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The basic observation in interest rate theory is that 1 EUR today has a
different value than 1 EUR at a future timepoints, say in 1 year.

Definition

A zero-coupon bond (T -bond) with nominal N and maturity T promises the
owner the payment of N units of currency at time T .

For simplicity we consider always N = 1.
The price of the zero-coupon bond at time t ≤ t is denoted by P(t,T ).

Example (Forward)

For your investment of 1 today you get 1.04 in 2 years. Then the associated
(annualized) yield equals (1.04−1)/2.
Can we fix the yield today for a future period, say from S to T? YES:

Invest 1 at S, get x at T > S
is equivalent to the following trading strategy:

Sell 1 S-bond at t (and get P(t,S)) and
buy P(t,S)/P(t,T ) T -bonds at t.

This trading strategy has zero cost at t, the cash-flow of −1 at S and
P(t,S)/P(t,T ) at T .
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The associated simple rates lead to the following definition.

Definition

The simple forward rate for the time interval [S,T ] at time t ≤ S is given by

F (t,S,T ) := 1
T −S

(
P(t,S)
P(t,T ) −1

)
.

The spot forward rate is

F (t,T ) := F (t, t,T ).

Example

In comparision to yearly compounding one could also consider monthly, daily
or even finer compounding. In prinicple we observe that letting n→ ∞ leads to(

1+ R
n

)nT
→ eRT ,

which is called continuous compounding. �
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Definition

The continuously compounded forward rate for the time interval [S,T ] at
time t ≤ S is given by

R(t,S,T ) := 1
T −S log P(t,S)

P(t,T )

and the continuously compounded spot rate is

R(t,T ) := R(t, t,T ).

Finally, we define instantaneous rates which make the time variation of the
rates best visible by letting T ↓ S. If the following limit exists we define

f (t,T ) := lim
ε→0

1
ε

(
logP(t,T )− logP(t,T + ε)

)
→−∂T logP(t,T ).
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Definition

The (instantaneous) forward rate for maturity T at time t ≤ T , if existing, is
given by

f (t,T ) :=−∂T logP(t,T )
and the (instantaneous) spot rate by

r(t) := f (t, t).

It is clear in general that a forward rate does not need to exist and neither
does a short rate. By intragration we obtain that all bond-prices can be
represented by forward rates in the following way

P(t,T ) = exp
(
−
∫ T

t
f (t,s)ds

)
.
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The money market account

Seen in an idealized way, the money market account B is obtained by
continuously investing in the short rate,

dB(t) = B(t)r(t)dt B(0) = 1.

The solution is of course B(t) = exp
∫ t
0 r(s)ds. This may be proxied by a

roll-over strategy,

Bn(t) =
n

∏
i=1

1
P(tn

i−1, t
n
i ) = exp

(∫ tn
i

tn
i−1

f (tn
i−1,s)ds

)
→ exp

(∫ t

0
r(s)ds

)
,

provided the convergence holds. Also this may fail in general, but some
degree of smoothness will be sufficient (think of counterexamples→
Excercise).
In a certain way, the money market account is embedded into the
forward-term structure,→ Döberlein and Schweizer (2001); Klein et al.
(2016).
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What we need from Stochastic Analysis

An excellent reference for the required results is Karatzas and Shreve (1988),
see also Jacod and Shiryaev (2003) for the general semimartingale
framework.

We consider a filtered probability space (Ω,F ,F,P) where the filtration
F = (Ft )t≥0 satisfies the usual conditions, i.e.

F is P-complete, i.e. A⊂ B with B ∈F and P(B) = 0⇒ A ∈F ,
F0 contains all P-nullsets ,
F is right-continuous.

A stochastic process X = (Xt )t≥0 is called
adapted if Ω 3 ω 7→ Xt (ω) is Ft -measurable for all t ≥ 0,
progressively measurable (progressive) if Ω× [0, t] 3 (ω,s) 7→ Xs(ω) is
Ft ⊗B([0, t])-measurable for all t ≥ 0.

By ProgT we denote the σ -algebra generated by all progressive processes
on [0,T ]. We throughout use both Xt and X (t) for referencing the value of X
at time t. Consider a d-dimensional Brownian motion W .
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The one-dimensional process X is called Itô-process if X has the
representation

X (t) = X (0) +
∫ t

0
a(s)ds +

∫ t

0
b(s)dW (s) (1)

where a,b are progressive and

P
(∫ t

0 ‖ a(s) ‖ ds < ∞

)
= 1, and P

(∫ t
0 ‖ b(s) ‖ ds2 < ∞

)
= 1.

