ∈ F with f ∗(x) ∈ LsD∗n(x) for all x ∈ E,

and the stationary policy (f ∗, f ∗, . . .) is optimal.
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Contracting MDP

Theorem
Let b be a bounding function and βαb < 1. If there exists a
closed subset M ⊂ IBb and a set ∆ such that

(i) 0 ∈M,
(ii) T : M→M,

(iii) for all v ∈M there exists a maximizer f ∈ ∆ of v,
then it holds:

a) J∞ ∈M, J∞ = TJ∞ and J∞ = J.
b) J∞ is the unique fixed point of T in M.
c) There exists a maximizer f ∈ ∆ of J∞, and every maximizer

f ∗ of J∞ defines an optimal stationary policy (f ∗, f ∗, . . .).
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Howard’s Policy Improvement Algorithm
Let Jf be the value function of the stationary policy (f , f , . . .).
Denote D(x , f ) := {a ∈ D(x) | LJf (x ,a) > Jf (x)}, x ∈ E .

Theorem
Suppose the MDP is contracting. Then it holds:

a) If for some subset E0 ⊂ E we define a decision rule h by

h(x) ∈ D(x , f ) for x ∈ E0, h(x) := f (x) for x /∈ E0,

then Jh ≥ Jf and Jh(x) > Jf (x) for x ∈ E0. In this case the
decision rule h is called an improvement of f .

b) If D(x , f ) = ∅ for all x ∈ E, then the stationary policy
(f , f , . . .) is optimal.
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Extensions and Related Problems

I Stopping Problems
I Partially Observable Markov Decision Processes
I Piecewise Deterministic Markov Decision Processes
I Problems with Average Reward
I Games
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