For a progressive process b with the second property we abbreviate b ∈L .
When b ∈L , the stochastic integral (b ·W ) given by

(b ·W )t :=
∫ t

0
b(s)dW (s), t ≥ 0

is a local martingale. The decomposition in (1) is unique (up to
indistinguishability).
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The stochastic integral of an Itô-process is again an Itô process, or more
precisely: if c is such that P(

∫ t
0 ‖ c(s)a(s) ‖ ds < ∞) = 1 and cb ∈L , then we

write c ∈L (X ) and then

Y (t) = Y (0) +
∫ t

0
c(s)dX (s)

is an Itô-process.
Define the covariation of two Itô processes X1 and X2 satisfying (1) with
coefficients ai and bi by

< X ,Y >t :=
∫ t

0
b1(s)b>2 (s)ds.

Theorem (Itô-formula)

Consider f ∈ C1,2. Then (f (t,Xt ))t≥0 is an Itô-process and

f (t,Xt ) = f (0,X0) +
∫ t

0
∂t f (s,Xs)ds +

d
∑
i=1

∫ t

0
∂xi f (s,Xs)dX i

s

+ 1
2

d
∑

i,j=1

∫ t

0
∂xi ∂xj f (s,Xs)d < X i ,X j >s .
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Fubini theorems

In contrast to deterministic analysis Fubini-theorems come at a surprisingly
high cost.

Theorem (Fubini)

Consider the d-dimensional process φ = (φ (ω,s, t))0≤s,t≤T , such that
(i) φ is ProgT ⊗B([0,T ])-measurable
(ii) sup0≤s,t≤T ‖ φ (t,s) ‖< ∞.

Then
∫ T
0 φ (t,s)ds ∈L and∫ T

0

(∫ T

0
φ (t,s)dWt

)
ds =

∫ T

0

(∫ T

0
φ (t,s)ds

)
dWt .

Alternative Fubini theorems can be found in Protter (2004); Veraar (2012);
Fontana and Schmidt (2016).
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What we need from No-Arbitrage Theory
Consider a d +1-dimensional financial market given by the stochastic process
S = (S0, . . . ,Sd )>. We assume that

dS0
t = S0

t rtdt, S0(0) = 1
dSi

t = Si
t
(
µ

i
t dt + σ

i
t dWt

)
.

A portfolio (or trading strategy) is a d +1-dimensional progressive process
φ = (φ0, . . . ,φd ). The trading strategy is called self-financing if φ ∈L (S) and

dV (t) = φ (t)dS(t).

A self-financing trading strategy is admissible if the value process is bounded
from below. Then the fundamental theorem of asset pricing (FTAP) shows
that NFLVR (no free lunch with vanishing risk) is equivalent to the existence
of an equivalent local martingale measure (ELMM).

As is customary in financial literature we will mainly use the claim that the
existence of an equivalent local martingale measure (ELMM) is sufficient for
absence of arbitrage. We throught consider an equivalent measure P and
classify when it is a LMM.
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Some care is needed

You may note that (P(t,T ))0≤t≤T is, however, a market with an infinite
number of assets.
This requires some special care: one may rely on methodologies from
larger financial markets→ Klein et al. (2016); Cuchiero et al. (2014).
In short, NFLVR can be replaced by NAFLVR (no asymptotic free lunch
with vanishing risk) and is, in the case considered here (with locally
bounded prices of the traded assets), equivalent to the existence of an
equivalent local martingale measure.
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The classical case - Heath, Jarrow and Morton (1992)
Consider

P(t,T ) = e−
∫ T

t f (t,u)du

with numéraire S0(t) = e
∫ t
0 rsds. The classic assumption is that

f (t,T ) = f (0,T ) +
∫ t

0
α(s,T )ds +

∫ t

0
β (s,T )dWs

where f (t, t) = rt and
α and β are Prog⊗B-measurable,∫ T
0
∫ T
0 |α(s,u)|dsdu < ∞ for all T,

sup0≤s,t≤T ‖ β (s, t) ‖< ∞ for all T .
We denote

ᾱ(t,T ) =
∫ T

t
α(t,u)du, β̄ (t,T ) =

∫ T

t
β (t,u)du.

Theorem

P is an LMM if and only if dt⊗dP-almost surely,

ᾱ(t,T ) =‖ β̄ (t,T ) ‖2 . (2)
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The proof

Lemma

The zero coupon bond is an Itô-process satisfying

dP(t,T )
P(t,T ) =

(
f (t, t)− ᾱ(t,T ) + 1

2 ‖ β̄ (t,T ) ‖2
)
dt− β̄ (t,T )dWt

Proof. We first consider

logP(t,T ) =−
∫ T

t
f (t,u)du =−

∫ T

t

[
f (0,u) +

∫ t

0
α(s,u)ds +

∫ t

0
β (s,u)dWs

]
du

=−
∫ T

t
f (0,u)du−

∫ t

0

∫ T

t
α(s,u)duds−

∫ t

0

∫ T

t
β (s,u)dudWs

=−
∫ T

0
f (0,u)du−

∫ t

0

∫ T

s
α(s,u)duds−

∫ t

0

∫ T

s
β (s,u)dudWs

+
∫ t

0
f (0,u)du +

∫ t

0

∫ t

s
α(s,u)duds +

∫ t

0

∫ t

s
β (s,u)dudWs.
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Moreover note that, using Fubini,∫ t

0

∫ t

s
α(s,u)duds =

∫ t

0

∫ t

0
1{s<u}α(s,u)duds =

∫ t

0

∫ u

0
α(s,u)dsdu

and similarly for the other integrals in the last line. Summarizing, the last line
equals∫ t

0
f (0,u)du +

∫ t

0

∫ t

s
α(s,u)duds +

∫ t

0

∫ t

s
β (s,u)dudWs

=
∫ t

0
f (0,u)du +

∫ t

0

∫ u

0
α(s,u)dsdu +

∫ t

0

∫ u

0
β (s,u)dWs du =

∫ t

0
f (u,u)du.

Hence,

logP(t,T ) =−
∫ T

0
f (0,u)du−

∫ t

0
ᾱ(s,u)ds−

∫ t

0
β̄ (s,T )dWs +

∫ t

0
f (s,s)ds. (3)

Applying the Itô-formula and using f (s,s) = r(s) yields that

dP(t,T ) = P(t,T )
[(

f (t, t)−
∫ T

t
ᾱ(t,u)du + 1

2 ‖ β̄ (t,T ) ‖2
)

dt− β̄ (t,T )dWt
]

and we conclude. �
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The theorem immediately follows as

dP(t,T ) = P(t,T )
[(

f (t, t)−
∫ T

t
ᾱ(t,u)du + 1

2 ‖ β̄ (t,T ) ‖2
)

dt− β̄ (t,T )dWt
]

is (because β̄ ∈L ) a local martingale (after discounting), if and only if∫ s

0

(
f (t, t)−

∫ T

t
ᾱ(t,u)du + 1

2 ‖ β̄ (t,T ) ‖2
)

dt =
∫ s

0
rtdt, (4)

for all 0≤ s≤ T . For T = s we obtain rt = f (t, t) and thereafter the remaining
drift condition (2).
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Multiple yield curve markets

Central instruments are forward rate agreements (FRA): the fixation of
a rate on the future interval [T ,S]. If bond prices are sufficiently liquid
(and not risky), one obtains the "classical" FRA rate1

F (t,T ,S) = 1
S−T

(
P(t,T )
P(t,S) −1

)
. (5)

If the bonds carry credit risk, this is no longer possible and one
considers multiple yield curves.
The literature on multiple yield curve models is
huge:Heath-Jarrow-Morton (HJM)-like approaches have been
considered in Crépey, Grbac, and Nguyen (2012), Crépey, Grbac, Ngor,
and Skovmand (2014), Moreni and Pallavicini (2014) as well as in
Cuchiero, Gnoatto and Fontana (2016).
A nice survey:→ Grbac and Runggaldier (2015).

1See the first example.
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NA starting points: the central instruments are FRAs

In a FRA, a discretely compounded rate is exchanged with payments
based on a fixed rate K . Denote its price by ΠFRA(t,T ,δ ,K ).
Denote the (spot) Libor rate (at T ) for [T ,T + δ ) by L(T ,T ,δ ).
The forward Libor rate L(t,T ,δ ) is the unique K , such that

ΠFRA(t,T ,δ ,K ) = 0. (6)

At maturity T ,

ΠFRA(T ,T ,δ ,K ) = (1+ δL(T ,T ,δ ))− (1+ δK ),

Discounting, we arrive at the fundamental equation No 1:

ΠFRA(t,T ,δ ,K ) = (1+ δL(t,T ,δ ))P(t,T + δ )− K̄ (δ )P(t,T + δ )
:= St (δ )P(t,T ,δ )− K̄ (δ )P(t,T + δ ).
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Dynamic multiple term-structures

We assume
P(t,T ,δ ) = exp

(
−
∫

(t,T ]
f (t,u,δ )µ(du)

)
,

with the convention that (t, t] = /0 and δ ∈ {δ1, . . . ,δN} =: D .
It is time to improve notation: we assume (as general as the previous
approach) that forward rates are given by

f (t,T ,δ ) = f (0,T ,δ ) +
∫ t

0
β (s,T ,δ )dXs. (7)

where X is an Itô process of the form

Xt = X0 +
∫ t

0
aX

s ds +
∫ t

0
bX

s dWs. (8)

We denote the local exponent of X by

Ψt (u) = uaX
t + 1

2 ‖ ubX
t ‖2 .
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We assume that the multiplicative spread process satisfies

St (δ ) = S0(δ )exp
(∫ t

0
as(δ )ds− 1

2

∫ t

0
‖bs(δ )‖2ds +

∫ t

0
bs(δ )dWs

)
,

for all 0≤ t ≤ T∗. Finally we set for all 0≤ t ≤ T ≤ T∗ and δ ∈ {0,δ1, . . . ,δN}:

β̄ (t,T ,δ ) :=
∫

(t,T ]
β (t,u,δ )du

where β (t,u,0) = β (t,u) corresponds to the risk-free case.
Summarizing, we consider all FRAs as traded assets as well as the risk-free
bonds (those can be thougt of being the term-structure associated with
OIS-rates. It is no difficulty to include additionally credit risk here).
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Theorem

P is an LMM if and only if:
1 rt = f (t, t,0), for a.e. 0≤ t ≤ T∗

2 for every T ∈ [0,T∗] and a.e. 0≤ t ≤ T the drift condition for the
risk-free curve,

0 = Ψt (−β̄ (t,T ,0)) (9)

holds
3 f (t, t,δ ) = f (t, t,0)−at (δ ), for a.e. 0≤ t ≤ T∗

4 for every T ∈ [0,T∗] and a.e. 0≤ t ≤ T the drift condition for the tenor δ ,

0 = Ψt (−β̄ (t,T ,δ ))−〈β̄ (t,T ,δ )bX
t ,bt (δ )〉, (10)

holds.

The drift condition in the semimartingale exactly looks like (9) for δ = 0. For
other δ ’s the case is more complicated→ Fontana and Schmidt (2016).
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The proof only requires in addition to the previous results to consider

St (δ )P(t,T ,δ )

instead of simply P(t,T ,δ ). This again can be achieved by the Itô-formula.
It will prove useful to utilize the following results on stochastic exponentials.
The stochastic exponential Z = E (X ) of a semimartingale solves the equation

dZt = Zt−dXt

with Z0 = 1. Examples are

Zt = exp
(∫ t

0
bsdWs−

1
2

∫ t

0
‖ bs ‖2

)
if X = W and b ∈L (Proof: Itô-formula). Z is in general only a local
martingale (if X is).
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We have the following: If X is the Itô-process from (8), with X0 = 0 then2

eX = E (X̄ )

with
X̄ = X + 1

2

∫ ·
0
〈X〉2sds.

Moreover, Yor’s formula (see JS, II.8.19):

E (X )E (Y ) = E (X + Y + 〈X ,Y 〉)

2Jacod and Shiryaev (2003) will be abbreviated JS. This follows from JS, II.8.10.
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Now we are ready for the Proof:
First, recall from (3) that

It :=−
∫ T

t
f (t,u,δ )du =−

∫ T

0
f (0,u,δ )du−

∫ t

0
β̄ (s,T ,δ )dXs +

∫ t

0
f (s,s,δ )ds

and we obtain P(.,T ,δ ) = P(0,T ,δ )E ( Ī ) with

Īt = It − I0 + 1
2

∫ t

0
‖ β̄ (s,T ,δ )bX

s ‖2 ds.

Similarly, S(δ ) = S0(δ )E ( J̄ ) with

J̄t =
∫ t

0
as(δ )ds +

∫ t

0
bs(δ )dWs.

Hence,

S(δ )P(.,T ,δ )
S0(δ )P(0,T ,δ ) = E (Ī + J̄+ < Ī, J̄ >)

with
< Ī, J̄ >=< I,J >=−

∫ ·
0
〈β̄ (s,T ,δ )bX

s ,bs(δ )〉ds.
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Summarizing, after discounting SP is a local martingale if and only if the
drifts vanish, i.e.

0 =
∫ t

0

(
f (s,s,δ )− rs + as(δ ) + Ψs(−β̄ (s,T ,δ ))−〈β̄ (s,T ,δ )bX

s ,bs(δ )〉
)

ds

and we obtain (beause rt = f (t, t,0) - the risk-free market is also arbitrage free)

f (t, t,δ ) = f (t, t,0)−at (δ )

0 = Ψt (−β̄ (t,T ,δ ))−〈β̄ (t,T ,δ )bX
t ,bt (δ )〉

such that we can conclude. �
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This machinery can also be applied to credit risk: here τ is a stopping time
and the credit risky bond is modeled as

P(t,T ) = 1{τ>t}e−
∫ T

t f (t,u)du.

However, jumps need to be taken into account as the default indicator is
discontinuous. Also, it is natural to introduce jumps in the default
compensator, see→ Gehmlich and Schmidt (2016).
Before we come back to this we consider market models under multiple yield
curves.
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Market Models in Multiple Yield Curve Markets

Starting from a slightly different representation we are able to study
market models in general. Consider fundamental equation No 2:

ΠFRA(t,T ,T + δ ,K ) = δ
(
L(t,T ,δ )−K

)
P(t,T + δ );

here 0≤ t ≤ T ≤ T∗, δ ∈D and, in contrast to the HJM-approach, we
only consider maturities T ∈T = {T1, . . . ,TN}.
We assume that Libor rate is the Itô-process

L(t,T ,δ ) = L(0,T ,δ ) +
∫ t

0
aL(s,T ,δ )ds +

∫ t

0
bL(s,T ,δ )dWs, (11)
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Theorem

P is a LMM if and only if the following conditions hold for all T ∈T and δ ∈D :
1 for dt⊗dP-almost all t ≤ T

aL(t,T ,δ ) = β̄ (t,T + δ ,0)>bL(t,T ,δ ). (12)

The drift condition suggests a change of measure and we indeed obtain the
following local-martingale condition. Define the density

ZT+δ
t := 1

X0
t

P(t,T + δ ,0)
P(0,T + δ ,0) , 0≤ t ≤ T + δ .

If this is a true martingale we define dPT+δ := ZT+δ

T+δ
dP - the so-called

T + δ -forward measure.

Proposition

Assume that for each (δ ,T ) ∈D×T the processes (ZT+δ
t )0≤t≤T+δ are true

martingales. Then P is an LMM if and only if for each (δ ,T ) ∈D×T , the
process (L(t,T ,δ ))0≤t≤T is a PT+δ -local martingale.

We are able to include all existing market models into our framework.



The proof is quite simple: Recall (with P̃ = (S0)−1P) by NA for δ = 0,

dP̃(t,T ,0) = P̃(t,T ,0)
(
− β̄ (t,T ,0)bX

t dWt

)
.

Hence, by integration by parts,

dL(t,T ,δ )P̃(t,T + δ ) = L(t,T ,δ )dP̃(t,T + δ ) + P̃(t,T + δ )dL(t,T ,δ )
+ d < L(.,T ,δ ), P̃(.,T + δ ) >t

and we obtain

dL(t,T ,δ )P̃(t,T + δ )
L(t,T ,δ )P̃(t,T + δ )

=−β̄ (t,T + δ ,0)bX
t dWt + aL(t,T ,δ )dt + bL(t,T ,δ )dWt

− β̄ (t,T + δ ,0)bX
t bL(t,T ,δ )dt

which is a local martingale if and only if dt⊗dP-a.s.

aL(t,T ,δ ) = β̄ (t,T + δ ,0)bX
t bL(t,T ,δ ).
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Towards a general approach in credit risk

Here we follow Gehmlich and Schmidt (2016). The idea is to incorporate
all existing model on the one side and to follow economical facts on the
other side.
Credit risk is, in a first step, described by a stopping time τ. (Default is
public information!)
Consider the default indicator Ht = 1{τ≤t}, t ≥ 0.
Then, H is an increasing process (a submartingale) and hence by the
Doob-Meyer decomposition there exists the compensator Hp, wich itself
is predictable and increasing.
Then by the Lebesgue decomposition3

Hp
t =

∫ t

0
hsds + νt + ∑

0<s≤t
∆Hs,

here ν is singular continuous. We consider ν = 0 in the following.

3See Lemma 2.1 in Fontana and Schmidt (2016).
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A short story on discontinuities

The nature of ‘discontinuities’ in financial markets may be quite different:
Type I discontinuities: Events with substantial impact that come as a
complete surprise (at ‘unpredictable’ times).
Type II discontinuities: Events with substantial impact that occur at
predictable or deterministic times (but with random outcome).

With the exception of firm-value-based credit risk models, most modeling
frameworks have focused on type I events: e.g. intensity-based credit risk
models; Lévy-based models of asset returns; . . .

However, the economic literature long acknowledge jumps at predictable
times, e.g. Piazzesi (2001, 2010) (here deterministic times were
considered).
We could include4 this in multiple yield curve markets by considering the
numéraire

S0 = exp
(∫ ·

0
rt µ(dt)

)
where µ is a deterministic and finite measure on (R,B).

4See Fontana et al. (2017).
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For credit risk, we consider

P(t,T ) = 1{τ>t}exp
(
−
∫

(t,T ]
f (t,u)µ(du)

where - for simplicity - µ(du) = du + ∑
n
i=1 δTi (du).

Theorem

P is a LMM if and only if on {τ > t},
1 f (t, t) = rt + ht , dP⊗dt-a.s. for t ∈ [0,T∗];
2 ∆Hp

t = 0 for any t ∈ {T1, . . . ,Tn}c and for i = 1, . . . ,n

f (Ti ,Ti ) =− log(1−∆Hp
Ti

)

3 for all 0≤ t ≤ T ≤ T∗,

0 =Ψt (−β̄ (t,T ))
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Let’s have a look at the proof: First, we define H̄ = 1−H and have

dH̄ = dM−
∫ ·
0

hsds−∆Hp

= H̄−
(

dM−
∫ ·
0

hsds−∆Hp
)
.

As previously, for It :=−
∫

(t,T ] f (t,u)µ(du) with (t, t] = /0 we obtain

dIt =−β̄ (t,T )dXt + f (t, t)µ(dt) =−β̄ (t,T )dX + f (t, t)dt +
n
∑
i=1

f (Ti ,Ti )δTi (dt)

By the Itô-formula

deI
t = eIt−

(
dIct + 1

2d < Ic >t +(e∆It −1)
)

= eIt−
([

f (t, t) + ψt (−β̄ (t,T ))
]
dt + dMt + (e∆It −1)

)
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Now we are ready to consider the bond prices themselves, i.e.

d(H̄eIt ) = H̄t−deIt + eIt−dH̄t + d[H̄,eI ]t

= H̄t−eIt−
([

f (t, t) + ψt (−β̄ (t,T ))
]
dt + (e∆It −1)

−htdt−∆Hp
t −1{τ=t}(e∆It −1) + dM′t

)
= H̄t−eIt−

([
f (t, t)−ht + ψt (−β̄ (t,T ))

]
dt +1{τ>t}(e∆It −1)−∆Hp

t + dM′t
)

Hence, we have three kind of equations (after discounting):
T = t implies f (t, t) = rt + ht

jumps occur at Ti , and they must vanish, i.e. e∆It −1 = ∆Hp
t

the classical drift condition needs to hold, i.e. 0 = Ψt (−β̄ (t,T ))
and the result is prooved. �
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Example

Consider λ > 0, 0< T1 < · · ·< TN , and positive random variables λ ′1, . . . ,λ
′
N . Set

Λt = λ t + ∑
Ti≤t

λ
′
i .

Let E be a standard exponential random variable, independent from Λ, and set
τ = inf{t ≥ 0 : Λt ≥ E}.

Then ∆Hp
Ti

> 0 because Ti is a possible default date:

P(τ = Ti ) = P(λ ′i ≥ E) = E[1−exp(−λ
′
i )].

If Λ is deterministic and r = 0, we obtain

P(t,T ) = P(τ > T |τ > t) = 1{τ>t} exp
(
−λ (T − t)− ∑

Ti∈(t,T ]
λ
′
i

)
Note that

Hp
t = λ (t ∧ τ) + ∑

i:Ti≤(t∧τ)
(1−e−λ ′i )
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Applications

There are many interesting implications of the HJM-approach:
1 The drift condition is the starting point for affine and polynomial models

of the term structure
2 Positivity of the forward rates could be analyzed as well as
3 finite-dimensional realizatons,
4 applications to energy markets, foreign exchange, ...
5 consistency and many more,
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Many thanks for your attention !
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